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Abstract—This paper studies the effectiveness of TCP pacing
in a data center setting. TCP senders inject bursts of packets
into the network at the beginning of each round-trip time. These
bursts stress the network queues which may cause loss, reduction
in throughput and increased latency. Such undesirable effects
become more pronounced in data center environments where
traffic is bursty in nature and buffer sizes are small. TCP pacing
is believed to reduce the burstiness of TCP traffic and to mitigate
the impact of small buffering in routers. Unfortunately, current
research literature has not always agreed on the overall benefits
of pacing. In this paper, we present a model for the effectiveness
of pacing. Our model demonstrates that for a given buffer size,
as the number of concurrent flows are increased beyond a Point
of Inflection (PoI), non-paced TCP outperforms paced TCP. We
present a lower bound for the PoI and argue that increasing the
number of concurrent flows beyond the PoI, increases inter-flow
burstiness of paced packets and diminishes the effectiveness of
pacing.

I. INTRODUCTION AND MOTIVATION

Throughput and latency in the Internet are heavily influ-
enced by the behaviour of TCP. Briefly stated, TCP is a
window-based congestion control scheme: during each round-
trip time (RTT), every TCP source transmits packets with total
size equal to its congestion window. Most TCP variants, such
as Tahoe, Reno, NewReno [10], BIC [27], and CUBIC [13],
focus on the evolution of the congestion window size over
time, and ignore the details of how packets are injected into the
network in sub-RTT time scales. However, ignoring sub-RTT
burstiness can produce bursty traffic on high bandwidth net-
works [28] such as data centres. This, in turn, produces more
queueing delays, more packet losses, and lower throughput [2].
TCP pacing [28] addresses the problem by ensuring that bursts
of packets do not cause contention in the router buffers.
Specifically, TCP pacing evenly spaces the transmission of
a window of packets over an entire RTT, so that data are not
sent in a burst. This approach allows the sender to increase its
sending rate without creating bottleneck queues [17].

Using TCP pacing is becoming more relevant in the context
of data center networks, as the ever-increasing link speeds
mean greater difficulty designing routers with buffer sizes
equal to the bandwidth-delay product (BDP). As a result,
many data center networks use switches with small buffers.
Yet small-buffer switches and small RTTs in data center
infrastructures create a disparity between the total capacity
of the network and the capacity of individual queues, a
disparity large enough to make TCP’s congestion control
scheme inefficient. In addition, the latency-sensitive, bursty

traffic in distributed systems compels us to closely consider
the impact of TCP pacing in data center environments. In
such networks, an important performance criterion, besides
the average latency, is the 99th percentile tail latency; i.e.,
the completion time of the slowest flows. For example, in a
search engine data center, a search query is distributed among
thousands of servers; the median latency has no bearing on
the result because the engine has to wait for the slowest flows
to finish. In such environments, short term unfairness in TCP
causes tail latency to grow, an issue that pacing may be able
to address.

In this paper, we study the effectiveness of TCP pacing in
inter-data center transactions, where RTTs are higher than 1ms
and bounded by the geographical distance of data center sites.
We confirm that by avoiding bursty packet drops, paced TCP
achieves higher throughput than non-paced TCP. However,
the benefits of using paced TCP diminish as we increase the
number of concurrent connections beyond a certain threshold;
if the number of flows goes beyond that point, non-paced TCP
can perform better than paced TCP. We define the Point of
Inflection (PoI) as the point in terms of number of concurrent
flows where non-paced TCP out-performs paced TCP; we
quantitatively determine its lower bound in terms of link
capacity (C), RTT and buffer size (B), as C×RTT

B .

Our results yield two new insights. First, it may not be
appropriate to derive conclusions about pacing by studying a
network with a fixed number of users and various buffer sizes.
In fact, depending upon the BDP-to-Buffer ratio, the benefits
of pacing varies. Second, increasing the number of flows
produces inter-flow burstiness (bursts of packets belonging to
different flows) which causes drop synchronization, leading
to performance degradation. In previous studies, Kulik et al.
[17] report throughput improvement over simulated satellite
links and propose pacing over the entire lifetime of a TCP
connection. However, the simulation study by Aggarwal et al.
[2] argues that, contrary to intuition, pacing has a negative
impact on performance. In Section IV, we determine whether
our model can justify these this latter contradiction.

To validate our model, we perform several experiments
in a test-bed. We find that while the number of concurrent
flows is below the PoI bound, pacing offers improvements on
link utilization, drop rate, average and 99th percentile flow
completion times. As the number of flows passes twice the
PoI bound, however, these benefits are diminished
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II. BACKGROUND AND RELATED WORK

A data center is commonly defined as a site where multiple
servers are co-located. However, cloud services may involve
multiple geographically distributed data centers. These sets of
sites are connected by dedicated links and sometimes used as
complete replicas of the same service.1 In this paper, we refer
to data center traffic as workloads between multiple sites, with
RTTs between 1 to hundreds of milliseconds bounded by the
geographical distance of data center sites.

Unlike the long-lived and non-bursty streaming traffic on
the Internet, the traffic patterns between data center nodes
are bursty and mostly consist of short-sized flows because
traffic in such networks belongs to distributed applications
that perform scatter/gather type of communications, including
MapReduce [9], Google File System (GFS) [11], Panasas [25],
pNFS [21], and Hadoop [22]. For example, MapReduce uses
Remote Procedure Call (RPC) protocol [23] for communi-
cation between services in distributed systems to request a
service from a program located in a remote computer through
network. Meanwhile, in GFS, a transfer service manages all
data transfers, each with one master and several workers. The
master distributes jobs to the workers; each job is divided into
RPC flows with few mega bytes in size. The transfer service
starts the flows and continue until the transfer is finished.

The bursty properties of TCP differ for the above cases and
for conventional large-sized, streaming traffic. In streaming
traffic, TCP by itself starts to pace its window due to the ACK-
clocking dynamics [15], [18]. Specifically, the transmission of
new packets is controlled by the stream of received ACKs
and, hence, there are small increases in the window size. In
a data center environment, each TCP flow is a long-lived
connection between a client-server pair with many short-sized
RPCs within it. In other words, a TCP connection serves
several back-to-back RPC flows sharing the TCP parameters
(such as congestion window). As a result, within a connection,
each new RPC flow starts with the congestion window of
the previously finished flow; thus, there is an obvious burst
of up to a congestion window’s worth of packets at the
beginning of each RPC. In streaming, bursts can still happen
but will be more subtle and less frequent. The bursty behaviour
will only get worse when 10 GigE network interface cards
are deployed in data centers. Moreover, because data center
networks have a single administrative domain and data center
sites are connected to each other via dedicated links, the
network administrator can control cross traffic which thereby
affects the paced traffic.

The two major causes of high latency in data center
networks are packet loss and TCP’s slow recovery algorithm.
TCP requires three duplicate ACKs to retransmit a lost packet,
a threshold that is designed to avoid spurious retransmission
due to packet reordering in the network. But this method is too
conservative for data center environments where most losses
are recovered by (conservative) timeouts. In such cases, TCP

1Replication is mostly used for reducing user latency and improving serving
throughput [14].

pacing may be a better option. TCP Pacing is a mechanism
to combine pure rate control and TCP’s window control to
reduce the short-time-scale burstiness of TCP flows, without
incurring significant delay penalties [2]. Zhang et al. [28]
suggested TCP pacing to adjust the incorrect timing from
acknowledgments (ACK) compression due to cross traffic.
Other researchers have suggested using pacing when ACKs
are not available to use for rate control, for example, to avoid
TCP slow start at the beginning of a connection [19]. Similarly,
pacing can be used to avoid burstiness in asymmetric networks
caused by batching ACK packets [4]. While the theoretical
benefits of pacing are clear, its behaviour in practical networks
is not yet fully understood. There has been a wide set of
simulation studies of TCP pacing with mixed and some-
times seemingly contradictory conclusions. More recently,
researchers have observed performance improvements when
deploying conventional pacing or a variation of it in various
scenarios. Kamezawa et al. [16] propose a hardware approach
to stabilize TCP on fat networks with large RTTs and large
buffer routers and Beheshti et al. [5] demonstrate the necessity
of pacing in routers with tiny buffers (10–15 packets).

Researchers have studied communication patterns in data
centers in terms of high-fan-in, high-bandwidth synchronized
TCP workloads, commonly known as the TCP incast prob-
lem [8], [24]. Such work is orthogonal in the sense that we are
focusing on per flow burstiness which impacts packet drops
and flow completion times. TCP pacing is not tied to any
specific workload or TCP version: rather, pacing is about
mitigating bursts, and bursts can occur regardless of TCP
variant. The potential benefits of TCP pacing in data center
environments include: (i) better link utilization on small-buffer
routers, (ii) better short-term fairness among flows of similar
RTTs by improving the worst flow latency, and (iii) smaller
drop rates. Simply reducing the retransmission time-out (RTO)
often makes no significant improvement since RTO activates
a series of actions in the kernel, slowing the sending speed.

III. MODELING THE EFFECTIVENESS OF PACING

Most TCP variants inject several packets back-to-back, wait
for an entire RTT to acknowledge receipt, adjust the window
size and repeat. TCP pacing, on the other hand, avoids sending
bursts of packets by spreading packet injections over the
course of one RTT, making the traffic smoother. Thus, TCP
pacing is believed to be an effective way to mitigate the impact
of traffic burstiness [28].

An interesting phenomenon occurs when we increase the
number of flows in the network. Even though pacing removes
the burstiness resulting from back-to-back packet injections in
one flow, increasing the total number of flows creates another
form of burstiness: packets belonging to different flows start
creating bursts in the aggregated traffic. Such bursts worsen
as we increase the number of flows such that, after a certain
point, the impact of pacing goes away completely, and the
performance begins to drop; performance becomes worse than
when we have no pacing in the network.
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Consider a network with a bottleneck link capacity C
(packets/s) and buffer size Bmax (packets) shared among
N concurrent flows with the same round-trip time RTT
(s).2 Previous models of TCP mostly make the simplifying
assumption that N and C are large enough so that the average
window size, W̄ , does not depend on N [20], [26]. In our
model, we explicitly avoid such simplification so that we can
derive a bound on the number of flows at which the benefits
of pacing diminishes.

We consider two identical systems, one with non-paced and
one with paced TCP. At steady state, on average, each flow is
sending W̄ packets in every RTT . Further, assume RTT is
divided into discrete time intervals of equal size δ.

We claim that for any given buffer size, the benefit of
using pacing will be less pronounced as we increase N . In
a perfectly paced world, every flow’s packets are distributed
evenly throughout the entire RTT . Hence, the probability
of having one packet at time interval δ is a Bernoulli trial
with p = W̄×δ

RTT . Now, consider the aggregate of N paced
flows and define random variable X as the total number of
packet arrivals in interval δ. X is a binomially distributed
random variable X ∼ B(N, p). Returning to our network,
X represents the burst of inter-flow packets in δ time interval.
As the number of concurrent flows (N ) increases, the fair
share of each flow decreases and so does W̄ and, hence, p.
However, the probability distribution of X becomes larger as
N increases, causing an increase in burstiness.

Now consider the following two systems: the best case of
non-paced traffic (BNP), and the worst case of paced traffic
(WP). Both systems contain the sequence of bursts of packets
to the bottleneck link during one RTT . The best case scenario
of non-paced traffic happens when RTT is divided into equal
intervals of ∆1 = RTT

N and each flow sends W̄ packets at
the beginning of each interval, making the aggregate traffic a
series of bursts spaced with ∆1 intervals. Here, we are making
a simplifying assumption that each non-paced flow transmits a
burst size of average length W̄ packets clustered together. This
assumption is based on the clustering of packets in non-paced
TCP [2] and as we show in Section IV-D is quite realistic.

In WP, the worst case of paced traffic, RTT is divided into
equal intervals of ∆2 = RTT

W̄
and each flow is sending one

packet at the beginning of each interval. The packets from
different flows make a burst of size N . Similar to BNP, we
are making the realistic assumption that all paced flows are
intermixed with each other. The worst case of paced traffic
happens when packets of each flow are equally spaced through
entire RTT with interval ∆2.

Below we show that WP has better performance in terms
of queue occupancy compared with BNP as long as:

N < W̄ =
C ×RTT

Bmax
(1)

Up to this point, paced TCP outperforms non-paced TCP;

2The RTT here stands for the latency between data center sites due to
their geographical distance and thus the homogeneous assumption is valid.

ANUE

Hardware delay emulator

switch1 switch2

client1 client2 client4client3 server1 server2 server4server3

1Gbps 1Gbps

10Gbps 10Gbps

Fig. 1. Experiment’s test-bed topology.

passing this point however, the benefits start to diminish. Since
we are comparing the best and worst cases of the two scenarios
here, Equation 1 proves the following lower bound on the PoI.

Theorem 1: In a network with N flows, bottleneck capac-
ity C, and buffer size Bmax, the lower bound on the Point of
Inflection, the number of flows at which non-paced TCP starts
to outperform paced TCP, is:

N∗ = Ω(
C ×RTT

Bmax
) (2)

Proof: See Appendix.

IV. EXPERIMENTS

To validate our model, we perform several experiments
using TCP pacing-enabled Linux kernels. We evaluate the
impact of pacing on bottleneck link utilization, loss rate,
drop synchronization, and average and 99th percentile flow
completion times. We also demonstrate the existence of the PoI
and the accuracy of our model in estimating the lower bound
of PoI. In what follows, Section IV-A explains the setup for
the experiments, Section IV-B illustrates the basic advantages
and disadvantages of pacing, and Section IV-C generalizes the
previous section and presents the results of a more realistic
model consisting of multiple flows.

A. Setup of Experiments

Figure 1 illustrates the topology used for our experiments.
TCP flows travel between a set of senders and receivers
through a single bottleneck link. The bottleneck link switches
have configurable buffers and use FIFO scheduling and drop
tail buffer management. To monitor the bottleneck link uti-
lization and drop rate, we directly read the port statistics of
the switches every 12 seconds. The default capacity of the
bottleneck link is 10 Gbps and the capacity of access links
are 1 Gpbs. We use the ANUE hardware delay emulator [1]
to emulate delay in the network. The ANUE receives data
and stores them on a large buffer and transmits the stored
data from another port after a specified delay time has passed.
The direction of flows in this topology is from server hosts to
client hosts. As a result, switch2 is the congestion point.

We perform experiments using TCP CUBIC, NewReno, and
BIC congestion control algorithms. We use a Netperf request
size of 20B and a response size of 1 MB, 2 MB, or a
combination of 100 B to 1 MB flow sizes. Throughout our
experiments, we limit the bottleneck bandwidth to 1, 2, and
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Fig. 2. Base-case (i): Under-subscribed bottleneck. (a) Bottleneck
link utilization. (b) CDF of flow completion times.

3 Gbps and use the delay emulator to emulate various ranges
of RTTs, from 1 ms to 100 ms. Our results share the same
conclusions and in the following sections we use 1 Gbps
bottleneck bandwidth, 1 MB flow sizes, 30 ms RTT, and TCP
CUBIC congestion control algorithm,3 unless otherwise stated.
The run time for each experiment is 300 seconds. To obtain
flow completion times, we use tcpdump to record packets
on all hosts. We define Flow Completion Time (FCT) as the
difference between the time that the TCP sender starts to send
the first byte of each flow until the time it receives the ACK
of the last byte.

Due to lack of space, in the following sections we report
experiment results of 1 Gbps bottleneck bandwidth, 1 MB
flow sizes, 30 ms RTT, and TCP CUBIC congestion control
algorithm, unless otherwise stated. Our results share the same
conclusions and we refer the interested reader to our technical
report [12] for the complete set of results.

B. Base-Case Experiment

We start with simple experiments with only one and two
flows to demonstrate the potential effectiveness of TCP pacing
in link utilization, packet drop, and flow completion time.

First, consider two simple cases: (i) having no congestion
in the bottleneck link by limiting the number of concurrent
TCP connections to only one from server1 to client1, and
(ii) introducing congestion in the bottleneck link by adding a
second concurrent connection between server2 and client2.

We limit the buffer size at both switches to 1% of the BDP;
i.e. 64 KB. In case (i), the capacity of the access links and
the bottleneck link are equal; thus, there will be no congestion
at the bottleneck link. However, in case (ii), the ratio of access
to core bandwidth is two, and the bottleneck link is congested.
The two simple cases illustrate two intuitive laws of TCP
pacing: (i) when there is no congestion, and hence, no loss
at the bottleneck link, TCP pacing performs worse than non-
paced TCP simply because there is no need to pace packets,
and (ii) TCP pacing improves performance by mitigating loss
events in the buffers when the bottleneck link is congested.

Under-subscribed bottleneck: Figure 2(a) compares the
bottleneck link utilization of paced and non-paced cases

3TCP CUBIC is the default congestion control algorithm in Linux kernels
since version 2.6.19.
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Fig. 3. Base-case (ii): Over-subscribed bottleneck. (a) Bottleneck
link utilization. (b) CDF of flow completion times.

through the entire 300 seconds of the experiment. Note that
because there are no packet drops, non-paced TCP achieves
38% higher utilization than paced TCP. This is easily explained
by looking at flow completion times, illustrated in Figure 2(b).
In our setup, the transmission time of a 1 MB RPC is 8
ms. Nearly all flows finish within one RTT (39 ms in the
figure) in non-paced TCP because after the initial slow start,
the congestion window becomes fully open; the following RPC
calls take advantage of this fully open congestion window and
send the whole 1 MB in one burst. But because TCP pacing
adds delay between packets, the paced flows need 2.1 RTTs
(63 ms in the figure) to finish. Even though the congestion
window is fully open, the last batch of packets is sent at the
end of the RTT; the sender needs another RTT to receive the
ACK packets and initiate the next RPC call.

Over-subscribed bottleneck: We introduce congestion in
the network by adding another concurrent TCP connection
between a new client-server pair: (server2, client2). Fig-
ure 3(a) compares paced and non-paced cases through the
entire 300 seconds. With congestion in the network, paced
TCP achieves higher utilization than non-paced TCP. Non-
paced TCP is experiencing around 0.5% of packet drops at
the bottleneck queue. This phenomenon is highly undesirable
in data center networks as TCP loss recovery is not efficient for
small latency-sensitive transfers. The paced flows have almost
zero drops. As shown in Figure 3(b), their flow completion
time is still mostly two RTTs, where-as non-paced flows
have considerably larger average and 99th percentile flow
completion times.

C. Multiple Flows

In this section, we consider a more realistic case whereby
many flows are sharing the bottleneck link. Our results confirm
the model proposed in Section III; for any given buffer size, as
we increase the number of concurrent connections beyond the
PoI, non-paced TCP out-performs paced TCP. In Section III,
we quantitatively determined a lower bound for PoI (N∗)
in terms of link capacity (C), RTT and buffer size (B), as
C×RTT

B .
Figures 4, 5, and 6 illustrate the above claim when the

buffer size is 64, 128 and 256 KB, respectively. We increase
the total number of concurrent flows from 4 to 100 using all
four client-server pairs in Figure 1 by distributing the load
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Fig. 4. Studying the effect of number of flows sharing the bottleneck link when the buffer size is 1.7% of BDP (64 KB) and the lower
bound on inflection point (N∗) is 58 flows. (a) Bottleneck link utilization. (b) Average flow completion times. (c) 99th percentile flow
completion times.
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Fig. 5. Studying the effect of number of flows sharing the bottleneck link when the buffer size is 3.4% of BDP (128 KB) and the lower
bound on inflection point (N∗) is 29 flows. (a) Bottleneck link utilization. (b) Average flow completion times. (c) 99th percentile flow
completion times.

evenly across hosts. The capacity of the access links and the
bottleneck link are both equal to 1 Gbps. As a result, the
bottleneck is congested and as explained in Section IV-B, we
expect paced TCP to have higher link utilization and lower
flow completion times. However, as discussed in Section III,
this also depends on the BDP-to-Buffer ratio.

Figure 4(a) depicts the bottleneck link utilization versus the
number of concurrent flows sharing the bottleneck link. Paced
traffic achieves higher utilization than non-paced traffic when
the number of flows is below 80 (the PoI). Pacing also has
better average and 99th percentile of RPC completion times,
as shown in Figures 4(c) and (d), respectively.

The benefits diminish as we increase the number of flows
beyond 80. In this setup the BDP-to-Buffer ratio (N∗) is 58
flows which is the lower bound on taking advantage of pacing,
as proposed in Section III. Note that we might be able to
achieve some improvement in performance with pacing when
the number of flows is greater than this lower bound, as shown
in Figure 4, but the benefits have already started to diminish.

Repeating the same experiment with different buffer sizes,
as illustrated in Figures 5 and 6, makes it clear that for every
given buffer size, as the number of flows increases, the benefits
of pacing become less pronounced. Figure 5 illustrates the
same experiment as Figure 4 but here the available buffer size
has been doubled. Interestingly, the PoI in Figure 5 (48) is

almost half of the PoI in Figure 4 (80). In Figure 6, when the
buffer size is doubled, the PoI is reduced to 19 flows.

All three experiments are performed with buffer sizes of
1.7%, 3.4% and 6.8% of BDP, but measuring the drop rate
at the bottleneck link shows that 6.8% of BDP is enough to
have no packet drops even with non-paced traffic. Hence, they
constitute a spectrum of tiny, small and large buffers in the
context of this experiment.

In the experiments shown in Figures 4 and 5, we see that
paced traffic always has a lower drop rate than non-paced
traffic, even after the PoI. However, as we will discuss in
details in Section IV-D, the synchronization of drops in paced
TCP causes many flows to experience a loss event, leading to
a dramatic degradation in performance.

An interesting question is the accuracy of the lower bound
derived in Section III. In other words, for various buffer sizes,
what happens if we set the number of flows to be exactly
N∗ = C×RTT

Bmax
? As we discussed in our model, N∗ is the

lower bound on the PoI. We therefore, expect to see paced
and non-paced TCP perform about the same when the number
of flows is exactly N∗. Figure 7 confirms this by plotting
the bottleneck link utilization and flow completion times for
various buffer sizes when the number of flows are chosen
according to Equation 1. As expected, paced and non-paced
cases perform similarly. Thus, the lower bound N∗ is a valid
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Fig. 6. Studying the effect of number of flows sharing the bottleneck link when the buffer size is 6.8% of BDP (256 KB) and the lower
bound on inflection point (N∗) is 14 flows. (a) Bottleneck link utilization. (b) Average flow completion times. (c) 99th percentile flow
completion times.
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Fig. 7. Studying the accuracy of N∗ lower bound on the PoI when the buffer size varies. (a) Bottleneck link utilization. (b) Average flow
completion times. (c) 99th percentile flow completion times.

threshold for the PoI. Moreover, throughout the experiments
presented here and in our technical report [12], we observe
that the PoI is always less than twice the N∗ bound. In other
words, in our experiments, the following inequality always
holds: N∗ ≤ PoI ≤ 2 ×N∗.

Our BDP-to-Buffer ratio rule can justify the seemingly
contradictory conclusions in previous works. For example,
Aagarwal et al. [2] study a network with 50 long-lived flows
with BDP of 1250 packets and buffer size of 312 packets.
Our results suggest PoI = 8 flows is the point of inflection
in such a network and increasing the number of flows to 50
diminishes pacing’s effectiveness. On the other hand, Kulik
et al. [17] study networks with BDP of 91 packets and buffer
sizes of 100 and 10 packets with a single TCP flow which lies
within our bound.

D. Drop Synchronization

In this section, we study the impact of inter-flow burstiness
on drop synchronization. As mentioned in Section IV-C, in our
experiments, paced traffic always experiences lower drop rate
compared with non-paced traffic. For example, Figure 8(a)
compares the drop rate of paced TCP with non-paced TCP
in the experiment illustrated in Figure 4. Even after the PoI,
paced TCP continues to have a lower drop rate compared with
non-paced TCP. However, as we will show in this section,

the synchronization of drops in paced TCP causes many of
the flows to experience the loss event; hence, a dramatic
degradation in performance. The negative effect of drop
synchronization in the slow start phase of paced TCP has been
observed and reported in previous studies of TCP pacing [2].
In the following, we demonstrate that drop synchronization in
paced TCP is not tied to slow start phase and is a function
of number of flows in the network: increasing the number of
concurrent flows sharing the bottleneck increases the inter-flow
burstiness, and as a result, increases the chance of many flows
experiencing the drop event.

To provide the intuition for the drop synchronization phe-
nomenon and to verify the simplifying assumptions in Sec-
tion III, we first measure the probability of packet clustering
in paced and non-paced cases. Figures 8(b) and (c) illustrate
the clustering matrix for one of the hosts in our topology when
there are 100 flows in the bottleneck link (25 flows from each
host).4 Each figure shows a 25× 25 colored matrix where the
color of each element (i, j) in the matrix corresponds to the
probability that a packet from flow i is followed by a packet
from flow j. In Figure 8(b), the diagonal of the matrix has the
lightest color (largest probability), and hence clearly shows
that in the non-paced case, it is highly likely that packets from
each flow are clustered to each other. On the other hand, the

4This corresponds to the very last data point in Figure 8(a).
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Fig. 9. CDF of flows that are affected by a drop event reported by the NetFPGA router. (a) Total number of flows is 48. (b) Total number
of flows is 96 flows. (c) Total number of flows is 384.

diameter of the matrix in Figure 8(c) has the darkest color
(lowest probability) which shows that in paced case it is more
likely that packets from different flows are intermixed with
each other.

In order to measure the effect of drop synchronization, we
use a NetFPGA router to count the number of flows that are
affected by drop events at the bottleneck router. The NetFPGA
router is configured with the “event capturing module” of
the NetFPGA router design [5] which supports instrumenting
the router’s output queues. 5 We modify the event capturing
module to report the flow ID of flows that experience drop
events. Figure 9(a), (b), and (c) illustrate the CDF of flows
that are affected by a packet drop event with paced and non-
paced TCP when the total number of flows in the bottleneck
link is 48, 96, and 384, respectively. In the case of 48
flows, illustrated in Figure 9(a), paced and non-paced TCP
behave roughly similar to each other, with paced TCP having
slightly larger probability of drop synchronization. Increasing
the number of flows to 96 (Figure 9(b)) increases the chance of
drop synchronization in paced flows. If the number of flows are
further increased to 384, the synchronization effect becomes
more dominant. Figure 9(c) illustrates that 300 flows (78% of

5When a packet arrives, departs, or is dropped at an output queue, the
current clock of the NetFPGA which has an 8 ns granularity, is recorded.
Multiple events are then collected in a single event packet which is periodically
sent out a specified router port.

total number of flows) are affected by 80% of drop events in
paced TCP; but, the same number of flows are only affected
by 10% of drop events in non-paced TCP.

V. CONCLUSIONS AND FUTURE TRENDS FOR TCP PACING

This paper studies TCP pacing in data center networks and
presents a unifying model for the general effectiveness of
pacing. We show that for a given buffer size, as the number
of concurrent flows are increased beyond a certain bound,
the benefits of using paced TCP will start to diminish. We
provide a lower bound for this point of inflection in terms of
link capacity (C), RTT and buffer size (B), as Ω(C×RTT

B ).
Moreover, we demonstrate that increasing the number of flows
produces inter-flow burstiness (bursts of packets belonging to
different flows) which causes drop synchronization and hence
performance degradation. We validate our model using a novel
and practical implementation of paced TCP in the Linux kernel
and perform several experiments in a test-bed.

In the networking literature, TCP pacing usually refers to
per-flow smoothing of congestion window size of packets
within one RTT. In this paper, we showed that having many
paced flows introduces inter-flow burstiness and drop synchro-
nization which hurts the effectiveness of pacing. We propose
applying per-host TCP pacing on top of per-flow pacing to
reduce the inter-flow bursts and drop events. The objective of
per-host pacing, or more precisely per-egress port pacing, is
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to smooth the aggregate traffic leaving an egress port. To that
end, and by knowing the rate Ri of each flow exiting an egress
port of a host, a per-host pacer applies an inter-transmission
gap of δ = MTU

ΣiRi
between all packets. As a result, per-host

pacing smooths the transmission of aggregate of flows leaving
an egress port and alleviates the impact of inter-flow bursts.
Essentially, at steady state, this results in having almost zero
packet drops at the bottleneck link. We leave the study of
per-egress port pacing to interested researchers in the field.

ACKNOWLEDGEMENTS

We would like to thank Glen Anderson, Nandita Dukkipati,
Jerry Chu, Lawrence Brakmo, Joe Ethier, Steve Padgett, and
Ashish Naik from Google Inc. for helping us with some of
our experiments. We would also like to thank Yashar Ghiassi-
Farrokhfal, Phillipa Gill and Mukarram bin Tariq for useful
discussions and comments on the early versions of this paper.
This work was supported by Google Inc. as well as CGS grant
from Natural Sciences and Engineering Research Council of
Canada.

REFERENCES

[1] ANUE systems. http://www.anuesystems.com/index.shtml.
[2] A. Aggarwal, S. Savage, and T. Anderson. Understanding the

performance of TCP pacing. In IEEE Infocom, pages 1157–1165, 2000.
[3] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,

S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In
SIGCOMM, August 2010.

[4] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz. The effects of
asymmetry on TCP performance. In MobiCom, pages 77–89, 1997.

[5] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G. Salmon.
Experimental study of router buffer sizing. In IMC, pages 197–210,
2008.

[6] Y. Cai, Y. S. Hanay, and T. Wolf. Practical packet pacing in small-buffer
networks. In IEEE ICC, pages 1–6, 2009.

[7] K. Chen, P. Huang, C. Huang, and C. Lei. The impact of network
variabilities on tcp clocking schemes. In INFOCOM, pages 1–6, 2006.

[8] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph. Understanding
TCP incast throughput collapse in datacenter networks. In WREN, pages
73–82, 2009.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. In OSDI, pages 10–10, 2004.

[10] S. Floyd and T. Henderson. RFC2582: The NewReno modification to
TCP’s fast recovery algorithm, 1999.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system.
SIGOPS OSR, 37(5):29–43, 2003.

[12] M. Ghobadi, G. Anderson, Y. Ganjali, J. Chu, L. Brakmo, and
N. Dukkipati. TCP pacing in data center networks. Technical report,
TR10-SN-UT-04-10-00, University of Toronto, April 2010.

[13] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed
TCP variant. SIGOPS OSR, 42(5):64–74, 2008.

[14] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 2009.

[15] K. Jacobsson, L. L. H. Andrew, A. Tang, K. H. Johansson, and
S. H. Low. ACK-clocking dynamics: Modeling the interaction between
windows and the network. In INFOCOM, pages 2146–2152, 2008.

[16] H. Kamezawa, M. Nakamura, J. Tamatsukuri, N. Aoshima, M. Inaba,
and K. Hiraki. Inter-layer coordination for parallel TCP streams on long
fat pipe networks. In SC, page 24, 2004.

[17] J. Kulik, R. Coulter, D. Rockwell, and C. Partridge. A simulation study
of paced TCP. Technical report, BBN Technical Memorandum No.
1218, 1999.

[18] J. C. Mogul. Observing TCP dynamics in real networks. In SIGCOMM,
pages 305–317, 1992.

[19] V. N. Padmanabhan and R. H. Katz. TCP fast start: A technique
for speeding up web transfers. In IEEE Globecorn Internet Mini-
Conference, pages 41–46, 1998.

[20] G. Raina and D. Wischik. Buffer sizes for large multiplexers: TCP
queueing theory and instability analysis. In Next Generation Internet
Networks, pages 173–180, 2005.

[21] S. Shepler, M. Eisler, and D. Noveck. RFC3530: Network File System
version 4 protocol.

[22] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[23] R. Srinivasan. RFC1831: RPC: Remote Procedure Call protocol, 1995.
[24] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,

G. R. Ganger, G. A. Gibson, and B. Mueller. Safe and effective
fine-grained TCP retransmissions for datacenter communication. In
SIGCOMM, pages 303–314, 2009.

[25] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou. Scalable performance of the Panasas parallel
file system. In FAST, pages 17–33, 2008.

[26] D. Wischik. Buffer sizing theory for bursty tcp flows. In IZS, pages
98–101, 2006.

[27] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control
(BIC) for fast long-distance networks, 2004.

[28] L. Zhang, S. Shenker, and D. D. Clark. Observations on the dynamics
of a congestion control algorithm: The effects of two-way traffic. In
ACM SIGCOMM CCR, pages 133–147, 1991.

APPENDIX

Proof of Theorem 1:
In both systems, at steady state, each flow is sending W̄

packets at every RTT and thus we have C×RTT = N×W̄ .
The burst size in BNP and WP is W̄ and N , respectively.

In BNP, when the burst size of non-paced traffic is less than
or equal to the available buffering capacity, there is no need
to pace packets within the congestion window. Thus:

W̄ ≤ Bmax
C ×RTT

N
≤ Bmax

C ×RTT

Bmax
≤ N (3)

Similarly, in WP, pacing is outperformed by a non-paced
system if:

N ≥ Bmax
C ×RTT

N
≥ Bmax

C ×RTT

Bmax
≥ W̄ (4)

In other words, for N = W̄ = C×RTT
Bmax

, WP and BNP
become similar systems. Thus, to take advantage of pacing one
should choose the number of flows so that N < W̄ = C×RTT

Bmax
.
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