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ABSTRACT
In the 1800s, Charles Babbage envisioned computers as ana-
log devices. However, it was not until 150 years later that a
Mechanical Analog Computer was constructed for the US
Navy to solve differential equations. With the end of Moore’s
Law, photonic computing is revitalizing the promise of ana-
log computing by leveraging photons’ speed, bandwidth,
and energy efficiency for faster, more efficient, and scalable
analog computing systems. This paper argues that the net-
working community should augment pluggable transponders
with photonic computing capabilities to enable a backward-
compatible solution for in-network computing. We propose
on-fiber photonic computing to perform computing opera-
tions inside network transponders while the data is in the
optical domain. We discuss the components required to en-
able the seamless integration of computation into the very
fabric of optical communication links. We then discuss sev-
eral use cases of on-fiber photonic computing, including
machine learning inference, video encoding, load balancing,
and intrusion detection.
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1 INTRODUCTION
Recent advancements in programmable switches have led to
the emergence of in-network computing paradigms [21, 27,
31, 37, 46, 52, 56, 62, 65, 66], wherein computations are exe-
cuted within the network. In-network computing minimizes
latency and optimizes efficiency by implementing applica-
tions, such as packet classification, inside network switch-
es/routers. However, today’s in-network computing propos-
als rely on implementing computing operations directly on
switch/router ASICs, placing a burden on the available re-
sources of the die, which is already operating at its maximum
capacity. As a result, state-of-the-art in-network computing
proposals cannot perform the complex operations needed to
run various latency-sensitive applications [14, 22, 52].
To address this challenge, prior work has suggested aug-

menting current router ASICs with hardware accelerators to
accommodate more complex operations [1, 21, 22, 52]. These
approaches typically involve integrating new compute build-
ing blocks into existing router architectures. However, replac-
ing all switches/routers in a network with new ones capable
of performing complex in-network operations is challenging,
if not impossible. On the one hand, given the chip power and
area budget constraints of router ASIC, these new architec-
tures support a limited number of computations apart from
packet routing. On the other hand, deploying a new set of
ASICs with equivalent reliability and robustness in today’s
system is economically prohibitive and requires a significant
time investment. We argue that a backward-compatible plug-
gable approach is required to address this challenge. To that
end, we propose enhancing pluggable optical transponders
with photonic computing capabilities.

Photonic computing is an emerging field that utilizes light-
waves to execute a wide range of computation operations,
including vector multiplication [19, 50, 71], pattern match-
ing [6, 75], comparison [6], signal processing [34], and logic
operations [68]. This paradigm enables fast and energy effi-
cient computing [50, 60, 71]. By encoding and manipulating
information in the analog domain using light, photonic com-
puting may revolutionize various application domains, such
as machine learning acceleration [19, 50, 60, 71], video pro-
cessing [74], solving complex optimization problems [38],
and matching data with pre-determined patterns [6, 75].

This paper argues that pluggable transponders are a prime
platform for performing photonic computing inside the net-
work without having to replace networking switches and
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Figure 1: High-level idea of this paper: networks with
on-fiber photonic computing.

routers. Optical transponders are ubiquitous in today’s wide-
area and datacenter networks [43, 44, 48], giving us a unique
opportunity to re-purpose them for photonic computing.
Previous state-of-the-art photonic computing proposals

ignored backward compatibility with network routers and
focused on replacing existing digital computing components
with photonic counterparts without considering the net-
work [13, 20, 23, 25, 26, 50, 51, 63, 70, 71]. For instance, Light-
ning [71] is a photonic-electronic SmartNIC that replaces
digital multiplication and accumulation ALUs with photonic
cores to serve inference requests while keeping the rest of
the digital sub-system intact.
Figure 1 illustrates our proposed vision. In this network,

data flows from the source node (site A) to the destination
node (site D), traversing intermediate nodes B and C. Un-
like conventional networks, we propose performing compu-
tation operations, such as packet classification and image
recognition, in the optical domain. Our proposed scheme
includes enhancing pluggable transponders with photonic
computing capabilities to perform computation operations
at each node. To support a wide range of applications, our
proposal involves configuring transponders with the capabil-
ity to handle specific computation tasks and route packets to
the intermediate nodes based on their computation require-
ments.

Consider the scenario in Figure 1, in which a user at source
site A is sending packets to a user at destination site D. Simul-
taneously, a cell phone at source site A intends to transmit an
image, along with its image recognition result, to another cell
phone at destination site D. A photonic computing transpon-
der with packet classification capability is located at site B
and another photonic computing transponder with image
recognition capability is located at site C. In this case, the
packet path for the laptop is 𝐴 → 𝐵 → 𝐷 , and the photonic
compute transponder at site B performs packet classification
computation. Similarly, the packet path for the cell phone is

𝐴 → 𝐶 → 𝐷 , and the photonic compute transponder at site
C performs image recognition computation.

To realize our vision, there are several research challenges
to address. First, we need to carefully design the transponder
hardware to accommodate diverse computation tasks within
the constraints of a transponder’s form factor while facilitat-
ing effective coordination between the enhanced transponder
and the existing routing hardware. Second, we need a cen-
tralized controller to track the information of all the photonic
compute transponders and intelligently reconfigure them
for various photonic compute tasks based on user demands.
Third, we need a compute-communication protocol to enable
networking devices and end-hosts to distinguish between
compute and non-compute packets while transmitting pack-
ets seamlessly through the network.

2 BACKGROUND AND MOTIVATION
This section first provides a background on photonic com-
puting (§2.1) and then discusses the benefits of integrating
photonic computing into optical transponders to perform
complex operations inside the network (§2.2).

2.1 Background on Photonic Computing
Photonic computing provides a wide range of computing
primitives, such as vector dot product, pattern matching,
and non-linear functions. These computing primitives are
achieved with optical devices commonly used in optical com-
munications, like modulators [3] and photodetectors [4].
Modern silicon photonic fabrication enables these devices
to be miniaturized and implemented on photonic integrated
circuits (PIC) at millimeter scale [9]. In this section, we de-
scribe the most relevant photonic computing primitives for
in-network computing applications.

P1 Photonic vector dot product. With the rapid growth
of machine learning, there is a growing interest in achieving
fast and energy-efficient vector dot product computations in
the photonic domain [17, 50, 71, 72]. Figure 2a illustrates the
main technique used to compute the dot product of vectors
®𝑎.®𝑏 in the photonic domain. First, digital-to-analog convert-
ers (DACs) transform the digital signals ®𝑎 and ®𝑏 into analog
voltages and apply these voltages to modulators, thereby gen-
erating a lightwave with intensity proportional to the analog
voltage. Then, the two modulators connected back-to-back
produce double-modulated lightwaves, achieving the multi-
plication of each element 𝑎𝑖 × 𝑏𝑖 within the analog domain.
The resulting element-wise multiplication is then directed to
a photodetector to perform summation Σ𝑖𝑎𝑖 ×𝑏𝑖 [19]. Finally,
an analog-to-digital converter (ADC) converts the result of
the vector dot product back to digital.
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Figure 2: Photonic computing primitives implemented on a photonic integrated circuit (PIC).

P2 Photonic pattern matching. Another popular primi-
tive in photonic computing is photonic pattern matching [6,
75]. Figure 2b depicts the principle of photonic patternmatch-
ing where two phase modulators are encoding the data ®𝑎
and target matching pattern ®𝑏 in parallel. An optical coupler
then combines the phase-modulated light and leverages the
wave’s interference effect to decide if the data ®𝑎 matches the
pattern ®𝑏. The interfered light intensity is received at the
photodetector and converted to digital by an ADC.

P3 Photonic nonlinear function. Photonic nonlinear
functions have been experimentally demonstrated using
modulators and photodetectors [9, 33]. Figure 2c presents a
photonic nonlinear function implementation: by configuring
the operating point of the optical modulators in advance, the
photodetector’s output signal self-modulates its optical copy
of the data, essentially creating a ReLU-like function entirely
in the optical domain [9]. Although nonlinear functions do
not require a huge volume of computations, introducing pho-
tonic nonlinear functions together with a photonic vector dot
product enables all-optical deep neural network inference.
For instance, prior work [9] presents a single-chip photonic
deep neural network that integrates photonic vector dot
product units and photonic nonlinear units, enabling the
complete execution of deep neural network (DNN) inference
computations exclusively within the optical domain.

2.2 Benefits of Photonic Computing
Photonic computing operates at significantly higher com-
pute frequency than transistors [23, 26, 63]. Compared to
the clock frequency of the state-of-the-art digital accelera-
tors such as TPUs (approximately 1.05 GHz [28]) and GPUs
(approximately 1.41 GHz [2]), photonic computing has the
potential to improve the speed of computation by orders
of magnitude. Moreover, prior work demonstrated the pos-
sibility of consuming only 40 × 10−18 Joules for an 8-bit
multiply-and-accumulate operation [50]. Compared to the
energy consumption of digital accelerators such as TPUs,
which consume 7 × 10−14 Joules for an 8-bit multiplication
operation, photonic computing can improve the energy effi-
ciency of complex operations.
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Figure 3: Simplified architecture of a commodity opti-
cal transponder in today’s WAN [43].

The speed and energy efficiency of photonic computing
highlight the advantages of offloading computation-intensive
tasks from electronics to photonics. However, computing in
the photonics domain relies on optical devices, such as lasers,
modulators, photodetectors, DACs, and ADCs. None of these
devices is embedded in today’s accelerators , switches, or
routers, but they are all part of optical transponders in fiber-
optic communication wide-area networks (WANs) transmit-
ting data across fiber links. As shown in Figure 3, an optical
transponder is a device that converts electrical bits to optical
signals to be carried on fiber optics networks and vice versa.
The main components of a transponder are laser, optical
modulator, photodetector, DAC, and ADC [43, 44].
Optical transponders have separate transmit and receive

paths. The transmit path originates from electrical bits, which
are then converted to analog voltages by the DAC. Subse-
quently, these analog voltages are encoded onto light waves
using optical modulators. The receive path operates in the
opposite direction, whereby incoming optical waves are first
decoded into analog voltages through photodetectors and
then converted into electrical bits by the ADC.
This paper proposes that network operators enhance op-

tical communication transponders with photonic comput-
ing capabilities to perform on-fiber computing. On-fiber
computing has several advantages. First, it improves appli-
cation latency by performing computation inside the net-
work. This property is similar to in-network computing ef-
forts [31, 46, 52, 62] except that the computation is performed
on the transponders plugged into routers instead of inside
them. Moreover, on-fiber computing does not require re-
placing router ASICs, thus making it backward compatible
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for incremental deployment. Compared to conventional in-
network computing proposals, on-fiber computing’s plug-
gable transponders offer flexibility and performance improve-
ments.

Second, since the data is already in the optical domain, on-
fiber computing does not require constant digital-to-analog
conversions, thus saving energy and chip area. In conven-
tional photonic computing proposals, the data conversion
between the digital and optical domains requires DACs and
ADCs. By directly executing operations on the incoming op-
tical signal, on-fiber photonic computing leverages devices
already present in commodity transponders, leading to po-
tentially substantial reductions in both chip area and power
consumption.

3 ON-FIBER PHOTONIC COMPUTING
This section describes our proposed on-fiber photonic com-
puting and its networking-related challenges. Computing
operations are typically executed above the network stack,
while the communication data are carried on fibers beneath
the network stack. Connecting these two cross-layer func-
tions is non-trivial, even though they may use the same
physical devices. The key question is: “Is it even feasible to
perform computation directly on optical data without con-
verting it to the digital domain?” This section discusses three
research challenges to enabling on-fiber photonic computing
in today’s fiber-optics WANs.

• Data-plane hardware: How canwe augment today’s opti-
cal transponder hardware to perform photonic computing
directly on the incoming optical data?

• Centralized controller:What control logic can efficiently
allocate computation tasks to photonic compute transpon-
ders?

• Compute-communication protocol: How can we de-
sign a compute-communication protocol to enable devices
to distinguish between compute and non-compute packets,
while ensuring all packets follow their correct paths in the
network?

Photonic computing transponder. Figure 4 illustrates
our proposed architecture for a photonic compute transpon-
der (top) and showcases the on-fiber photonic computing
process (bottom). In our proposed architecture, the transmit
path aligns with that of the commodity transponders (as
shown in Figure 3), and includes the following stages: 1○
digital data output from DSP ASIC → 2○ digital-to-analog
converter (DAC) → 3○ modulator → 4○ optical data output
into the fiber. In commodity transponders the receive path
involves 1○ optical data input from the fiber→ 2○ photode-
tector → 3○ analog-to-digital converter (ADC) → 4○ digital
data input to the DSP ASIC. In contrast, our design augments

…
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Figure 4: Our proposed photonic computing system.

the receive path with a photonic engine. The photonic en-
gine is fabricated on the same chip as the transponder and
performs all computations in the analog domain. This chip
includes an optical preamble detection module to identify
the arrival of a new packet and signal the start of the pho-
tonic computing process using techniques described in prior
work on all-optical pattern matching [6, 75]. The photonic
engine performs the appropriate computation tasks and in-
serts the results into a predetermined field in the packet
header or payload. The output of the photonic engine is a
series of lightwaves that we transmit directly to a commodity
photodetector, mirroring the process employed by a conven-
tional transponder. We envision that each transponder will
contain several photonic computing primitives (§2.1) and
perform several computing operations. Service providers
will reconfigure each transponder according to the desired
operation.
Centralized controller. In a real-world scenario, multiple
end-users concurrently utilize on-fiber photonic comput-
ing services. As a result, there is a need for a centralized
controller to continuously track the status of all photonic
compute transponders and dynamically reconfigure them
to accommodate a diverse set of photonic computing tasks
according to users’ demands. Inspired by centralized traffic
engineering (TE) algorithms inWANs [10, 67], we propose to
use an optimization formulation to allocate photonic comput-
ing resources based on demand. The optimization formula-
tion takes user demands in terms of photonic computing task
dependency graphs (e.g., a computation DAG) and network
topology as input. It then takes the number of transponders
at each node as resource constraints. The optimization ob-
jective is to satisfy as many compute demands as possible
while minimizing the resource utilization of transponders.
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Class Use Case Current Compute
Location

Current Bottleneck(s) Photonic
Computing
Primitives

System Design Requirements

C1

Machine learning
inference

[49, 52, 62, 70, 71]

Servers in the cloud Poor latency
P1

Packet routing policy,
compute graph analyzer,
centralized controller

End hosts / Edge
devices

Limited computing
resources

Routers / Switches
/ SmartNICs

Limited computing
resources

Video encoding [45, 53] End hosts / Edge
devices

Limited computing
resources

P1 In-network encoding algorithm,
packet routing policy, end hosts

software stack co-design

C2

IP routing [42] Routers Power hungry P2 Photonic ternary matching
hardware, router co-design

Intrusion detection [69] Servers in
datacenters and
SmartNICs

Computing resource
hungry

P2 Photonic regular expression
matching hardware,

Electronic-Photonic co-design
Data encryption [30, 57] End hosts / Edge

devices
Limited computing

resources
P1 Photonic encryption hardware,

trust model, in-network
encryption algorithm

Load balancing [58, 73] Switches Limited memory for
precise load balancing

due to replicating entries

P2 Photonic comparator hardware,
switch co-design, photonic load

balancing algorithm
Massive MIMO baseband

processing [24, 29]
Servers in
datacenters

Computing resource
hungry

P1 P3 Photonic signal processing
hardware and algorithms

Table 1: On-fiber photonic computing use cases. (C1) User-facing applications; (C2) Network functions.

Compute-Communication protocol. In today’s WANs,
when routers make individual next-hop routing decisions,
they typically perform a lookup function on the destination
IP address in a routing table to identify the corresponding
entry. There is a need for a compute-communication proto-
col to guarantee that networking devices and end-hosts can
distinguish between compute and non-compute packets. We
propose enhancing the existing networking protocols and
packet header formats to integrate the information on the
essential photonic computing primitives a packet requires.
Our additional photonic computing packet header is layered
on top of the IP header to identify the photonic comput-
ing primitive ID. With this additional header information,
routers perform next-hop lookup based on two fields: the
destination IP address in the IP header and the photonic
computing primitive ID specified in the photonic computing
header. Since the centralized controller already maintains
information on all photonic compute transponders, it serves
as the vantage point from which to collect and combine the
information from both IP routing and photonic compute rout-
ing, subsequently delivering next-hop updates to all routers.

4 USE CASES
This section describes various use cases of on-fiber com-
puting. Table 1 provides a summary of these applications,
including user-facing applications, such as machine learning
inference [49, 52, 62, 70, 71] and video encoding [45, 53],

in addition to a diverse range of network functions, such
as IP routing [42], intrusion detection [69], data encryp-
tion [30, 57], load balancing [58, 73], and massive MIMO
baseband processing [24, 29].
In user-facing applications, end-hosts initiate service re-

quests and send the relevant data to a dedicated processing
unit for computation. In contrast, network functions gener-
ally involve examining specific fields of the data packets and
performing computation operations in the network. Typical
computing locations for these applications include servers
in the cloud, end-hosts (or edge devices), and in-network
locations such as routers, switches, smartNICs, and middle-
boxes. For the cloud-based scenario, end hosts experience
latency bottlenecks due to the packet processing delays at
the cloud servers. Meanwhile, edge-based or in-network solu-
tions can only support small models because of their limited
computing resources.
On-fiber photonic computing addresses these challenges

by performing the required computations while packets
traverse the network, thereby achieving low-latency and
energy-efficient operations. The fundamental photonic com-
puting primitives include P1 Photonic vector dot product,
P2 Photonic pattern matching, and P3 Photonic nonlinear
function. There are two primary reasons for the energy sav-
ings. First, leveraging energy-efficient photonic devices and
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avoiding the usage of servers reduce the considerable en-
ergy costs associated with CPUs. Second, maintaining data
within the photonic domain eliminates the need for costly
digital-to-analog conversions.
To support the realization of diverse on-fiber photonic

computing systems across a wide range of applications, sev-
eral system design challenges arise. First, the system design
necessitates the development of novel architectures and algo-
rithms to execute computation tasks within the photonic do-
main. For instance, while prior work introduced the photonic
vector dot product primitives, we still need new architecture
designs for diverse DNN models and new algorithms to miti-
gate photonic noise during computation and achieve high
accuracy. Second, it is important to formulate a novel packet
routing and scheduling policy. In scenarios where multiple
end-users demand access to the same photonic compute
transponders, this new policy should mitigate congestion
and achieve efficient load balancing. Third, these computing
tasks require a centralized controller for efficient metadata
allocation across the network. For instance, on-fiber machine
learning inference requires trained DNN models to be dis-
tributed across network devices in advance.

5 DISCUSSION AND LIMITATIONS
Scalability. One advantage of our proposed architecture
is that photonic compute transponders can support up to
800 Gbps network bandwidth on one wavelength [12]. This
bandwidth can be shared among many users to support their
on-fiber computing applications. However, the centralized
controller introduces non-trivial scalability challenges. The
optimization formulation is fundamentally an integer prob-
lem because it needs to decide which photonic computing
transponder to use.
Security. Security is progressively gaining significance in
modern WANs, with a substantial portion of user communi-
cation being end-to-end encrypted. Numerous prior works
focus on enabling computation with encrypted data, encom-
passing a wide range of applications, such as machine learn-
ing inference [39], video analytics [41], search systems [18],
and deep packet inspection [47]. Our current proposal does
not prioritize security, but we believe incorporating the
above mechanisms will facilitate performing photonic com-
puting for encrypted optical data over fiber.
Form factor. Our proposed scheme necessitates incorporat-
ing supplementary components such as additional photonic
components, digital memory, and digital control logic on
the transponder, leading to increased chip area and power
consumption of transponders. We leave an in-depth analysis
of the chip area for future work.
Distributed on-fiber photonic computing. Our scheme
suggests performing the required photonic computing task

on a single transponder. If the computation task calls for a lot
of resources and thus requires the coordination of multiple
transponders, we need to deploy and execute the computa-
tion task in a distributed manner.
On-fiber photonic computing in datacenters. While this
paper focuses on on-fiber photonic computing in WANs, we
believe it is extendable to datacenter environments as well.
The idea is to deploy the photonic compute transceivers in
datacenter switches, similar to the architecture of photonic
compute transponders in WANs. When datacenters serve
computing request packets from end-users, these photonic
compute transceivers undertake a portion of the required
computations as packets traverse the datacenter network.

6 RELATEDWORK
Analog computing. Charles Babbage laid the foundation
of analog computers in the 1800s [8]. Over a century later,
the US Navy used the Mechanical Analog Computer (MAC)
for flight simulations to solve 4𝑡ℎ order differential equa-
tions [16]. Recently, there have been several proposals for
electrical analog computing chips that use arrays of DACs
to encode floating point vectors as electrical voltages and
currents [7, 15, 32, 61]. These signals travel through a 2D
array of components, such as flash memory, memristors, or
transistors, before the result of a matrix-vector product is
readout by an ADC. In contrast to these analog computing
proposals, we propose distributing photonic computing ca-
pabilities across the WAN to execute the computations while
data packets are on the fly.
Photonic computing. Photonic computing is an emerging
field with the potential to perform fast and energy-efficient
computation operations [13, 13, 17, 25, 35, 40, 50, 60, 64,
70]. However, state-of-the-art photonic computing work
has focused on developing drop-in computing cores and ig-
nored the impact of optical networks on their systems. Light-
ning [71] recently proposed a photonic computing datapath
to enable machine learning inference on smartNICs. Simi-
larly, IOI [70] proposed processing inference queries using
photonic devices inside the network. Yet these approaches
still require constant digital-to-analog and analog-to-digital
conversions. In this paper, we propose preserving the data
in the optical layer during computation and eliminating the
extra cost of data conversions.
Active networking. Active network is a network archi-
tecture where switches or routers can perform customized
computations on packets traverse through them [54]. Early
efforts like Capsule [55] and SwitchWare [5] demonstrated
the benefits of programmable packet processing within the
network datapath. However, there have been security con-
cerns about the radical approach of active networks. Our
proposal of on-fiber photonic computing is similar in spirit
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to active networks, but it allows computing in the physi-
cal layer in the optical format without the need to read the
packet data. If combined with advanced techniques like ho-
momorphic encryption, our proposal can enable computing
on the encrypted optical data, respecting the end-to-end
security of the network link.
In-network computing. With the rise of Software-Defined
Networking (SDN) [36] and programmable switches [11],
many efforts have been made to perform in-network compu-
tation on programmable dataplane devices, such as routers
and switches [27, 31, 37, 46, 52, 56, 62, 65, 66], smartNICs [49],
and FPGAs [21]. However, existing in-network computing
paradigms perform digital computation within the network
stack using electrical devices. Our vision is to leverage pho-
tonic computing and push the computation down to the
physical layer beneath the network stack.

7 CONCLUSION
Photonic computing is a powerful technology to perform
fast and energy-efficient computation in the analog domain.
This paper argues for a paradigm shift wherein the network
performs photonic computing while the data is on fiber. Our
proposal leverages the fact that today’s networks already con-
vert digital data to photons using commodity transponders.
We discuss the hardware components, centralized controller,
and compute-communication protocols required to enable
the vision of on-fiber photonic computing.

ACKNOWLEDGMENTS
We thank our shepherd, Paolo Costa, and anonymous Hot-
Nets reviewers for their feedback. This work was supported
by ARPA-E ENLITENED PINE DE-AR0000843, DARPA Fast-
NICs 4202290027, NSF CNS-2008624, NSF SHF-2107244, NSF
CAREER-2144766, NSF PPoSS-2217099, NSF CNS-2211382,
NSF FuSe-TG-2235466, Juniper Networks Sponsored Uni-
versity Research Initiative (SURI) award, Sloan fellowship
FG-2022-18504, Microsoft PhD fellowship, ACE and CUbiC
centers sponsored by SRC and DARPA under the JUMP 2.0
program. This research was also partially sponsored by the
United States Air Force Research Laboratory and the Depart-
ment of the Air Force Artificial Intelligence Accelerator and
was accomplished under Cooperative Agreement Number
FA8750-19-2-1000. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the Department of the Air Force or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein. The nature
of this research is not military-related and does not have
direct military implications.

REFERENCES
[1] [n. d.]. Tofino Expandable Architecture to Meet 10Tbps-Level

Bandwidth Requirements. ([n. d.]). https://www.intel.com/content/
www/us/en/products/docs/programmable/baidu-tofino-xa-white-
paper.html.

[2] 2021. Nvidia A100 GPU. (2021). https://www.nvidia.com/content/
dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-
us-nvidia-1758950-r4-web.pdf.

[3] 2022. 10 GHz Intensity Modulator. (2022). https://www.thorlabs.com/
thorproduct.cfm?partnumber=LN81S-FC.

[4] 2022. Thorlabs InGaAs Fixed Gain Amplified Detector, 750 - 1650 nm,
DC - 9.5 GHz . (2022). https://www.thorlabs.com/thorproduct.cfm?
partnumber=PDA8GS.

[5] D Scott Alexander, William A Arbaugh, Michael W Hicks, Pankaj
Kakkar, Angelos D Keromytis, Jonathan T Moore, Carl A Gunter,
Scott M Nettles, and Jonathan M Smith. 1998. The SwitchWare active
network architecture. IEEE network 12, 3 (1998), 29–36.

[6] Fatemeh Alishahi, Kaiheng Zou, Amir Minoofar, Huibin Zhou, Moshe
Tur, Jonathan L Habif, and Alan E Willner. 2021. Demonstration of a
tunable optical correlation of a 10–15 Gbaud QPSK data signal using
nonlinear wave mixing at a remotely controlled node. In 2021 IEEE
Photonics Conference (IPC). IEEE, 1–2.

[7] Tanner Andrulis, Joel S. Emer, and Vivienne Sze. 2023. RAELLA:
Reforming the Arithmetic for Efficient, Low-Resolution, and Low-
Loss Analog PIM: No Retraining Required!. In Proceedings of the 50th
Annual International Symposium on Computer Architecture (ISCA ’23).
Association for Computing Machinery, New York, NY, USA, Article
27, 16 pages. https://doi.org/10.1145/3579371.3589062

[8] William Aspray and Michael S. Mahoney. 1991. Computing Be-
fore Computers. Physics Today 44, 5 (05 1991), 64–65. https://doi.
org/10.1063/1.2810115 arXiv:https://pubs.aip.org/physicstoday/article-
pdf/44/5/64/8303931/64_2_online.pdf

[9] Saumil Bandyopadhyay, Alexander Sludds, Stefan Krastanov, Ryan
Hamerly, Nicholas Harris, Darius Bunandar, Matthew Streshinsky,
Michael Hochberg, and Dirk Englund. 2022. Single chip photonic
deep neural network with accelerated training. arXiv preprint
arXiv:2208.01623 (2022).

[10] Dhritiman Banerjee and Biswanath Mukherjee. 2000. Wavelength-
routed optical networks: Linear formulation, resource budgeting trade-
offs, and a reconfiguration study. IEEE/ACMTransactions on networking
8, 5 (2000), 598–607.

[11] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for SDN. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 99–110.

[12] Di Che. 2022. Ultra-low-complexity map demapper for bandwidth-
limited pluggable coherent optics beyond 800g. In 2022 Optical Fiber
Communications Conference and Exhibition (OFC). IEEE, 01–03.

[13] Qixiang Cheng, Jihye Kwon,Madeleine Glick, MeisamBahadori, Luca P
Carloni, and Keren Bergman. 2020. Silicon photonics codesign for
deep learning. Proc. IEEE 108, 8 (2020), 1261–1282.

[14] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay
Vargaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-
Tse Chuang, Isaac Keslassy, Ariel Orda, and Tom Edsall. 2017. dRMT:
Disaggregated Programmable Switching. In ACM SIGCOMM.

[15] Chaoqun Chu, Yanzhi Wang, Yilong Zhao, Xiaolong Ma, Shaokai
Ye, Yunyan Hong, Xiaoyao Liang, Yinhe Han, and Li Jiang. 2020.
PIM-prune: Fine-grain DCNN pruning for crossbar-based process-
in-memory architecture. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

https://www.intel.com/content/www/us/en/products/docs/programmable/baidu-tofino-xa-white-paper.html
https://www.intel.com/content/www/us/en/products/docs/programmable/baidu-tofino-xa-white-paper.html
https://www.intel.com/content/www/us/en/products/docs/programmable/baidu-tofino-xa-white-paper.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.thorlabs.com/thorproduct.cfm?partnumber=LN81S-FC
https://www.thorlabs.com/thorproduct.cfm?partnumber=LN81S-FC
https://www.thorlabs.com/thorproduct.cfm?partnumber=PDA8GS
https://www.thorlabs.com/thorproduct.cfm?partnumber=PDA8GS
https://doi.org/10.1145/3579371.3589062
https://doi.org/10.1063/1.2810115
https://doi.org/10.1063/1.2810115
http://arxiv.org/abs/https://pubs.aip.org/physicstoday/article-pdf/44/5/64/8303931/64_2_online.pdf
http://arxiv.org/abs/https://pubs.aip.org/physicstoday/article-pdf/44/5/64/8303931/64_2_online.pdf


HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Mingran Yang et al.

[16] A.B. Clymer. 1993. The mechanical analog computers of Hannibal
Ford and William Newell. IEEE Annals of the History of Computing 15,
2 (1993), 19–34. https://doi.org/10.1109/85.207741

[17] Devin Coldewey. 2023. Lightmatter’s photonic AI hardware
is ready to shine with $154M in new funding. (May 2023).
https://techcrunch.com/2023/05/31/lightmatters-photonic-ai-
hardware-is-ready-to-shine-with-154m-in-new-funding/.

[18] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion
Stoica. 2020. DORY: An encrypted search system with distributed trust.
In Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation. 1101–1119.

[19] Johannes Feldmann, Nathan Youngblood, Maxim Karpov, Helge
Gehring, Xuan Li, Maik Stappers, Manuel Le Gallo, Xin Fu, Anton
Lukashchuk, Arslan Sajid Raja, et al. 2021. Parallel convolutional pro-
cessing using an integrated photonic tensor core. Nature 589, 7840
(2021), 52–58.

[20] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers,
M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A.
Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H. Bhaskaran. 2021.
Parallel convolutional processing using an integrated photonic tensor
core. Nature 589, 7840 (2021), 52–58. https://doi.org/10.1038/s41586-
020-03070-1

[21] N. Gebara, P. Costa, and M. Ghobadi. 2021. PANAMA: In-network
Aggregation for Shared Machine Learning Clusters. In Proc. Conference
on Machine Learning and Systems (MLSys). 1–16.

[22] Nadeen Gebara, Alberto Lerner, Mingran Yang, Minlan Yu, Paolo Costa,
and Manya Ghobadi. 2020. Challenging the stateless quo of pro-
grammable switches. In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks. 153–159.

[23] Heedong Goh and Andrea Alù. 2022. Nonlocal Scatterer for Compact
Wave-Based Analog Computing. Phys. Rev. Lett. 128 (Feb 2022), 073201.
Issue 7. https://doi.org/10.1103/PhysRevLett.128.073201

[24] Junzhi Gong, Anuj Kalia, and Minlan Yu. 2023. Scalable Distributed
Massive {MIMO} Baseband Processing. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). 405–417.

[25] Ryan Hamerly, Liane Bernstein, Alexander Sludds, Marin Soljačić, and
Dirk Englund. 2019. Large-scale optical neural networks based on
photoelectric multiplication. Physical Review X 9, 2 (2019), 021032.

[26] Philip Jacobson, Mizuki Shirao, Kerry Yu, Guan-Lin Su, and Ming C.
Wu. 2022. Hybrid Convolutional Optoelectronic Reservoir Computing
for Image Recognition. Journal of Lightwave Technology 40, 3 (2022),
692–699. https://doi.org/10.1109/JLT.2021.3124520

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP ’17).

[28] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma,
Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young,
Zongwei Zhou, and David Patterson. 2021. Ten Lessons From Three
Generations Shaped Google’s TPUv4i : Industrial Product. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA). 1–14. https://doi.org/10.1109/ISCA52012.2021.00010

[29] Minsung Kim, Davide Venturelli, and Kyle Jamieson. 2019. Leveraging
quantum annealing for large MIMO processing in centralized radio
access networks. In Proceedings of the ACM special interest group on
data communication. 241–255.

[30] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and
David E Culler. 2019. JEDI: many-to-many end-to-end encryption and
key delegation for IoT. In Proceedings of the 28th USENIX Conference
on Security Symposium. 1519–1536.

[31] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. 2021. ATP: In-network Aggregation
for Multi-tenant Learning. In 18th USENIX NSDI 21. USENIX Associa-
tion, 741–761.

[32] Can Li, Zhongrui Wang, Mingyi Rao, Daniel Belkin, Wenhao Song,
Hao Jiang, Peng Yan, Yunning Li, Peng Lin, Miao Hu, et al. 2019. Long
short-term memory networks in memristor crossbar arrays. Nature
Machine Intelligence 1, 1 (2019), 49–57.

[33] Gordon HY Li, Ryoto Sekine, Rajveer Nehra, Robert M Gray, Luis
Ledezma, Qiushi Guo, and Alireza Marandi. 2022. All-optical ultra-
fast ReLU function for energy-efficient nanophotonic deep learning.
Nanophotonics (2022).

[34] Weilin Liu, Ming Li, Robert S Guzzon, Erik J Norberg, John S Parker,
Mingzhi Lu, Larry A Coldren, and Jianping Yao. 2016. A fully recon-
figurable photonic integrated signal processor. Nature Photonics 10, 3
(2016), 190–195.

[35] Weichen Liu, Wenyang Liu, Yichen Ye, Qian Lou, Yiyuan Xie, and Lei
Jiang. 2019. Holylight: A nanophotonic accelerator for deep learning
in data centers. In 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 1483–1488.

[36] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM computer communication review 38, 2 (2008), 69–74.

[37] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast
and Cheap Using Switching ASICs. In Proceedings of the 2017 ACM
SIGCOMM Conference (SIGCOMM ’17).

[38] Microsoft. 2023. Project AIM (Analog Iterative Machine). (2023).
https://www.microsoft.com/en-us/research/project/aim/.

[39] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. 2020. DELPHI: a cryptographic infer-
ence service for neural networks. In Proceedings of the 29th USENIX
Conference on Security Symposium. 2505–2522.

[40] Jiaxin Peng, Yousra Alkabani, Shuai Sun, Volker J Sorger, and Tarek
El-Ghazawi. 2020. Dnnara: A deep neural network accelerator using
residue arithmetic and integrated photonics. In Proceedings of the 49th
International Conference on Parallel Processing. 1–11.

[41] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros
Volos, and Raluca Ada Popa. 2020. Visor: Privacy-preserving video an-
alytics as a cloud service. In Proceedings of the 29th USENIX Conference
on Security Symposium. 1039–1056.

[42] Yakov Rekhter, Jon Crowcroft, and Brian E. Carpenter. 1997. IPv4
Address Behaviour Today. RFC 2101. (Feb. 1997). https://doi.org/10.
17487/RFC2101

[43] Kim Roberts, Douglas Beckett, David Boertjes, Joseph Berthold, and
Charles Laperle. 2010. 100G and beyond with digital coherent signal
processing. IEEE Communications Magazine 48, 7 (2010), 62–69.

[44] Kim Roberts, Qunbi Zhuge, Inder Monga, Sebastien Gareau, and
Charles Laperle. 2017. Beyond 100 Gb/s: capacity, flexibility, and net-
work optimization. Journal of Optical Communications and Networking
9, 4 (2017), C12–C24.

[45] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Anantha-
narayanan, Martin Ellis, and KV Rashmi. 2023. Tambur: Efficient loss
recovery for videoconferencing via streaming codes. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). 953–971.

[46] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. 2021. Scaling Distributed Machine Learning with
In-Network Aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). USENIX Association,

https://doi.org/10.1109/85.207741
https://techcrunch.com/2023/05/31/lightmatters-photonic-ai-hardware-is-ready-to-shine-with-154m-in-new-funding/
https://techcrunch.com/2023/05/31/lightmatters-photonic-ai-hardware-is-ready-to-shine-with-154m-in-new-funding/
https://doi.org/10.1038/s41586-020-03070-1
https://doi.org/10.1038/s41586-020-03070-1
https://doi.org/10.1103/PhysRevLett.128.073201
https://doi.org/10.1109/JLT.2021.3124520
https://doi.org/10.1109/ISCA52012.2021.00010
https://www.microsoft.com/en-us/research/project/aim/
https://doi.org/10.17487/RFC2101
https://doi.org/10.17487/RFC2101


On-Fiber Photonic Computing HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

785–808. https://www.usenix.org/conference/nsdi21/presentation/
sapio

[47] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
2015. Blindbox: Deep packet inspection over encrypted traffic. In
Proceedings of the 2015 ACM conference on special interest group on data
communication. 213–226.

[48] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and
Phillipa Gill. 2018. RADWAN: rate adaptive wide area network. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication. 547–560.

[49] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad
Malekzadeh, Gianni Antichi, Paolo Costa, Hamed Haddadi, and
Roberto Bifulco. 2022. Re-architecting traffic analysis with neural
network interface cards. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). 513–533.

[50] Alexander Sludds, Saumil Bandyopadhyay, Zaijun Chen, Zhizhen
Zhong, Jared Cochrane, Liane Bernstein, Darius Bunandar, P Ben
Dixon, Scott Hamilton, Matthew Streshinsky, Ari Novack, Tom Baehr-
Jones, Michael Hochberg, Manya Ghobadi, Ryan Hamerly, and Dirk
Englund. 2022. Delocalized Photonic Deep Learning on the Inter-
net’s Edge. Science 378, 6617 (2022), 270–276. https://doi.org/10.1126/
science.abq8271

[51] Alexander Sludds, Ryan Hamerly, Saumil Bandyopadhyay, Zhizhen
Zhong, Zaijun Chen, Liane Bernstein, Manya Ghobadi, and Dirk En-
glund. 2022. Demonstration of WDM-Enabled Ultralow-Energy Pho-
tonic Edge Computing, In Optical Fiber Communication Conference
(OFC) 2022. Optical Fiber Communication Conference (OFC) 2022,
Th3A.3. https://doi.org/10.1364/OFC.2022.Th3A.3

[52] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur,
and Kunle Olukotun. 2022. Taurus: a data plane architecture for per-
packet ML. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems. 1099–1114.

[53] Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. [n. d.]. High
efficiency video coding (HEVC). Springer.

[54] David L Tennenhouse, Jonathan M Smith, W David Sincoskie, David J
Wetherall, and Gary J Minden. 1997. A survey of active network
research. IEEE communications Magazine 35, 1 (1997), 80–86.

[55] David L Tennenhouse and David J Wetherall. 1996. Towards an active
network architecture. ACM SIGCOMM Computer Communication
Review 26, 2 (1996), 5–17.

[56] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020.
Cheetah: Accelerating Database Queries with Switch Pruning. In Pro-
ceedings of the 2020 ACM SIGMOD Conference (SIGMOD ’20).

[57] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. 2010. Fully homomorphic encryption over the integers. In
Advances in Cryptology–EUROCRYPT 2010: 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30–June 3, 2010. Proceedings 29. Springer, 24–43.

[58] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom
Edsall. 2017. Let it flow: Resilient asymmetric load balancing with
flowlet switching.. In NSDI, Vol. 17. 407–420.

[59] LM Walpita, SC Wang, and WSC Chang. 1988. Integrated-optic Mach-
Zehnder rf phase comparator. Applied optics 27, 18 (1988), 3772–3773.

[60] Tianyu Wang, Shi-Yuan Ma, Logan G Wright, Tatsuhiro Onodera,
Brian C Richard, and Peter L McMahon. 2022. An optical neural
network using less than 1 photon per multiplication. Nature Commu-
nications 13, 1 (2022), 123.

[61] Qiangfei Xia and J Joshua Yang. 2019. Memristive crossbar arrays for
brain-inspired computing. Nature materials 18, 4 (2019), 309–323.

[62] Zhaoqi Xiong and Noa Zilberman. 2019. Do switches dream of machine
learning? toward in-network classification. In Proceedings of the 18th

ACM workshop on hot topics in networks. 25–33.
[63] Xingyuan Xu, Mengxi Tan, Bill Corcoran, Jiayang Wu, Andreas Boes,

Thach G Nguyen, Sai T Chu, Brent E Little, Damien G Hicks, Roberto
Morandotti, et al. 2021. 11 TOPS photonic convolutional accelerator
for optical neural networks. Nature 589, 7840 (2021), 44–51.

[64] Javier Yanes. 2020. Optical Computing: Solving Problems at the Speed
of Light. (Feb. 2020). https://www.bbvaopenmind.com/en/technology/
future/optical-computing-solving-problems-at-the-speed-of-light/.

[65] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie,
Swamy Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya
Ghobadi. 2022. Using trio: juniper networks’ programmable chipset-
for emerging in-network applications. In Proceedings of the ACM SIG-
COMM 2022 Conference. 633–648.

[66] Yifan Yuan, Omar Alama, Jiawei Fei, Jacob Nelson, Dan RK Ports,
Amedeo Sapio, Marco Canini, and Nam Sung Kim. 2022. Unlocking
the Power of Inline {Floating-Point} Operations on Programmable
Switches. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). 683–700.

[67] Hui Zang, Jason P Jue, Biswanath Mukherjee, et al. 2000. A review
of routing and wavelength assignment approaches for wavelength-
routed optical WDM networks. Optical networks magazine 1, 1 (2000),
47–60.

[68] Yi Zhang, YadongWang, Yunyun Dai, Xueyin Bai, Xuerong Hu, Luojun
Du, Hai Hu, Xiaoxia Yang, Diao Li, Qing Dai, et al. 2022. Chirality
logic gates. Science Advances 8, 49 (2022), eabq8246.

[69] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe, Vyas Sekar,
and Justine Sherry. 2020. Achieving 100gbps intrusion prevention
on a single server. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation. 1083–1100.

[70] Zhizhen Zhong, Weiyang Wang, Manya Ghobadi, Alexander Sludds,
Ryan Hamerly, Liane Bernstein, and Dirk Englund. 2021. IOI: In-
network Optical Inference. In Proceedings of the ACM SIGCOMM 2021
Workshop on Optical Systems. 18–22.

[71] Zhizhen Zhong, Mingran Yang, Jay Lang, Christian Williams, Liam
Kronman, Alexander Sludds, Homa Esfahanizadeh, Dirk Englund,
and Manya Ghobadi. 2023. Lightning: A Reconfigurable Photonic-
Electronic SmartNIC for Fast and Energy-Efficient Inference. In ACM
SIGCOMM 2023 Conference.

[72] Hailong Zhou, Jianji Dong, Junwei Cheng, Wenchan Dong, Chaoran
Huang, Yichen Shen, Qiming Zhang, Min Gu, Chao Qian, Hongsheng
Chen, et al. 2022. Photonic matrix multiplication lights up photonic
accelerator and beyond. Light: Science & Applications 11, 1 (2022), 30.

[73] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. 2014. WCMP: Weighted
Cost Multipathing for Improved Fairness in Data Centers. Article No.
5. https://dl.acm.org/doi/10.1145/2592798.2592803

[74] Tiankuang Zhou, Wei Wu, Jinzhi Zhang, Shaoliang Yu, and Lu Fang.
2023. Ultrafast dynamic machine vision with spatiotemporal photonic
computing. Science Advances 9, 23 (2023), eadg4391.

[75] Morteza Ziyadi, Mohammad Reza Chitgarha, Salman Khaleghi,
Amirhossein Mohajerin-Ariaei, Ahmed Almaiman, Joe Touch, Moshe
Tur, Carsten Langrock, Martin M Fejer, and Alan E Willner. 2014. Tun-
able optical correlator using an optical frequency comb and a nonlinear
multiplexer. Optics Express 22, 1 (2014), 84–89.

https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://doi.org/10.1126/science.abq8271
https://doi.org/10.1126/science.abq8271
https://doi.org/10.1364/OFC.2022.Th3A.3
https://www.bbvaopenmind.com/en/technology/future/optical-computing-solving-problems-at-the-speed-of-light/
https://www.bbvaopenmind.com/en/technology/future/optical-computing-solving-problems-at-the-speed-of-light/
https://dl.acm.org/doi/10.1145/2592798.2592803

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background on Photonic Computing
	2.2 Benefits of Photonic Computing

	3 On-Fiber Photonic Computing
	4 Use Cases
	5 Discussion and Limitations
	6 Related Work
	7 Conclusion
	References

