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ABSTRACT

The massive growth of machine learning-based applications and
the end of Moore’s law have created a pressing need to redesign
computing platforms. We propose Lightning, the first reconfig-
urable photonic-electronic smartNIC to serve real-time deep neural
network inference requests. Lightning uses a fast datapath to feed
traffic from the NIC into the photonic domain without creating
digital packet processing and data movement bottlenecks. To do so,
Lightning leverages a novel reconfigurable count-action abstrac-
tion that keeps track of the required computation operations of
each inference packet. Our count-action abstraction decouples the
compute control plane from the data plane by counting the number
of operations in each task and triggers the execution of the next
task(s) without interrupting the dataflow. We evaluate Lightning’s
performance using four platforms: a prototype, chip synthesis, emu-
lations, and simulations. Our prototype demonstrates the feasibility
of performing 8-bit photonic multiply-accumulate operations with
99.25% accuracy. To the best of our knowledge, our prototype is the
highest-frequency photonic computing system, capable of serving
real-time inference queries at 4.055 GHz end-to-end. Our simula-
tions with large DNN models show that compared to Nvidia A100
GPU, A100X DPU, and Brainwave smartNIC, Lightning acceler-
ates the average inference serve time by 337×, 329×, and 42×, while
consuming 352×, 419×, and 54× less energy, respectively.
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1 INTRODUCTION

Artificial Intelligence is redefining modern life by empowering
novel machine learning inference applications. With the unprece-
dented growth of inference-based services hosted in datacenters,
there is a pressing need for fast and energy-efficient systems to
serve live inference queries in real time. As a prime example, in
January 2023, ChatGPT served 600 million inference queries and
consumed as much electricity as 175,000 people [59].

Photonic computing is an emerging area with the promise to
revolutionize the computing world by using lightwaves and optical
devices to perform fast and energy-efficient computation in the ana-
log domain [31, 40, 42, 57, 61, 81, 85, 92, 113]. The key principle in
photonic computing is that photonic devices have faster computing
frequencies than transistors while generating less heat [84].

Recently, several papers demonstrated the potential to perform
photonic computation at 100+ GHz frequency while consuming
40 atto Joules per operation [57, 67, 101, 111]. However, this paper
demonstrates that data movement is a significant bottleneck in
today’s photonic computing approaches. In particular, once we
factor in the digital datapath latency of today’s proposals, the end-
to-end inference latency explodes by five orders of magnitude,
thereby eliminating the gains of photonic computing entirely (§3).

The root cause of this problem is that photonic computing cores
are inherently passive devices without any memory or instructions
to control the computation dataflow of complex real-world applica-
tions. As a result, prior work employed a stop-and-go approach by
heavily involving a control software program (e.g., a Python script)
in the photonic computing operations. This coupling of the control
and data planes creates significant overhead in the datapath and
hurts end-to-end latency.

This problem is worsened because the control plane is running
with a digital clock frequency that is slower than the photonic
cores. For instance, consider a photonic computing core operating
at 100 GHz, controlled by digital software clocked at 1 GHz. In this
case, any interactions between the photonics and digital domains
(e.g., packet processing, data reads/writes) have the potential to
pause 100 GHz operations to make control-plane decisions at 1 GHz,
thereby slowing down the computation.

This paper demonstrates that to unleash the potential of pho-
tonic computing, we need to co-design the digital and photonic com-
ponents together. Towards this vision, we propose Lightning, a
reconfigurable photonic-electronic smartNIC with fast and energy-
efficient photonic computing cores (§4).

Lightning addresses the critical datapath latency problem of
today’s photonic computing proposals using a novel reconfigurable
count-action abstraction. Intuitively, our count-action abstraction
decouples the control and data planes of inference requests by
enabling the datapath to keep track of the directed acyclic graph
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(DAG) of each inference request without interrupting the flow of
the data in and out of photonic computing cores.

Lightning’s count-action abstraction has three components: (𝑖)
a set of variables to count, (𝑖𝑖) a set of target results, and (𝑖𝑖𝑖) a set of
actions to trigger when the result is equivalent to the target value.
The count component keeps track of the required operations for
each task of the DAG and triggers the execution of the next tasks
immediately after the current task is finished without involving the
control plane (§5). This technique is similar to the match-action
abstraction in Tofino switches [34], where packets flow through a
series of match-action units. However, unlike match-action units,
Lightning’s count-action units are reconfigurable at runtime.

We evaluate Lightning using four platforms: a hybrid photonic-
electronic prototype (§6), an emulation environment (§7), chip
synthesis (§8), and large-scale simulations (§9). Our prototype
demonstrates the feasibility of performing 8-bit photonic multi-
ply–accumulate (MAC) operations with 99.25% accuracy. Our ex-
periments with the LeNet-300-100 [76] DNN show that Light-
ning achieves 96.2% image classification accuracy on the MNIST
dataset [77]while accelerating inference serve time by 9.4× and 6.6×
compared to Nvidia P4 and A100 GPUs, respectively. To the best of
our knowledge, our prototype is the highest-frequency photonic
computing system serving real-time inference queries at 4.055 GHz
end-to-end. Our emulation results show that Lightning’s top-5
inference accuracy is within 2.25% of digital accelerators. Our chip
synthesis shows that the area footprint of a Lightning smartNIC is
2.55× smaller than a Stratix 10 FPGA used in Microsoft Brainwave
smartNIC [51], and consumes 1.37× less power. Our large-scale
simulations with seven representative DNN models (AlexNet [75],
ResNet18 [65], VGG16 [44], VGG19 [70], BERT [46], GPT-2 [93],
and DLRM [87]) show that compared to Nvidia A100 GPU, A100X
DPU, and Microsoft Brainwave smartNIC, Lightning accelerates
the average inference serve time by 337×, 329×, and 42×, while
consuming 352×, 419×, and 54× less energy, respectively.

Finally, while this paper is focused onmachine learning inference,
this work is a first step towards a long-term vision of building full
photonic computers connected with optical networks. Given the
high barrier of entry to photonic computing research, to enable the
SIGCOMM community to innovate in this space, we put together a
photonic computing developer kit programmed through a Python
API. Our source code is available at https://lightning.mit.edu.

2 BACKGROUND

Photonic computing is a revolutionary technology that has the
potential to change the way we think about computation. Unlike
traditional computers, which use electrical signals to perform cal-
culations, photonic computing uses light. This allows for a much
higher computation frequency, making it possible to perform fast
and energy-efficient operations. This section provides a brief back-
ground on photonic computing and its potential benefits.

2.1 Photonic Vector Dot Product

Amplitude modulation. Amplitude modulation is a well-known
technique to transmit digital data across optical fibers in datacenter
and wide-area networks. Figure 1 shows a simplified representation
of amplitude modulation in a commodity transceiver. An optical
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Figure 1: Amplitude modulation in a commodity transceiver.

modulator inside the transceiver adjusts the amplitude of a carrier
light according to the electrical data represented as input voltages.
In principle, the process of amplitude modulation is equivalent to
multiplying the intensity of the carrier light by the input voltage in
the analog domain [66]. The output of the modulator is a series of
light intensities proportional to the input voltages (e.g., by applying
0.8 Volts to the modulator, the intensity of the modulated light
becomes proportional to 0.8 dBm). This proportionality is constant
and is determined by the modulator’s materials [78].
Photonic multiplication. A common technique to perform mul-
tiplication in the photonic domain is to cascade two amplitude mod-
ulators back-to-back to multiply two input voltages [101, 102, 108].
As shown in Figure 2a, applying an input voltage 𝑎 to modulator1
creates a lightwave with intensity proportional to 𝑎. This lightwave
serves as a carrier signal for modulator2. Now, applying a second
input voltage 𝑏 to modulator2 multiplies 𝑎 by 𝑏 in the photonics
domain. The result is a double-modulated lightwave with its am-
plitude proportional to 𝑎 × 𝑏. The photodetector receives this light
intensity from the second modulator and translates it into voltage.
For example, let 𝑎 = 0.6 and 𝑏 = 0.85 represent the input numbers
in the electrical domain. By feeding these numbers into the two
optical modulators shown in Figure 2a, the intensity of the out-
put light from the second modulator becomes proportional to the
multiplication of the two input voltages, 𝑎 × 𝑏 = 0.51.
Photonic vector dot product. There are two common techniques
to leverage the photonic multiplication technique mentioned above
to perform vector dot product in the photonic domain: (𝑖) using a
single wavelength, and (𝑖𝑖) using multiple wavelengths. Below we
describe each technique in detail.
Photonic vector dot product using a single wavelength. A
straightforward technique to accumulate element-wise multipli-
cation of two vectors is to stream a series of input voltages ®𝑎 to
modulator1 and another synchronous stream of input voltages ®𝑏
to modulator2, as shown in Figure 2b. A photodetector then de-
tects the double-modulated lightwaves and generates a series of
voltages proportional to the element-wise product 𝑎𝑖 × 𝑏𝑖 . This
constant proportionality in the photodetector is known as Ein-
stein’s photoelectric effect, a discovery that won the Nobel prize
in 1921 [47]. Appendix A describes our calibration system to com-
pute this proportionality factor. An integrating circuit, such as a
capacitor attached to the photodetector’s output port, accumulates
the generated voltages streams and returns an electrical voltage
proportional to the sum of the element-wise products [101]. For
example, let ®𝑎 = [0.1, 0.7, 0.6] and ®𝑏 = [1, 0.05, 0.85] represent a
series of input numbers in the electrical domain. By feeding these

https://lightning.mit.edu
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(a) Photonic multiplication with two cascaded amplitude modulators [116].
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(b) Photonic dot product using a single wavelength [101].
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Figure 2: Illustration of the working principles of a photonic vector dot product core.

numbers into the two optical modulators shown in Figure 2b, the
intensity of the output light from the second modulator becomes
proportional to the pairwise multiplication of each element in ®𝑎
and ®𝑏, or [𝑎𝑖 × 𝑏𝑖 ] = [0.1, 0.035, 0.51]. The photodetector integrates
the intensities of double-modulated light over multiple time steps
and returns their sum value,

∑3
𝑖=1 𝑎𝑖 × 𝑏𝑖 = 0.645.

Photonic dot product using multiple wavelengths. Another
technique to multiply two vectors in the photonic domain is to rep-
resent each element of the vectors using a different wavelength. As
shown in Figure 2c, to represent vectors ®𝑎 and ®𝑏, a comb laser [50,
52] generates a series of side-by-side wavelengths where 𝑎𝑖 and 𝑏𝑖
are represented by wavelength 𝜆𝑖 . Then, a set of cascaded modula-
tors, shown horizontally, compute the element-wise multiplications
of the two vectors simultaneously. A wavelength-division multi-
plexing multiplexer (WDM MUX) combines the double-modulated
wavelengths 𝜆𝑖 . Finally, the photodetector returns an output volt-
age proportional to the sum of the incident light intensities [50].
Figure 2c illustrates this process using the same input vectors as
the example in Figure 2b. The comb laser generates three wave-
lengths as carrier lightwaves. Vector ®𝑎’s elements 𝑎1, 𝑎2, and 𝑎3 are
fed into modulator11, modulator21, and modulator31 and vector ®𝑏’s
elements 𝑏1, 𝑏2, and 𝑏3 are fed into modulator12, modulator22, and
modulator32, simultaneously. Each row of modulators performs the
element-wise multiplication of 𝑎𝑖 × 𝑏𝑖 carried on wavelength 𝜆𝑖 .
The photodetector detects all these wavelengths simultaneously
and returns a single output voltage proportional to the sum of the
element-wise products,

∑3
𝑖=1 𝑎𝑖 × 𝑏𝑖 = 0.645.

2.2 Benefits of Photonic Computing

Compute frequency. Off-the-shelf Lithium Niobate (𝐿𝑖𝑁𝑏𝑂3)
or Indium Phosphide (𝐼𝑛𝑃 ) optical modulators operate at 40 GHz
frequency [6, 74]. These modulators are used ubiquitously for
400 Gbps+ optical networks in the Internet and datacenters [94].
Emerging materials, such as plasmonics and thin-film Lithium Nio-
bate, can operate at 100 to 500 GHz frequency [37, 60, 72, 97, 104].

In contrast, the computation speed of today’s digital accelerators
is bounded by the digital clock frequency; i.e., ≈500 MHz for FP-
GAs [109], ≈1.05 GHz for TPUs [68], and ≈1.41 GHz for GPUs [3].
Energy efficiency. Prior work demonstrated that 8-bit photonic
computing consumes 40 atto Joules per MAC using commodity
optical devices at room temperature [101]. In contrast, the energy
consumption of an 8-bit MAC in a 7 nm ASIC (e.g., GPUs and TPUs)
is≈0.07 pico Joules [68]. FPGAs consume≈15 pico Joules for an 8-bit
MAC operation using dedicated DSP blocks [89]. Hence, performing
a MAC operation in the photonic domain is more energy efficient
than ASICs and FPGAs by 1,750× and 375,000×, respectively.
Parallel modulations on a single modulator. An attractive fea-
ture of photonic computing is that optical modulators perform par-
allel multiplications with up to 200 co-propagating wavelengths [50,
111]. Such native parallelism provides significant performance gains
by increasing the number of parallel photonic operations.

3 THE DATAPATH CHALLENGE

To reduce the response time of real-time inference queries, service
providers serve machine learning models on computing-enabled
smartNICs such as Microsoft Brainwave [51] and Nvidia A100X
DPU [1].

Given the high compute frequency, low energy consumption, and
native support for parallel operations in photonic computing, a nat-
ural question is: “Can we simply augment today’s smartNICs with
photonic computing cores to respond to live inference requests?”

To answer this question, we replicate the experimental setup
of state-of-the-art photonic computing demonstrations [50, 101].
Figure 3 depicts our replication setup. This setup performs offline
image recognition inference on hard-coded images by storing a
series of inference images on a computer. The computer uses a
streaming software application (e.g., a Python script) to create a se-
ries of vectors ®𝑎 and ®𝑏 corresponding to the images and DNNmodel
parameters (step A). These vectors are then sent into an Arbitrary
Waveform Generator (AWG) device [11] (step B). The AWG is a
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bulky and expensive lab device (≈ $100, 000) that translates digital
numbers into analog voltages. The voltages are then fed into one
or more photonic vector dot product cores to perform a series of
computations in the photonic domain (step C). The computation
result is fed to another lab device, called a digitizer [26](≈ $50, 000).
The digitizer translates the analog voltages into the digital domain
(step D) and feeds the bits into the Python program. Finally, the
streaming software performs additional digital operations required
by the DNN model (e.g., softmax, ReLU [76]) and collects all the
required vector dot products for each layer. This process repeats
until the final layer of the DNN model is computed.

Figure 4 plots the cumulative distribution function (CDF) of
inference latency for 100 images. The figure shows that the state-of-
the-art photonic computing approaches are five orders ofmagnitude
slower than Lightning. The key reason behind the high latency
in prior work is that their control plane is tightly coupled with the
inference computation datapath.

Decoupling the control and data planes of photonic comput-
ing cores is non-trivial for several reasons. First, modulators and
photodetectors are inherently passive devices without memory or
instructions to control the computation dataflow of photonic oper-
ations or to distinguish meaningful results from noise. Second, the
computation DAG for different DNNs is different, and the control
plane must be able to adjust the operations for each DAG at runtime.
Third, the DNN model parameters and user inference request data
reside in the digital domain, while the vector dot products happen
in the photonic domain with a much faster clock frequency than in
the digital domain. Last, each DNN inference’s DAG contains a se-
ries of operations with many task dependencies and non-photonic
compute operations that must be carefully incorporated into the
data plane. These operations must be finished at the digital clock
frequency without slowing down the end-to-end application.

As a result, there is a need for a novel datapath that decouples
the data and control planes of photonic computing systems while
satisfying the following requirements:

• R1 Handle live user traffic arriving from remote users.

• R2 Support reconfigurability at runtime to serve inference re-
quests for different DNNs.

• R3 Ensure the inference query data from remote users are multi-
plied correctly with the DNN model parameters.

• R4 Distinguish meaningful photonic computing result from noise.

• R5 Avoid making non-photonic compute operations a bottleneck.

4 LIGHTNING’S HIGH-LEVEL DESIGN

This section describes Lightning, a photonic-electronic smartNIC
that enables fast and energy-efficient machine learning inference
with a reconfigurable datapath that feeds traffic from the NIC into
photonic vector dot product cores. Figure 5 illustrates Lightning’s
high-level design, described as follows.

Packet parser. To handle live user traffic (requirement R1 ), Light-
ning’s packet parser receives packets from the 100 Gbps network
interface (step 1). The parser identifies inference queries from reg-
ular packets based on the destination port number field in the
incoming packet header. Once a packet is identified as an inference
query, the parser extracts the DNN model ID and corresponding
user data from the header. Depending on the DNN model, the infer-
ence query’s data may be in the packet header or the payload. For
instance, for a traffic classification inference use case, the packet
parser uses header data (e.g., src IP, dst IP), whereas for language
generation inference, the parser reads the payload as the user data
(e.g., a search query typed by the user).

DAG configuration loader. Next, Lightning’s DAG configura-
tion loader reconfigures the datapath based on the computation
DAG of the packet’s DNN model (step 2). This module decouples
the control-plane decisions from the computation operations in
the data plane and enables Lightning to make control decisions
in the data plane without stopping the data streams in and out
of photonics. The DAG loader uses a key primitive in Lightning,
called a reconfigurable count-action abstraction (§5). This abstrac-
tion enables the DAG configuration loader to reconfigure a series of
datapath templates (e.g., fully-connected layers, convolution layers,
attention layers, recurrent layers, adder tree modules, non-linear
computation like ReLU and softmax, etc.) at runtime (requirement
R2 ). Once the datapath is configured with the appropriate counts
and actions for each DNN model, packets flow through the system
without involving the control plane (unless an exception occurs).

Memory controller. While the DAG configuration loader reconfig-
ures Lightning’s datapath, it notifies the memory controller mod-
ule to stream the corresponding DNN model parameters from off-
chip memories, such as dynamic random-access memory (DRAM)
or high bandwidth memory (HBM) (step 3). For fully-connected
layers, the memory controller streams the weight matrices directly
into the datapath. To reduce memory access overheads for convo-
lution layers, the memory controller reads the convolution kernel
only once and stores it in local register files for subsequent reuse.
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Figure 5: High-level design of Lightning smartNIC.

Pipelined photonic-electronic computing. Steps 4–7 are all
performed in a pipelined fashion. In step 4, a data streamer module
(§5.1) sends multiple parallel digital data into photonic vector dot
product cores via on-chip digital-to-analog converters (DACs) [2,
82]. In steps 5 and 6, the photonic vector dot product cores com-
pute the vector dot products of input data streams and return the
results to analog-to-digital converters (ADCs), where a preamble
detection module distinguishes the results from noise without stop-
ping the flow of the data (§5.2). The vector dot product results are
fed into a digital computation module (step 7). This step contains
several pipeline parallel digital computation modules to perform
any additional digital operations, such as ReLU and softmax (§5.3).
Result generation. Steps 4–7 are repeated until the DAG is com-
pleted and the inference result is ready. Depending on the inference
packet, Lightning creates a response packet and sends it to the
user through the Ethernet interface or the PCIe bus (step 8).

5 RECONFIGURABLE COUNT-ACTION

ABSTRACTION

Lightning’s key enabler is a reconfigurable count-action abstrac-
tion that keeps track of the required computation DAG to make
control decisions at runtime on the data plane. Figure 6 provides a
conceptual illustration of Lightning’s reconfigurable count-action
abstraction. This abstraction has three components: (𝑖) counts, a
set of variables to count; (𝑖𝑖) targets, a set of target results; and (𝑖𝑖𝑖)
actions, a set of actions to trigger when the result is equivalent
to the target value. The count primitive keeps accumulating the
specified variables across digital datapath clock cycles. Once the
result reaches the target, the count variable is set back to zero, and
the actions are triggered.

This section describes how Lightning leverages this count-
action abstraction to enable three of its datapath components:
synchronous data streamer (§5.1), preamble detection (§5.2), and
pipeline parallel digital computation (§5.3). Finally, we discuss how
Lightning supports different DNN models at runtime (§5.4).

5.1 Synchronous Data Streamer

Lightning’s synchronous data streamer module is responsible for
creating a set of parallel data streams based on the ratio of the
photonic computing frequency to the digital clock, as shown in
Figure 7. For instance, suppose the clock frequency of photonic
vector dot product cores, DACs, and ADCs is 4 GHz, but the clock
frequency of the digital datapath is 1 GHz. In this case, the data

Action

result < target

result == target

Count

module datapath_module {
counts: {

// variables to be counted
}
targets: {

// a set of target results
}
actions: {

// actions to be triggered
// when the result is 
// equivalent to the target

}
};
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Figure 6: Our reconfigurable count-action abstraction.
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Figure 7: Lightning’s data streamer feeds a series of syn-

chronous parallel data streams into photonic compute cores.

streamer module creates four parallel streams at each digital clock
cycle to feed data into photonic cores at 4 GHz.

However, computing the vector dot product of two streams of
high-speed voltages ®𝑎 = [𝑎𝑖 ] and ®𝑏 = [𝑏𝑖 ] in the photonic domain
requires precise element-wise multiplication across the input vec-
tors. The 𝑖𝑡ℎ element in ®𝑎 must be multiplied by its corresponding
element in ®𝑏; otherwise, the result is incorrect. In digital computing,
this is easily achieved, as arithmetic logic units (ALUs) have two
input operands under the same clock. Thus, the ALU can fetch both
elements from registers simultaneously. But feeding synchronous
data into optical modulators is challenging because the vectors are
fed into modulators as time series of analog voltages with a fine-
grained time resolution (e.g., multiplying two vectors at 10 GHz
frequency means the distance between consecutive voltages is only
0.1 ns). Moreover, photonic multiplication requires two modulators
(§2), making it crucial to synchronize the modulators’ inputs.

This problem is exacerbated for large DNNs since Lightning
stores their parameters on DRAM or HBM, while data packets and
intermediate activations reside on SRAM. Even a slight latency
variation in the off-chip memory access [38] will result in out-of-
sync elements to the DACs, producing out-of-sync voltages and
incorrect computation results (requirement R3 ).

We address the above challenge using our count-action abstrac-
tion, as illustrated in Listing 1. We denote the 𝑖-th parallel AXI
stream data on the 𝑖-th DAC by DAC[𝑖]. Each DAC[𝑖] has a flag
called 𝑣𝑎𝑙𝑖𝑑 , which is automatically set to be 1 when a new 8-bit
data sample is ready to be transferred. This flag flips back to 0 if
no new data samples arrive after the currently valid data are sent
out [8]. Lightning uses the count feature to keep track of the flags
across parallel DAC streams at each digital clock cycle. To ensure the
DACs are all synchronized before sending the voltages to the mod-
ulators, Lightning’s streamer module counts the sum of the valid
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bits for all DACs (i.e.,
∑𝑛
𝑖=1 𝐷𝐴𝐶 [𝑖] .𝑣𝑎𝑙𝑖𝑑 , where 𝑛 is the number of

DACs). The data streamer module only triggers streaming voltages
when the count result becomes equivalent to the number of DACs,
indicating that all DACs hold valid data samples.

module synchornous_data_streamer {

counts: {

// count the sum of valid DAC flags

sum DAC[i].valid (i = 1 to num_DACs)

}

targets: {

// trigger when the sum equals the number of DACs

num_DACs

}

actions: {

// stream DACs’ data into photonic cores

stream DAC[i].data (i = 1 to num_DACs)

}

};

Listing 1: Synchronous data streamer module.

5.2 Distinguishing Data from Noise

As soon as Lightning streams parallel data into its photonic vector
dot product cores, it starts reading the results from its ADCs. Each
ADC readout contains multiple parallel data samples simultane-
ously, and Lightning must identify which samples are noise and
which are meaningful data (requirement R4 ). Figures 8a and 8b
show the voltage readouts from an ADC with 4.055 Giga samples
per second (GS/s) frequency in our prototype. The blue voltages
are noise, and the green ones are meaningful data. Reading these
streams into a digital datapath with 253.44 MHz clock frequency
means that every ≈4 ns, the ADC delivers 16 parallel samples to the
datapath. But the datapath logic has no additional information on
which samples are noise and which are photonic compute results.
For instance, in Figure 8a, meaningful data start at the beginning of
the ≈4 ns interval, which means all 16 samples are useful photonic
compute results. But the meaningful data starts at the 7th sample
in Figure 8b, indicating that samples 6 to 15 are photonic compute
results, and samples 0 to 5 are noise.

To address this challenge, Lightning adds a preamble pattern
to each vector in the digital domain before streaming its data into
the DACs. The preamble is a series of pre-determined single-cycle

patterns (e.g., 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿) repeated 𝑃 times, where 𝑃 is a config-
urable parameter that is model-agnostic and only depends on the
signal-to-noise ratio (SNR) conditions of the setup, 𝐿 corresponds to
a low voltage, and𝐻 corresponds to a high voltage. To detect mean-
ingful data in the ADC readout, Lightning uses our count-action
abstraction to count the number of times the preamble pattern is
detected in continuous ADC readouts.

module preamble_detection_per_ADC {

counts: {

// count the number of occurrences of k-shifted preamble

(ADC.data == (preamble_pattern << k))

}

targets: {

// trigger if a 0-shifted pattern is counted P times, else

// trigger if a k-shifted pattern is counted P-1 times

if (k == 0): P

else: P - 1

}

actions: {

// stream the ADC readout starting from the kth position

stream ADC.data[k:]

}

};

Listing 2: Preamble detection module.

Listing 2 shows our preamble detection module per ADC. The
module counts the number of times the preamble pattern, or a 𝑘-
shifted version, appears in the ADC readout, where 𝑘 ranges from
0 to the number of samples in one clock cycle minus one. If the
preamble is counted exactly 𝑃 times, meaningful data starts at the
beginning of the datapath clock cycle. But when meaningful data
are shifted within the datapath clock cycle by 𝑘 samples, a 𝑘-shifted
version of the preamble will be counted 𝑃 − 1 times. The variable
𝑘 in the 𝑘-shifted pattern indicates the position of the first mean-
ingful data in the ADC readout. Figures 9a and 9b demonstrate the
preamble patterns corresponding to Figures 8a and 8b, respectively.
The orange voltages are Lightning’s preamble patterns.

5.3 Pipeline Parallel Digital Computation

One inherent challenge of photonic computing is that the light
intensity is always a non-negative value. Prior approaches require
sending positive/negative values separately, either at different times
or using different photonic hardware [101, 106], effectively halving
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Figure 10: Pipeline parallel digital adder module.

the computation speed or doubling the required number of pho-
tonic devices. Unlike these approaches, Lightning addresses this
challenge by using additional digital computations on the datap-
ath to support DNN models with negative parameters. Moreover,
the computation DAG of a DNN layer requires not only photonic
vector dot products but also additional operations like non-linear
functions. Lightning implements these non-linear functions in the
digital domain, too. To avoid making these non-photonic computa-
tions a bottleneck (requirement R5 ), Lightning performs digital
computations using a pipeline parallel adder module and a pipeline
parallel non-linear function module.

Lightning’s pipeline parallel addermodule has two components:
(𝑖) a cross-cycle adder-subtractor and (𝑖𝑖) an intra-cycle adder. As
we show in Figure 10, after our preamble detection module (§5.2)
detects the starting point of the photonic vector dot product results,
the parallel data samples from the ADC readout are first streamed
into the cross-cycle adder-subtractor. In this figure, 16 parallel
samples are read simultaneously at each ADC readout. Each data
sample is 16 bits.1 The non-negative photonic vector dot product
results from the ADC readout that stream into this module pick up
their paired signs as the control signals accordingly. The cross-cycle
adder-subtractor component has 16 adder-subtractors to perform
16 addition or subtraction operations based on control signals per
datapath clock cycle.2 Moreover, in scenarios where the length
of a vector is larger than the number of photonic accumulation
wavelengths (§2.1), Lightning uses its adder-subtractor module
to aggregate partial vector dot products until the entire vector is
accumulated.
module cross_cycle_adder_subtractor_module {

counts: {

// count the number of summations in the cross-cycle adder-subtractor

sum cross_cycle_adder_subtractor[i].valid

}

targets: {

// trigger when the entire vector is accumulated

vector_length / num_accumulation_wavelengths

}

actions: {

// stream the result to intra-cycle adder

stream cross_cycle_adder_subtractor[i].data

}

};

Listing 3: Cross-cycle adder-subtractor module.

1Lightning’s data samples are 8 bits, but to avoid digital accumulation overflow, we
pad each 8-bit sample with eight additional zeros.
2The signs of photonic vector dot products are pre-processed and separated from the
absolute values of vectors in an offline phase ahead of the inference.
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Listing 3 shows how Lightning uses its count-action abstraction
in its adder-subtractor module to trigger the execution of the intra-
cyle adder step. The module counts the number of times each adder-
subtractor performs accumulation. The required number of cross-
cycle additions/subtractions is the length of the vector divided by
the number of wavelengths used for accumulation in the photonic
domain. When the count reaches this value, the subsequent intra-
cycle adder tree is triggered. The intra-cycle adder tree aggregates
multiple parallel samples within the same digital cycle into one
result. The intra-cycle adder requires 𝑙𝑜𝑔 𝑘 clock cycles, where 𝑘 is
the number of parallel data samples in each ADC readout.

Once the final accumulation result is computed in the intra-cycle
adder, the next step is to perform non-linearity functions, such as
ReLU or softmax, on the result. Lightning’s count-action abstrac-
tion triggers the computation of non-linear modules based on the
count of the number of elements in the vector dot product. Depend-
ing on the complexity of the non-linear function, this step may
require additional clock cycles to compute the final result.3 Since
the non-linear computations are performed once per vector dot
product, these additional clock cycles are pipelined through all the
vector dot products of DNN layers and only add a few extra cycles
to the last vector dot product. Finally, to finish the computation of
a layer, Lightning’s count-action abstraction counts the number
of the results and triggers the next layer’s computation as soon as
the size of the results matches the input size of the next layer.

5.4 Supporting Runtime Reconfigurability

Lightning supports a variety of DNN models by embedding multi-
ple instances of its count-action logic in its datapath, as shown in
Figure 11. The count-action instances decide when to start or finish
the operations for each datapath module by reading the target and
action values from the centralized control registers. To reconfigure
these count-action instances for different DNN layers, the DAG
configuration loader modifies the values of corresponding control
registers at runtime based on the computation DAG of the DNN. A
customized kernel driver or a userspace I/O interface specifies the
appropriate target and action values for different DNN layers and
transfers them to the DAG configuration loader.

For example, when Lightning receives a packet requesting a
LeNet-300-100 model [76], the DAG configuration module loads the
appropriate count-action values for performing inference on the
first layer of this model and writes these parameters to the control
3Our ReLU and softmax implementations take one and eight clock cycles, respectively.
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Figure 12: [Testbed] Photo of our prototype.

registers to reconfigure the datapath modules to perform the com-
putation for a fully-connected layer size of 784×300. Meanwhile, if a
second packet carrying an ImageNet [45] picture arrives requesting
inference on a VGG-16 model [44], the DAG configuration loader
writes another set of parameters to the control registers, such that
the datapath modules are reconfigured to perform convolutions
with kernel size 3 × 3 on ImageNet images size 224 × 224.

6 PROTOTYPE

We build a fully-functional prototype of Lightning to demonstrate
the feasibility of a hybrid photonic-electronic smartNIC.

6.1 Prototype Setup

Digital components. Figure 12 shows a photo of our prototype
and Figure 13 shows its detailed hardware architecture. We im-
plement Lightning’s smartNIC functionalities and datapath in
Register Transfer Level (RTL) with ≈10K lines of code using the
Verilog language on a Xilinx Zynq UltraScale+ RFSoC ZU28DR
FPGA [23], hosted on the ZCU111 board [25]. We verify the RTL im-
plementation using a Verilator-based cycle-accurate testbench [22].
We implement Lightning’s datapath RTL design together with
Xilinx’s Zynq UltraScale+ RFSoC RF data converter (ADC/DAC)
IP [24], 100 Gbps Ethernet (CMAC) IP [20], and DDR4DRAM IP [21]
using Xilinx Vivado 2022.2 and generate the system bitstream. We
use the AXI stream [8] and the AXI lite protocols [7] to exchange
data and control signals between the FPGA programmable logic,
the Xilinx IPs, and the embedded Linux system. The FPGA is con-
figured to run at 253.44 MHz with 16 samples per FPGA clock cycle,
resulting in an analog data sampling rate of 4.055 GS/s for each
DAC and ADC, where each sample represents an 8-bit fixed-point
number in the analog domain. This 4.055 GS/s analog data rate
allows Lightning to perform computation at 4.055 GHz. To the
best of our knowledge, this is the highest-frequency photonic com-
puting prototype capable of serving real-time inference requests.
Upgrading to higher photonic computing frequencies only requires
increasing the degree of parallelism in Lightning’s count-action
modules and AXI stream bit widths, but it does not require changes
to the architecture dataflow.

Photonic components. Our prototype includes one photonic vec-
tor dot product core with two wavelengths using four off-the-shelf

15 GHz modulators [5]. To generate light, we use two tunable tele-
com laser sources and set them to 1544.53 nm and 1552.52 nm wave-
lengths, respectively. Each pair of modulators perform element-wise
multiplication on a different wavelength. To aggregate the element-
wisemultiplication results, we use a commercially-packaged 9.5 GHz
photodetector [18] that accumulates light intensities from different
wavelengths (§2.1).
Packet processing. To receive inference requests from remote
users, we implement a 100 Gbps Ethernet interface using Xilinx’s
CMAC IP core. The CMAC connects the Ethernet PHY to Light-
ning’s packet parser module. The packet parser is capable of iden-
tifying Lightning’s inference packets and forwarding them to
our DAG configuration loader to trigger our pipelined photonic-
electronic compute logic. The packet parser forwards the packets to
a packet processing module before entering the kernel space. The
packet processing module implements default NIC functionalities
and advanced smartNIC features, such as intrusion detection [114]
and transport protocol offload [73].
DRAM access. Lightning has access to a 4 GB DDR4 memory
directly attached to the datapath. To support large DNN models,
Lightning stores pre-trained DNN models in its DRAM. We im-
plement a DDR controller in Lightning’s datapath to manage the
memory access and data exchanges. The DDR4 processes 2.67× 109
transactions with 64 bits per transaction, resulting in a data rate of
≈170 Gbps, higher than both the CMAC input data rate (100 Gbps)
and the aggregate data rate of the two DACs in our prototype that
are responsible for converting DNN parameters (2 × 4.055 GS/s
× 8b/S = 64.88 Gbps). Because of this data rate difference, we im-
plement a back-pressure AXI stream with a DRAM buffer to al-
leviate data burstiness when reading from DRAM. Note that up-
grading to a higher photonic computing frequency or number of
DACs to support larger photonic parallelism requires increasing
the DRAM interface bandwidth or utilizing HBM with multiple
stacks. For example, state-of-the-art HBM2 chips provide 15.2 Tbps
bandwidth [90] requiring 468 wavelengths at the current 4.055 GHz
frequency, or at least 20 wavelengths at 97 GHz frequency (§8).
PCIe interface with the local host. Lightning does not require
any PCIe interactions for incoming inference packets because all
inference operations are performed on the NIC, and the inference
packets are not punted through PCIe. Therefore, Lightning uses
the PCIe interface to interact with the local host for forwarding
regular packets or updating DNN model parameters.
Customized embedded Linux environment. We extend Xilinx
PetaLinux [15] to build a customized embedded Linux environment
running on the ARM core of the RFSoC FPGA. Our Linux envi-
ronment manages the hardware interfaces between Lightning’s
datapath, DACs, ADCs, clock chips, DRAM, CMAC, and USB.
Python API. In addition to Lightning’s specialized RTL-based
datapath that is designed for fast data movement, we develop a cus-
tomized Python software stack on our FPGA based on PYNQ [17]
and QICK [16] libraries. Our Python API enables programmers
access to DACs/ADCs that are directly connected to photonic cores
for micro-benchmarking and debugging. Lightning’s Python API
supports (𝑖) sending/receiving data to/from photonic vector dot
product cores to benchmark the computing accuracy, (𝑖𝑖) character-
izing the SNR of photonic cores for calibration, and (𝑖𝑖𝑖) configuring
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Figure 13: [Testbed] Lightning’s prototype architecture.
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Figure 14: [Testbed] Benchmarking the accuracy of photonic computing operations with unsigned 8-bit fixed-point operands.

the bias voltage input of optical modulators. Figure 27 in Appen-
dix G shows a code snippet of our Python API.

6.2 Micro Benchmarks

Data encoding. The photonic computing accuracy in Lightning
depends on the number of distinct levels that are distinguishable in
the analog domain. Following prior work [61], we use 256 levels in
our prototype to encode unsigned fixed-point 8-bit numbers into
the light. As shown in Figures 14a and 14b, we take the amplitude
of the carrier light as maximum intensity (represented by 255) and
normalize all other light intensities.

Photonic MAC accuracy. To evaluate the accuracy of photonic
MAC operations in our Lightning prototype, we first generate
1,000 pairs of unsigned fixed-point 8-bit random numbers and com-
pute their multiplication and accumulation results in the photonic
domain using our PythonAPI.We then perform the same operations
in the digital domain. We define the photonic computing error to
be the difference between the photonic result and its corresponding
digital result. Figures 14c and 14d show that the standard devia-
tions of errors are 0.549% and 0.535% for photonic multiplication
and accumulation operations, respectively. This means Lightning
achieves 99.451% and 99.465% accuracy for photonic multiplication
and accumulation, respectively.We further test 1,000 photonic MAC
operations using the same setup and plot the results in Figure 14e.
We find that the standard deviation of photonic MAC’s error is
0.75%, achieving a 99.25% photonic MAC accuracy.

6.3 Real-time DNN Inference

Methodology and setup. We use our count-action abstraction
to reconfigure Lightning’s datapath to support three different
DNN models: (𝑖) a security DNN model (1,568 parameters) for net-
work traffic anomaly detection [99] with UNSW-NB15 intrusion
dataset [86], (𝑖𝑖) a traffic classification DNN model [99] (1,696 pa-
rameters) with IoT traffic traces dataset [100], and (𝑖𝑖𝑖) an image
classification model, called LeNet-300-100 [76] (266,200 parameters)
with MNIST handwriting recognition dataset [77]. We implement
the first two models based on N3IC’s open-source code [14], except
that we use 8-bit operations instead of binary. We train the third
model using PyTorch for 500 epochs on a GPU server with 8-bit
quantized parameters. We then measure the inference latency and
accuracy of these models on Lightning’s prototype and compare
the results with two Nvidia Triton servers [4]. Each Triton server
has a 100 Gbps NIC for serving traffic. One server is equipped with
an Nvidia P4 GPU, and the other one has an A100 GPU.
End-to-end inference latency. The end-to-end latency reflects
the time from the moment an inference request arrives until the
moment the inference result packet leaves the system. Figure 15a
compares the end-to-end latency of our DNN models using Light-
ning versus Nvidia Triton servers. The figure shows that Light-
ning’s prototype accelerates the end-to-end inference latency of
the security (and traffic classification) DNN(s) by 499× (508×) and
379× (350×), compared to Nvidia Triton serves with P4 and A100
GPUs, respectively. The figure also shows that Lightning accel-
erates the end-to-end inference latency of the LeNet DNN by 9.4×
and 6.6× compared to P4 and A100 GPUs, respectively.
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Figure 15: [Testbed] End-to-end inference latency breakdown for three DNN models.
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Figure 17: [Testbed] Synchronous parallel data streams and preamble detection for serving LeNet inference queries.

Inference latency breakdown. To demonstrate the impact of
Lightning’s datapath on inference latency speedups, we break
down the end-to-end inference latency results into two components:
datapath and compute. The datapath latency of Lightning includes
all the digital components in its datapath during inference, while
its compute latency captures all stages of computing (including
photonic vector dot product, adder-subtractor, and non-linearity).
We obtain the datapath and compute latency of P4 and A100 GPUs
from our Triton servers. Figure 15b shows Lightning’s compute
latency increases as the model size increases while Figure 15c shows
Lightning’s datapath latency is stable because these three models
have the same set of count-action modules in their datapath.
Inference accuracy. We measure the inference accuracy of the
LeNet model by serving 1000 inference requests on our prototype.
Figure 16 shows that Lightning’s top-1 inference accuracy is 96.2%.
We also measure that the inference accuracy of this model on a
GPU is 97.45% at 8-bit precision.
Synchronous data streaming. Figures 17a and Figures 17b show
the time series of serving a LeNet inference request using the Light-
ning prototype. The datapath uses two parallel streams to send
inference data (®𝑎) and DNN parameters (®𝑏) to two optical modu-
lators. Using our synchronous data streamer module (§5.1), the
datapath synchronizes the streams before sending them to the pho-
tonic vector dot product core. The figures also show Lightning’s
preamble pattern added to each vector. The preamble pattern we
use in our testbed is 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, repeated ten times.
Preamble detection. Figure 17c shows the data readout from the
ADC in our prototype. To identify the starting point of meaningful
results, Lightning uses its count-action abstraction to count the
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tonic multiplication noise.
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number of times the preamble pattern is repeated (§5.2). The orange
lines in Figure 17c show the detected preamble pattern and the
position of meaningful data in the ADC readout.

7 ACCURACY EMULATION

To evaluate the impact of errors in the photonic domain on large
DNNs, we develop a Python-based photonic emulator and calibrate
it with the device specifications and noise models of our prototype.

Analog noise model. There are two major sources of noise in our
prototype: shot-noise and thermal noise. Prior work [101] showed
both noise sources can be modeled using a Gaussian distribution.
As shown in Figure 18, we measure the photonic multiplication
noise on our testbed and fit a Gaussian distribution with a mean of
2.32 and a standard deviation of 1.65 (0.65% out of 255).

Python emulator. Using the noise model, we develop an emulator
capable of performing inference with 8-bit photonic, 8-bit digital,
and 32-bit digital computation schemes. To emulate Lightning, we
quantize multiplication operands and results to 8 bits and apply our



Lightning: A Reconfigurable Photonic-Electronic SmartNIC for Fast and Energy-Efficient Inference ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

DNN
parameters

(SRAM)
Datapath 
modules

Inference
input 

(SRAM)

DNN
parameters

(SRAM)

DNN
parameter

signs
(SRAM)

Figure 20: [Synthesis]

Datapath chip layout

for one photonic MAC.

Datapath modules Area
(mm2)

Power
(W)

Packet I/O (Steps 1,8) 0.08 0.034
Memory controller (Step 3) 0.12 0.067
Count-action modules
(Steps 2,4,6,7)

1.26 0.156

Total 1.46 0.257

Table 1: [Synthesis] Chip area and

power breakdown of digital datap-

athmodules for one photonic MAC.

Gaussian noise model to the results of each MAC while perform-
ing inference. Our emulator implements the entire operations of
AlexNet [75], VGG11 [98], VGG16 [98], and VGG19 [98] models. We
validate the accuracy of the model using the ImageNet dataset [45]
and report the average accuracy over ten experiments.
Inference accuracy. Figure 19 shows Lightning’s top-5 infer-
ence accuracy is within 2.09% of an 8-bit digital accelerator for
AlexNet, and within 2.25%, 0.51%, and 1.05% for VGG11, VGG16,
and VGG19, respectively. To evaluate the impact of 8-bit versus 32-
bit precision on inference accuracy, the figure includes the accuracy
of each model with the default 32-bit precision. The results show
that Lightning’s quantization into 8 bits and its photonic noise do
not significantly reduce the inference accuracy. Prior studies made
a similar observation and suggested 8-bit quantization to reduce
the footprint of DNN models [32, 54, 61, 103].

8 ASIC SYNTHESIS

To evaluate the area and power of a production-level Lightning
chip, we propose a full photonic-electronic chip design capable of
performing 576 photonic MAC operations in a single step using 24
wavelengths. We achieve this by combining two native features of
photonic computing (§2). The first feature enables us to perform 24
parallel multiplications with 24 wavelengths on a single modulator.
The second feature supports vector dot product calculation by accu-
mulating the element-wise multiplication results of 24 wavelengths
on a single photodetector. Putting these two features together, our
proposed Lightning chip is capable of performing 24 × 24 = 576
photonic MAC operations simultaneously. We use 97 GS/s DACs
and ADCs, as well as 100 GHz modulators [105] and photodetec-
tors [83] in our proposed chip. As a result, the computing frequency
of our proposed chip is 97 GHz. Appendix E provides further details.
Digital datapath area and power. We start by evaluating the area
and power of digital datapath modules required for one photonic
MAC operation. To do so, we synthesize the Lightning datapath
RTL with one wavelength using Cadence Genus synthesis software
with a commercial 65 nm process library. The software outputs a
gate-level description of the electronic circuits in a standard format
called netlist. We feed the chip area and the netlist representation
into the Cadence Innovus Implementation System to obtain the chip
layout. To measure the power consumption, we take the netlist rep-
resentation from the chip area analysis and annotate the toggle rate
of the digital gates using waveforms generated from our Verilator
testbench. Figure 20 shows the layout of the datapath components
for one MAC operation, and Table 1 lists the area and power break-
down of different components. The area of this one MAC datapath

Type Component Count Unit
area
(mm2)

Area
(mm2)

Unit
power
(W)

Power
(W)

Digital

Packet I/O 24 0.0086 0.207 0.009 0.227
Memory controller 576 0.129 7.444 0.0186 10.72
Count-action 576 0.136 78.159 0.0433 24.96
HBM2 [41, 90] 1 81.1 81.1 7.41 7.41
DAC [88] 600 0.58 348 0.077 46.2
ADC [88] 24 0.58 13.92 0.075 1.8
Total 528.829 91.317

Photonic

Modulator [105] 600 2.5 1500
3.88e-6 2.23e-3Photodetector [83] 24 3.2e-5 7.68e-4

Laser [112] 1 0.01 0.01
Total 1500.01 2.23e-3

Total 2028.839 91.319

Table 2: Area and power of a Lightning chip with 576 pho-

tonic MACs (details in Appendix E).

Platforms Lightning P4 A100 A100X Brainwave
Power (W) 91.319 75 250 300 125
# MAC units 576 2560 6192 6192 96000
Single unit power (W/core) 0.1585 0.0293 0.0362 0.0434 0.0013
Clock frequency (GHz) 97 1.114 1.41 1.41 0.25
Energy per operation (pJ) 1.634 26.299 25.652 30.782 5.208
Lightning energy savings 1× 16.09× 15.69× 18.83× 3.19×

Table 3: End-to-end energy consumption per MAC.

is 1.46 mm2, where 0.08 mm2, 0.12 mm2, and 1.26 mm2 are occu-
pied by packet I/O, memory controller, and count-action modules,
respectively. Its power consumption is 0.257 W, of which 0.034 W,
0.067 W, and 0.156 W are consumed by packet I/O, memory control,
and count-action modules, respectively.
Full chip area and power projection. Using the above synthesis
results on the datapath area and power in 65 nm of one photonic
MAC, we approximate the area and power of the digital datapath
components of a Lightning chip in 7 nm with 576 MAC oper-
ations. Following prior work’s comparison of 45 nm and 7 nm
processes [69], we expect a 9.3× (65 nm/7 nm) and 3.6× scale down
in area and power, respectively. The first three rows in Table 2 show
the projected area and power of different datapath components. For
these datapath modules, we expect the packet I/O modules to scale
by 24× because the inference requests are allocated on 24 parallel
wavelengths. Meanwhile, we estimate the memory controller and
count-action modules to scale by at most 576× to support 576 si-
multaneous photonic MAC operations. We use HBM2 to store the
DNN model parameters and estimate the power of HBM2 based
on memory bandwidth × energy per bit [90]. Finally, we obtain
the area and power requirements of DACs and ADCs from state-
of-the-art reports [88]. Overall, the required chip area and power
consumption of digital components of a Lightning chip with 576
MAC operations is 528.829 mm2 and 91.317 W, respectively. The
photonic components of a full Lightning chip include modula-
tors, photodetectors, and a comb laser. We obtain the unit area
of photonic components from prior work [83, 105, 112]. We esti-
mate the power consumption of its photonic components to be
40 atto Joules/MAC × 97 GHz × 576 MACs = 0.00223 W based on
prior work’s report on 40 atto Joule per MAC [101]. Combining the
area of digital and photonic components together, the total area of
Lightning’s chip is 2028.839 mm2, which is 2.55× smaller than the
area of an Intel Stratix 10 FPGA used in Brainwave (5180 mm2) [10].
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Figure 22: [Simulation] Lightning’s average energy con-

sumption savings compared to state-of-the-art accelerators.

Moreover, the total power of Lightning’s chip is 91.319 W, which
is 1.37× and 3.29× less power than a Brainwave smartNIC (125 W)
and an Nvidia’s A100X DPU (300 W), respectively.
End-to-end energy consumption perMAC. Using the projected
chip power above, we now compare Lightning’s end-to-end energy
consumption per MAC with the state-of-the-art digital accelerators.
For each accelerator, we first divide its total power by its total
number of MAC units to obtain the power of a MAC operation
(denoted by 𝑃 ). We then compute the energy consumption per MAC
by dividing 𝑃 by the accelerator’s clock frequency. Note that this
calculation represents a system-level end-to-end metric. As a result,
it considers the energy consumption for the MAC operation, as well
as the accelerator’s control and memory access logic. Table 3 shows
that for a single MAC operation, Lightning consumes 16.09×,
15.69×, 18.83×, and 3.19× less energy compared to Nvidia P4 GPU,
A100 GPU, A100X DPU, and Microsoft Brainwave, respectively.

9 LARGE-SCALE SIMULATIONS

This section evaluates the performance of Lightning using simu-
lations. We begin by describing our simulation environment. Then,
we compare the average inference serve time and energy consump-
tion of Lightning with several state-of-the-art benchmarks.
Event-driven simulator. We develop a discrete-time event-driven
simulator that considers dynamic DNN inference requests arrivals.
To ensure fast resource allocation at nanosecond speed without
slowing down the dataflow, we decompose each DNN inference
request into a series of layer-wise vector dot product tasks according
to the DNN model’s computation DAG. We then map these tasks
to photonic vector dot product cores (for Lightning) or digital
MAC cores (for benchmarks) using a round-robin scheduler with a
First-In-First-Out (FIFO) queue.
DNNmodels. We evaluate seven real-world large DNN models:
AlexNet [75], ResNet18 [65], VGG16 [44], VGG19 [70], BERT [46],
GPT-2 [93], and DLRM [87]. All DNN models’ inference queries
have an equal probability of occurrence.

Benchmarks. We compare the performance of the Lightning
chip capable of performing 576 photonic MAC operations at 97 GHz
(§8) to smartNIC-based solutions such as Nvidia A100XDPU [1] and
Microsoft Brainwave [51]. We also consider server-based inference
systems with Nvidia A100 [3].
Datapath latency. We define datapath latency as the time it takes
to start the DNN’s first-layer computation from the moment it
arrives at the NIC. For smartNICs like A100X DPU and Brainwave,
we use an ideal (zero) datapath latency because they can process the
inference query on the NIC. For GPUs, we measure the real-world
datapath latency for serving each DNN model with the A100 GPU
using our Nvidia Triton servers [4]. For Lightning, we consider
an extra datapath latency of 193 ns per DNN layer measured from
our prototype.4 We then calculate each model’s datapath latency
by multiplying this latency number with the number of layers for
different DNNs. Table 6 (Appendix F) lists the datapath latency we
use for each model in our simulations.
Inference request arrivals. We use a Poisson distribution for
inference request arrivals such that the average utilization of the
most congested accelerator is ≈90%-99%. Pushing the inference
request arrival rate large will incur significant queuing overheads
among inference queries because the accelerators are fully utilized.
In our simulations, we simulate ten randomized-generated infer-
ence request traces and report average gains across all traces.
Inference serve time. We define the inference serve time as the
time it generates the result of a DNN inference query from the
moment it arrives at the NIC. Therefore, it contains the datapath
latency (𝑡𝑑 ), the queuing latency (𝑡𝑞 ), and the computation latency
(𝑡𝑐 ). The datapath latency is described above. The queuing latency
is the amount of time when the inference query is temporarily
stored on the local host’s DRAM when the accelerator is busy. The
computation latency is the time it takes to perform computation on
the accelerator. When the inference request arrival rate is low, the
inference serve time is dominated by the datapath latency and the
computation latency. As the inference request arrival rate increases,
the queuing latency gradually grows because the accelerators be-
come highly utilized and may not always have available computing
cores to serve the incoming inference queries. Figure 21 presents
the average speedup of Lightning compared to our digital infer-
ence benchmarks across different DNNs. The figure shows that
Lightning improves the average inference serve time by 337×,
329×, and 42× compared to Nvidia A100 GPU, Nvidia A100X DPU,
and Microsoft Brainwave, respectively.
Energy consumption. There are three major sources of energy
consumption as each accelerator serves inference requests: packet
processing the NIC, inference requests queuing on the DRAM, and
DNN computation on the accelerator. We calculate the datapath
energy consumption of an A100 GPU by multiplying 𝑡𝑑 with the
power of a 100 Gbps NIC card [28]. For Lightning, the computation
energy contains the datapath energy consumption because the
packet I/O function is integrated into Lightning’s datapath. We
then calculate the energy consumption of the computation step by
multiplying 𝑡𝑐 with the power of each accelerator, and the energy
consumption of DRAM queuing by multiplying 𝑡𝑞 with the power
4This datapath latency covers the time it takes to perform Lightning-specific functions
like DACs, ADCs, and count-action modules.
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consumption of DRAM [29]. We then aggregate these two energy
numbers to obtain the total energy consumption for each DNN
on different accelerators. Figure 22 presents the energy savings of
serving inference queries of different DNN models, showing that
Lightning improves the average energy consumption by 352×,
419×, and 54× compared to Nvidia A100 GPUs, Nvidia A100X DPU,
and Microsoft Brainwave, respectively.

10 DISCUSSION

Lightning cost. It is extremely challenging to provide accurate
cost projections for Lightning. Following prior work [71], we
provide a cost estimation based on chip area. As shown in §8, the
photonic components in a Lightning chip occupy 1500.01 mm2

area. The cost of manufacturing this chip on LioniX silicon-nitride
multi-wafer run is ≈$25,312.5 (the cost of 4 samples of 200 mm2 is
≈13,500) based on the 2023 Europractice pricelist [27]. Assuming
this cost will drop by 10× with mass production, we anticipate the
cost of Lightning’s photonic components to be ≈$2,531.25. We
further estimate the cost of Lightning’s electronic components
to be ≈$108.7. This estimate is based on TSMC’s 7 nm wafer cost
($10,000) with 80% yield in 2022 [19]. A standard 300 mm diameter
silicon wafer holds ≈115 Lightning chips occupying a 609.93 mm2

CMOS chip area (Table 2). Together, we estimate the cost of a
Lightning smartNIC to be $2,639.95.
Beyond 8-bit precision. In scenarios where more than 8-bit pre-
cision is required, we augment Lightning using techniques similar
to Microsoft’s Floating Point [43]. The key idea is to represent a
32-bit floating point number as four 8-bit numbers. The four 8-bit
numbers require four Lightning photonic vector dot product cores
with an additional fix-point-to-float converter to be implemented in
Lightning’s datapath for post-processing. This extension enables
Lightning to support high-precision computation beyond 8 bits,
with an expected chip area and power increase. In particular, the
chip area and power of the photonics part are estimated to scale by
4×, and the area and power of the digital part will increase, but we
expect the increase factor to be smaller than four.

11 RELATEDWORK

Photonic DNN accelerators. The concept of photonic comput-
ing has been proposed for several decades [48, 49, 58, 84]. Re-
cent photonic computing papers leverage properties such as wave-
length multiplexing to perform parallel multiplications [50, 101,
111, 115], spatial parallelism through Mach-Zehnder modulator
(MZM) meshes [80, 96], or passive fan-out and coherent detec-
tion [61]. There are also previous proposals [40, 81, 92] on hybrid
photonic-electronic co-design. However, these hybrid systems are
proposed through simulations. Unlike Lightning, these efforts
did not take system-level design challenges into consideration. In
contrast, Lightning addresses the datapath challenge of photonic
computing, with a fully-functional photonic-electronic prototype
serving real-time inference requests.
Digital DNN accelerators. There is a plethora of prior work
on accelerating DNN computation using commodity GPUs [3, 30],
custom-designed ASICs [39, 63, 64, 103] or FPGAs [56, 95, 117].
For example, Nvidia Triton serves high-throughput DNN inference

queries on modern commodity GPUs connected to NIC through
PCIe [4]. Eyeriss designed and taped out a customized ASIC with
an energy-efficient dataflow for AlexNet inference [39]. EIE pro-
posed a processing element architecture for compressing sparse
neural networks [64]. DNNWeaver proposed a framework for auto-
matically generating a synthesizable DNN accelerator for FPGAs
target [95]. Lightning outperforms all these DNN accelerators in
terms of computing frequency, hence reducing the inference serve
time of real-time inference requests.
DNN inference on smartNICs. SmartNICs [51, 99, 107] are prime
candidates for processing user-facing inference packets. N3IC [99]
proposed to compile binary neural network models to be directly
implemented on the data plane of SmartNICs to enable online
traffic analysis in a few microseconds. Lightning goes beyond
N3IC to achieve not only online traffic classification in one mi-
crosecond (Figure 15a) but also enable larger DNN models on the
smartNIC. Microsoft Brainwave smartNIC enables real-time DNN
inference [51]. In comparison, Lightning outperforms Brainwave
in terms of inference serve time and energy because of the recon-
figurable count-action datapath with photonic computing cores.
In-network DNN inference. There are several prior works that
proposed performing DNN inference inside network switches [55,
110, 115] or on edge devices [79, 101]. For example, Taurus pro-
posed to augment switch ASICs for per-packet inference [103]. IOI
and NetCast introduced a smart transceiver module with photonic
computing capability that plugs into network switches [101, 115].
Lightning is applicable to support these scenarios as well, and we
leave extending Lightning for in-network inference use cases to
future work.

12 CONCLUSION

We propose Lightning, a photonic-electronic smartNIC for serving
live machine learning inference requests in datacenters. Lightning
uses a novel count-action abstraction to feed traffic from the NIC
into the photonic domain without making digital packet processing
and datamovement a bottleneck.We evaluate Lightning using four
platforms: prototype, emulation, chip-level synthesis, and large-
scale simulations. This work does not raise any ethical issues.
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APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A PHOTONIC SETUP CALIBRATION

Though photonic vector dot products are calculated in the photonic
domain, their input and output voltages are in the electrical domain.
For a photonic vector dot product core to perform faithful and
reproducible computation, it is important to derive the transfer
functions that first encode a digital number into the light intensities
through modulators, and then decode the light intensities detected
by the photodetector into digital bits. To do so, the calibration
system should answer the following questions to perform accurate
computation:
• How should we encode data from digital bits to analog light
intensities on optical modulators?
• How should we decode data from analog light intensities back to
digital bits on photodetectors?

Encoding scheme on modulators. Optical modulators follow
the rule of Mach–Zehnder interferometers [13] and hence trans-
late input optical voltages 𝑉0 into light intensities 𝐼0. The transfer
function of the optical modulator is a repetitive sinusoid wave
𝐼0 = 𝐼𝑚𝑎𝑥 sin (𝑉0 +𝑉𝐷𝐶 ) + 𝐼𝑚𝑎𝑥 where 𝐼𝑚𝑎𝑥 is the optical extinc-
tion ratio of the maximum and minimum light intensities [9]. In
Lightning, we are encoding using one of its monotonic periods
from the minimum light intensity 0 to the maximum light intensity
𝐼𝑚𝑎𝑥 . By feeding a series of input voltages 𝑉0 sweeping from the
minimum to the maximum FPGA DAC output voltage, into the op-
tical modulator and measuring the modulator output light intensity
𝐼0, we fit a polynomial function 𝑓𝑀𝑂𝐷 that maps the modulator
output light intensity 𝐼 to any applied input voltage 𝑣 : 𝐼 = 𝑓𝑀𝑂𝐷 (𝑣).
Decoding scheme after photodetectors. Photodetectors work
under the law of Einstein’s photoelectric effect, stating that the
intensity of the output current is proportional to the intensity of
incident light [47]. Therefore, we use a linear mapping 𝑓𝑃𝐷 from
photodetector incoming light intensity 𝐼 to ADC digital readout
value 𝑟 , using 𝑟𝑚𝑎𝑥 → 𝐼𝑚𝑎𝑥 and 𝑟𝑚𝑖𝑛 → 𝐼𝑚𝑖𝑛 , where 𝐼𝑚𝑎𝑥 , 𝐼𝑚𝑖𝑛

are the maximum and minimum intensity values measured, and
𝑟𝑚𝑎𝑥 , 𝑟𝑚𝑖𝑛 are the maximum and minimum digital numbers: 𝑟 =

𝑓𝑃𝐷 (𝐼 ).

B FURTHER DETAILS ON THE PROTOTYPE

As we discussed in §6, we build a photonic computing prototype for
Lightning to demonstrate real-time machine learning inference at
the record-breaking 4.055 GHz computing frequency. In addition
to the setup already explained in §6, there are two more pieces of
equipment that enable the prototype: the modulator bias controller
and the RF amplifier. Note that these devices are not fundamental
to photonic computing. We further discuss possible paths to replace
or alter them in the next version of our prototype.
Modulator bias voltage determination. The Lithium Niobate
Mach-Zehnder modulator [5] used in the Lightning testbed has
two electrical inputs: bias voltage and signal voltage. Based on the
principles of optical modulators, the transfer function from the in-
put signal voltage to the output intensity can be modeled as a sine
function, biased by the bias voltage. As introduced in §2, we use
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modulators to perform amplitude-modulated photonic multiplica-
tion, and a photodetector to detect the intensity of light. Therefore,
the intensity of light hitting the photodetector should be propor-
tional to the multiplication result. In the principle of multiplication,
if any element of the multiplication is zero, the product becomes
zero. Therefore, we should set the bias voltage of both modulators
to achieve theirmax extinction ratio, such that no (or minimal) light
can go through the modulator, creating a zero light intensity on
the photodetector side. In our experiment, we tap 1% light at each
modulator’s output port for bias voltage determination purposes.
To identify the bias voltage that achieves themax extinction ratio of
the modulators, we first use our Python API to automatically sweep
the bias voltage from -9V to 9V on both modulators and read the
photodetector output to derive both modulators’ transfer function
(shown in Figure 23). Then, a packaged bias controller [91] utilizes
the tapped 1% modulator output light to lock the operation point
during the entire computation process. Moving forward, the bias
controller can be extended to support other modulator materials
beyond Lithium Niobate.

RF amplifier between the DAC and the modulator. The mod-
ulator used in our prototype has a typical half-wave voltage (𝑉𝜋 ) of
5 V [5]. Therefore, the input RF signal needs to be able to cover the
𝑉𝜋 to enable intensity modulation. However, the output voltage of
the DAC of the RFSoC FPGA we use is only around 1 V [24]. To
compensate for the voltage range mismatching while keeping the
signal chain to be DC-coupled, we use National Instruments RF
amplifiers LHM5401 [12] to amplify the voltage signal generated
by the DACs before entering the modulators to gain a larger input
voltage range to match the 𝑉𝜋 . Figure 23 shows a 3 V encoding
range measured from our prototype. In the future, this RF ampli-
fier can be eliminated by using low-𝑉𝜋 electro-optic modulators
operating at CMOS-compatible voltages [104].

RF amplifier between the photodetector and the ADC. The
ADC of the RFSoC FPGA requires a 1.2 V common-mode voltage
(𝑉𝑐𝑚) to added to the input signal [24]. Therefore, we use the same
LHM5401 amplifier to add the 𝑉𝑐𝑚 to the output voltage of the
photodetector [18].
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Experimental demonstrations Compute
frequency

Parallel
wavelengths

Bit pre-
cision

Feldmann, et al, Nature, 2021. [50] 2 GHz 4 8
1 kHz 200 5

Sludds, et al, Science, 2022. [101] 500 MHz 16 8
Lightning prototype 4.055 GHz 2 8

Table 4: Comparison with prior experimental demonstra-

tions on photonic machine learning inference.
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Figure 24: The coupling of control and data plane results in

stop-and-go computations in today’s photonic computing.

C COMPARISONWITH PRIOR

EXPERIMENTAL DEMONSTRATIONS

Table 4 shows a comparison of Lightning to state-of-the-art pho-
tonic computing experimental demonstrations. Lightning has the
best performance in terms of demonstrated compute frequency.
Following prior work, we provide a detailed analysis in §8 on how
these numbers scale up to more cores with more wavelengths and
project their performance. Note that both Nature’21 [50] and Sci-
ence’22 [101] handle negative values by doubling the hardware
resources or by running the computation process twice, cutting
their effective computation frequency by a factor of 2. Lightning
solves this problem by separating the sign and absolute values, to
compute only the multiplication of absolute values in photonics
and re-assemble the signs in the summation stage of the datap-
ath. Hence, Lightning’s computing frequency is not affected by
negative values.

D STOP-AND-GO DATAPATH EXAMPLE

We identify the datapath challenge as the bottleneck for performing
real-time machine learning inference on photonic computing sys-
tems in §3. To present a detailed explanation, Figure 24 illustrates an
example of how the stop-and-to approach is blocking the datapath.
We consider a simple two-layer DNN with one convolution layer
with a non-linear (ReLU) function, followed by a fully-connected
layer. To execute the computation DAG of this DNN, the control
plane in the state-of-the-art photonic computing approaches first
loads the DNN weights and input images from its memory. It then
sends these vectors to the AWG device. The AWG device converts
digital data into analog voltages and streams them into the pho-
tonic computing cores. After the computation, the digitizer receives
the output analog voltages from the photonics cores and streams

the data back to the controller software to perform the ReLU func-
tion in the digital domain. The photonic cores remain idle until
the Python program initiates the next computing operation of the
fully-connected layer, following a similar stop-and-go fashion. This
coupling of the control and data planes creates significant latency
bottlenecks in the datapath.

E ASIC SYNTHESIS DETAILS

As discussed in §8, our goal is to design a Lightning chip to perform
576 MAC operations in one shot at 97 GHz computing frequency.
To achieve this goal with a minimal amount of devices, we carefully
utilize several favorable features of photonic computing (discussed
in §2.1) to scale a photonic multiplication unit (shown in Figure 2a)
that only performs one multiplication at one step to support multi-
ple MAC operations at one shot. The first feature is to leverage the
photonic broadcasting to only encode the weight matrix once while
performing batch inference on multiple input vectors (batch size
𝐵). The second feature is to send multiple modulated wavelengths
carrying into the modulator to enable parallel modulations using a
single modulator (𝑊 parallel modulations). The third feature is to
use a single photodetector to detect the light intensities of multiple
wavelengths simultaneously for accumulation (accumulating on 𝑁

wavelengths). Table 5 presents a detailed analysis on the number
of modulators and photodetectors required. Thanks to these three
photonic features, we scale the number of MACs per step by 𝑁𝑊𝐵

times without the need to scale the number of devices with the
same factor.

For example, as depicted in Figure 25, we use a comb laser
to generate three different wavelengths 𝜆1, 𝜆2, and 𝜆3 and split
the light into two identify copies to be used later. Consider a
DNN weight matrix with two row vectors ®𝑤1 = [𝑤11,𝑤12, ...,𝑤1𝑛]
and ®𝑤2 = [𝑤21,𝑤22, ...,𝑤2𝑛] and a batch-2 inference request with
two input vectors ®𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑛] and ®𝑦 = [𝑦1, 𝑦2, ..., 𝑦𝑛]. As
we explained in §2.1, we encode ®𝑤1 onto one copy of the three
wavelengths generated by the comb laser and encode ®𝑤1 onto
the second copy of the three wavelengths. In particular,𝑤11,𝑤12,
and𝑤13 are simultaneously fed onto modulator1, modulator2, and
modulator3, respectively. Similarly, in the next time step,𝑤14,𝑤15,
and 𝑤16 are fed onto the same set of modulators. We follow the
same principle for encoding ®𝑤2. After the six modulators, the two-
row vectors are encoded onto six different lightwaves running
on three distinct wavelengths. Then, we use three WDM MUXes
to combine every two wavelengths together for parallel modula-
tion in the following stage. Note that, when selecting which wave-
lengths to combine, we only combine wavelengths that are car-
rying the signal in the same column of the weight matrix. For
example, because 𝜆1 carries [𝑤11,𝑤14, ...,𝑤1𝑛−2] and 𝜆3 carries
[𝑤21,𝑤24, ...,𝑤2𝑛−2], they are combined using a WDM MUX. The
combined wavelengths are first split into two copies to leverage
the favorable feature of photonic broadcasting. Then, one copy is
sent into a modulator as its carrier lightwave to perform parallel
modulation (the second favorable feature of photonic computing
mentioned above). For the modulator7 that takes in 𝜆1 and 𝜆3, an
electrical signal stream representing the corresponding sub-vector
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Figure 25: An example design of the Lightning’s photonic vector dot product core with 12 photonic MACs in a single time step.

Photonic vector dot product core
architecture

Computing primitive MACs per time step Modulators for encod-
ing weight matrix

Modulators for encod-
ing input vector

Photodetectors
for accumulation

Total distinct
wavelengths

Vector multiplication unit (Fig-
ure 2a)

Scalar multiplication 1 multiplication 1 1 1 1

Vector dot product core accumu-
lating on 𝑁 wavelengths (Fig-
ure 2c)

Vector dot product 𝑁 multiplication, 𝑁
accumulation

𝑁 𝑁 1 𝑁

Vector dot product core accumu-
lating on 𝑁 wavelengths with𝑊
parallel modulations

Matrix-vector prod-
ucts

𝑁𝑊 multiplication,
𝑁𝑊 accumulation

𝑁𝑊 𝑁 𝑊 𝑚𝑎𝑥 (𝑁,𝑊 )

Vector dot product core accumu-
lating on 𝑁 wavelengths with
𝑊 parallel modulations and infer-
ence batch size of 𝐵 (Figure 25)

Matrix multiplication 𝑁𝑊𝐵 multiplication,
𝑁𝑊𝐵 accumulation

𝑁𝑊 𝑁𝐵 𝑊𝐵 𝑚𝑎𝑥 (𝑁,𝑊 )

Table 5: Different photonic vector dot product core architectures.

[𝑥1, 𝑥4, ..., 𝑥𝑛−2] of the input vector ®𝑥 is applied to. The output light-
wave intensities of modulator7 become proportional to the element-
wise product of the input vectors, [𝑤11𝑥1,𝑤14𝑥4, ...,𝑤1𝑛−2𝑥𝑛−2] on
𝜆1 and [𝑤21𝑥1,𝑤24𝑥4, ...,𝑤2𝑛−2𝑥𝑛−2] on 𝜆2 (𝑊 = 2). modulator8
and modulator9 follow the same operating principle. Finally, we DE-
MUX andMUX the output ofmodulator7, modulator8 andmodulator9,
and reassembly the wavelengths such that the three wavelengths
(𝜆1, 𝜆2, and 𝜆3) that are carrying the results of the same vector dot
product will be sent to one photodetector for accumulation (the
third favorable feature of photonic computing mentioned above).
On the photodetector1 output port, we receive a voltage propor-
tional to the vector dot product results [𝑤11,𝑤12,𝑤13] · [𝑥1, 𝑥2, 𝑥3] =

∑3
𝑖=1𝑤1𝑖𝑥𝑖 (𝑁 = 3). Similarly, photodetector2 returns

∑3
𝑖=1𝑤2𝑖𝑥𝑖

at the same time. The Lightning datapath’s adder tree module
(§5.3) will be responsible for further accumulating these partial
vector dot products and assembling them with appropriate signs
to complete the full vector dot product. Similarly, the second copy
of the weights will perform the same operation on another input
vector of this batch ®𝑦 and returns a stream of vector dot product
results on photodetector3 and photodetector4 (𝐵 = 2). Putting it
together, the setup shown in Figure 25 is capable of performing
𝑁𝑊𝐵 = 2 × 3 × 2 = 12 MACs at one time step.



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Zhong, et al.

DNN Model Size (MB) Inference query
Size (KB)

Dataset Type Datapath latency used in simulation (𝜇s)
Lightning A100 GPU A100X DPU Brainwave

AlexNet [75] 233 150 ImageNet Vision 1.544 581 0 0
ResNet18 [65] 45 150 ImageNet Vision 4.053 615 0 0
VGG16 [98] 528 150 ImageNet Vision 3.088 607 0 0
VGG19 [98] 548 150 ImageNet Vision 3.667 596 0 0
BERT (Large) [46] 1380 5.12 Synthetic Language 32.617 1176 0 0
GPT-2 (XL) [93] 6263 10.24 Synthetic Language 65.234 6605 0 0
DLRM [87] 12400 5.12 Synthetic Recommendation 1.544 13210 0 0

Table 6: DNN models and datapath latency used in §9 for simulations.

F SIMULATION SETTINGS

Table 6 shows the model size, inference query size, and dataset of
the DNN models used in §9. There are multiple versions of BERT
and GPT-2 models. Specifically, we use BERT (Large) and GPT-2
(Extra Large) in our simulation. Table 6 also specifies the datapath
latency of individual DNNs and processors used in our simulation.
For A100 GPUs, we measure the real-world inference serving la-
tency for different DNNs using an Nvidia Triton server [4], and
obtain the datapath latency by subtracting compute latency from
end-to-end latency. For A100X DPU and Brainwave, we assume an
ideal scenario and use zero datapath latency, even though these
two devices also incur packet parsing and model loading overheads.
For Lightning, we measured the datapath latency for a single
DNN layer as 193 ns using our prototype. We calculate the model
datapath latency by multiplying this latency number with the num-
ber of layers for different DNNs. Note that within a single DNN
model, when multiple layers can be processed in parallel, we apply
the single-layer datapath latency only once. This characteristic is
applicable to BERT, GPT-2, and DLRM models.

G LIGHTNING DEVELOPER KIT

Open-source developer kit. Today’s lab devices used in photonic
computing demonstrations are prohibitively expensive, creating
a barrier to entry for the SIGCOMM community to experiment
with real-time photonic computing systems (§3). To lower this
barrier, we built an academic developer kit with all off-the-shelf
components and 3D printing parts. Our developer kit is operational
using Lightning’s Python API. A photo of our developer kit is
shown in Figure 26. The developer kit is designed to be ”plug-and-
play" such that a developer without deep knowledge in photonics
and FPGAs can get started easily. The detailed documentation about
our developer kit is available at https://lightning.mit.edu.
Benchmarking photonic vector dot product with the Python

API. We build a Python API based on the PYNQ [17] and QICK [16]
libraries on the Xilinx Zynq RFSoC FPGA platform. We show a
screenshot of hosting a Jupyter notebook server on the embedded
Linux kernel of the FPGA board and use the Lightning Python API
to test the photonic MAC functionality of Lightning. Developers
can easily import backend classes of Lightning to interact with

the developer kit in real-time. For instance, in Figure 27, we are
using the Python API to calculate photonic MACs. We first import
the Lightning python libraries that enables users to interact with
photonic vector dot product cores. In our current prototype (§6),
our photonic vector dot product core has two wavelengths, hence
performs two MAC operations at one step. We normalize the input
numbers within 0 to 1. The four inputs numbers for calculations are
𝑥1 = 0.85,𝑤1 = 0.26, 𝑥2 = 0.5, and𝑤2 = 0.93. The photonic vector
dot product computes the result of 𝑥1𝑤1 + 𝑥2𝑤2. In this case, the
photonic vector dot product core returns a result of 0.664, which
represent about 0.6% error with respect to the ground truth result
of 0.66.
Supporting use cases beyond ML. While this paper focuses on
machine learning inference as its primary use case, we believe our
evaluation kits will enable the networking community to integrate
photonic computing into a wide variety of applications. Besides
machine learning inference, Lightning’s photonic cores can be
used to accelerate video encoding [36], forward error correction
(FEC) [53, 62], fast fourier transform (FFT) [35], and image signal
processing (ISP) [33]. We look forward to working together with
the community to explore these new exciting applications with the
Lightning developer kit.

Figure 26: Lightning’s photonic computing developer kit.

https://lightning.mit.edu
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Figure 27: Benchmarking photonic vector dot product on Lightning’s prototype with our Python API.
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