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Abstract: The ever-growing demand for accurate machine learning models resulted in an
increase in dataset and model sizes of deep neural networks. This paper discusses reconfig-
urable optical networks as the key enabler for scaling AI systems. © 2022 The Author(s)

1. Introduction

Large-scale AI systems are the foundation of modern online services. As the world is recovering from COVID-19,
there is a vital reliance on online services powered by AI. However, today’s networks are struggling to deliver
high bandwidth, low end-to-end latency, and high availability requirements imposed by emerging AI workloads.
For instance, the explosive growth of Machine Learning (ML) applications has created an enormous demand for
distributed training. Hardware accelerators, such as GPUs and TPUs, have provided a significant amount of speed
up in computing capabilities, but today’s deep neural networks (DNNs) can still take days and even weeks to train.

Many factors impact the training time of large DNN jobs, including the parallelization strategy, model/data
size, software libraries, and the interconnection network. As a result, a plethora of frameworks have been pro-
posed to efficiently distribute and train DNN models in today’s datacenters [1–4]. However, today’s systems tend
to only optimize computation and communication dimensions. Consequently, the impact of co-optimizing the net-
work topology together with computation and communication dimensions for accelerating DNN training has been
largely ignored. This paper argues for reconfiguring the network topology as an additional acceleration dimension
to jointly optimize DNN training jobs across computation, communication, and topology dimensions.

Reconfiguring the network topology for datacenter traffic is a popular topic in networking and optics commu-
nities. Several academic papers demonstrated the benefits of optically reconfigurable circuit switch-based inter-
connects for datacenter workloads [5, 6]. However, prior work only considered using optical interconnects for
general-purpose datacenter traffic, such as web search, storage, and cloud. Instead of focusing on general-purpose
datacenter workloads, this paper turns its attention towards distributed ML workloads and argues that reconfig-
urable optical interconnects are an attractive solution to build the next generation of ML datacenters. To this end,
there are three challenges that need to be addressed.

• Challenge 1: Technology tradeoffs. Are Fat-tree topologies the ideal interconnect for distributed DNN training
clusters? Which optical technology is best suited for distributed DNN training workloads? What are the cost and
practicality implications of using optical vs. electrical technologies? (§2)

• Challenge 2: Algorithmic innovations. Given a DNN model and its dataset, how can we co-optimize between
the best parallelization strategy, routing, and network topology? (§3)

• Challenge 3: Scale and heterogeneity considerations. How to handle shared datacenters with heterogeneous
jobs each with different model/data sizes and bandwidth requirements? Is a hybrid electrical/optical solution re-
quired to enable practical deployment with heterogeneous jobs? What are the techniques to keep the clusters robust
to unforeseen circumstances, such as failures and other operational challenges? (§4)

2. Fundamental Tradeoffs between Technologies

Today’s DNN training systems are built using traditional datacenter clusters with electrical packet switches ar-
ranged in a multi-tier Fat-tree topology. Fat-tree topologies, by design, work well for datacenters because the
interconnect is traffic oblivious, allowing uniform bandwidth and latency between server pairs. However, traffic
oblivious topologies are best suited for unpredictable workloads that consist mostly of short transfers–two in-
herent properties of legacy datacenter traffic. GPU-based training jobs have fundamental differences from legacy
datacenter traffic. For instance, the communication pattern between DNN workers in GPU clusters remains un-
changed across training iterations for the entire training duration, which can last hours, if not days. Hence, Fat-tree
topologies are not the ideal interconnect for distributed DNN clusters.



Optical circuit switching is a powerful technology to achieve reconfigurability in datacenters. To be competitive
with electrical packet-switching technologies, an ideal optical circuit switch (OCS) should have: (i) high port-
count; (ii) low reconfiguration latency; (iii) low insertion loss; and (iv) low cost. Meeting all these requirements
simultaneously is challenging. In particular, today’s optical technologies bear a fundamental tradeoff between
port-count and reconfiguration latency. Over the past decade, reconfigurable datacenter proposals have moved
towards reducing the reconfiguration latency and, consequently, giving up on high port count. This shift makes
sense for legacy datacenter workloads since they require a tight bound on the reconfiguration latency of circuits.

But there is an opportunity that has not been leveraged before: to build the next-generation GPU clusters for
DNN training, we can build optical interconnects with high reconfiguration latency enabling us to manufacture
high-port count optical switches. In other words, because DNN training has a predictable traffic pattern, we can
plan the circuit schedules such that each circuit is held for a long time (e.g., several hours).

One attractive design point is to only reconfigure the network topology once at the beginning of the training
job instead of reconfiguring the network topology within each training iteration. As an example, consider a patch
panel-based interconnect. Today, 1000-port patch panels with 0.5 dB insertion loss are already commercially
available [7]. Because the reconfiguration latency of patch panels is in the order of minutes, we need to reconfigure
the connectivity between servers participating in a DNN training only once, before training starts. This technique
is called one-shot reconfiguration [8].

One-shot reconfigurability for DNN jobs is more practical than intra-iteration reconfigurability. In one-shot
reconfigurable clusters, the datacenter operator finds the best topology at the same time as the parallelization
strategy for each job. It then reconfigures the connectivity between servers associated with the job, installs routing
and forwarding rules, and assigns DNN computations to GPUs. Each job’s topology is kept intact during job
training. Since the parallelization strategy remains the same, there is no need for reconfiguring the topology during
training.

A reconfigurable ML cluster is a shardable interconnect where each job has its own dedicated partition. The
size of each partition depends on the number of servers that the job requests. The following section describes how
we can find the best parallelization strategy and topology for a given DNN training job and a set of servers.

3. Co-optimizing DNN Parallelization Strategy, Routing, and Network Topology

Unlike legacy datacenter workloads, a key feature of DNN workloads is that their communication matrix is con-
trollable based on the parallelization strategy that places data and computation tasks on devices. This insight
creates a new angle that has not been previously explored for DNN systems: “can we accelerate DNN training
by making topology reconfigurability a joint decision as an optimization dimension together with routing and
parallelization strategy?”

To find the best parallelization strategy, routing, and topology together, an extreme approach is to jointly opti-
mize compute, communication, and topology dimensions using a cross-layer optimization function. But even for
an off-line framework, the size of the search space is extremely large, making it practically impossible to solve
a cross-dimension optimization formulation. The other extreme is to optimize the network topology, routing, and
parallelization strategy, sequentially (one after the other). While this approach can find good routing paths and
reconfigure the network topology to better match the traffic demand, the eventual combination of topology and
parallelization strategy is sub-optimal in the global configuration space.

Many potential approaches sit between the above two extremes. For instance, SiP-ML [8] took the degree of
each GPU (number of silicon photonics I/O ports on each GPU) as a parameter and fed it into the parallelization
strategy algorithm. This way, the parallelization strategy was informed of the degree limitation and attempted
to place DNN tasks while respecting the degree requirement of the GPUs. SiP-ML’s approach largely overcame
concerns such as limited communication degree and reconfigurability of optical circuit-switched networks for ML
workloads and showed that its silicon photonics-based DNN cluster improves the training time of DNN jobs by
up to 9×.

Another potential approach is to divide the search space into two planes: Computation×Communication and
Communication×Topology and use an alternating optimization technique to iteratively search in one plane while
keeping the result of the other plane constant. At each step in the process, the Communication×Topology plane
receives a parallelization strategy from the other plane and finds the best topology and circuit schedules depending
on the reconfiguration latency of the optical technology. This property adds an extra layer of complexity to finding
a topology, thus making prior approaches for optically reconfigurable topologies infeasible. In particular, given a
traffic demand matrix, prior papers [9, 10] find a series of matchings combined with a circuit hold-time to satisfy
the demand using direct circuits. In contrast, depending on the reconfiguration latency, we need to find circuits
that can satisfy two competing requirements: (i) prefer to have multiple parallel links between nodes with large
transfer demands; and (ii) minimize the latency of indirect routing for nodes that do not have a direct link between
them.



TopoOpt [11] meets both of the above goals by leveraging a unique property of distributed DNN training traffic,
namely that the allreduce part of the traffic matrix is mutable and can be split across multiple permutations.
Intuitively, this is because allreduce transfers contain network flows among nodes that handle the same part of the
DNN model, providing flexibility on the order of nodes participating in the allreduce operation. Consequently, if
a group of servers is connected in a certain order, simply permuting the labeling of the servers gives another order
that would finish the allreduce operation with the same latency while potentially providing a smaller hop-count
for other latency-sensitive transfers. TopoOpt’s approach builds a series of allreduce permutations that not only
carry large transfers efficiently, but also are well-positioned to carry Model Parallel transfers and, hence, improve
the overall training performance.

4. Handling Heterogeneity, Scale, and Failures

While reconfigurable optical interconnects have many attractive properties, building a DNN interconnect based on
them is not without its challenges. An important practical challenge is how to handle large-scale interconnects with
a heterogeneous set of jobs, failures, and maintenance events, while keeping the operations simple and practical?

A popular technique in the research community to handle heterogeneity is to keep the electrical interconnect as
the basis of communication and augment it with additional optical connections. This approach has been proposed
in several prior papers [10,12] for general-purpose datacenter traffic. However, recent research [13,14] has shown
several cost-saving benefits when the interconnect is all-optical. Which of these approaches is more efficient for
DNN training clusters is currently an open problem.

To start a job in a cluster serving multiple jobs simultaneously, the datacenter operator needs to reconfigure
the interconnection without disturbing other jobs. Depending on the reconfiguration latency, we need to make sure
GPU servers do not stay idle when the links are being reconfigured. For instance, patch panels take several minutes
to reconfigure. To avoid keeping the GPUs idle while part of the interconnect is being reconfigured for a newly
arrived job, one potential design point is to use a look-ahead approach to pre-provision the next topology while
current jobs are running [11].

Finally, a straightforward approach to scale the size of the cluster is to create hierarchical interconnects by
placing the servers under Top-of-Rack switches and connecting the ToR switches to the optical layer. Another
option is to build a Clos topology using a hierarchy of patch panels. This design point is possible because patch
panels have only 0.5 dB insertion loss [7]. Note that even a single layer design using 1000-port patch panels is
attractive: each server has 8 GPUs, hence the cluster can accommodate 8000 GPUs.

5. Conclusion

The design of today’s AI infrastructure still follows the telephony model where the datacenter operators treat the
physical layer of networks as a static black box with no reconfigurability. As a result, the network is provisioned to
carry the worst-case traffic demand, making it excessively inefficient and prohibitively expensive. Yet, ML train-
ing workloads have unique characteristics that can benefit from a dynamically reconfigurable physical layer to
enable high throughput, low latency, and seamless recovery from failures. This paper discusses the benefits of en-
abling physical-layer reconfigurability in large-scale AI systems and highlights the foundations for future network
architectures, algorithms, and protocols to increase efficiency and reduce the cost of large-scale AI networks.
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