
MLTCP: A Distributed Technique to Approximate
Centralized Flow Scheduling For Machine Learning
Sudarsanan Rajasekaran, Sanjoli Narang∗, Anton A. Zabreyko∗, Manya Ghobadi

Massachusetts Institute of Technology
ABSTRACT

This paper argues that congestion control protocols in ma-
chine learning datacenters sit at a sweet spot between central-
ized and distributed flow scheduling solutions. We present
MLTCP, a technique to augment today’s congestion con-
trol algorithms to approximate an interleaved centralized
flow schedule. At the heart of MLTCP lies a straight-forward
principle based on a key conceptual insight: by scaling the
congestion window size (or sending rate) based on the num-
ber of bytes sent at each iteration, MLTCP flows eventually
converge into a schedule that reduces network contention.
We demonstrate that MLTCP uses a gradient descent trend
with a step taken at every training (or fine-tuning) iteration
towards reducing network congestion among competing
jobs.

CCS CONCEPTS

•Networks→Data center networks;Network resources

allocation; Transport protocols;Networkmanagement; •Com-

puting methodologies→ Neural networks.

KEYWORDS

Congestion control, Networks for ML, Resource allocation,
Datacenters for ML, Transport layer, DNN training

ACM Reference Format:

Sudarsanan Rajasekaran, Sanjoli Narang∗, Anton A. Zabreyko∗,
Manya Ghobadi, Massachusetts Institute of Technology . 2024.
MLTCP: A Distributed Technique to Approximate Centralized Flow
Scheduling For Machine Learning. In The 23rd ACM Workshop on
Hot Topics in Networks (HOTNETS ’24), November 18–19, 2024, Irvine,
CA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3696348.3696878

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696878

1 INTRODUCTION

Efficient flow scheduling is an important and well-studied
problem in the networking community [3, 5, 7, 12, 13, 23,
24, 27]. There is a vast body of work on scheduling flows
using heuristics, load-balancing mechanisms, and deadlines
for network flows.
Traditionally, there have been two broad approaches to

implementing flow scheduling. First is the centralized ap-
proach, where a central controller collects the network de-
mands from all the flows and computes the desired flow
schedule [3, 12, 13, 27, 49]. The second is to approximate
heuristics, such as Shortest Remaining Processing Time first
(SRPT), in a distributed manner with the help of packet pri-
orities or switch support [5, 7, 23, 44].
Most flow scheduling approaches focus on conventional

datacenter traffic, which is bursty and short [9]. Moreover,
legacy datacenter flows’ arrivals are often independent and
unpredictable. Today, with increasing demand for AI-based
services, Deep Neural Network (DNN) training and fine-
tuning traffic in datacenters has exponentially increased.
Unlike traditional datacenter workloads, DNN training and
fine-tuning jobs have a periodic traffic patternwhere the start
time of each training iteration depends on the completion of
the preceding iteration, creating a dependency on the flow
arrival times [53, 59, 64].
We demonstrate that scheduling techniques that favor

jobs based on the shortest remaining processing times (i.e.,
pFabric [5], PDQ [23], and PIAS [7]) are not always optimal
for scheduling DNN jobs. Intuitively, this is because such
techniques make local scheduling decisions based on the
status of current flows in the network without considering
the flow arrival patterns of periodic jobs. This effect becomes
adverse in DNN workloads where finishing the flows in
one iteration impacts the completion time of subsequent
iterations.
Recent studies, such as Muri [64] and Cassini [52, 53],

have demonstrated that for DNN workloads, schedules that
promote interleaving of communication demands achieve op-
timal network schedule. They define the idea of interleaving
as overlapping the communication phase (high network de-
mand) of one DNN job with the compute phase (low network

https://doi.org/10.1145/3696348.3696878
https://doi.org/10.1145/3696348.3696878
https://doi.org/10.1145/3696348.3696878

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

time (ms)

(a) J1 traffic pattern
(GPT-3)

time (ms) time (ms)

0

10

20

30

40

50

0 1 2 3 4

Li
n

k
U

ti
liz

at
io

n
 (

G
b

p
s)

Time (sec)

0

10

20

30

40

50

0 1 2 3 4

Li
n

k
U

ti
liz

at
io

n
 (

G
b

p
s)

Time (sec)

(b) J2 traffic pattern
 (GPT-2)

Communication phase Communication phase

0

10

20

30

40

50

0 1 2 3 4

Li
n

k
U

ti
liz

at
io

n
 (

G
b

p
s)

Time (sec)

0

10

20

30

40

50

0 1 2 3 4

Li
n

k
U

ti
liz

at
io

n
 (

G
b

p
s)

Time (sec)

(c) J3 traffic pattern
 (GPT-2)

(d) J4 traffic pattern
 (GPT-2)

Communication phase Communication phase

Figure 1: The traffic pattern of jobs 𝐽1, 𝐽2, 𝐽3, and 𝐽4.

demand) of other jobs sharing the link. However, both ap-
proaches require a centralized controller to find the optimal
schedule.
Although the periodic nature of DNN jobs poses a chal-

lenge to traditional schedulers to achieve the optimal, we
argue that the same traffic pattern also creates an unprece-
dented opportunity to approximate a centralized optimal
schedule using a distributed approach. In this paper, we in-
troduce MLTCP, a novel approach to leverage congestion
control algorithms to approximate interleaved flow sched-
ules for DNN flows in a distributed manner. Importantly,
MLTCP does not need any hardware changes or priority
queues. Hence, unlike centralized scheduling algorithms,
MLTCP is easily deployable and scalable.

MLTCP adjusts the congestion window size based on a lin-
early increasing functionF (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜), where𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜
is the ratio of bytes successfully sent during the current
training (or fine-tuning) iteration normalized by the total
number of bytes sent every iteration (§3). Consequently,
F (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) enablesMLTCP to create unequal bandwidth
sharing between competing jobs, which forces the jobs to
iteratively converge towards an approximately interleaved
state. Our theoretical analysis of MLTCP shows that this
iteration-by-iteration convergence is equivalent to perform-
ing gradient descent on a loss function that promotes inter-
leaving (§4).

2 MOTIVATION

Distributed DNN Training and Fine-tuning Distributed
DNN training and fine-tuning jobs are flooding today’s dat-
acenters. These jobs have highly regular, periodic commu-
nication demands [46, 52, 53, 59, 64]. Unlike classical work
on periodic traffic [36, 54, 55], the arrival of the next flow
from a DNN job depends on the completion of the previous.
Recent work has shown that interleaving, or overlapping the
communication phase of one job with the computation of
the others, is optimal for this type of traffic [52, 64].

Example.We illustrate the impact of different scheduling
techniques on DNN jobs with a testbed experiment. Con-
sider a cluster with eight A100 GPU servers connected in a
dumbbell topology with a single bottleneck link of capacity
50 Gbps. We train four DNN jobs, 𝐽1, 𝐽2, 𝐽3, and 𝐽4 on this clus-
ter. Each job uses 2 GPUs installed on the opposite sides of the
bottleneck link. 𝐽1 trains a GPT-3 [11] model using two GPU
servers and has a communication traffic pattern represented
by Figure 1(a). Jobs 𝐽2, 𝐽3, and 𝐽4 are identical GPT-2 [51]
training instances, each using two GPU servers and having
a traffic pattern shown in Figures 1(b), 1(c), and 1(d). For
simplicity, consider the scenario when all four jobs start the
communication phase of their first iteration at the same time.

Centralized approaches. In these approaches, a central
entity that is aware of the communication demands of all
the jobs, computes the optimal schedule using an Integer
Linear Problem (ILP) solver. For instance, Cassini [52] uses a
network-aware centralized scheduler to achieve interleaving.
Figure 2(a) represents Cassini’s optimal interleaved schedule
for the four jobs. The average iteration time of job 𝐽1 is 1.2
seconds, and that of jobs 𝐽2, 𝐽3, and 𝐽4 are 1.8 seconds. Cen-
tralized approaches achieve optimal scheduling at the cost of
being computationally expensive, making it challenging to
scale to a large cluster. They also rely on accurate profiling
of the network demands to compute the optimal schedule.
Distributed approaches. To the best of our knowledge,

there is no prior work that achieves distributed flow sched-
uling for DNN jobs. Hence, we analyze conventional dis-
tributed flow schedulers like pFabric [5], PDQ [23], and
PIAS [7] that employ heuristics to approximate SRPT sched-
ule [54, 55] using switch hardware to minimize average flow
completion times. However, these approaches are not always
optimal for periodic traffic, even for a single link.1 Figure 2(b)
represents flow scheduling according to pFabric. pFabric pri-
oritizes jobs 𝐽2, 𝐽3, 𝐽4 which have a smaller communication
1The problem of scheduling periodic flows with variable bandwidth de-
mands and having dependencies between flow arrivals and flow completion
is NP-hard. The proof involves reduction from 1-D bin packing problem.

MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningHOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

0
10
20
30
40
50

0 1 2 3 4 5

Li
n

k
U

ti
liz

at
io

n

(G
b

p
s)

Time (sec)

0
10
20
30
40
50

0 1 2 3 4 5

Li
n

k
U

ti
liz

at
io

n

(G
b

p
s)

Time (sec)

0
10
20
30
40
50

0 1 2 3 4 5

Li
n

k
U

ti
liz

at
io

n

(G
b

p
s)

Time (sec)

(b) SRPT Schedule (pFabric)

(a) Optimal Schedule (Cassini)

(c) MLTCP Schedule after convergence

J1 J2 J3 J4

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Iteration 1 Iteration 2 Iteration 3

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 2: Comparison of different scheduling approaches on the iteration times of four DNN training jobs. MLTCP
achieves the same schedule as the optimal (Cassini), while SRPT (pFabric) does not.

demand and delay the communication of 𝐽1 every iteration.
With pFabric, the average iteration times of all four jobs is 1.8
seconds. The iteration times of jobs 𝐽2, 𝐽3 and 𝐽4 remain close
to ideal, but job 𝐽1 incurs a slowdown of 1.5× in its iteration
time. The core reason for this is that SRPT blindly prioritizes
the shortest flows without considering the inter-dependence
between flow arrivals in case of DNN jobs. In this case, SRPT
causes head-of-line blocking for 𝐽1 by prioritizing the jobs
with smaller flow sizes.

Surprising impact of congestion control on resource

interleaving. In this paper, we demonstrate a surprising
feature of congestion control protocols that enables service
providers to have the best of both centralized and distributed
worlds. To do so, we propose MLTCP, a straightforward tech-
nique to augment a family of congestion control algorithms.
MLTCP-enabled congestion control protocols automatically
achieve near-optimal interleaving in a distributed manner
without the need for a centralized entity or priority queues
or switch hardware support. For our scenario of four jobs,
Figure 2(c) shows MLTCP’s final interleaved state. Every
iteration, MLTCP gradually shifts the communication pat-
terns, akin to a gradient descent approach (§4), to ultimately
converge to the optimal interleaved schedule when it stops
shifting them further.

Approximation error. In the above experiment, MLTCP
converges to an interleaved state within 20 iterations. In par-
ticular, the average iteration times of the four jobs converge

to within 5% of the optimal centralized schedule, and the
interleaving remains stable in subsequent iterations. We pro-
vide an upper bound on the approximation error of MLTCP
in Section 4.

3 FUNDAMENTALS OF MLTCP

This section describes how MLTCP modifies distributed con-
gestion control protocol TCP-Reno to approximate interleav-
ing of communication demands of DNN jobs.

3.1 Augmenting TCP Reno with MLTCP

MLTCP’s goal is to stabilize flows belonging to different
DNN training and fine-tuning jobs into an interleaved state
without using a centralized controller, regardless of job start
times, DNN model size, parallelization strategy, or number
of flows competing for bandwidth. To serve this purpose,
MLTCP exploits a key conceptual insight: DNN flows should
dynamically adjust their aggressiveness for link bandwidth
based on the number of bytes sent in that iteration. This
allows the flow closest to completing its iteration to receive
a larger share of available bandwidth than the others, thereby
finishing faster.

MLTCP’s sliding effect.MLTCP’s unequal bandwidth al-
location creates a “shift” in the start times of the communica-
tion phases of different jobs. Such a shift in time causes a slid-
ing effect, where the communication phase of one job slides

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

1000

1100

1200

1300

1400

1500

1600

0 10 20 30 40 50

It
e

ra
ti

o
n

 t
im

e
(m

s)

Iteration number

better

ℱ1

ℱ2

ℱ3
ℱ4

ℱ5

ℱ6

Figure 3: Performance of different F (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) func-
tions.

into the compute phase of other jobs (details in section §4)
after a few iterations. Following this insight, MLTCP adjusts
the congestion window (cwnd) or sending rate of flows based
on a bandwidth aggressiveness function, F (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜), of
the number of bytes sent normalized by the total bytes to be
sent in one iteration of each flow (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜 =

𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡
𝑡𝑜𝑡𝑎𝑙_𝑏𝑦𝑡𝑒𝑠).

Following Linux’s implementation, throughout this paper,
we assume that the congestion window (cwnd) is expressed
in packets (not bytes).
MLTCP-Reno. The TCP Reno algorithm uses a cumula-

tive ack mechanism to acknowledge multiple in-flight pack-
ets with a single ack. In the additive increase step, the Reno
algorithm increases the cwnd by #𝑛𝑢𝑚_𝑎𝑐𝑘𝑠

𝑐𝑤𝑛𝑑
upon receiving

a packet having #𝑛𝑢𝑚_𝑎𝑐𝑘𝑠 acks. MLTCP scales this incre-
ment by the bandwidth aggressive function, F (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜),
as follows:

𝑐𝑤𝑛𝑑 ← 𝑐𝑤𝑛𝑑 + F (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) × #𝑛𝑢𝑚_𝑎𝑐𝑘𝑠
𝑐𝑤𝑛𝑑

(1)

Bandwidth aggressiveness function.MLTCP uses the
aggressiveness function F as a scaling factor for the cwnd
increment made during the window (or rate) increase step.
Many aggressiveness functions achieve MLTCP’s interleav-
ing goals as long as they satisfy the following three require-
ments: (𝑖) the range is large enough to absorb the noise
(e.g., slight variations in round-trip time (RTT) or iteration
times) in the network; (𝑖𝑖) the derivative of the function is
non-negative; (𝑖𝑖𝑖) all flows employ the same bandwidth ag-
gressiveness function.
Figure 3 compares the performance of six different band-

width aggressiveness functions F . In this experiment, three
GPT-2 [51] training jobs compete for bandwidth usingMLTCP-
Reno. We run six experiments each with a different function,
as follows:
• F1 = 1.75(𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) + 0.25
• F2 = 1.75(𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜)2 + 0.25
• F3 = 1/(−3.5(𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) + 4)

Algorithm 1MLTCP-Reno Algorithm
1: procedure Initialize:(𝑇𝑂𝑇𝐴𝐿_𝐵𝑌𝑇𝐸𝑆 ,𝐶𝑂𝑀𝑃_𝑇 𝐼𝑀𝐸)

⊲ Input Parameter𝑇𝑂𝑇𝐴𝐿_𝐵𝑌𝑇𝐸𝑆 : Total bytes per iteration
⊲ Input Parameter𝐶𝑂𝑀𝑃_𝑇 𝐼𝑀𝐸: Gap in communication for detecting iteration
boundary

2: 𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜 = 0 ⊲ Current fraction of bytes sent in this iteration
3: 𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡 = 0 ⊲ Number of successfully sent bytes
4: 𝑝𝑟𝑒𝑣_𝑎𝑐𝑘_𝑡𝑠𝑡𝑎𝑚𝑝 = 0 ⊲ Timestamp of the previous ack
5: 𝑀𝑇𝑈 = 1500 ⊲ Maximum packet size used by the system
6: procedure Congestion_avoidance(𝑛𝑢𝑚_𝑎𝑐𝑘𝑠)

⊲ Input Parameter 𝑛𝑢𝑚_𝑎𝑐𝑘𝑠
7: 𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡 += 𝑛𝑢𝑚_𝑎𝑐𝑘𝑠 ×𝑀𝑇𝑈

8: 𝑐𝑢𝑟𝑟_𝑎𝑐𝑘_𝑡𝑠𝑡𝑎𝑚𝑝 = get_real_time()
9: 𝑐𝑢𝑟𝑟_𝑔𝑎𝑝 = 𝑐𝑢𝑟𝑟_𝑎𝑐𝑘_𝑡𝑠𝑡𝑎𝑚𝑝 − 𝑝𝑟𝑒𝑣_𝑎𝑐𝑘_𝑡𝑠𝑡𝑎𝑚𝑝

10: if 𝑐𝑢𝑟𝑟_𝑔𝑎𝑝 >𝐶𝑂𝑀𝑃_𝑇 𝐼𝑀𝐸 then

11: ⊲ Start of new training iteration
12: ⊲ State reset
13: 𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜 = 0; 𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡 = 0;
14: else

15: ⊲ Middle of training iteration
16: 𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜 =𝑚𝑖𝑛

(
1, 𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡

𝑇𝑂𝑇𝐴𝐿_𝐵𝑌𝑇𝐸𝑆

)
17: 𝑝𝑟𝑒𝑣_𝑎𝑐𝑘_𝑡𝑠𝑡𝑎𝑚𝑝 = 𝑐𝑢𝑟𝑟_𝑎𝑐𝑘_𝑡𝑠𝑡𝑎𝑚𝑝

18: 𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 + 𝐹 (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) ∗ (𝑛𝑢𝑚_𝑎𝑐𝑘𝑠
𝑐𝑤𝑛𝑑

)
19: return

• F4 = −1.75(𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜)2 + 3.5(𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) + 0.25
• F5 = −1.75(𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) + 2
• F6 = −1.75(𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜)2 + 2
All these functions have the same range (0.25 – 2) but
F1, ..., F4 are increasing and F5 and F6 are decreasing. Fig-
ure 3 shows the average training iteration time of different
iterations as the jobs start their training process. As shown,
the iteration time of MLTCP-Reno with F1, ..., F4 starts to
decrease, as the communication demands interleave after
≈20 iterations. On the other hand, the iteration times of
MLTCP-Reno with F5 and F6 do not improve. Even though
different increasing functions take slightly different numbers
of iterations to interleave the jobs, they eventually achieve
the interleaved state.
We select the bandwidth aggressiveness function used

in MLTCP to be linear in 𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜 , to simplify MLTCP’s
implementation in the linux kernel and to minimize compu-
tational overhead. We define F (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) as:
F (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) = 𝑆𝑙𝑜𝑝𝑒 × 𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (2)

where 𝑆𝑙𝑜𝑝𝑒 and 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 represent the linear function’s
slope and intercept, respectively. These are constant parame-
ters tuned based on the link rate and the noise in the system.
In this paper we use 𝑆𝑙𝑜𝑝𝑒 = 1.75 and 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 0.25.

3.2 MLTCP-Reno Congestion Avoidance

MLTCP-Reno algorithm. We implement MLTCP-Reno
in the Linux kernel using the pluggable congestion mod-
ule [2, 22] to insert the MLTCP-Reno procedure, shown in
Algorithm 1, as a hook into the TCP stack. This function
has two essential goals: the first is to update the number
of successfully sent bytes, and the second is to adjust the
congestion window. MLTCP-Reno is called by the TCP stack

MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningHOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

0

0.2

0.4

0.6

0.8

1

1400 1800 2200 2600

(c) CDF of iteration times

Li
nk

 U
til

iz
at

io
n

 (G
bp

s)

(a) Reno (b) MLTCP-Reno

C
D

F

MLTCP-Reno

Reno

1.59x

0

25

50

0 0.5 1 1.5 2
Time (sec)

0

25

50

0 0.5 1 1.5 2
Time (sec)

Job1 Job2 Job3 Job4 Job5 Job6

Li
nk

 U
til

iz
at

io
n

 (G
bp

s)

Time (ms)

Job1 Job2 Job3 Job4 Job5 Job6

Figure 4: Bandwidth allocation when six jobs share the bottleneck link.

whenever an ack packet is received. This information is read-
ily available from the socket data structure (line 7). If the time
since the last received ack is greater than the computation
time (line 10), then it resets MLTCP’s parameters (line 13).
Otherwise, it computes 𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜 based on the current
𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡 (line 16). Finally, we record the current time to
compare against the next time an ack is received and update
the congestion window (line 18).

Obtaining TOTAL_BYTES and COMP_TIME. The total
bytes in each iteration (𝑇𝑂𝑇𝐴𝐿_𝐵𝑌𝑇𝐸𝑆) and computation
time (𝐶𝑂𝑀𝑃_𝑇 𝐼𝑀𝐸) are constant for each job and depend
on the size of the DNN model, the parallelization strategy,
and the communication collective. In our implementation,
we automatically learn these values by measuring the total
amount of data and computation time during the first few
iterations. We measure the computation time by detecting
gaps in the ack arrivals that exceed several round-trip times
(RTTs).

Figure 4(a) shows the bandwidth allocation of six identical
GPT-2 [51] jobs competing on a network link using TCP
Reno. The figure shows heavy network congestion, where
all jobs take longer to finish. In contrast, Figure 4(b) shows
the same setup with MLTCP-Reno, where all jobs achieve
a near-optimal interleaved state. Figure 4(c) highlights the
tail iteration time speedup of 1.59× achieved using MLTCP
compared to standard TCP-Reno over the lifetime of the jobs.

4 ANALYSIS OF MLTCP

In this section, we provide a theoretical analysis of MLTCP
and its iteration-by-iteration progress toward an interleaved
state for DNN jobs.
Compatibility and network demand assumptions.

We limit the scope of our analysis to scenarios in which an
interleaved schedule exists [52], and the network demand
phase of each job is continuous and constant within an itera-
tion. Under these two assumptions, MLTCP is guaranteed to
converge to the optimal resource interleaving with an error
linearly bounded by the noise in the system.
We show that the process of convergence is essentially

a gradient descent over a loss function that hits minimum

when the communication demands of different jobs are in-
terleaved. Unlike centralized approaches that solve for an
optimum in one shot, MLTCP explores the solution space to
find a minima at a rate governed by the bandwidth aggres-
siveness function.

The key idea behindMLTCP is to adjust the cwnd based on
the bytes sent in an iteration (§3). As a result, MLTCP divides
the link capacity between the flows unequally when they
compete for the network. This difference in the bandwidth
leads to unequal progress of the current iteration of the jobs,
causing shifts in the start times of the communication phase
of their subsequent iterations. In this section, we formally
define the “shift” created by MLTCP’s unequal bandwidth
sharing and use it to construct the loss function for gradient
descent. To understand the principle, let us consider a sim-
ple example of two identical DNN training jobs. The same
analysis applies to any combination of jobs that satisfy the
compatibility and network demand assumptions.
Figure 5 illustrates two identical DNN training jobs shar-

ing a network link with capacity 𝐶 and ideal iteration time
𝑇 . This ideal iteration time is achieved when each job is ex-
ecuted in isolation, as shown in Figure 5(a). Each iteration
of training has a duration of 𝑇 seconds. The communication
phase lasts 𝑎 ×𝑇 seconds, where 𝑎 < 1 is a constant depend-
ing upon the DNN job. The difference in the start times of
the 𝑖𝑡ℎ iterations of the two jobs is given by Δ𝑖 . Figure 5(b)
shows the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ iterations of the two jobs using
MLTCP. In this scenario, MLTCP allocates more than half of
the bandwidth to the first job, allowing it to complete its cur-
rent iteration early, and delays the second job by assigning it
a lower bandwidth. This phenomenon causes the difference
in the start times of the next iteration of the two jobs to
increase to Δ𝑖+1 where Δ𝑖+1 = Δ𝑖 +𝑆ℎ𝑖 𝑓 𝑡 (Δ𝑖). We refer to the
increase in the start times of the next iteration relative to the
previous one as the 𝑆ℎ𝑖 𝑓 𝑡 introduced by MLTCP. This 𝑆ℎ𝑖 𝑓 𝑡
caused in the communication pattern induces a sliding effect,
which, over multiple iterations, aids in separating the com-
munication demands of the jobs. Figure 6 illustrates the shift
and sliding behavior of MLTCP-Reno when two GPT-2 [51]
training jobs share a bottleneck link in our testbed.

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

𝑎𝑇

1 − 𝑎 𝑇

B
an

d
w

id
th

Time

𝐶

𝑎𝑇

B
an

d
w

id
th

Time

𝐶

Time

𝐶

Time

𝐶

Δ Δi

(a) Isolation (b) MLTCP

𝑎1𝐶

𝑎2𝐶

(b)

0
0

Lo
ss

TT/2
Difference in start times (s)

(c) MLTCP Loss function

Fully
interleaved

Congestion

1 − 𝑎 𝑇

1 − 𝑎 𝑇

1 − 𝑎 𝑇

1 − 𝑎 𝑇

1 − 𝑎 𝑇

0

Congestion

Δ Δi+1

Figure 5: MLTCP shifts the communication pattern

0

10

20

30

40

50

0 2 4 6 8

Li
nk

 U
ti

liz
at

io
n

(G
b

p
s)

Time (sec)

Job1 MLTCP-Reno Job2 MLTCP-Reno
Network congestion

Interleaved schedule

Figure 6: MLTCP interleaves the communication demands of two GPT-2 jobs over few iterations.

Given the bandwidth aggressiveness function in Equa-
tion 2, we mathematically compute the shift, 𝑆ℎ𝑖 𝑓 𝑡 , as a
function of the start time difference Δ𝑖 , between the jobs in
the 𝑖𝑡ℎ iteration as:

𝑆ℎ𝑖 𝑓 𝑡 (Δ𝑖) =
𝑆𝑙𝑜𝑝𝑒 × Δ𝑖 × (𝑎 ×𝑇 − Δ𝑖)

𝑎 ×𝑇 × 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + Δ𝑖 × 𝑆𝑙𝑜𝑝𝑒
(3)

MLTCP generates a shift in the communication pattern
which accumulates over multiple iterations to gradually slide
them to a configuration that is close to optimal interleaving.
To understand the final state it converges to, we define a
loss function as the negative integral of the shift function,
as given by:

𝐿𝑜𝑠𝑠 (Δ𝑖) =
∫ Δ𝑖

Δ=0
−𝑆ℎ𝑖 𝑓 𝑡 (Δ) 𝑑Δ (4)

Given the compatibility and network demand assumptions,
the loss function obtained by MLTCP is guaranteed to have
only global optima. Hence, our approach converges to a
global optimum, i.e., a fully interleaved state. Different ag-
gressiveness functions give rise to different shift functions
and, eventually, to different loss functions.
To visualize the loss function in the example of two jobs,

we take 𝑎 = 1/2 (i.e. 50% communication phase) in Figure 5(c)
for simplicity. For this choice of 𝑎, the loss function is mini-
mum at value Δ𝑖 = 𝑇 /2, when network contention is mini-
mum, and the communication demands are interleaved. Even

for the case of many different jobs, the loss function has the
same characteristics as that of this simple example. Note that
changing the configuration based on the shift function adds
a negative derivative of the loss function to the configura-
tion. In other words, MLTCP performs a gradient descent on
the loss function, shifting the communication patterns after
every iteration. Given any starting configuration, MLTCP
using gradient descent gradually converges to the minimum
of the loss function.
As MLTCP is essentially a gradient descent, it converges

to a stable optimum. However, small perturbations arising
due to slight variations in compute durations, network laten-
cies, and clock synchronization in a practical environment
disturb the system state. We model all these perturbations
as zero mean Gaussian noise in the iteration time of each
job. Under this model, we quantify the approximation error
of MLTCP based on how far is the steady state from the
optimal interleaved schedule. Assuming that the noise dis-
tribution has a standard deviation 𝜎 , MLTCP’s convergence
error also follows a normal distribution with mean zero and
standard deviation 2𝜎 ×

(
1 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑆𝑙𝑜𝑝𝑒

)
. Hence, the approxi-

mation error is linearly bounded by the intensity of noise in
the iteration times of the jobs.

MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningHOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

5 DISCUSSION

Generalization to multi-resource scheduling. MLTCP’s
scope is not limited to network scheduling. The aggressive-
ness function F (𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑖𝑜) is generalizable to other re-
source scheduling problems by replacing bytes_ratio with
the progress of the job. For example, in the case of CPU cores,
the operating system’s scheduler tracks the progress of each
task, and assigns a number of CPU cores based on the desired
aggressiveness function. The dimension of gradient descent
space increases with the number of jobs. For allocating mul-
tiple resources among multiple jobs periodically, the loss
becomes a function of the overlap across all resources. The
relative shifts for each job, calculated from the gradient of
this function, thus takes into account each resource type.

Fairness betweenMLTCPandTCPflows.TCP’s through-
put is inversely proportional to the square root of loss of prob-
ability [41]. Our analysis shows that the throughput of our
MLTCP-Reno flows is inversely proportional to the loss prob-
ability. Intuitively, this implies that given the same packet
loss probability, an MLTCP-Reno flow claims more band-
width share than a standard Reno flow. However, MLTCP-
Reno flows would not starve the other legacy flows because
MLTCP allocates non-zero bandwidth to all the competing
flows. To safeguard high-priority legacy TCP traffic, we mod-
ify NCCL’s FAST socket plugin [1] to support selecting a
desired congestion control algorithm. This allows for choos-
ing different aggressiveness functions for different classes
of traffic. For latency-sensitive traffic, in order to acquire
most of the bandwidth, we recommend using a bandwidth
aggressiveness function with larger values.

6 RELATEDWORK

Congestion control. There is a vast literature on congestion
control. Many rely on feedback signals indicating congestion
in the network and reduce their sending rate [4, 8, 10, 16, 19,
26, 32, 34, 37, 42, 62, 66]. Others are deadline-aware [58, 60],
router-assisted [5, 15, 31], and receiver-based [20]. We chose
to augment TCP-Reno because it is a classic congestion con-
trol algorithm. Other congestion control schemes are aug-
mented in a similar way to induce shifts in communication
start times.

Flow scheduling. There are two broad directions for im-
plementing flow scheduling: centralized flow scheduling and
heuristic-based distributed flow scheduling. In the central-
ized approaches, the network demands of different flows are
sent to a central entity, which computes the optimal schedule
for all the flows [3, 12, 13, 27, 49]. The distributed approaches
often implement heuristics like SRPT [54, 55], Shortest Re-
maining Job first (SJF), Least Attained Service first (LAS),
Earliest Deadline First (EDF), with the help of the switch and
priority queues [5, 7, 23, 44].

Periodic resource scheduling. Beyond networks, there
have been efforts to schedule periodic tasks across limited re-
sources, including real-time and embedded systems [17, 33].
However, these have explicit deadlines, and inter-arrival
times have no dependency on completion times. Cyclic sched-
uling is a well-studied problem in mathematics [14, 56]. The
most general form of this problem, from Serafini et al. [56],
expresses our scenario but is shown to be NP-hard.

Accelerating DNN Training. Prior work demonstrated
that generic flow schedulers are not optimal for DNN training
jobs [40, 46]. DNN-specific flow schedulers have been devel-
oped to meet this demand [21, 29, 39, 48, 57]. Alternatively,
intra-job pipelining overlaps the compute and communica-
tion phases of the same training job [25, 30, 35, 35, 43, 45, 48].
These approaches only optimize a single job’s performance,
while we share resources across multiple jobs. Job placement
schedulers try to minimize multi-job contention. Many fo-
cused on compute-optimization in how they assign workers
to jobs, and only considered the network so far as to try and
schedule workers for a job close together [18, 28, 38, 47, 50,
61, 65]. Our work complements these schedulers.

Resource Interleaving Muri [64] introduced the idea of
multi-resource interleaving for DNN training, but required
all jobs to share the same GPUs. Cassini [52] exploited the
opportunity to overlap the computation and communica-
tion of different jobs using an ILP. Both of these works are
centralized schedulers that would struggle to scale in a real
system. In contrast, our implementation of MLTCP performs
a distributed live optimization.
Unfairness in the network. Recently, there have been

calls to introduce bandwidth unfairness to optimize flow com-
pletion times, energy efficiency, and DNN iteration time [6,
53, 63]. MLTCP automatically configures congestion control
parameters to leverage unfairness to achieve these goals.

7 CONCLUSION

This paper introduces a technique to augment a family of
congestion control algorithms to approximate optimal inter-
leaving for DNN training jobs. The key idea is to dynamically
adjust the flow congestion window (or sending rate) to in-
duce a sliding effect so that the DNN jobs automatically
converge to approximately optimal interleaving. We formal-
ize our approach and show that the sliding effect iteration
after iteration is equivalent to gradient descent, with the goal
of improving communication interleaving.
Acknowledgements.We thank HotNets’s anonymous

reviewers for their valuable feedback. Thanks to Hari Balakr-
ishnan for helpful suggestions and discussions. The authors
are supported by DARPA FastNICs 4202290027, NSF SHF-
2107244, NSF CAREER-2144766, NSF PPoSS-2217099, NSF
CNS-2211382, and Sloan fellowship FG-2022-18504.

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

REFERENCES

[1] [n. d.]. NCCL Fast Socket. https://github.com/google/nccl-fastsocket.
[2] 2005. Pluggable congestion avoidance modules. https://lwn.net/

Articles/128681/
[3] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,

Nelson Huang, and Amin Vahdat. 2010. Hedera: dynamic flow sched-
uling for data center networks. In Proceedings of the 7th USENIX Con-
ference on Networked Systems Design and Implementation (San Jose,
California) (NSDI’10). USENIX Association, USA, 19.

[4] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the
ACM SIGCOMM 2010 Conference (New Delhi, India) (SIGCOMM ’10).
Association for Computing Machinery, New York, NY, USA, 63–74.
https://doi.org/10.1145/1851182.1851192

[5] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: min-
imal near-optimal datacenter transport. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (Hong Kong, China) (SIG-
COMM ’13). Association for Computing Machinery, New York, NY,
USA, 435–446. https://doi.org/10.1145/2486001.2486031

[6] Serhat Arslan, Sundarajan Reneganathan, and Bruce Spang. 2023.
Green With Envy: Unfair Congestion Control Algorithms Can Be
More Energy Efficient. In Proceedings of the 22nd ACMWorkshop on Hot
Topics in Networks (Cambridge, Massachusetts) (HotNets ’23). 8 pages.

[7] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.
2017. PIAS: Practical Information-Agnostic Flow Scheduling for
Commodity Data Centers. IEEE/ACM Trans. Netw. 25, 4 (aug 2017),
1954–1967. https://doi.org/10.1109/TNET.2017.2669216

[8] Andrea Baiocchi, Angelo Castellani, and Francesco Vacirca. [n. d.].
YeAH-TCP: Yet another highspeed TCP. ([n. d.]).

[9] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network
traffic characteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement (Melbourne,
Australia) (IMC ’10). Association for Computing Machinery, New York,
NY, USA, 267–280. https://doi.org/10.1145/1879141.1879175

[10] L.S. Brakmo and L.L. Peterson. 1995. TCP Vegas: end to end congestion
avoidance on a global Internet. IEEE Journal on Selected Areas in
Communications 13, 8 (1995), 1465–1480. https://doi.org/10.1109/49.
464716

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners. CoRR abs/2005.14165 (2020). arXiv:2005.14165 https:
//arxiv.org/abs/2005.14165

[12] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient Coflow Schedul-
ing Without Prior Knowledge. SIGCOMM Comput. Commun. Rev. 45,
4 (aug 2015), 393–406. https://doi.org/10.1145/2829988.2787480

[13] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient
coflow scheduling with Varys. SIGCOMM Comput. Commun. Rev. 44, 4
(aug 2014), 443–454. https://doi.org/10.1145/2740070.2626315

[14] Wolfgang Dauscha, Heinz D. Modrow, and Alexander Neumann. 1985.
On cyclic sequence types for constructing cyclic schedules. Zeitschrift
für Operations Research 29 (1985), 1–30. https://api.semanticscholar.
org/CorpusID:12356541

[15] Nandita Dukkipati, Masayoshi Kobayashi, Rui Zhang-Shen, and Nick
McKeown. 2005. Processor Sharing Flows in the Internet. In Quality
of Service – IWQoS 2005, Hermann de Meer and Nina Bhatti (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 271–285.

[16] M. Gerla, M.Y. Sanadidi, Ren Wang, A. Zanella, C. Casetti, and S.
Mascolo. 2001. TCP Westwood: congestion window control using
bandwidth estimation. In GLOBECOM’01. IEEE Global Telecommu-
nications Conference (Cat. No.01CH37270), Vol. 3. 1698–1702 vol.3.
https://doi.org/10.1109/GLOCOM.2001.965869

[17] Joël Goossens. 2003. Scheduling of Offset Free Systems. Real-Time Sys-
tems 24 (03 2003), 239–258. https://doi.org/10.1023/A:1021782503695

[18] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.
Tiresias: A GPU Cluster Manager for Distributed Deep Learning.
In 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19). USENIX Association, Boston, MA, 485–500.
https://www.usenix.org/conference/nsdi19/presentation/gu

[19] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42, 5 (jul
2008), 64–74. https://doi.org/10.1145/1400097.1400105

[20] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
architecting datacenter networks and stacks for low latency and high
performance. In Proceedings of the Conference of the ACM Special Inter-
est Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 29–42.
https://doi.org/10.1145/3098822.3098825

[21] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Camp-
bell. 2019. TicTac: Accelerating Distributed Deep Learning
with Communication Scheduling. In Proceedings of Machine Learn-
ing and Systems, A. Talwalkar, V. Smith, and M. Zaharia (Eds.),
Vol. 1. 418–430. https://proceedings.mlsys.org/paper/2019/file/
84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf

[22] Stephen Hemminger. 2005. TCP infrastructure split out. http://lwn.
net/Articles/128626/

[23] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Fin-
ishing flows quickly with preemptive scheduling. SIGCOMM Comput.
Commun. Rev. 42, 4 (aug 2012), 127–138. https://doi.org/10.1145/
2377677.2377710

[24] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Fin-
ishing flows quickly with preemptive scheduling. In Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (Helsinki, Finland)
(SIGCOMM ’12). Association for Computing Machinery, New York, NY,
USA, 127–138. https://doi.org/10.1145/2342356.2342389

[25] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, and zhifeng Chen. 2019. GPipe: Efficient Training of Giant Neural
Networks using Pipeline Parallelism. In Advances in Neural Informa-
tion Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Asso-
ciates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/
093f65e080a295f8076b1c5722a46aa2-Paper.pdf

[26] V. Jacobson. 1988. Congestion avoidance and control. SIGCOMM
Comput. Commun. Rev. 18, 4 (aug 1988), 314–329. https://doi.org/10.
1145/52325.52356

[27] Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin. 2019. Your Coflow has
Many Flows: Sampling them for Fun and Speed. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19). USENIX Association, Renton,
WA, 833–848. https://www.usenix.org/conference/atc19/presentation/
jajoo

https://github.com/google/nccl-fastsocket
https://lwn.net/Articles/128681/
https://lwn.net/Articles/128681/
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1109/TNET.2017.2669216
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1109/49.464716
https://doi.org/10.1109/49.464716
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/2829988.2787480
https://doi.org/10.1145/2740070.2626315
https://api.semanticscholar.org/CorpusID:12356541
https://api.semanticscholar.org/CorpusID:12356541
https://doi.org/10.1109/GLOCOM.2001.965869
https://doi.org/10.1023/A:1021782503695
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/3098822.3098825
https://proceedings.mlsys.org/paper/2019/file/84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf
http://lwn.net/Articles/128626/
http://lwn.net/Articles/128626/
https://doi.org/10.1145/2377677.2377710
https://doi.org/10.1145/2377677.2377710
https://doi.org/10.1145/2342356.2342389
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/52325.52356
https://www.usenix.org/conference/atc19/presentation/jajoo
https://www.usenix.org/conference/atc19/presentation/jajoo

MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningHOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

[28] Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu Lin, Aurick
Qiao, Zhihao Jia, and Gregory R. Ganger. 2023. Sia: Heterogeneity-
aware, goodput-optimized ML-cluster scheduling. In Proceedings of the
29th Symposium on Operating Systems Principles (Koblenz, Germany)
(SOSP ’23). Association for Computing Machinery, New York, NY, USA,
642–657. https://doi.org/10.1145/3600006.3613175

[29] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. 2020. A Unified Architecture for Accelerating Distributed
DNN Training in Heterogeneous GPU/CPU Clusters. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 463–479. https://www.usenix.org/conference/
osdi20/presentation/jiang

[30] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. 2020. A unified architecture for accelerating distributed
DNN training in heterogeneous GPU/CPU clusters. In Proceedings of
the 14th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’20). USENIX Association, USA, Article 26, 17 pages.

[31] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion con-
trol for high bandwidth-delay product networks. SIGCOMM Comput.
Commun. Rev. 32, 4 (aug 2002), 89–102. https://doi.org/10.1145/964725.
633035

[32] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat.
2020. Swift: Delay is Simple and Effective for Congestion Control in the
Datacenter. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (Virtual
Event, USA) (SIGCOMM ’20). Association for Computing Machinery,
New York, NY, USA, 514–528. https://doi.org/10.1145/3387514.3406591

[33] Matheus Ladeira, Emmanuel Grolleau, Fabien Bonneval, Gautier Hat-
tenberger, Yassine Ouhammou, and Yuri Hérouard. 2022. Scheduling
Offset-Free Systems Under FIFO Priority Protocol. In 34th Euromi-
cro Conference on Real-Time Systems (ECRTS 2022) (Dagstuhl Artifacts
Series, Vol. 231). Modena, Italy. https://doi.org/10.4230/DARTS.8.1.4

[34] Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon, and Dongsu
Han. 2017. DX: Latency-Based Congestion Control for Datacenters.
IEEE/ACM Transactions on Networking 25, 1 (2017), 335–348. https:
//doi.org/10.1109/TNET.2016.2587286

[35] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao
Zhang, Dawn Song, and Ion Stoica. 2021. TeraPipe: Token-Level
Pipeline Parallelism for Training Large-Scale Language Models.
arXiv:2102.07988 [cs.LG]

[36] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. ACM 20, 1
(jan 1973), 46–61. https://doi.org/10.1145/321738.321743

[37] Shao Liu, Tamer Başar, and R. Srikant. 2008. TCP-Illinois: A loss- and
delay-based congestion control algorithm for high-speed networks.
Performance Evaluation 65, 6 (2008), 417–440. https://doi.org/10.1016/
j.peva.2007.12.007 Innovative Performance Evaluation Methodologies
and Tools: Selected Papers from ValueTools 2006.

[38] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram
Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.
2020. Themis: Fair and Efficient GPU Cluster Scheduling. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 289–304. https:
//www.usenix.org/conference/nsdi20/presentation/mahajan

[39] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya
Akella. 2023. Better Together: Jointly Optimizing ML Collective Sched-
uling and Execution Planning using SYNDICATE. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). USENIX Association, Boston, MA, 809–824. https://www.usenix.

org/conference/nsdi23/presentation/mahajan
[40] Luo Mai, Chuntao Hong, and Paolo Costa. 2015. Optimizing Net-

work Performance in Distributed Machine Learning. In 7th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 15). USENIX
Association, Santa Clara, CA. https://www.usenix.org/conference/
hotcloud15/workshop-program/presentation/mai

[41] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott.
1997. The macroscopic behavior of the TCP congestion avoidance
algorithm. SIGCOMM Comput. Commun. Rev. 27, 3 (jul 1997), 67–82.
https://doi.org/10.1145/263932.264023

[42] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. 2015. TIMELY: RTT-based Congestion Control for
the Datacenter. SIGCOMM Comput. Commun. Rev. 45, 4 (aug 2015),
537–550. https://doi.org/10.1145/2829988.2787510

[43] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay
Chidambaram. 2022. Looking Beyond GPUs for DNN Scheduling
on Multi-Tenant Clusters. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 579–596. https://www.usenix.org/conference/osdi22/
presentation/mohan

[44] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. 2018. Homa: a receiver-driven low-latency transport protocol
using network priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (Budapest, Hun-
gary) (SIGCOMM ’18). Association for Computing Machinery, New
York, NY, USA, 221–235. https://doi.org/10.1145/3230543.3230564

[45] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN
Training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP’19). Association
for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/
10.1145/3341301.3359646

[46] Rui Pan, Yiming Lei, Jialong Li, Zhiqiang Xie, Binhang Yuan, and
Yiting Xia. 2022. Efficient flow scheduling in distributed deep learn-
ing training with echelon formation. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks (Austin, Texas) (HotNets ’22). As-
sociation for Computing Machinery, New York, NY, USA, 93–100.
https://doi.org/10.1145/3563766.3564096

[47] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanx-
iong Guo. 2018. Optimus: An Efficient Dynamic Resource Sched-
uler for Deep Learning Clusters. In Proceedings of the Thirteenth
EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for
Computing Machinery, New York, NY, USA, Article 3, 14 pages.
https://doi.org/10.1145/3190508.3190517

[48] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang
Lan, Chuan Wu, and Chuanxiong Guo. 2019. A Generic Communi-
cation Scheduler for Distributed DNN Training Acceleration. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). Association for Comput-
ing Machinery, New York, NY, USA, 16–29. https://doi.org/10.1145/
3341301.3359642

[49] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2014. Fastpass: a centralized "zero-queue" datacenter
network. In Proceedings of the 2014 ACM Conference on SIGCOMM
(Chicago, Illinois, USA) (SIGCOMM ’14). Association for Computing
Machinery, New York, NY, USA, 307–318. https://doi.org/10.1145/
2619239.2626309

[50] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.

https://doi.org/10.1145/3600006.3613175
https://www.usenix.org/conference/osdi20/presentation/jiang
https://www.usenix.org/conference/osdi20/presentation/jiang
https://doi.org/10.1145/964725.633035
https://doi.org/10.1145/964725.633035
https://doi.org/10.1145/3387514.3406591
https://doi.org/10.4230/DARTS.8.1.4
https://doi.org/10.1109/TNET.2016.2587286
https://doi.org/10.1109/TNET.2016.2587286
https://arxiv.org/abs/2102.07988
https://doi.org/10.1145/321738.321743
https://doi.org/10.1016/j.peva.2007.12.007
https://doi.org/10.1016/j.peva.2007.12.007
https://www.usenix.org/conference/nsdi20/presentation/mahajan
https://www.usenix.org/conference/nsdi20/presentation/mahajan
https://www.usenix.org/conference/nsdi23/presentation/mahajan
https://www.usenix.org/conference/nsdi23/presentation/mahajan
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/mai
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/mai
https://doi.org/10.1145/263932.264023
https://doi.org/10.1145/2829988.2787510
https://www.usenix.org/conference/osdi22/presentation/mohan
https://www.usenix.org/conference/osdi22/presentation/mohan
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3563766.3564096
https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/2619239.2626309

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association,
1–18. https://www.usenix.org/conference/osdi21/presentation/qiao

[51] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. 2018. Language Models are Unsupervised Multi-
task Learners. (2018). https://d4mucfpksywv.cloudfront.net/better-
language-models/language-models.pdf.

[52] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024.
CASSINI: Network-Aware Job Scheduling in Machine Learning Clus-
ters. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). USENIX Association, Santa Clara, CA,
1403–1420. https://www.usenix.org/conference/nsdi24/presentation/
rajasekaran

[53] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya
Akella. 2022. Congestion Control in Machine Learning Clusters. In
Proceedings of the 21st ACMWorkshop on Hot Topics in Networks (Austin,
Texas) (HotNets ’22). 235–242.

[54] Linus Schrage. 1968. Letter to the Editor—A Proof of the Optimality
of the Shortest Remaining Processing Time Discipline. Operations
Research 16, 3 (1968), 687–690. https://doi.org/10.1287/opre.16.3.687

[55] Linus E. Schrage and Louis W. Miller. 1966. The Queue M/G/1 with the
Shortest Remaining Processing Time Discipline. Operations Research
14, 4 (1966), 670–684. https://doi.org/10.1287/opre.14.4.670

[56] Paolo Serafini and Walter Ukovich. 1989. A Mathematical Model
for Periodic Scheduling Problems. SIAM Journal on Discrete Math-
ematics 2, 4 (1989), 550–581. https://doi.org/10.1137/0402049
arXiv:https://doi.org/10.1137/0402049

[57] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki,
Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and
Rachee Singh. 2023. TACCL: Guiding Collective Algorithm Synthe-
sis using Communication Sketches. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). USENIX As-
sociation, Boston, MA, 593–612. https://www.usenix.org/conference/
nsdi23/presentation/shah

[58] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012.
Deadline-aware datacenter tcp (D2TCP). In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (Helsinki, Finland) (SIG-
COMM ’12). Association for Computing Machinery, New York, NY,
USA, 115–126. https://doi.org/10.1145/2342356.2342388

[59] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi,
Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch.
2023. TopoOpt: Co-optimizing Network Topology and Parallelization
Strategy for Distributed Training Jobs. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). USENIX As-
sociation, Boston, MA, 739–767. https://www.usenix.org/conference/
nsdi23/presentation/wang-weiyang

[60] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
2011. Better never than late: meeting deadlines in datacenter networks.
In Proceedings of the ACM SIGCOMM2011 Conference (Toronto, Ontario,
Canada) (SIGCOMM ’11). Association for Computing Machinery, New
York, NY, USA, 50–61. https://doi.org/10.1145/2018436.2018443

[61] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. 2018. Gan-
diva: Introspective Cluster Scheduling for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18). USENIX Association, Carlsbad, CA, 595–610. https:
//www.usenix.org/conference/osdi18/presentation/xiao

[62] Lisong Xu, K. Harfoush, and Injong Rhee. 2004. Binary increase conges-
tion control (BIC) for fast long-distance networks. In IEEE INFOCOM

2004, Vol. 4. 2514–2524 vol.4. https://doi.org/10.1109/INFCOM.2004.
1354672

[63] Adrian Zaplatel and Fernando Kuipers. 2023. Slowdown as a Metric for
Congestion Control Fairness. In Proceedings of the 22nd ACMWorkshop
on Hot Topics in Networks (Cambridge, Massachusetts) (HotNets ’23).
8 pages.

[64] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu, and
Xin Jin. 2022. Multi-Resource Interleaving for Deep Learning Training.
In Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam,
Netherlands) (SIGCOMM ’22). Association for Computing Machinery,
New York, NY, USA, 428–440. https://doi.org/10.1145/3544216.3544224

[65] Pengfei Zheng, Rui Pan, Tarannum Khan, Shivaram Venkataraman,
and Aditya Akella. 2023. Shockwave: Fair and Efficient Cluster
Scheduling for Dynamic Adaptation in Machine Learning. In 20th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 23). USENIX Association, Boston, MA, 703–723. https:
//www.usenix.org/conference/nsdi23/presentation/zheng

[66] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamadHaj Yahia, andMing Zhang. 2015. Congestion Control for Large-
Scale RDMA Deployments. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (London, United King-
dom) (SIGCOMM ’15). Association for Computing Machinery, New
York, NY, USA, 523–536. https://doi.org/10.1145/2785956.2787484

https://www.usenix.org/conference/osdi21/presentation/qiao
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://doi.org/10.1287/opre.16.3.687
https://doi.org/10.1287/opre.14.4.670
https://doi.org/10.1137/0402049
https://arxiv.org/abs/https://doi.org/10.1137/0402049
https://www.usenix.org/conference/nsdi23/presentation/shah
https://www.usenix.org/conference/nsdi23/presentation/shah
https://doi.org/10.1145/2342356.2342388
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://doi.org/10.1145/2018436.2018443
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao
https://doi.org/10.1109/INFCOM.2004.1354672
https://doi.org/10.1109/INFCOM.2004.1354672
https://doi.org/10.1145/3544216.3544224
https://www.usenix.org/conference/nsdi23/presentation/zheng
https://www.usenix.org/conference/nsdi23/presentation/zheng
https://doi.org/10.1145/2785956.2787484

	Abstract
	1 Introduction
	2 Motivation
	3 Fundamentals of MLTCP
	3.1 Augmenting TCP Reno with MLTCP
	3.2 MLTCP-Reno Congestion Avoidance

	4 Analysis of MLTCP
	5 Discussion
	6 Related Work
	7 Conclusion
	References

