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ABSTRACT
As bytes-per-FLOP ratios continue to decline, communication is be-
coming a bottleneck for performance scaling. This paper describes
bandwidth steering in HPC using emerging reconfigurable silicon
photonic switches. We demonstrate that placing photonics in the
lower layers of a hierarchical topology efficiently changes the con-
nectivity and consequently allows operators to recover from system
fragmentation that is otherwise hard to mitigate using common task
placement strategies. Bandwidth steering enables efficient utilization
of the higher layers of the topology and reduces cost with no perfor-
mance penalties. In our simulations with a few thousand network
endpoints, bandwidth steering reduces static power consumption
per unit throughput by 36% and dynamic power consumption by
14% compared to a reference fat tree topology. Such improvements
magnify as we taper the bandwidth of the upper network layer. In
our hardware testbed, bandwidth steering improves total application
execution time by 69%, unaffected by bandwidth tapering.

CCS CONCEPTS
• Networks → Network resources allocation.

1 INTRODUCTION
Interconnection networks are a crucial feature of today’s large-scale
computing systems. Highly-efficient networks are built to enable dis-
tributing computing elements of massively parallel systems to work
in concert to solve challenging large-scale problems. The successful
development of powerful node architectures on the path to Exascale
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combined with necessary energy efficiency improvements is rapidly
shifting the bottleneck in today’s high performance computing (HPC)
and datacenter systems from computation to communication. From
2010 through 2018, there has been a 65× increase in computational
throughput with only a 4.8× increase in off-node communication
bandwidth in the top 500 HPC systems [17], resulting in an over-
all 0.08× bytes-per-FLOP ratio [6]. Notably, there has been an 8×
decrease in bytes-per-FLOP just from the Sunway TaihuLight (No-
vember 2017) to the Summit system (June 2018). If we are to achieve
Exascale within 20 MWatt [78] while preserving the computation to
communication ratios of Summit, an exascale system will require
50 GFLOPs per Watt and 0.1 pJ per bit for its total communication
budget (assuming 200 bits of data communication per FLOP) [17].
Based on these observations, we expect the bytes-per-FLOP ratio in
future systems to continue its steady decline and over-provisioning
HPC system networks will be increasingly impractical.

Given these trends, communication becomes a significant chal-
lenge towards preserving computation improvements, especially
those expected by specialization, an increasing trend in HPC [6].
Successful specialization improves compute performance, but also
proportionally increases the demand on the interconnection network.
As an example, Google’s Tensor Processing Unit (TPU) can reach
90 TOPS/s using 8-bit precision, but has a peak off-board commu-
nication bandwidth of only 34 GB/s [50]. Therefore, applications
need to reuse a byte fetched on the board 2706 times to saturate
computational throughput. Only two applications in [50] show such
high operational intensity.

Over the past few decades, silicon nanophotonics, leveraging
silicon electronics manufacturing infrastructure, has emerged as a
promising technology to both increase bandwidth density [92] and
reduce energy per bit in all layers of the system [61]. The ability
to share the same silicon photolithography processes used for con-
ventional complementary metal oxide semiconductor (CMOS) logic
enables a path towards scalable manufacturing and co-integration of
optical with electrical components. However, reducing system power
solely by network advancements cannot meet future targets because
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the network consumes just 4% to 12% of the power in large-scale sys-
tems [71]. Even if these numbers grow to 25%, an ideal zero-energy
network cannot reduce system power by 2×. Therefore, achieving
future goals with photonics cannot be a simple matter of drop-in
replacements of current network components. Instead, it requires
architectural changes that take advantage of key silicon photonic
properties to achieve significant network-wide improvements.

In this paper, we propose to use silicon photonic (SiP) switches
as circuit-switched components between electronic packet switches
(EPSs) in order to dynamically adjust the connectivity (steer band-
width) between the ToR (first-level) and aggregation (second-level)
EPSs of a three-level fat tree topology. Fat trees and their variants
such as HyperX are extensively used in datacenters [21, 22] and
HPC [10, 45, 49, 77]. Our goal is to optimally adjust the connec-
tivity of the lower layers of the network to minimize the number
of packets that traverse the higher layers, while avoiding to divide
the network into disjoint electrical and optical parts [11]. This also
helps to recover from system fragmentation that is otherwise hard
to mitigate using common task placement strategies. We refer to
this process as bandwidth steering and combine it with a scalable
maximum-weight matching algorithm to achieve our goal for large
networks. A key advantage of bandwidth steering is enabling opera-
tors to aggressively oversubscribe top-layer bandwidth, something
that is suited to a hierarchical topology and is already common
practice due to the cost of top-layer bandwidth [23], but without
performance penalties because normally tapering the top layer would
increase congestion. Efficiently utilizing top-layer bandwidth is im-
perative due to the cost of high-bandwidth equipment placed at the
top (e.g., core) level [39, 83].

In our experimental hardware testbed, bandwidth steering pro-
vides an application execution time improvement of 69%. With
bandwidth steering, application execution time does not get penal-
ized if we aggressively taper top-layer bandwidth. In contrast, in
a vanilla fat tree execution time degrades when tapering top-layer
bandwidth. In our system-scale simulations with a few thousand
network endpoints, we show that bandwidth steering reduces the
ratio of upper-layer link utilization to lower-layer link utilization
by 59%. Furthermore, bandwidth steering reduces power per unit
throughput (dissipated power per byte transferred) by 36% static
and 14% dynamic, on average across different applications. Band-
width steering also reduces average network latency by up to 20%,
increases average throughput by an average of 1.7×, and reduces
the effects of fragmentation [38, 72, 98] by reconstructing locality
between application tasks that were meant to be neighbors. These
improvements further increase by up to 20% for throughput and 25%
for network latency as we aggressively taper top-layer bandwidth.
Bandwidth tapering is immediately applicable to HPC and datacen-
ter networks using today’s EPSs and SiP switches. Our SiP switches
reconfigure in 20 µs using software-defined networking (SDN).

2 BACKGROUND AND MOTIVATION
Communication in modern datacenters and HPC systems faces two
important challenges: cost and operational efficiency. Cost includes
both capital expenditures of buying the system and operating ex-
penditures for increasing available network bandwidth. Cost is the
primary motivator to eliminate the negative consequences such as
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Figure 1: Measured data from NERSC’s Cori shows that frag-
mentation is both persistent and dynamic. In this graph, frag-
mentation is defined as the observed number of Aries (Dragon-
fly) groups that an application spans, divided by the smallest
possible number of groups that the application would fit in.

congestion of reducing bandwidth at the higher-levels of multi-tiered
interconnect topologies (typically referred to as “bandwidth taper-
ing”) because that bandwidth covers more physical distance and
therefore tends to be more costly [58]. This may lead the top layer
to be oversubscribed, possibly sacrificing system efficiency [23].
For example, to scale to 20k nodes, Google’s Jupiter topology was
intentionally designed with a 2:1 oversubscription at the ToR uplink
layer [83]. Similarly, Microsoft’s data center networks have a 5:1
oversubscription at the ToR layer [39]. These cost-cutting measures
result in network congestion that is well known to create “long tail”
communication latencies, which severely diminish the performance
of interactive and bulk-synchronous parallel applications [28].

Related work attempts to mitigate congestion to enable more
aggressive bandwidth tapering with no performance penalty by ex-
ploiting locality in task placement [46, 64]. While these approaches
have shown significant benefits, there is little they can do in the case
of applications with imperfect locality or for non-optimal placement
of applications across compute resources [64]. For instance, a 4D
stencil application where MPI tasks communicate persistently with
a handful of other tasks is unlikely to avoid bandwidth contention at
the top level of the topology.

Furthermore, system fragmentation is a well-documented chal-
lenge [18, 38, 72, 98]. System fragmentation is caused by the dy-
namic nature of modern systems where applications of various sizes
initiate and terminate continuously. As a result, applications often
receive an allocation on a set of distant and non-contiguous nodes.
Hence, even communication between consecutive MPI ranks is not
physically neighboring. Figure 1 illustrates that in NERSC’s Cori
fragmentation is both persistent and dynamic. Consequently, im-
proved task placement would be ineffective in optimizing bandwidth
tapering because it is applied only to the tasks of an application,
wherever they physically reside. One would need to either idle nodes
to await for a contiguous range of endpoints (resulting in system
underutilization), or migrate tasks to find contiguous nodes on the
lower tiers of the topology. However, task migration takes on the
order of seconds to complete [93]. Schedulers alone cannot resolve
the fragmentation issue. Therefore, we must find a solution that
involves both the hardware and the scheduler.
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3 THE PROMISE OF SILICON PHOTONICS
FOR RECONFIGURABILITY

Optical circuit switching (OCS) offers a promising approach to
reconfiguring the interconnect on demand in order to maximize
efficiency by enabling more effective “right sizing” of bandwidth
tapering. While EPSs impose multiple cycles of latency and likewise
an energy penalty to traverse a switch due to buffering and control
logic, silicon photonics (SiP) in-package switches impose negligible
dynamic energy and latency penalties that make them essentially
transparent at an architectural level [26, 80]. To reap these bene-
fits, architectures using SiP switches must avoid conversions to the
electrical domain (OEO conversions), which also means there can
be no computation on traversing packets. This motivates the use of
photonic switches as circuit-switched elements [56, 76, 81].

A common approach for implementing OCS for telecommu-
nication applications is to use microelectromechanical switches
(MEMS) [70], such as Glimmerglass and Calient. However, these
high radix mechanical switches can be difficult to insert into a tightly
integrated HPC fabric and can also impose large reconfiguration de-
lays. Similarly, trade-offs arise when considering the use of arrayed
waveguide grating routers (AWGRs). Although the AWGR itself is
passive, the interconnect based on the AWGR usually requires tun-
able wavelength transceivers and possibly tunable wavelength con-
verters, adding complexity and additional power consumption [55].
Although lower radix than a typical MEMS OCS, SiP switches and
the resulting photonic multi-chip-modules (photonic MCMs) are
a promising path for tight integration into the interconnect fabric,
enabling extremely high off-package escape bandwidths.

The silicon photonics platform leverages the mature and wide-
spread CMOS electronics manufacturing infrastructure, reducing the
cost of manufacture. Silicon photonic microring-resonator (MRR)-
based links offer high bandwidth density, energy efficient perfor-
mance, and small footprint. The basic switching cell in the SiP MRR
switch is a microring coupled to a bus waveguide. The path the light
takes is determined by the coupling between the ring and the waveg-
uide, which is controlled by tuning the resonance between the on and
off states. In our device we use silicon’s strong thermo-optic (T-O)
coefficient (1.8×10−

4
/K), to tune the resonance at microsecond time

scales. The thermo-optic control could be replaced by an electro-
optic phase shifter, based on carrier injection or depletion into the
microring, which would operate at nanosecond time scales [20, 24].
The recent development of microresonator based comb laser sources
with greater than 10% wall plug efficiency greatly improves the
potential for low cost, energy efficient, ultra-high bandwidth commu-
nication. Laser combs with more than 100+ channels realized using
conventional silicon lithography have been demonstrated. Intercon-
nects constructed from these comb lasers in conjunction with arrays
of ring resonators operating at 25 gigabits/second per channel should
achieve bandwidth densities exceeding 2.5 terabits/second [57].

We propose to take advantage of the inherent reconfigurability
of SiP switches [26, 56, 81] to design a reconfigurable network that
can migrate connections between EPSs – an approach referred to as
bandwidth steering. By steering bandwidth to minimize the use of
higher layers of a hierarchical topology, we can taper those higher
layers more aggressively. In essence, we use bandwidth steering to
reconstruct locality that was lost due to system fragmentation and

was hard to recover with task placement. Therefore, our network will
both have lower cost and be less affected by fragmentation than a
baseline network with no bandwidth steering. In addition, bandwidth
steering increases the maximum throughput of the network and
reduces power and latency.

Steering bandwidth with EPSs instead of SiP switches would
impose a large performance and energy penalty, mitigating some of
the benefits [25]. Due to the distances between ToR and aggregation
EPSs, modern systems use optical cables. Inserting additional EPSs
in between would require another OEO conversion, which would
significantly raise procurement cost, power, and latency.

Because our motivation to reduce the cost of the network via
bandwidth tapering is only possible in a hierarchical network, we
choose a fat tree, originally proposed as a folded Clos [27], to repre-
sent a popular hierarchical topology. Fat trees and their variants are
extensively used in datacenters [21, 22, 83] and HPC [10, 45, 49, 77]
due to their favorable wiring properties and their ability to provide
full throughput for any traffic pattern, assuming perfect load bal-
ancing and full bisection bandwidth (i.e., the higher layers of the
fat tree have the same total bandwidth as the lower layers) [43]. A
recent example in HPC is the HyperX topology that is similar to a
fat tree [10]. Our approach applies to other hierarchical topologies
as well. Non-hierarchical topologies do not provide opportunities
for bandwidth tapering in the same way and thus we leave them for
future work.

Network reconfigurability aligns with the observation that homo-
geneous networks do not perform as well as heterogeneous networks
with the same building blocks [84], or networks with a combination
of heterogeneous and structured connections [62].

4 BANDWIDTH STEERING IN A FAT TREE
This section presents our approach to bandwidth steering in a hierar-
chical topology without resorting to disjoint optical and electrical
network paths. We use a fat tree throughout our paper though our
proposal applies to similar hierarchical topologies where bandwidth
can be steered in the lower levels, such as a HyperX [10].

4.1 Notation
The notations used in this section are tabulated in Table 1. For the
sake of convenience, we shall abuse the vector notation xo to denote
the vector [xoi j ] ∀ i, j ∈ {1, 2, ...,n} associated with OCS index o.

4.2 Conceptual Design
Figure 2 illustrates the concept of bandwidth steering applied to a
three-level fat tree topology. We only apply bandwidth steering to
uplinks because that is sufficient to ensure that traffic using steered
connections does not use the top layer of the fat tree. Steering down-
links is also possible and would provide extra degrees of freedom at
the cost of algorithm complexity and extra SiPs OCSs.

Bandwidth steering in a hierarchical topology such as a fat tree
reduces hop count and places less stress on the top layer of the topol-
ogy. This not only reduces latency and contention, but also allows
us to reduce the available bandwidth at the top layer, commonly
referred to as bandwidth tapering, thereby reducing power and pro-
curement costs. In addition, bandwidth steering can increase vertical
bisection bandwidth (between the left and right parts) by relocating
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Figure 2: We apply bandwidth steering between the ToR and aggregation EPSs of a three-level “vanilla” fat tree topology (left). On
the right is one example of a steered topology where ToR EPS i connects to aggregation EPS i−2

2 − 2 mod 6.

n Total number of pods (groups between
first-level ToR and second-level aggre-
gation switches) in the fat tree topology

k Total number of SiP OCSs in the fat
tree topology

T = [ti j ] ∈
Rn×n

Traffic matrix, where ti j denotes the
traffic (Gbps) sent from si to sj

r Radix of SiP optical circuit switches
Go Bipartite graph representation of a SiP

OCS with index o

X = [xoi j ] ∈

Zn×n×k
Matching of all SiP OCSs, where xoi j de-
notes the number of ToR upward-facing
links from pod i connected to aggrega-
tion switches in pod j via OCS o

D = [di j ] ∈
Zn×n

Interpod logical topology; di j denotes
the number of upward-facing links con-
necting a ToR from pod i to an aggrega-
tion switch from pod j. Note that di j =∑
o∈{1,2, ...,k }

xoi j ∀ i, j ∈ {1, 2, ...,n}

Table 1: Notations

connections that would not otherwise cross that bisection. Essen-
tially, bandwidth steering tries to capture persistent communication
that spans groups of ToR (first-level) and aggregation (second-level)
EPSs. These groups are called pods. Communication that crosses
pods would normally use top-level switches. By steering, we can
essentially reconstruct locality of communication between distant
nodes.

We do not apply bandwidth steering at the top layer of the fat tree
because none of the aforementioned benefits of bandwidth steering
would apply. Traffic destined to a top-level switch has the same
amount of bandwidth to any one of the top-level switches. However,
in a fat tree with more than three levels we can apply bandwidth
steering to each layer individually. We choose three levels because
that is typical for large-scale systems with fat trees [9, 11].

4.3 Implementation
Figure 3 shows how we arrange SiP switches between electrical
routers to implement bandwidth steering at the first layer of our
three-level fat tree. Once configured, SiP switches are “pass-through”
in that they perform no OEO (Optical-Electrical-Optical) conver-
sions or computation on passing traffic. Consequently, they incur
virtually no latency or dynamic power penalties. The static power

for our SiP switches is orders of magnitude less than the EPSs as we
discuss in Section 7.1. These qualities make SiPs attractive for seam-
less network reconfiguration. Using circuit-switched EPSs instead
would incur higher dynamic and static power, as well as increased
latency [4].

We place only one SiP switch between EPSs to minimize optical
loss. Therefore, traffic does not take more than one consecutive hop
in the optical domain. Otherwise, the optical signal may require
re-amplification, which in turn would diminish our cost and energy
motivation.

Furthermore, the placement of SiPs determines our strategy for
bandwidth steering. Our strategy, as shown in Figure 3(bottom),
allows for each ToR switch to directly connect to r −1 other aggrega-
tion switches, where r is SiP OCS radix. However, only one optical
cable is devoted to each connection. Therefore, connections can be
steered farther but with only one cable’s worth of bandwidth. Alter-
natively, we can place SiPs such that they steer connections between
neighboring aggregation switches only. This limits the distance of
steering, but it increases the available bandwidth to steer from any
particular ToR switch to an aggregation switch.

Our choice of Figure 3(bottom) was motivated by several factors.
Firstly, numerous HPC applications create persistent communication
with a small number of distant nodes [1] that are well beyond neigh-
boring, as in the case of a multi-dimensional stencil code. Because
application performance is often constrained by that communication,
increasing the distance of bandwidth steering increases the proba-
bility of capturing that critical communication. Secondly, system
fragmentation increases the average physical distance between tasks
of the same application. Therefore, bandwidth steering can essen-
tially “undo” some of the adverse effects of fragmentation. Finally,
the default placement in many applications contains locality created
by programming optimizations [30]. Therefore, a significant fraction
of application traffic stays within the same pod anyway without
steering, and therefore high-bandwidth steering to only neighboring
pods is not needed.

The number of input and output ports of SiP switches also repre-
sents a trade-off. More inputs and outputs allow bandwidth steering
across farther pods or with higher bandwidth. However, this is off-
set by the increased reconfiguration delay, increased static power
of higher-radix SiP switches, reconfiguration algorithm complex-
ity, and the number of applications that can take advantage of the
additional ports.

Our topology steered with SiPs does not have more optical fibers
compared to a vanilla fat tree, as the total number of EPS ports
remains the same. We use optical half cables through SiP switches
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Figure 3: Top: A regular (“vanilla”) 3-level fat tree topology without SiP OCSs for bandwidth steering. Bottom: A reconfigurable
fat tree topology enabled by the placement of SiP OCSs between the top-of-rack (ToR) switches at the first level of the topology and
aggregation switches (second level) of different pods. Link colors correspond to which SiP OCSs they connect to. Only links to and
from the leftmost and rightmost SiP OCSs are shown for clarity. Pods are groups of ToR and aggregation switches. The SiP switch
ingress ports are connected to the upward-facing links from ToRs, while the egress ports are connected to aggregation switches,
which are at the second level of the fat tree. Note that downward-facing links from aggregation switches are not connected to optical
switches, and hence are not steerable. As shown, bandwidth steering moves bandwidth where it is most needed, including increasing
the vertical bisection bandwidth if the traffic pattern warrants it.
to avoid doubling the number of optical transceivers in the first
layer [75].

In addition to reduced latency, dynamic power, and increased
throughput, a major motivation for bandwidth steering is that by
keeping more traffic in the lower layers of the fat tree, we can
aggressively reduce (taper) the bandwidth of the higher layers. This
reduces procurement cost as well as static power [39, 83].

4.4 Routing in a Steered Network
Even though in many cases deterministically routing packets through
the shortest available path is best, this strategy risks overloading the
steered paths. Instead, networks can route packets either obliviously
(at random) or dynamically (based on observed conditions such
as congestion) between the shortest steered and original unsteered
paths [48, 99]. We leave this exploration as future work because the
optimal strategy is co-dependent on the bandwidth steering algorithm
as well as the traffic pattern, including transient congestion. For our
work, we consider two strategies: (i) a deterministic shortest-path
routing algorithm that always chooses the steered path if there is

one because that is shortest, and (ii) a load-balancing algorithm that
always chooses a steered path if there are no packets queued for it,
otherwise it chooses randomly between the steered path and any of
the unsteered paths. This choice is made on a per-packet basis at
every router, individually for each steered path.

4.5 Bandwidth Steering Algorithm
Bandwidth steering requires knowledge of application traffic pat-
terns in order to reconfigure the logical connectivity of the fat tree.
There are multiple methods for applications to communicate their
expected traffic matrix or simply which flows are expected to be
dominant. In the case of MPI, this can be done in graph form [42]
or through text files [7, 12]. Alternatively, application traffic can
be predicted using neural networks [14, 59], deep learning [68],
or other techniques. Any of these techniques is appropriate to our
approach for bandwidth steering. In fact, as our algorithm relies
on ranking flows instead of precise knowledge of the volume of
traffic, and because steering bandwidth to serve a source–destination
pair can also serve neighboring source–destination pairs in the same
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pods depending on the network’s routing algorithm, our bandwidth
steering approach can tolerate traffic matrix inaccuracies.

We also note that HPC benchmarks typically generate persistent
traffic patterns that change slowly or do not change at all [16]. This
is an observation we confirm in our experiments. Still, we note that
some traces are in fact more dynamic. For those, we can apply our
algorithm and reconfigure SiP OCSs more often. However, the ex-
pected benefit of reconfiguration based on the new traffic pattern
must be weighed against the energy and delay cost of reconfigura-
tion. This has already been noted in related work with algorithms
that minimize reconfigurations [19], model hybrid optical/electrical
networks [60], and model the expected energy cost [96].

Given a traffic matrix, our bandwidth-steering algorithm primar-
ily aims to reduce the amount of traffic that traverses core layer
links. Reducing traffic at the core layer has the added benefit of
reducing packet latency in addition to reducing congestion due to
over-subscription. The high-level idea of our implementation is to
iteratively solve for the configuration of each OCS as a maximum-
weight matching problem, with the matching weights being propor-
tional to the amount of unsatisfied traffic flows.

Each SiP OCS can be modeled as a bipartite graph with weighted
edges, Go . We can generate Go as follows:

(1) Generate a dummy source and sink node, and two sets of
nodes namely the left-sided and right-sided nodes, L and R
respectively.

(2) For each OCS ingress port, create a node labelled with the
source’s pod ID and place it in L.

(3) For each OCS egress port, create a node labelled with the
destination’s pod ID and place it in R.

(4) Connect the dummy source node to all nodes in L with unit
capacity; then connect all nodes in R to the dummy sink node
with unit capacity.

(5) Connect all the nodes in L and R with unit capacity.

Note that the preceding pseudocode does not explicitly set the
weights associated with the edges in each bipartite graph. This is
because the weights will be set at runtime of Algorithm 1. After the
bipartite graphs of all SiP switches are formed, the bandwidth steer-
ing algorithm can be triggered to reconfigure the logical topology of
the fat tree to better support an expected traffic matrix.

Algorithm 1: Bandwidth steering

input :T = [ti j ] ∈ Rn×n - inter-pod traffic matrix
input :{G1,G2, ...,Gk } - bipartite graphs
output :X - SiP matchings
Initialize di j := 0 ∀ i, j ∈ {1, 2, ...,n}
for o ∈ {1, 2, ...,k} do

ωi j ←−
ti j

di j+1 , ∀ i, j ∈ {1, 2, ....,n};
xo ←− solve max. weight matching (Go , ω)
for (i, j) ∈ {1, 2, ...,n} × {1, 2, ...,n} do

if xoi j > 0 then
di j ←− di j + x

o
i j ;

end
end

end

Given that the overall matching problem is NP-hard [35, 36, 60],
our proposed greedy matching algorithm does not guarantee solu-
tion optimality. That said, we update the matching weights between
source-destination pod pairs while taking into account already es-
tablished links between pod pairs. This ensures that unformed OCS
matchings will prioritize formation of links between pod-pairs with
fewer links established.

In our implementation, we employ Edmond-Karp’s algorithm [33,
44] to solve each maximum-weight matching subproblem. Each
bipartite matching can be solved inO(r4). Thus, the overall algorithm
has a runtime complexity of O(kr4). Though faster algorithms for
solving weighted bipartite matching problems exist, the fact that r
tends to be small for SiP switches makes our implementation very
computationally efficient in practice.

By default, the bandwidth steering algorithm is run every time
an application initiates or terminates in the system. This is based on
our observation in NERSC’s Cori that one multi-node application
initiates approximately every 17 seconds, which is multiple orders of
magnitude longer than the reconfiguration time of modern photonic
switches that can be as low as nanoseconds [56]. In our experimen-
tal testbed, reconfiguration time is 10 to 20 µs (see Section 6.1).
Networks with longer reconfiguration delays or large problems that
make our matching algorithm have noticeable runtime may motivate
us to apply our algorithm in longer and fixed time intervals, based on
observed traffic since the last time bandwidth steering was applied.

5 EXPERIMENTAL DEMONSTRATION
In this section we describe our experimental hardware testbed for
demonstrating and evaluating our concept.

5.1 Testbed Description and Evaluation
We built a 32-node HPC testbed. The topology diagram is shown
in Figure 5 while a photograph of the components is shown in Fig-
ure 4. The EPSs shown are virtually partitioned from two OpenFlow-
enabled PICA8 packet switches, each with 48 10G SFP+ ports. We
use four SiP switches using microring-resonators (MRRs), each of
which acts as a 4×4 OCS. Two of the SiP switches shown are em-
ulated by manually connecting different optical fibers in between
experiments, which maintains the properties of a SiP switch in terms
of propagation latency. The SiP switches we use were manufactured
at the OpSIS foundry. We have also performed experiments with
similar results using SiP switches fabricated by AIM Photonics. The
compute nodes are virtual machines, with each server housing two
virtual machines. We use 16 servers; each uses Intel Xeon Processors
E5-2430 with 6 cores and 24 GB of RAM. NICs are NetXtreme II
BCM57810 10 Gigabit Ethernet from Broadcom Inc.

The network is arranged in a standard three-layer fat tree topology
with k = 2 (two lower-level switches connect to a higher-level
switch). It is also divided into two pods with 16 nodes per pod. Four
nodes are connected to each top-of-rack (ToR) packet switch. Each
ToR switch has two uplinks to a SiP switch. Therefore, each ToR
EPS can have both of its uplinks connect to the EPSs of its own pod,
or directly to pod EPSs in the other pod. As mentioned previously
in Section 4.3, only uplink fibers are connected to SiP OCSs, not
downlink fibers.
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Figure 4: A photograph of our experimental testbed.

Figure 5: A 32-node experimental testbed with four SiP
switches. Each electronic packet switch and silicon photonic
switch is managed by a central SDN control plane.

The uplinks from ToR EPSs each transmit optical signals at a
different wavelength, which are multiplexed together and enter the
bus waveguide of the SiP device. Each SiP switch uses MRRs whose
resonance frequencies are tuned to receive a specific wavelength
from the wavelength-division multiplexed (WDM) signal. Depend-
ing on how the MRRs are tuned (using the bias electric signals from
the FPGA in our control plane), different signals can be received
on the output port of each MRR which allows the SiP device to be
used as a switch. In our testbed, the wavelengths used (from the
commercial SFP+ transceivers) are C38, C34, C30, and C26 on the
ITU channel grid for each SiP switch.

5.2 Control Plane
A software-defined networking (SDN) control application acts as
the central point of management for electronic packet and SiP OCSs.
It contains the bandwidth steering algorithm. It is also used to

add/remove flows from the flow table on the EPSs. Lastly, it can mon-
itor the utilization of each link by processing byte count statistics
from each EPS in the network.

Communication between the SDN controller and the EPSs uses
the OpenFlow protocol. To manage the SiP switches, the SDN con-
troller communicates with individual FPGAs connected by an Ether-
net network, where each FPGA is responsible to apply the electric
bias signals necessary for controlling the state of a certain number of
SiP switches. During a switching operation, there is a certain amount
of time in which the link is down and packets attempting to be sent
during this time must be re-transmitted or delayed. In our testbed
this is handled by standard TCP and Ethernet protocols.

6 EXPERIMENTAL TESTBED RESULTS
We ran the Gyrokinetic Toroidal Code (GTC) [2] HPC benchmark
on our testbed described in Section 5.1. GTC is a scientific applica-
tion that simulates the behavior of plasma microturbulence in the
development of nuclear fusion power plants. We skeletonized the
open-source code of this application in order to intensify generated
traffic on our small-scale HPC testbed. The skeletonized version
of GTC has its computational routines removed and therefore oper-
ates faster, but reproduces the same traffic behavior of the original
application. We use message passing interface (MPI) [37] for syn-
chronized communication between each computation node. We also
use MPICH [3] to operate the GTC application over our testbed
servers.

Figure 6 plots the throughput of the links in the upper fat tree layer
(between the aggregation and core EPSs) over the entire runtime of
the GTC application. Each colored line shows the throughput inside
one link, identified in the legend through its source and destination
EPSs (Figure 5). Traffic intensity in the upper-layer links illustrates
the effect of configuring SiP switches to keep traffic in the lower-
layer links (between ToR and aggregation EPSs). For the purposes
of demonstrating our bandwidth steering concept, we place MPI
ranks in a way that maximizes traffic at the top layer of the fat tree.
Therefore as can be seen in the top plot of Figure 6, when we run
the GTC application, each of the upper layer links of the standard
fat tree topology are heavily utilized.

In the bandwidth-steered topology, SiP switches are configured in
a way that allows both uplinks from each ToR switch to be directly
connected to the destination’s aggregation EPS, and therefore bypass
the core layer, reducing packet switch hops by two. However, this
topology causes any traffic that flows within the same pod to use
upper layer links. However, as stated previously, the traffic generated
is heavily inter-pod, which means that the bandwidth-steered topol-
ogy is a better fit. This is reflected in the bottom plot of Figure 6,
where we observe much lower bandwidth demand in upper-layer
links. Only four of the upper layer links have traffic which ranges
between 2 to 5 Gbps. The other links are virtually unused, because
the bandwidth-steered topology has isolated the traffic to lower-layer
links. We also notice that the application executes about 25% faster
with the bandwidth-steered topology.

Following this observation, we can taper the bandwidth of the top-
level links by removing links. Thus, we remove the links between
EPS 10 and 13, EPS 12 and 13, EPS 9 and 14, and EPS 11 and 14
and perform a similar experiment to the previous paragraph. The
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Figure 6: Throughput of upper-layer links (between aggrega-
tion and core EPSs) over the entire runtime of the GTC applica-
tion for the standard fat tree topology (top) and the bandwidth-
steered topology (bottom).

results are shown in Figure 7. We note that with half its upper links
removed, the standard fat tree topology now takes 115 seconds as
opposed to 72 seconds to finish running the same application (69%
difference). Also we observe that the links that are left are congested,
with bandwidth demand reaching over 9 Gbps. Comparing this to the
bandwidth-steered topology of Figure 6, we observe that it still takes
the same amount of time of 56 seconds to finish, which matches
expectations as we observed that the bandwidth steered topology
did not use some of the upper layer links in the previous experiment.
Therefore, the bandwidth-steered topology can tolerate more taper-
ing with no performance penalty. Additionally, while real deployed
HPC systems use much higher bandwidth links (e.g. 100G Infini-
Band), the benefits of the bandwidth steering still apply, regardless
of link data rate.

6.1 Silicon Photonic Switch Reconfiguration
We show the physical switching time of our SiP switches for ON
and OFF states in Figure 8. This was done by sending a switching
configuration command from the SDN controller, and measuring
both the electrical bias signal sent from the DAC and the electrical
signal from a photodiode connected to the SiP switch at the same
time. Because we expect to reconfigure between application runs or
within large phases of an application, a high speed switching time
is not a priority. Therefore, we use thermo-optic switching of our
MRR elements and observe approximately 20 µs for ON and OFF
state switching.

After the SiP switch has changed to a new state, the optical signal
is now traveling to a different receive port on the EPS. This EPS
needs to contain the appropriate flow rule to allow for the incoming
signal to be forwarded to the intended destination. The time required
for the SDN controller to remove and add a new flow on each EPS is
78 µs per flow [82]. However, the factor that dominates the time in
which the link is unusable is the polling time that current commercial
EPSs apply to their ports. On our commercial EPSs, the polling time

Figure 7: Throughput of upper-layer links (between aggrega-
tion and core packet switches) over the runtime of the GTC
application for the standard fat tree topology (top) and the
bandwidth-steered topology (bottom) with some upper layer
links removed for reducing power consumption.

Figure 8: ON and OFF state switching times of a microring-
resonator SiP switch.

was measured to be 204 ms [82]. Therefore, the overall time that the
link cannot be used during network reconfiguration is dominated by
the EPS polling time. Even so, this reconfiguration time is orders of
magnitude faster than the 17-second average job launch interval in
Cori given that HPC benchmarks typically generate persistent traffic
patterns that change slowly or never [16].

The large polling time is due to the limitation of current commer-
cial packet switches that were not designed for handling changing
endpoints. With our current hardware, the switch polling time is
hard-coded into the operating system of the EPS and cannot be al-
tered. To mitigate this, the EPS needs to be reprogrammed so that
packets are aware of the status of the ports to know when they can
be sent. A possible way to realize this is to have checks on the out-
port link status in addition to reading the Ethernet MAC address
and IP addresses for each packet before sending. If the outgoing
port is currently not available, the packet would need to be buffered.
By designing packet switches with a much lower polling time, we
can achieve much lower reconfiguration delays on the order of hun-
dreds of microseconds [101], 109 less that the 17-second average
job launch interval in Cori. This would make a practical application
more straightforward but is outside the scope of this paper.
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7 SYSTEM-SCALE EVALUATION
7.1 Method
We use a version of Booksim [47] modified to cycle-accurately simu-
late a fat tree topology with bandwidth steering and Infiniband-style
lossless credit-based flow control [15]. We compare our “steered”
fat tree against a vanilla fat tree. When traversing up the tree, we
use per-packet oblivious routing among all shortest paths. For the
steered networks, we evaluate the two routing strategies described
in Section 4.4 and report the best results for each experiment. The
number of lower-layer EPSs that connect to a higher-layer EPS (i.e.,
fat tree radix) is chosen such that the network best matches the num-
ber of tasks of each application. ToR EPSs have an equal number
of “up” links to aggregation switches and “down” links to compute
nodes. Similar to past work, we rely on endpoints to restore flow
affinity [34, 67]. We pre-configure the network at the start of each
simulation. Reconfiguration time was shown in Section 6.1.

EPSs are modeled in terms of performance and energy after the
36-port (36 inputs and 36 outputs) Mellanox 1U EDR 100Gb/s In-
finiBand router with active optical cables [4]. SiP switches used
for bandwidth steering have 16 input and 16 output ports and are
modeled after [26]. For our SIP switches, the measured shift of res-
onance for a ring, as used in the receiver filter and optical switch,
shows a thermal efficiency of 1nm/mW while for a silicon micro
disk, as used in the transceiver modulator, the thermal efficiency is
0.54 nm/mW. For the transceiver power consumption, we assume
expected improvements in fabrication and design that will give an
average required shift of 1nm [13]. We assume tuning the input and
output ring switching elements to half FSR consumes approximately
3 mW/ring. In our switch architecture the light beam traverses 2
rings per pass. We pessimistically assume all the paths in the switch
are utilized. Therefore, our 16×16 SiPs have 96 mW total static
power. Dynamic power is negligible. We note that as most papers
do not include the stabilization due to environment and temperature
variations during operation, we are also not including it here. Opti-
mizing the power consumption of stabilization is an active area of
research [31, 69, 86].

All links are optical and are modeled after Mellanox 100Gb/s
QSFP28 MMF active optical cables [5]. For the distances in our
network, all links have a single cycle of latency.

We use a collection of HPC traces that were identified by the
US exascale computing program (ECP) as characteristic of future
exascale applications [1] captured at NERSC’s Cray XE06 (Hop-
per). To that collection we add a lattice quantum chromodynamics
code (“MILC”). The primary communication in MILC is a 4D sten-
cil with nearest neighbor and 3rd (Naik) neighbor traffic, followed
by small message allreduce operations after each iteration. This is
also a popular communication pattern in other HPC applications.
MILC was captured at NERSC’s Cray XC40 (Cori). All HPC traces
were captured using DUMPI [8]. To study datacenter traffic, we
use publicly-available traces from a production-level database pod
that Facebook published to show their workload requirements [74].
Because in Facebook traces not all pods capture packets, we only
retain traffic that is sourced and destined to pods that do capture
packets. Otherwise we risk including sparse traffic such as requests
without replies. Each trace name includes a number representing
the number of tasks it is composed of. We map one MPI task or
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Figure 9: Average network percentage throughput improve-
ment of the steered fat tree compared to a vanilla fat tree.

one source/destination ID in the case of Facebook traces to each
network endpoint. We adjust the bytes-per-FLOP ratio in our sim-
ulations to not only normalize across traces since our traces were
collected in different machines, but also to model lower bytes-per-
FLOP ratios in future HPC systems following current trends and
future predictions [6, 17].

For all traces except Facebook, we randomize the placement of
tasks to network endpoints. In addition, for experiments labelled
with more than one benchmark name, we combine traffic from more
than one application into a a single trace. This simulates the effects
of fragmentation and multiple applications sharing the network in a
production-level system, where a perfect linear placement is unre-
alistic. In fact, our random placement is pessimistic for bandwidth
steering because it places many persistent flows beyond reach of our
SiP switches for steering given their limited radix.

7.2 System-Scale Results
7.2.1 Throughput and Latency. Figure 9 summarizes through-
put and network latency improvements of the steered fat tree over a
standard vanilla fat tree with no bandwidth tapering (oversubscrip-
tion) of the top layer. By average, bandwidth steering improves sus-
tained network throughput by 1.7× and average network latency by
20%. Traces that stress the network more combined with providing
the most opportunities for bandwidth steering to capture heavy com-
munication are the ones demonstrating a higher throughput benefit.
On the other hand, traces that do not provide a noticeable benefit do
not stress the network adequately, generate intense communication
between communication pairs beyond the reach of our SiP switches
thus not allowing us to steer, or generate a more uniformly-loaded
traffic pattern that the vanilla fat tree is well suited for.

We notice an almost 6× increase in sustained network throughput
for two applications because they contain MiniDFT and the alge-
braic multigrid solver (AMG) trace, both of which generate heavy
loads and communication of the appropriate distance to leverage
bandwidth steering. However, even other traces demonstrate a solid
improvement: MILC/MiniDFT 56%, Facebook (2699) 91%, and
Facebook (3245) 66%. On the other hand, MiniDFT, Nekbone/AMG,
and Nekbone/MiniDFT/AMG demonstrate insignificant throughput
benefits due to a combination of more favorable random placement
(that therefore does not benefit from bandwidth steering) and low
communication load.
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Table 2: Reduction by bandwidth steering compared to a vanilla
fat tree with no tapering in the ratio of top-layer link utilization
divided by lower-layer link utilization. The demonstrated reduc-
tions indicate how much less traffic uses the top-layer links.

Benchmark Utilization reduction (%)

FB Database (2699) 74
FB Database (3245) 42

MILC/MiniDFT (2432) 15
MiniDFT (4525) 43

Nekbone/AMG (2725) 81
AMR/AMG (3456) 80

Nekbone/MiniDFT/AMG (4672) 69
AMG/MiniDFT (3648) 68

Average 59

Even though a vanilla fat tree with no bandwidth tapering can
provide full sustained throughput for any traffic pattern that does not
oversubscribe a destination, this is only feasible with perfect load
balancing. In our experiments for the vanilla fat tree, we use oblivi-
ous routing that–in an untapered fat tree–can outperform adaptive
routing due to imperfections of dynamic decisions with non-global
data [73]. However, to avoid having to re-order flits within a packet,
we apply routing decisions on a per-packet basis. Even though our
maximum packet size is small (256 bytes), combined with transient
imbalance from our dynamic traces, the end result is imperfect load
balance. This explains why we notice a throughput improvement
with steering compared to even an untapered vanilla fat tree. With
perfect load balancing, throughput benefits would diminish but the
relative gains of steering compared to a tapered vanilla fat tree,
explained later, would magnify.

Network latency improves in all experiments due to a 5% to 20%
reduced hop count from bandwidth steering because more flows
reach their destination without having to use the top layer. The
impact of steering to average hop count and latency depends on the
fraction of traffic that utilizes steered paths. In the case of Facebook
(3245), because more packets use steered paths proportionally to
the other traces, average network latency is reduced by 57%. On the
other hand, for most other benchmarks network latency is reduced
by an average of 15%.

7.2.2 Link Utilization. To more directly demonstrate the impact
of bandwidth steering, Table 2 shows the reduction with bandwidth
steering compared to a vanilla fat tree of the ratio of utilization of
upper-layer links divided by the utilization of lower-layer links. A
larger improvement indicates that more communication does not use
the higher-layer links. This utilization ratio directly correlates with
latency reduction due to a decreased hop count even for benchmarks
with no throughput benefit.

7.2.3 Bandwidth Tapering. Figure 10 illustrates the relative im-
provements of the steered topology compared to the vanilla fat tree
by average across benchmarks as we reduce the available bandwidth
at the top layer of the network. In other words, we show how much
better steering performs compared to the vanilla fat tree as a func-
tion of tapering. We adjust the tapering factor by removing optical
fibers at the top layer and then any core and aggregation switches to
maintain high port utilization.
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Figure 10: The percentage by which the gap between steered
and unsteered topologies widens when tapering top-layer band-
width. Tapering factor refers to how much less bandwidth is
available at the top (aggregation-to-core) layer of the fat tree
compared to the bottom (ToR-to-aggregation) layer. For in-
stance, a bandwidth tapering factor of two means that the top
layer has half the bandwidth than the bottom layer.
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Figure 11: The percentage of throughput by which the gap be-
tween steered and unsteered topologies widens when tapering
top-layer bandwidth for four benchmarks. The rest do not form
adequate top-layer congestion to show an impact.

The vanilla fat tree experiences a decrease in throughput and
increase in network latency as tapering increases. However, for a
tapering factor of 16 we notice that in the steered network latency
worsens as well, because even packets that do not benefit from
steered paths are enough to form congestion at the top layer. The
relative improvements of steered versus vanilla as tapering increases
are driven by Facebook (3245), MILC/MiniDFT, AMR/AMG, and
AMG/MiniDFT because these form adequate and sustained conges-
tion in the upper layer to show the impact of tapering. For those
benchmarks, throughput improvement reaches up to 20% (shown in
Figure 11) and network latency 25%.

7.2.4 Power. When comparing power, we need to differentiate
between dynamic and static power. Since dynamic power through
our SiP switches is negligible, reducing hop count (EPS traversals)
provides a proportional reduction in dynamic power. In addition,
bandwidth steering reduces static power by preventing throughput
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Figure 12: Power per unit throughput (dissipated power per
byte transferred) reduction for bandwidth steering versus the
vanilla fat tree.
loss with more aggressive bandwidth tapering. For example, tapering
from a factor of 1 to 16 in the AMG/AMR application reduces the
number of EPSs by 16%. Given that our commercial Mellanox EPSs
have about three orders of magnitude higher static power due to their
electrical components and SERDES compared to our SiPs, reducing
the number of EPSs has a large impact to network-wide energy.
Therefore, that 16% reduction in the number of EPSs combined with
the reduced number of optical fibers translates to a 27% network
static power reduction. Bandwidth steering makes obtaining these
power reductions possible and not only prevents performance loss
but also increases throughput in many of our applications.

To provide a more fundamental view of power, we define “power
per unit throughput”. Power per unit throughput is essentially power
consumption divided by average throughput. This metric essentially
shows how much power we need to pay per unit of throughput (byte
transferred). In other words, for the same power consumption how
much more throughput a topology with steering provides, or vice
versa: how much less power for the same throughput.

Figure 12 shows that by average bandwidth steering consumes
14% less dynamic power and 36% less static power per unit through-
put. This figure does not taper bandwidth, to show that the insignif-
icant increases in dynamic and static power by our SiP switches
are dwarfed by throughput and latency improvements. Traces with
higher throughput improvements in Figure 9 tend to do better in
static power. All traces show dynamic power improvement due to the
reduced hop count by bandwidth steering even when communication
load is low. The largest improvement comes from MiniDFT/AMG
(82% static, 12% dynamic), AMG/AMR (85% static, 14% dynamic),
and Facebook (2699) (46% static, 12% dynamic).

7.2.5 Latency Distribution. Bandwidth steering does not change
the network diameter and therefore the maximum hop count since
the property remains that once packets start traversing in the “down”
direction, they do not switch back to the “up” direction. This means
that the zero-load maximum latency remains unchanged. However,
we notice a decrease in maximum network latency of up to 25%
depending on the application, due to decreased congestion at the
upper layer of the fat tree with bandwidth steering.

In addition, while bandwidth steering reduces average and mean
network latency, it increases standard deviation. That is because
the number of packets that do not need to use the top layer is in-
creased with bandwidth steering compared to the vanilla fat tree.

This creates a wider spread between short- and many-hop packets.
This is intensified by randomizing the placement of tasks to net-
work endpoints. In our experiments, this increase is from 5% to
54% depending on the application, with AMG/MiniDFT having
the maximum and Facebook (3245) the minimum. All except two
applications, AMG/MiniDFT with 54% and AMR/AMG with 37%,
are in the 8% to 18% range. The gap narrows as we taper the top-
layer bandwidth, because the steered network’s distribution remains
largely unchanged while the vanilla fat tree forms more congestion.

7.2.6 Fragmentation. Furthermore, we conduct experiments be-
tween traces with randomized placement (as has been the case thus
far) and a “linear” placement where task i is placed on network
endpoint i. This places neighboring tasks in neighboring network
endpoints with no fragmentation and preserves all placement op-
timizations and communication locality that the application con-
tains [30, 65]. The purpose is to clearly show how bandwidth steer-
ing can reconstruct locality in an execution where locality has been
lost due to unfavorable placement and fragmentation on the system.
For these experiments we run individual application traces.

In Nekbone, throughput drops about 45% from linear to random-
ized placements in the vanilla fat tree, illustrating that fragmentation
ruins good locality in this application. However, bandwidth steering
recovers locality and provides the same throughput in both linear
and randomized placements, in particular 15% higher than vanilla
linear and 1.3× higher than vanilla randomized.

The effect of randomization on bandwidth steering effectiveness
varies. For MiniDFT with a linear placement, bandwidth steering
provides a 24% throughput benefit. However, when steering on a
randomized trace bandwidth steering provides marginal benefits
because the lost locality is out of reach of our SiP switches. In
contrast, we observe that AMG has a 50% higher throughput when
steering on a randomized placement rather than a linear one. That is
because AMG has some distant communication that is beyond the
reach of our SiP switches in the linear case. Some of this locality
can be recovered in the randomized case because some persistent
communication pairs moved to be in range of our SiP switches.

7.2.7 SiP Switch Radix. Finally, we evaluate the impact of SiP
switch radix (number of input and output ports). Larger-radix SiP
switches provide more options to bandwidth steering because a sin-
gle uplink from a ToR EPS can be connected to different output
ports and thus more paths. Therefore, in our physical layout configu-
ration of Figure 3, a larger SiP switch radix provides the opportunity
to steer bandwidth between pods farther away. This has a perfor-
mance impact for application traces with persistent communication
between pods that can be captured by high-radix SiP switches but
not lower radix ones, such as applications with a diverse set of com-
munication endpoints. In our traces, if we reduce the radix of our
SiP switches to 8×8 from the default 16×16, we notice a throughput
drop of 0% to 5% for most traces with steering. However, other
traces show a larger impact because radix affects a considerable
number of their persistent flows. For example, AMG/MiniDFT expe-
riences a 36% throughput reduction and a 21% increase in average
latency, Facebook 3245 experiences a 35% throughput reduction and
a 8% increase in average latency, while Nekbone/MiniDFT/AMG
experiences only a 10% increase in average network latency.
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We choose 16×16 SiP switches as default because they still have
insignificant static power compared to our commercial EPSs and re-
tain fast reconfiguration times. Optical switches with an even higher
radix either by composing multiple SiP switches, using MEMS
switches [70], or using AWGRs [55] switches would face reconfig-
uration time, signal loss, or other drawbacks which in turn would
affect the system-wide efficiency of bandwidth steering. Our SiP
switches do not require additional circuitry to boost the signal and
assure signal integrity, and have negligible dynamic power and tra-
versal latency. As our results show, bandwidth steering extracts
significant benefit even with modest-radix SiP switches.

8 RELATED WORK
Bandwidth steering in system-scale networks appears in different
contexts and makes use of different enabling technologies. Opti-
puter [29] 2002 started to bring telecom-grade optical circuit switches
(Glimmerglass) into the datacenter, but was still largely focused on
transcontinentally distributed datacenters. In a datacenter context,
past work uses electrical four- or six-port converter switches to
configure the network as either a fat tree or a random graph [97].
The algorithm that makes this decision is, however, not discussed
and therefore experimental comparisons are infeasible. Other work
performs steering of ToR switch uplinks with a greedy algorithm,
but uses electrical circuit-switched switches that increase the per-
formance and cost overhead of steering, and does not use steering
to maximize bandwidth tapering among performance and cost [23].
Further work has shown the promise of random graphs in the datacen-
ter, though practical implementation becomes more challenging [85].
More recent approaches offer reconfigurability in a two-level topol-
ogy by cycling through pre-configured connections [63]. Other work
uses free-space optics with ceiling mirrors to offer reconfigurability
between ToR switches using a centralized controller [40].

Bandwidth steering is less studied in HPC despite its demon-
strated potential [52, 100]. Early work, such as CLINT [32], focuses
on dual-plane approaches where packet switches carry ephemeral
traffic flows and configured dedicated circuit-switched paths carry
persistent “elephant” traffic flows. However, the overhead of recon-
figuration and the extra cost of operating both passive (circuit) and
active (packet) commodity switch components have caused this ap-
proach to fall out of favor. Other similar work uses the same context
but uses optical paths for persistent flows [16, 89, 90, 95]. HFAST
2005 [79] identified persistent patterns in HPC application commu-
nication patterns that could be exploited by using optical circuit
switching to dynamically reconfigure interconnects to suit scien-
tific applications. However, the “ fit-tree” algorithm [51] to guide
the topological reconfiguration required very large-radix optical cir-
cuit switches. Recent work applies bandwidth steering using more
practical-to-implement lower-radix circuit switching to a Dragonfly
topology [53, 81] by using SiP switches to avoid group-to-group
bottlenecks [96]. This is inherently a different goal than our objec-
tives in a hierarchical topology. Other work uses wavelengths [54]
or routing algorithms [91] to provide reconfigurability.

Further work examines the scheduling problem of reconfigura-
tion by taking into account quality of service constraints [87], the
reconfiguration delay that determines if reconfiguring the topology
is prudent [94], considers the ratio of traffic that should use the

electrical versus the optical resources [60], and minimizes the num-
ber of reconfigurations to achieve a certain effect [19]. Our work is
synergistic with these techniques. Our work is also synergistic with
task placement to increase locality [46, 64], performance and cost
predictors [88], and global power optimization methods [88] because
these approaches aim for a similar result as bandwidth steering but
in a different way. Process migration can also reconstruct locality,
but that takes up to tens of seconds which is orders of magnitude
longer than our bandwidth steering approach [93].

Our work offers a complete solution to reduce procurement and
energy costs of networks by minimizing idle bandwidth (maximizing
bandwidth tapering) combined with latency gains. This motivates
us to choose a hierarchical topology that allows us to pursue our
goal, and in particular a fat tree as a representative hierarchical
topology. Fat trees and their variants are extensively used in datacen-
ters [21, 22] and HPC [10, 45, 49, 77] due to the favorable wiring
properties and their ability to handle any traffic pattern with full bi-
section bandwidth assuming perfect load balance [43]. Furthermore.
we describe a practical scalable algorithm, we offer full configura-
tion flexibility to match traffic demands instead of pre-determined
random graphs, we do not separate the network into disjoint optical
and electrical parts which complicates scheduling, we demonstrate
the impact of bandwidth steering to fragmentation, and we focus on
HPC where bandwidth tapering is less studied. We co-design band-
width steering with optical components that we design with minimal
added cost and no performance penalty. We compare our approach
to a canonical fat tree because the comparison between a fat tree and
random graphs and other topologies is well studied [41, 66].

9 CONCLUSION
We describe bandwidth steering, a synergistic hardware–software
approach that takes advantage of the inherent reconfigurability of
emerging SiP switches to change (steer) the connectivity of the lower
layers of a hierarchical topology in order to reduce top-layer uti-
lization, without dividing the network into disjoint electrical and
optical paths. This allows us to more aggressively taper the expen-
sive long-distance bandwidth of higher layers. Bandwidth steering
reconstructs locality that was lost due to system fragmentation and
was hard to recover with task placement. We demonstrate bandwidth
steering with a scalable maximum-weight matching algorithm in a
hardware testbed and at system scale using simulations with a few
thousand network endpoints. In our experimental testbed, bandwidth
tapering reduces execution time by 69%, and is unaffected from
tapering upper-layer bandwidth. At system scale, bandwidth steering
reduces power per unit throughput by 36% static and 14% dynamic,
and average network latency by up to 20%. These improvements
magnify by up to 20% for throughput and 25% for network latency
as we aggressively taper top-layer bandwidth. Bandwidth tapering
is immediately applicable to HPC and datacenter networks using
today’s network technology.
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[58] E. A. LeÃşn, I. Karlin, A. Bhatele, S. H. Langer, C. Chambreau, L. H. Howell,
T. D’Hooge, and M. L. Leininger. 2016. Characterizing Parallel Scientific
Applications on Commodity Clusters: An Empirical Study of a Tapered Fat-Tree.
In SC ’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 909–920.

[59] Y. Li, H. Liu, W. Yang, D. Hu, and W. Xu. 2016. Inter-data-center network
traffic prediction with elephant flows. In NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium. 206–213. https://doi.org/10.1109/
NOMS.2016.7502814

[60] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George Papen,
Stefan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G. Andersen,
Michael Kaminsky, George Porter, and Alex C. Snoeren. 2015. Scheduling
Techniques for Hybrid Circuit/Packet Networks. In Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and Technologies (CoNEXT
’15). Article 41, 13 pages. https://doi.org/10.1145/2716281.2836126

[61] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William Carlson,
Laura Carrington, George Chiu, Robert Colwell, William Dally, Jack Don-
garra, Al Geist, Rud Haring, Jeffrey Hittinger, Adolfy Hoisie, Dean Micron
Klein, Peter Kogge, Richard Lethin, Vivek Sarkar, Robert Schreiber, John Shalf,
Thomas Sterling, Rick Stevens, Jon Bashor, Ron Brightwell, Paul Coteus, Erik
Debenedictus, Jon Hiller, K. H. Kim, Harper Langston, Richard Micron Mur-
phy, Clayton Webster, Stefan Wild, Gary Grider, Rob Ross, Sven Leyffer, and
James Laros III. 2014. DOE Advanced Scientific Computing Advisory Sub-
committee (ASCAC) Report: Top Ten Exascale Research Challenges. (2 2014).
https://doi.org/10.2172/1222713

[62] Lailong Luo, Deke Guo, Wenxin Li, Tian Zhang, Junjie Xie, and Xiaolei Zhou.
2015. Compound graph based hybrid data center topologies. Frontiers of
Computer Science 9, 6 (01 Dec 2015), 860–874. https://doi.org/10.1007/s11704-
015-4483-5

[63] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George
Papen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A Scalable, Low-
complexity, Optical Datacenter Network. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’17). 267–280.
https://doi.org/10.1145/3098822.3098838

[64] G. Michelogiannakis, K. Z. Ibrahim, J. Shalf, J. J. Wilke, S. Knight, and J. P.
Kenny. 2017. APHiD: Hierarchical Task Placement to Enable a Tapered Fat Tree
Topology for Lower Power and Cost in HPC Networks. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID).
228–237. https://doi.org/10.1109/CCGRID.2017.33

[65] S. H. Mirsadeghi, J. L. TrÃd’ff, P. Balaji, and A. Afsahi. 2017. Exploiting
Common Neighborhoods to Optimize MPI Neighborhood Collectives. In 2017
IEEE 24th International Conference on High Performance Computing (HiPC).
348–357. https://doi.org/10.1109/HiPC.2017.00047

[66] M. A. Mollah, P. Faizian, M. S. Rahman, X. Yuan, S. Pakin, and M. Lang. 2018.
A Comparative Study of Topology Design Approaches for HPC Interconnects.
In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). 392–401. https://doi.org/10.1109/CCGRID.2018.00066

[67] Giovanni Neglia, Vincenzo Falletta, and Giuseppe Bianchi. 2004. Is TCP Packet
Reordering Always Harmful?. In Proceedings of the The IEEE Computer Soci-
ety’s 12th Annual International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunications Systems (MASCOTS ’04). 87–94.

[68] L. Nie, D. Jiang, L. Guo, S. Yu, and H. Song. 2016. Traffic Matrix Prediction and
Estimation Based on Deep Learning for Data Center Networks. In 2016 IEEE
Globecom Workshops (GC Wkshps). 1–6. https://doi.org/10.1109/GLOCOMW.
2016.7849067

[69] K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K.
Bergman. 2014. Wavelength Locking and Thermally Stabilizing Microring
Resonators Using Dithering Signals. Journal of Lightwave Technology 32, 3
(Feb 2014), 505–512. https://doi.org/10.1109/JLT.2013.2294564

[70] I. Plander and M. Stepanovsky. 2017. MEMS technology in optical switching.
In 2017 IEEE 14th International Scientific Conference on Informatics. 299–305.
https://doi.org/10.1109/INFORMATICS.2017.8327264

[71] Rastin Pries, Michael Jarschel, Daniel Schlosser, Michael Klopf, and Phuoc Tran-
Gia. 2012. Power Consumption Analysis of Data Center Architectures. In Green
Communications and Networking, Joel J. P. C. Rodrigues, Liang Zhou, Min
Chen, and Aravind Kailas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
114–124.

[72] Francesco Redaelli, Marco D. Santambrogio, and Donatella Sciuto. 2008. Task
Scheduling with Configuration Prefetching and Anti-fragmentation Techniques
on Dynamically Reconfigurable Systems. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE ’08). 519–522. https://doi.org/
10.1145/1403375.1403500

[73] G. Rodriguez, C. Minkenberg, R. Beivide, R. P. Luijten, J. Labarta, and M. Valero.
2009. Oblivious routing schemes in extended generalized Fat Tree networks. In
2009 IEEE International Conference on Cluster Computing and Workshops. 1–8.
https://doi.org/10.1109/CLUSTR.2009.5289145

[74] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication
(SIGCOMM ’15). ACM, 123–137. https://doi.org/10.1145/2785956.2787472

[75] SAMTEC. 2019. PCIe Optical Half Cables Application Note. Technical Re-
port. http://suddendocs.samtec.com/notesandwhitepapers/pcie_half_cable_app_

14

https://doi.org/10.1109/CLUSTR.2008.4663762
https://doi.org/10.1109/CLUSTR.2008.4663762
https://doi.org/10.5120/4576-6624
https://doi.org/10.1145/3126908.3126967
https://doi.org/10.1109/TPDS.2013.104
https://doi.org/10.1109/TPDS.2013.104
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1145/1555754.1555783
https://doi.org/10.1109/TKDE.2018.2848257
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/TPDS.2009.61
https://doi.org/10.1109/JSTQE.2010.2051419
https://doi.org/10.1109/JLT.2015.2479296
https://doi.org/10.1109/JLT.2015.2479296
https://doi.org/10.1117/12.2292149
https://doi.org/10.1117/12.2292149
https://doi.org/10.1109/NOMS.2016.7502814
https://doi.org/10.1109/NOMS.2016.7502814
https://doi.org/10.1145/2716281.2836126
https://doi.org/10.2172/1222713
https://doi.org/10.1007/s11704-015-4483-5
https://doi.org/10.1007/s11704-015-4483-5
https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1109/CCGRID.2017.33
https://doi.org/10.1109/HiPC.2017.00047
https://doi.org/10.1109/CCGRID.2018.00066
https://doi.org/10.1109/GLOCOMW.2016.7849067
https://doi.org/10.1109/GLOCOMW.2016.7849067
https://doi.org/10.1109/JLT.2013.2294564
https://doi.org/10.1109/INFORMATICS.2017.8327264
https://doi.org/10.1145/1403375.1403500
https://doi.org/10.1145/1403375.1403500
https://doi.org/10.1109/CLUSTR.2009.5289145
https://doi.org/10.1145/2785956.2787472
http://suddendocs.samtec.com/notesandwhitepapers/pcie_half_cable_app_note.pdf


note.pdf
[76] V. Sasikala and K. Chitra. 2018. All optical switching and associated tech-

nologies: a review. Journal of Optics 47, 3 (01 Sep 2018), 307–317. https:
//doi.org/10.1007/s12596-018-0452-3

[77] S. Scott, D. Abts, J. Kim, and W. J. Dally. 2006. The BlackWidow High-Radix
Clos Network. In 33rd International Symposium on Computer Architecture
(ISCA’06). 16–28. https://doi.org/10.1109/ISCA.2006.40

[78] John Shalf, Sudip Dosanjh, and John Morrison. 2011. Exascale Computing
Technology Challenges. In Proceedings of the 9th International Conference
on High Performance Computing for Computational Science (VECPAR’10).
Springer-Verlag, Berlin, Heidelberg, 1–25.

[79] J. Shalf, S. Kamil, L. Oliker, and D. Skinner. 2005. Analyzing Ultra-Scale
Application Communication Requirements for a Reconfigurable Hybrid Intercon-
nect. In Proc. SC2005: High performance computing, networking, and storage
conference.

[80] Y. Shen, A. Gazman, Z. Zhu, M. Y. The, M. Hattink, S. Rumley, P. Samadi, and
K. Bergman. 2018. Autonomous Dynamic Bandwidth Steering with Silicon
Photonic-Based Wavelength and Spatial Switching for Datacom Networks. In
2018 Optical Fiber Communications Conference and Exposition (OFC). 1–3.

[81] Yiwen Shen, Storm Madeleine Glick, and Keren Bergman. 2019. Silicon
photonic-enabled bandwidth steering for resource-efficient high performance
computing. In Proceedings Volume 10946, Metro and Data Center Optical Net-
works and Short-Reach Links II (SPIE), Vol. 10946.

[82] Yiwen Shen, Maarten H. N. Hattink, Payman Samadi, Qixiang Cheng, Ziyiz Hu,
Alexander Gazman, and Keren Bergman. 2018. Software-defined networking
control plane for seamless integration of multiple silicon photonic switches
in Datacom networks. Opt. Express 26, 8 (Apr 2018), 10914–10929. https:
//doi.org/10.1364/OE.26.010914

[83] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Holzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Googleś Datacenter Network. In Sigcomm
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