NetThreads: Programming NetFPGA with Threaded
Software

Martin Labrecque, J. Gregory Steffan
ECE Dept., University of Toronto
{martinl,steffan}@eecg.toronto.edu

ABSTRACT

As FPGA-based systems including soft processors become
increasingly common, we are motivated to better understand
the architectural trade-offs and improve the efficiency of
these systems. The traditional forwarding and routing are
now well understood problems that can be accomplished
at line speed by FPGAs but more complex applications
are best described in a high-level software executing on
a processor. In this paper, we evaluate stateful network
applications with a custom multithreaded soft multiproces-
sor system-on-chip—as an improvement on previous work
focusing on single-threaded off-the-shelf soft processors— to
demonstrate the features of an efficient yet usable parallel
processing system along with potential avenues to improve
on its main bottlenecks.

1. INTRODUCTION

The NetFPGA development platform [1] allows networking
researchers to create custom hardware designs affordably,
and to test new theories, algorithms, and applications at
line-speeds much closer to current state-of-the-art. The
challenge is that many networking researchers are not nec-
essarily trained in hardware design; and even for those that
are, composing packet processing hardware in a hardware-
description language is time consuming and error prone.

Improvements in logic density and achievable clock frequen-
cies for FPGAs have dramatically increased the applicability
of soft processors—processors composed of programmable
logic on the FPGA. Despite the raw performance drawbacks,
a soft processor has several advantages compared to creating
custom logic in a hardware-description language: (i) it is
easier to program (e.g., using C), (ii) it is portable to different
FPGAs, (iii) it is flexible (i.e., can be customized), and (iv)
it can be used to manage other components/accelerators in
the design. However, and most importantly, soft processors
are very well suited to packet processing applications that
have irregular data access and control flow, and hence
unpredictable processing times.

Geoffrey Salmon, Monia Ghobadli,

Yashar Ganjali
CS Dept. University of Toronto

{geoff, monia, yganjali}@cs.toronto.edu

1.1 NetThreads

In this paper we present NetThreads, a NetFPGA-based
soft multithreaded multiprocessor architecture. There are
several features of our design that ease the implementation
of high-performance, irregular packet processing applica-
tions. First, our CPU design is multithreaded, allowing
a simple and area-efficient datapath to avoid stalls and
tolerate memory and synchronization latencies. Second, our
memory system is composed of several different memories
(instruction, input, output, shared), allowing our design to
tolerate the limited number of ports on FPGA block-RAMs
while supporting a shared memory. Third, our architecture
supports multiple processors, allowing the hardware design
to scale up to the limits of parallelism within the application.

We evaluate NetThreads using several parallel packet-
processing applications that use shared memory and
synchronization, including UDHCP, packet classification
and NAT. We measure several packet processing workloads
on a 4-way multithreaded, 5-pipeline-stage, two-processor
instantiation of our architecture implemented on NetFPGA,
and also compare with a simulation of the system. We find
that synchronization remains a significant performance
bottleneck, inspiring future work to address this limitation.

2. MULTITHREADED SOFT PROCES-
SORS

Prior work [2-6] has demonstrated that supporting mul-
tithreading can be very effective for soft processors. In
particular, by adding hardware support for multiple thread
contexts (i.e., by having multiple program counters and
logical register files) and issuing an instruction from a
different thread every cycle in a round-robin manner, a
soft processor can avoid pipeline bubbles without the need
for hazard detection logic [2,4]: a pipeline with N stages
that supports N — 1 threads can be fully utilized without
hazard detection logic [4]. A multithreaded soft processor
with an abundance of independent threads to execute is
also compelling because it can tolerate memory and I/O
latency [5], as well as the compute latency of custom
hardware accelerators [6]. Such designs are particularly
well-suited to FPGA-based processors because (i) hazard
detection logic can often be on the critical path and can
require significant area [7], and (ii) using the block RAMs
provided in an FPGA to implement multiple logical register
files is comparatively fast and area-efficient.

The applications that we implement require (i) synchroniza-

tion between threads, resulting in synchronization latency
(while waiting to acquire a lock) and (ii) critical sections
(while holding a lock). To fulfil these requirements in a way
that can scale to more than one processor, we implement
locks with memory-mapped test-and-set registers.

2.1 Fast Critical Sections via Thread Schedul-

ing with Static Hazard Detection

While a multithreaded processor provides an excellent op-
portunity to tolerate the resulting synchronization latency,
the simple round-robin thread-issue schemes used previously
fall short for two reasons: (i) issuing instructions from a
thread that is blocked on synchronization (e.g., spin-loop
instructions or a synchronization instruction that repeatedly
fails) wastes pipeline resources; and (ii) a thread that
currently owns a lock and is hence in a critical section
only issues once every N — 1 cycles (assuming support for
N — 1 thread contexts), exacerbating the synchronization
bottleneck for the whole system. Hence we identified a
method for scheduling threads that is more sophisticated
than round-robin but does not significantly increase the
complexity nor area of our soft multithreaded processor.

In our approach we de-schedule any thread that is awaiting
a lock. In particular, any such thread will no longer have
instructions issued until any lock is released in the system—
at which point the thread may spin once attempting to
acquire the lock and if unsuccessful it is blocked again.!
Otherwise, for simplicity we would like to issue instructions
from the unblocked threads in round-robin order.

To implement this method of scheduling we must first
overcome two challenges. The first is relatively minor:
to eliminate the need to track long latency instructions,
our processors replay instructions that miss in the cache
rather than stalling [5]. With non-round-robin thread
scheduling, it is possible to have multiple instructions from
the same thread in the pipeline at once—hence to replay an
instruction, all of the instructions for that thread following
the replayed instruction must be squashed to preserve the
program order of instructions execution.

The second challenge is greater: to support any thread
schedule other than round-robin means that there is a
possibility that two instructions from the same thread might
issue with an unsafe distance between them in the pipeline,
potentially violating a data or control hazard. We solve this
problem by performing static hazard detection: we identify
hazards between instructions at compile time and encode
hazard information into spare bits in the MIPS instruction
encoding, decoding it when instructions are fetched into the
instruction cache, and storing it by capitalizing on spare bits
in the width of FPGA block-RAMs.

3. MULTIPROCESSOR ARCHITECTURE

Our base processor is a single-issue, in-order, 5-stage, 4-
way multithreaded processor, shown to be the most area-
efficient compared to a 3- and 7-stage pipeline in earlier
work [5]. We eliminate the hardware multipliers from our

!Note that a more sophisticated approach that we leave for
future work would only unblock threads that are waiting on
the particular lock that was released.

(SR IROX= (SR IROX=
4—thread m eeee | 4—thread W
processor processor
]] instr.
@ data
2 .
g input mem.
el
‘ output mem.
input data output
packet buffer cache buffer | packet
input output

to DDR2 SDRAM

Figure 1: The architecture of a 2-processor soft
packet multiprocessor.

processors, which are not heavily used by our applications.
The processor is big-endian which avoids the need to perform
network-to-host byte ordering transformations. To take
advantage of the space available in the FPGA, we replicate
our base processor core and interconnect the replicas to
provide them with a coherent common view of the shared
data.

As shown in Figure 1, the memory system is composed of a
private instruction cache for each processor, and three data
memories that are shared by all processors; this design is
sensitive to the two-port limitation of block RAMs available
on FPGAs. The first memory is an input buffer that receives
packets on one port and services processor requests on the
other port via a 32-bit bus, arbitrated across processors. The
second is an output memory buffer that sends packets to
the NetFPGA output-queues on one port, and is connected
to the processors via a second 32-bit arbitrated bus on the
second port. Both input and output memories are 16KB,
allow single-cycle random access and are controlled through
memory-mapped registers; the input memory is read-only
and is logically divided into ten fixed-sized packet slots. The
third is a shared memory managed as a cache, connected
to the processors via a third arbitrated 32-bit bus on one
port, and to a DDR2 SDRAM controller on the other port.
For simplicity, the shared cache performs 32-bit line-sized
data transfers with the DDR2 SDRAM controller (similar
to previous work [8]), which is clocked at 200MHz. The
SDRAM controller services a merged load/store queue of 16
entries in-order; since this queue is shared by all processors
it serves as a single point of serialization and memory
consistency, hence threads need only block on pending loads
but not stores. Finally, each processor has a dedicated
connection to a synchronization unit that implements 16
mutexes.

Soft processors are configurable and can be extended with
accelerators as required, and those accelerators can be
clocked at a separate frequency. To put the performance of
the soft processors in perspective, handling a 10° bps stream
(with an inter-frame gap of 12 bytes) with 2 processors
running at 125 MHz implies a maximum of 152 cycles per
packet for minimally-sized 64B packets; and 3060 cycles per
packet for maximally-sized 1518B packets. Since our multi-

processor architecture is bus-based, in its current form it will
not easily scale to a large number of processors. However,
as we demonstrate later in Section 6, our applications are
mostly limited by synchronization and critical sections, and
not contention on the shared buses; in other words, the
synchronization inherent in the applications is the primary
roadblock to scalability.

4. OUR NETFPGA PROGRAMMING EN-
VIRONMENT

This section describes our NetFPGA programming environ-
ment including how software is compiled, our NetFPGA
configuration, and how we do timing, validation, and mea-
surement.

Compilation: Our compiler infrastructure is based on
modified versions of gcc 4.0.2, Binutils 2.16, and Newlib
1.14.0 that target variations of the 32-bit MIPS I [9] ISA.
We modify MIPS to support 3-operand multiplies (rather
than MIPS Hi/Lo registers [4,7]), and eliminate branch and
load delay slots. Integer division and multiplication are both
implemented in software. To minimize cache line conflicts in
our direct-mapped data cache, we align the top of the stack
of each software thread to map to equally-spaced blocks in
the data cache.

NetFPGA Configuration: Our processor designs are
inserted inside the NetFPGA 2.1 Verilog infrastructure [1],
between a module arbitrating the input from the four 1GigE
Media Access Controllers (MACs) and a CPU DMA port
and a module managing output queues in off-chip SRAM.
We added to this base framework a memory controller
configured through the Xilinx Memory Interface Generator
to access the 64 Mbytes of on-board DDR2 SDRAM. The
system is synthesized, mapped, placed, and routed under
high effort to meet timing constraints by Xilinx ISE 10.1.03
and targets a Virtex II Pro 50 (speed grade Tns).

Timing: Our processors run at the clock frequency of
the Ethernet MACs (125MHz) because there are no free
PLLs (a.k.a. Xilinx DCMs) after merging-in the NetFPGA
support components. Due to these stringent timing require-
ments, and despite some available area on the FPGA, (i)
the private instruction caches and the shared data write-
back cache are both limited to a maximum of 16KB, and
(ii) we are also limited to a maximum of two processors.
These limitations are not inherent in our architecture, and
would be relaxed in a system with more PLLs and a more
modern FPGA.

Validation: At runtime in debug mode and in RTL sim-
ulation (using Modelsim 6.3c [10]) the processors generate
an execution trace that has been validated for correctness
against the corresponding execution by a simulator built on
MINT [11]. We also extended the simulator to model packet
I/0 and validated it for timing accuracy against the RTL
simulation. The simulator is also able to process packets
outgoing or incoming from network interfaces, virtual net-
work (tap) devices and packet traces.

API: The memory mapped clock and packet I/O registers
are accessible through a simple non-intrusive application
programming interface (the API has less than twenty calls),

that is easy to build upon. We have developed a number
of test applications providing a wealth of routines such as
bitmap operations, checksum routines, hashtable and read-
write locks.

Measurement: We drive our design, for the packet echo
experiment, with a generator that sends copies of the same
preallocated packet through Libnet 1.4 and otherwise with
a modified Tcpreplay 3.4.0 that sends packet traces from
a Linux 2.6.18 Dell PowerEdge 2950 system, configured
with two quad-core 2GHz Xeon processors and a Broadcom
NetXtreme II GigE NIC connecting to a port of the
NetFPGA used for input and a NetXtreme GigE NIC
connecting to another NetFPGA port used for output.
To simplify the analysis of throughput measurements, we
allow packets to be processed out-of-order so long as the
correctness of the application is preserved. We characterize
the throughput of the system as being the maximum
sustainable input packet rate. We derive this rate by finding,
through a bisection search, the smallest fixed packet inter-
arrival time where the system does not drop any packet when
monitored for five seconds—a duration empirically found
long enough to predict the absence of future packet drops at
that input rate.

S. APPLICATIONS

In contrast with prior evaluations of packet-processing
multiprocessor designs [12-14] we focus on stateful
applications—i.e., applications in which shared, persistent
data structures are modified during the processing of most
packets. When the application is composed of parallel
threads, accesses to such shared data structures must
be synchronized. @ These dependences make it difficult
to pipeline the code into balanced stages of execution
to extract parallelism. Alternatively, we adopt the run-
to-completion/ pool-of-threads model, where each thread
performs the processing of a packet from beginning-to-end,
and where all threads essentially execute the same program
code.

To take full advantage of the software programmability
of our processors, our focus is on control-flow intensive
applications performing deep packet inspection (i.e., deeper
than the IP header). Network processing software is nor-
mally closely-integrated with operating system networking
constructs; because our system does not have an operating
system, we instead inline all low-level protocol-handling
directly into our programs. To implement time-stamps and
time-outs we require the hardware to implement a device
that can act as the system clock. We have implemented
the following packet processing applications, as detailed in
Table 1 (Section 6.1), along with a precise traffic generator
tool evaluated in another paper [15].

UDHCP is derived from the widely-used open-source DHCP
server. The server processes a packet trace modeling the
expected DHCP message distribution of a network of 20000
hosts [16]. As in the original code, leases are stored in a
linearly traversed array and IP addresses are pinged before
being leased, to ensure that they are unused.

Classifier performs a regular expression matching on TCP
packets, collects statistics on the number of bytes transfered

5000
B 1 processor W 2 processors

4500
6
4000
o
§ 000 5°
% 3000 S O Locked
5 7 4 O Other
8 2500 < B Hazard Bubble
:5/ 2000 ‘g;_ 3 M Squashed
£ @ B No Packet
S 1500 3 2 H Busy
o)
<
1000 1
500
0 0
UDHCP Classifier NAT UDHCP Classifier Nat
Figure 2: Throughput (in packets per second) Figure 3: Breakdown of how cycles are spent for

measured on the NetFPGA with either 1 or 2 CPUs.

and monitors the packet rate for classified flows to exemplify
network-based application recognition. In the absence of a
match, the payloads of packets are reassembled and tested
up to 500 bytes before a flow is marked as non-matching.
As a use case, we configure the widely used PCRE matching
library [17] with the HTTP regular expression from the
“Linux layer 7 packet classifier” [18] and exercise our system
with a publicly available packet trace [19] with HT'TP server
replies added to all packets presumably coming from an
HTTP server to trigger the classification.

NAT exemplifies network address translation by rewriting
packets from one network as if originating from one machine,
and appropriately rewriting the packets flowing in the other
direction. As an extension, NAT collects flow statistics and
monitors packet rates. Packets originate from the same
packet trace as Classifier, and like Classifier, flow
records are kept in a synchronized hash table.

6. EXPERIMENTAL RESULTS

We begin by evaluating the raw performance that our system
is capable of, when performing minimal packet processing
for tasks that are completely independent (i.e., unsynchro-
nized). We estimate this upper-bound by implementing a
simple packet echo application that retransmits to a different
network port each packet received. With minimum-sized
packets of 64B, the echo program executes 300410 dynamic
instructions per packet (essentially to copy data from the
input buffer to the output buffer as shown in Figure 1),
and a single round-robin CPU can echo 124 thousand
packets/sec (i.e., 0.07 Gbps). With 1518B packets, the
maximum packet size allowable by Ethernet, each echo task
requires 1300£10 dynamic instructions per packet. With
two CPUs and 64B packets, or either one or two CPUs
and 1518B packets, our PC-based packet generator cannot
generate packets fast enough to saturate our system (i.e.,
cannot cause packets to be dropped). This amounts to
more than 58 thousand packets/sec (>0.7 Gbps). Hence
the scalability of our system will ultimately be limited
by the amount of computation per packet/task and the
amount of parallelism across tasks, rather than the packet
input/output capabilities of our system.

each instruction (on average) in simulation.

Figure 2 shows the maximum packet throughput of our
(real) hardware system with thread scheduling. We find
that our applications do not benefit significantly from the
addition of a second CPU due to increased lock and bus
contention and cache conflicts: the second CPU either
slightly improves or degrades performance, motivating us
to determine the performance-limiting factors.

6.1 Identifying the Bottlenecks

To reduce the number of designs that we would pursue in real
hardware, and to gain greater insight into the bottlenecks of
our system, we developed a simulation infrastructure. While
verified for timing accuracy, our simulator cannot reproduce
the exact order of events that occurs in hardware, hence
there is some discrepancy in the reported throughput. For
example, Classifier has an abundance of control paths
and events that are sensitive to ordering such as routines
for allocating memory, hash table access, and assignment
of mutexes to flow records. We depend on the simulator
only for an approximation of the relative performance and
behavior of applications on variations of our system.

To obtain a deeper understanding of the bottlenecks of our
system, we use our simulator to obtain a breakdown of how
cycles are spent for each instruction, as shown in Figure 3.
In the breakdown, a given cycle can be spent executing an
instruction (busy), awaiting a new packet to process (no
packet), awaiting a lock owned by another thread (locked),
squashed due to a mispredicted branch or a preceding
instruction having a memory miss (squashed), awaiting a
pipeline hazard (hazard bubble), or aborted for another
reason (other, memory misses or bus contention). Figure 3
shows that our thread scheduling is effective at tolerating
almost all cycles spent spinning for locks. The fraction of
time spent waiting for packets (no packet) is significant and
is a result of reducing the worst-case processing latency of
a small fraction of packets. The fraction of cycles spent
on squashed instructions (squashed) is significant with our
thread scheduling scheme: if one instruction must replay,
we must also squash and replay any instruction from that
thread that has already issued. The fraction of cycles spent
on bubbles (hazard bubble) is significant: this indicates
that the CPU is frequently executing instructions from only

Benchmark | Dyn. Instr. | Dyn. Sync. Sync. Uniq. 6.2 FPGA resource utilization
x1000 Instr. Addr.
ket % ket ket . .

/packe 6/packe Read/spac ewrites Our two-CPU full system hardware implementation con-
UDHCP 34.9+36.4 90+105 5000+6300 150+60 sumes 165 block RAMs (out of 232, i.e., 71% of the total
Classifier 12.5+35.0 94+100 150£260 | 110£200 | capacity). The design occupies 15,671 slices (66% of the
NAT 6.0£7.1 97118 420£570 60£60 | total capacity) and more specifically, 23158 4-input LUTSs
L o when optimized with high-effort for speed. Considering only
Table 1: Application statistics (mean-ztstandard- a single CPU, the synthesis results give an upper bound

deviation): dynamic instructions per packet, dy-
namic synchronized instructions per packet (i.e., in a
critical section) and number of unique synchronized
memory read and write accesses.

25000
M 1 processor M 2 processors

20000

15000
10000
“mll
, I
0 1 2 3 4 5

allowed percentage of packet drops

throughput (packets/sec)

Figure 4: Throughput in packets per second for NAT
as we increase the tolerance for dropping packets
from 0 to 5%, with either 1 or 2 CPUs.

one thread, with the other threads blocked awaiting locks.

In Table 1, we measure several properties of the computation
done per packet in our system. First, we observe that
task size (measured in dynamic instructions per second)
has an extremely large variance (the standard deviation
is larger than the mean itself for all three applications).
This high variance is partly due to our applications being
best-effort unpipelined C code implementations, rather than
finely hand-tuned in assembly code as packet processing
applications often are. We also note that the applications
spend over 90% of the packet processing time either awaiting
synchronization or within critical sections (dynamic syn-
chronized instructions), which limits the amount of par-
allelism and the overall scalability of any implementation,
and in particular explains why our two CPU implementation
provides little additional benefit over a single CPU. These
results motivate future work to reduce the impact of syn-
chronization, as discussed in Section 8.

Our results so far have focused on measuring throughput
when zero packet drops are tolerated (over a five second
measurement). However, we would expect performance to
improve significantly for measurements when packet drops
are tolerated. In Figure 4, we plot throughput for NAT
as we increase the tolerance for dropping packets from 0
to 5%, and find that this results in dramatic performance
improvements for both fixed round-robin and our more
flexible thread scheduling—confirming our hypothesis that
task-size variance is undermining performance.

frequency of 129MHz.

7. CONCLUSIONS

In most cases, network processing is inherently parallel
between packet flows. We presented techniques to improve
upon commercial off-the-shelf soft processors and take ad-
vantage of the parallelism in stateful parallel applications
with shared data and synchronization. We implemented a
multithreaded multiprocessor and presented a compilation
and simulation framework that makes the system easy to
use for an average programmer. We observed that synchro-
nization was a bottleneck in our benchmark applications and
plan to pursue work in that direction.

8. FUTURE WORK

In this section, we present two avenues to improve on
our architecture implementation to alleviate some of its
bottlenecks.

Custom Accelerators Because soft processors do not have
the high operating frequency of ASIC processors, it is useful
for some applications to summarize a block of instructions
into a single custom instruction [20]. The processor inter-
prets that new instruction as a call to a custom logic block
(potentially written in a hardware description language or
obtained through behavioral synthesis). We envision that
this added hardware would be treated like another processor
on chip, with access to the shared memory busses and able
to synchronize with other processors. Because of the bit-
level parallelism of FPGAs, custom instruction can provide
significant speedup to some code sections [21,22].

Transactional Execution When multiple threads/processors

collaborate to perform the same application, synchroniza-
tion must often be inserted to keep shared data coherent.
With multiple packets serviced at the same time and
multiple packet flows tracked inside a processor, the shared
data accessed by all threads is not necessarily the same,
and can sometimes be exclusively read by some threads.
In those cases, critical sections may be overly conservative
by preventively reducing the number of threads allowed
in a critical section. Reader and writer locks may not be
applicable, or useful, depending on the implementation. To
alleviate the problem, a possibility is to allow a potentially
unsafe number of threads in a critical section, detect
coherence violations if any, abort violated threads and
restart them in an earlier checkpointed state. If the number
of violations is small, the parallelism, and the throughput,
of the application can be greatly increased [23].

NetThreads is available online [24].

9.
[1]

REFERENCES

J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo,
“NetFPGA - an open platform for gigabit-rate
network switching and routing,” in Proc. of MSE 07,
June 3-4 2007.

B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown,
“A multithreaded soft processor for SoPC area
reduction,” in Proc. of FCCM 06, 2006, pp. 131-142.
R. Dimond, O. Mencer, and W. Luk,
“Application-specific customisation of multi-threaded
soft processors,” IEE Proceedings—Computers and
Digital Techniques, vol. 153, no. 3, pp. 173— 180, May
2006.

M. Labrecque and J. G. Steffan, “Improving pipelined
soft processors with multithreading,” in Proc. of FPL
’07, August 2007, pp. 210-215.

M. Labrecque, P. Yiannacouras, and J. G. Steffan,
“Scaling soft processor systems,” in Proc. of FCCM
’08, April 2008, pp. 195-205.

R. Moussali, N. Ghanem, and M. Saghir,
“Microarchitectural enhancements for configurable
multi-threaded soft processors,” in Proc. of FPL ’07,
Aug. 2007, pp. 782-785.

M. Labrecque, P. Yiannacouras, and J. G. Steffan,
“Custom code generation for soft processors,” in Proc.
of RAAW 06, Florida, US, December 2006.

R. Teodorescu and J. Torrellas, “Prototyping
architectural support for program rollback using
FPGAs,” in Proc. of FCCM 05, April 2005, pp. 23-32.
S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. P.
Jouppi, and C. Rowen, “Organization and VLSI
implementation of MIPS,” Stanford University, CA,
USA, Tech. Rep., 1984.

Mentor Graphics Corp., “Modelsim SE,”
http://www.model.com, Mentor Graphics, 2004.

J. Veenstra and R. Fowler, “MINT: a front end for
efficient simulation of shared-memory
multiprocessors,” in Proc. of MASCOTS °94, NC,
USA, January 1994, pp. 201-207.

(12]

(13]

(14]

(15]

(22]

23]

(24]

T. Wolf and M. Franklin, “CommBench - a
telecommunications benchmark for network
processors,” in Proc. of ISPASS, Austin, TX, April
2000, pp. 154-162.

G. Memik, W. H. Mangione-Smith, and W. Hu,
“NetBench: A benchmarking suite for network
processors,” in Proc. of ICCAD ’01, November 2001.
B. K. Lee and L. K. John, “NpBench: A benchmark
suite for control plane and data plane applications for
network processors,” in Proc. of ICCD 03, October
2003.

G. Salmon, M. Ghobadi, Y. Ganjali, M. Labrecque,
and J. G. Steffan, “NetFPGA-based precise traffic
generation,” in Proc. of NetFPGA Developers
Workshop’09, 2009.

B. Bahlmann, “DHCP network traffic analysis,”
Birds-Eye.Net, June 2005.

“PCRE - Perl compatible regular expressions,”
[Online]. Available: http://www.pcre.org.
“Application layer packet classifier for linux,” [Online].
Available: http://17-filter.sourceforge.net.
Cooperative Association for Internet Data Analysis,
“A day in the life of the internet,” WIDE-TRANSIT
link, January 2007.

H.-P. Rosinger, “Connecting customized IP to the
MicroBlaze soft processor using the Fast Simplex Link
(FSL) channel,” XAPP529, 2004.

R. Lysecky and F. Vahid, “A study of the speedups
and competitiveness of FPGA soft processor cores
using dynamic hardware/software partitioning,” in
Proc. of DATE ’05, 2005, pp. 18-23.

C. Kachris and S. Vassiliadis, “Analysis of a
reconfigurable network processor,” in Proc. of IPDPS.
Los Alamitos, CA, USA: IEEE Computer Society,
2006, p. 173.

C. Kachris and C. Kulkarni, “Configurable
transactional memory,” in Proc. of FCCM 07, April
2007, pp. 65-72.

“NetThreads - project homepage,” [Online]. Available:
http://netfpga.org/netfpgawiki/index.php/Projects:NetThreads.

