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Abstract—With recent advances in optical technology, we are
closer to building all-optical routers than ever before. A major
problem in this area, however, is the lack of all-optical memories
similar to what we have in electronics. To overcome this problem,
recently, there have been several proposals that show how we can
emulate First-In First-Out (FIFO) queues using a combination
of fiber delay lines and switches. Unfortunately, FIFO queues
cannot be used for implementing many link scheduling policies
including weighted fair queuing, weighted round-robin, or strict
priority, which are essential components of any modern router
today.

In this paper, we introduce an architecture based on fiber delay
lines and optical switches that can be used for emulating Push-In
First-Out (PIFO) queues. In a PIFO queue, an incoming packet
can be pushed anywhere in the queue, and therefore it can be used
for the implementation of various link scheduling policies. We
describe a scheduling algorithm for this architecture and show
that with a small speedup, we can build a PIFO queue of size
N −1 using only O(log2 N) 3×3 optical switches. The resulting
system has a minimum reliability of 99.5%, and even for the small
portion of departure requests that cannot be fulfilled immediately,
the requested packet is ready to depart within approximately five
time slots from the request time.

I. INTRODUCTION

Optical transmission and switching technologies based on
Wavelength Division Multiplexing (WDM) have been increas-
ingly deployed in the Internet infrastructure in order to meet
the ever-increasing demand for bandwidth. As a result, several
efforts have been made to improve the performance of the
optical networks so as to eliminate the existing electronic
bottlenecks by utilizing all-optical switches. There are several
functions of critical importance for the realization of all-
optical routers among which optical buffering is of great
importance [11]. The lack of a straightforward technique for
storing information in the optical domain remains a major
roadblock for building all-optical routers. In all-optical packet
switch designs, one way for storing optical packets is to use
a combination of Fiber Delay Lines (FDLs) and switches to
delay packets for a certain period of time [3], [4], [5], [7].

Recently, there have been several proposals for emulating
First-In First-Out (FIFO) queues with the objective of mini-
mizing the size of the switch, as well as the length and the
number of the fiber delay lines [10], [4], [3]. Unfortunately,
FIFO queues cannot be used for implementing many link
scheduling policies including weighted fair queuing [12],
weighted round-robin [8], and strict priority. These scheduling
policies are essential components of any modern router today,
as they are the basis for providing Quality-of-Service in

routers. Unlike a FIFO queue in which the incoming packets
can only join the tail of the queue, in Push-In First-Out (PIFO)
queues new packets can be pushed anywhere in the queue.
Given the freedom of choosing where to insert the new packet,
PIFO queues are significantly more flexible than FIFO queues
and can be used for implementing various scheduling policies
such as weighted fair queuing, weighted round-robin, and strict
priority as mentioned above.

This paper is mainly motivated by Beheshti et al.’s work
in which an optical FIFO buffer architecture is proposed [3].
Their proposed scheme achieves a buffering capacity of N−1
packets by using only O(logN) 2×2 optical switches, which
has been shown to be the lower bound on the size of the
switches required [10]. In this paper, we extend their approach
and introduce an architecture based on fiber delay lines and
optical switches that can be used for emulating PIFO queues.
As in input-queued switches, we assume that the departure
time of a packet is not known in advance. At the same time,
since the incoming packets can be placed at any location in
the queue, coming up with a scheduling algorithm is more
challenging. We show that with a small speedup, we can
build a PIFO queue of size N − 1 using only O(log2N)
3 × 3 switches. We also show that the resulting system is
extremely reliable: The system can handle more than 99.5%
of the departure requests immediately, and the maximum delay
to handle a request which is not fulfilled immediately is within
approximately five time slots from the request time.

The rest of this paper is organized as follows. A short
review of the previous works is presented in Section II. Our
optical PIFO buffer emulation architecture and the scheduling
algorithm are described in Section III and the simulation
results studying the performance of our proposed design are
presented in Section IV. Finally, Section V concludes the
paper.

II. RELATED WORK

The problem of realizing all-optical buffers using a com-
bination of fiber delay lines and optical switches has been
addressed in [3], [4], [5], [7], [10], and [6]. Sarwate et al.
showed that for emulating any priority queue, the minimum
number of required delay lines is O(logN). They proposed
an architecture to emulate a FIFO queue of size N with
O(
√
N) delay lines [10]. A recursive approach for construct-

ing optical FIFO multiplexers with O(logN) delay lines has
been proposed by Chang et al. [5]. However, their proposed
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Fig. 1. Emulation of a FIFO buffer using fiber delay lines.

construction needs to keep track of the shortest and the longest
queues in each recursion step.

Beheshti et al. introduced a buffering architecture which
consists of 2 logN − 1 delay lines of fixed length, and is
capable of exactly emulating a FIFO queue of size N − 1
[3]. Their proposed architecture is shown in Fig. 1, in which
the delay loops are of exponentially growing lengths. In each
delay loop, a delay line is coupled with a 2× 2 optical switch
which connects the delay line to the main path between the
arrival and departure ports. In this architecture, the incoming
packets are buffered by going through a subset of delay lines.
Upon the arrival of a packet, the scheduler decides whether
the incoming packet needs to go through the waiting line or
it can be directly forwarded to one of the delay lines. As
time progresses, optical packets in each delay line move in
the direction shown in Fig. 1 towards the head of that delay
line [3]. The waiting line, W , is a recursively emulated FIFO
buffer, and is used to prevent void places between packets
with successive departure orders. In other words, since the
interarrival intervals are not known in advance, the proposed
system uses this waiting line to adjust the location of packets
in the delay lines, and thus packets with successive departure
orders will be placed back to back in the delay lines.

This work is inspired by the architecture presented in [3]
to emulate PIFO buffers using a recursive architecture. The
architecture of the new system, and the packet scheduling
algorithm are explained in the following section.

III. OPTICAL PIFO BUFFER EMULATION

We propose the architecture in Fig. 2 to emulate a PIFO
buffer using fiber delay lines. The architecture includes a
group of delay lines Di, i = 1, 2, · · · , logN , where each delay
line consists of Li delay units dhead,i, dhead+1,i, · · · , dtail,i.
The length of each delay line grows exponentially as
1, 2, 4, · · · , 2(logN)−1, generating an overall queue length of
N−1. Without loss of generality, we assume that N is a power
of 2. Note that the waiting line, W , is also a PIFO buffer built
recursively using the same infrastructure as of the main PIFO
buffer.

In a PIFO queue, the departure order of a packet determines
its position in the buffer; e.g., a packet with departure order
1 has the highest departure priority and should be pushed to
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Fig. 2. Emulation of a PIFO buffer using fiber delay lines.

the head of the buffer. In our proposed structure, packets can
be read only from the head of a delay line and can be written
only to the tail of a delay line. During each time slot, our
emulation algorithm performs the following tasks in order:
(1) serving a possible arrival event, (2) serving a possible
departure event, and (3) performing the scheduling task. These
tasks are explained in more detail below.

A. Arrival Event

An incoming packet with departure order x, 1 ≤ x ≤ N−1,
should be pushed to its corresponding delay unit in one of the
delay lines. For example, according to Fig. 2, an incoming
packet with departure order x = 3 should be pushed to the
tail of delay line D2. Note that an incoming packet will be
accepted only if the current occupancy of the PIFO buffer is
less than N − 1 (maximum size of the buffer). Otherwise,
the system drops the packet. The accepted arrival request is
managed based on the following two steps:

1) In the first step, our algorithm increments the departure
order of all packets with departure order greater than
or equal to x by one unit. This affects the packets in
the delay lines and the waiting line. This step is carried
out in order to be able to place the new packet at the
proper position in the buffer and to preserve the packets’
departure order. Furthermore, our algorithm determines
Dprop, the proper delay line that the incoming packet
should be inserted to. More precisely, if the incoming
packet’s departure order is x, then prop = blog xc + 1
and the packet should be placed at delay line Dblog xc+1.

2) In the second step, our algorithm checks the occupancy
status of Dprop and performs one of the following cases:

a) If Dprop is completely empty, the packet will be
marked to be placed at the tail of Dprop at the end
of the current time slot.

b) If there is a packet at the tail position of Dprop and
its departure order is x − 1, the incoming packet
will be marked to be inserted into Dprop at the end
of the current time slot.

c) In any other case, the system holds the incoming
packet in the waiting line for a number of time slots
until the scheduler places this packet at its proper
position. This process will be explained in more
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Fig. 3. Example of an emulated PIFO buffer.

detail in Section III-C, handling the scheduling
task.

B. Departure Event

During each time slot, a departure request for the packet
with the highest priority, i.e., with departure order equal to 1
may occur. In this case, if this packet is at the head position
of one of the delay lines, it will successfully depart from
the system. Moreover, our algorithm decrements the departure
order of all packets in the system including the ones in the
waiting line by one unit. However, there is the possibility that
the packet with departure order 1 is not at the head of any
delay line yet, rather in the middle of a delay line. In this
case, our system fires an error indicating that it cannot address
the departure request, immediately. The departure request will
eventually be addressed during a future time slot in which the
packet reaches the head position of the delay line it is currently
in. In our simulations, we have studied the error rate and the
delay in serving departure requests, and have observed that
the error rate is always less than 0.5% and that the delay in
serving departure requests is negligible. Our simulation results
are explained in more detail in section IV.

C. Scheduling

The scheduling task is performed at the end of each time
slot. The main idea of the scheduling task is to keep packets
in the delay lines according to proper departure orders; i.e.,
packets with successive departure orders should be placed back
to back in the delay lines. In our proposed recursive design,

during each time slot at most one push to and at most one
pop from the waiting line can take place. According to this
constraint, the scheduling task is based on the following three
steps, respectively.

1) The scheduler iterates over the delay lines Di, 1 ≤ i ≤
logN starting from D1 and checks the head and the tail
positions in each of them to find delay lines such as Dj

for which the tail position is nonempty and either one
of the following two conditions is satisfied:

a) The head position in Dj is empty, or
b) the head position in Dj contains a packet with

departure order, xhead, greater than that of its
tail position, xtail, by more than one unit, i.e.,
xhead > xtail + 1.

If the second condition is satisfied and no other packet
has been previously selected to be inserted into the
waiting line during the current time slot, the scheduler
marks the head-of-line packet of Dj to be transferred to
the waiting line. Then it checks to see whether the head-
of-line packet of the waiting line, pc, can be transferred
to Dj . If so, pc will also be marked to be transferred to
the tail of Dj at the end of the current time slot.

2) To prevent the accumulation of void places in the delay
lines after each successful departure event, the scheduler
tries to fill the empty delay units by marking packets at
the head of a delay line (dhead,i) to be transferred to the
tail of the proper delay line (Dprop). Of course, this can
happen only if the candidate delay unit is empty.
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3) The scheduler performs all packet transfers in this step,
simultaneously. In other words, optical packets in each
delay line move by one delay unit in the direction
shown in Fig. 2 towards the head of the corresponding
delay line. At the same time, the marked packets in
the previous steps will move towards their determined
positions.

Fig. 3 illustrates an example of an arrival event, a departure
event, and the scheduling task in our PIFO emulation algo-
rithm. Let us assume that the system is in the state shown
in Fig. 3(a) at time slot k with 7 packets p1, p2, · · · , p7

having departure orders equal to 1, 2, 3, · · · , 7, respectively.
Furthermore, let us assume that at time slot k + 1 a packet p
with departure order xp = 6 enters the system, and that there
is also a departure request for packet p1. As described above,
the system first serves the arrival event, then the departure
event, and finally performs the scheduling task. The system
starts with step 1 in the arrival event by incrementing the
departure order of packets p6 and p7 by one unit. Then, our
algorithm determines that p should be pushed to Dprop = D3

(since blog xpc + 1 = 3). Based on case 2c handling the
arrival event, p will be marked to be inserted into the waiting
line at the end of this time slot. Next, the system serves the
departure request by sending packet p1 out of the system and
decrementing the departure order of all packets in the system
by one unit. The updated status of the system is illustrated
in Fig. 3(b), where the packet on the arrival line indicates the
marked packet p. Further, during the scheduling phase none of
the conditions in scheduling step 1 are satisfied, and therefore
the system only follows scheduling steps 2 and 3 in which the
marked packets are placed at their determined positions while
packets are circulated in the delay lines (Fig. 3(c)). In the
next time slot, assuming there are no arrival and no departure
events, the system only performs the scheduling task. Neither
of scheduling steps 1 or 2 applies and hence the system follows
step 3 and circulates packets in the delay lines (Fig. 3(d)).
During time slot k+3, condition (b) in step 1 of the scheduling
task is satisfied because the difference between the head and
the tail packet’s departure order in delay line D3 is 2. As a
result, the scheduler marks the packet with departure order 6
to be transferred to the waiting line. It also marks the packet
with departure order 5 to be transferred to the tail of D3, and
proceeds to the next steps of the scheduling task (Fig. 3(e)).
The same event as in time slot k + 3 is repeated in the next
time slot, k + 4, leading the packet with departure order 6 to
be transferred from the waiting line to the tail of D3, and the
packet with departure order 7 to be transferred to the waiting
line (Fig. 3(f)). Finally at time slot k+5, condition (a) of step
1 in the scheduling task is satisfied, causing the only packet in
the waiting line to be inserted into delay line D3, and hence
at the end of this time slot, the status of the system will be
the same as in Fig. 3(a).

Assuming that the occupancy of the waiting line is always
smaller than N/2, the theorem below shows that our structure
needs O(log2N) delay lines to emulate a PIFO buffer of size

TABLE I
SIMULATION PARAMETERS

Parameter Value(s)

Simulation time slots 1000000

Optical PIFO queue length 127, 255, 511, 1023

Packet arrival rate 0.25+0.025i, i=0,1,...,9

Packet departure rate 0.50

N . We explore the feasibility of this assumption in Section
IV.

Theorem 1: In our PIFO structure, the number of delay
lines required is O(log2N): As we recursively build a PIFO
buffer of size N , the total number of delay lines required,
T (N), is equal to logN +T (N/2). The first term is the total
number of delay lines Di in Fig. 2, i.e., the main PIFO buffer,
and the second term is the number of delay lines required for
the waiting line. Thus:{

T (N) = logN + T (N/2), N > 1
T (1) = 1, N = 1

(1)

Assuming N = 2k, one can easily solve the above recursive
formula as T (N) = O(log2N).

IV. SIMULATION RESULTS

We simulate our proposed optical PIFO buffer architecture
to study several performance parameters including:
• Reliability of the system as the percentage of the depar-

ture requests that can be served immediately.
• The distribution of the delays incurred in serving the

departure requests.
• Relative occupancy of the waiting line as the ratio of its

maximum length to the actual buffer length (N − 1).
We run several simulations with different system loads

and PIFO queue lengths of 127, 255, 511, and 1023. Our
simulation parameters are summarized in Table I. We use
Bernoulli IID random variables to generate packet arrival and
departure requests.

The pseudocode illustrated in Fig. 4 summarizes our simula-
tion program in which variable count is the main loop variable
and varies between 1 and ST , where ST denotes the number
of simulation time slots. Arrival and departure requests are
issued using the “Mersenne twister” pseudorandom number
generator implemented in [1] according to the arrival and the
departure rates, respectively.

In this paper, each simulation result is the average of 200
rounds of simulation run. Since the distribution of the vari-
ables under consideration is unknown, we compute confidence
intervals using the method of batch means with 10 batches
of 20 samples as explained in [9]. Here, we find the 95%
confidence intervals for the mean of the random variables
as [X10 − t0.025,9 σ̂10√

10
, X10 + t0.025,9

σ̂10√
10

] where X10 is the
sample mean of the batch sample means, σ̂10 is the sample
standard deviation of the batch sample means, and t0.025,9 is
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Optical PIFO Buffer Simulation Pseudocode

set the simluation parameters (rates, buffer length)

ST← number of simulation time slots

count← 1

while count ≤ ST

if an arrival request exists and the buffer is not full thenif an arrival request exists and the buffer is not full then

generate the order of the incoming packet (x) at random

insert packet with order x into the queue

end if

if a departure request exists and the queue is nonempty then

if the packet with order 1 is at the head of a

delay line then

remove the packet from the system

else

log the departure errorlog the departure error

end if

end if

schedule the whole system

count← count+1

end while

Fig. 4. Optical PIFO buffer simulation pseudocode.
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equal to 2.262 according to Table A.5 (Student’s t-distribution
table) in [2].

Fig. 5 illustrates the reliability of the emulated optical PIFO
buffer versus load for different queue lengths. As mentioned
earlier, reliability is defined as the percentage of departure
requests that can be served immediately. As can be observed
in Fig. 5, in all of the simulation scenarios, the reliability
is greater than 99.5% which is a very promising value. The
reliability of the optical PIFO buffer tends to fall slightly when
the load increases. Another interesting observation is that the
size of the optical PIFO buffer does not have any effect on
system reliability in the studied cases.

In order to obtain a more detailed view of the performance
of the optical PIFO buffer, we study the distribution of the
delays incurred in serving the departure requests under various
circumstances. As described in section III-B, when a departure
request is issued, if the packet with departure order 1 is at the

head of a delay line, then the request will be served without
delay. However, in some cases the packet with departure order
1 might not be at the head of any delay line as the departure
request is issued. This corresponds to a departure error, and
the requested packet needs a certain number of time slots to
reach the head of the delay line in which it is located. Figures
6(a), 6(b), 6(c), and 6(d) show the Cumulative Distribution
Function (CDF) of the departure delays for queue lengths of
127, 255, 511, and 1023, respectively. In all of the figures, we
can observe an increasing trend in the experienced delay as
the system load increases. However, the maximum departure
delay is almost limited to five time slots in all cases. In other
words, when a departure error happens, the requested packet is
expected to be able to leave the system within five time slots.
This is important in the sense that if the five time slot delay
constraint is tolerable, then we can almost serve any departure
request. Finally, note that the queue length does not have any
distinguishable effect on the CDF of the departure delays for
the system loads under consideration.

In the last part of this section, we study the feasibility of
our proposed structure by measuring the size of the recursively
built waiting line. The realization of the optical PIFO buffer
depends on the assumption that the size of the waiting line, W ,
does not grow faster than N . In our simulations, we keep track
of the waiting line’s occupancy during each time slot. Fig. 7
illustrates the maximum occupancy of the waiting line versus
load for different buffer sizes. The vertical axis represents the
ratio of the waiting line’s maximum length to the actual buffer
length during the simulation time, ST , and the horizontal
axis indicates the load. From the figure, it is obvious that
the occupancy of the waiting line is always less than that of
the emulated buffer (as it never gets to 100%). This implies
that we are able to use the concept of recursion in realizing
the proposed optical PIFO buffer under certain circumstances.
Moreover, in all of the simulation scenarios, the relative
occupancy of the waiting line is less than or equal to 50%
for loads below 92.5%. Hence we can consider its size to be
half of the size of the emulated buffer. By applying Theorem
1 we establish the conclusion that using a negligible speedup
(e.g., 1.08 for buffer size equal to 127), we can construct a
PIFO queue of size N by using O(log2N) 3 × 3 switches.
The resulting queue has a minimum reliability of 99.5%, and
can address the departure requests within approximately five
time slots.

Realization of the proposed optical PIFO buffer seems to
be challenging in some cases when the system load exceeds
90%. In other words, several recursions may be necessary
to build such a buffer, since the occupancy of the waiting
line is found to be comparable to that of the emulated buffer.
However, according to Fig. 7, the interesting fact is that the
relative occupancy of the waiting line falls sharply as the
actual buffer size increases. In other words, a much smaller
speedup is required to build the optical PIFO buffer when its
size increases.
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Fig. 6. Cumulative distribution function of departure delays (a) queue length = 127, (b) queue length = 255, (c) queue length = 511, (d) queue length = 1023.
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V. CONCLUSIONS

In this paper, we introduced an architecture based on
fiber delay lines and optical switches that can be used for
emulating Push-In First-Out (PIFO) queues. We proposed a
recursive architecture to minimize the number of delay lines
and switches. We also described a scheduling algorithm for
this architecture, and showed that with a negligible speedup,
we can build a PIFO queue of size N−1 using only O(log2N)
3 × 3 optical switches. The resulting system has a minimum
reliability of 99.5%, and can address departure requests within
approximately five time slots. It is also necessary to note

that the performance of the optical PIFO buffer in terms of
reliability and delay is independent of queue length for the
system loads under consideration.
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