SiP-ML: High-Bandwidth Optical Network Interconnects for Machine Learning Training

Mehrdad Khani1, Manya Ghobadi1, Mohammad Alizadeh1, Ziyi Zhu2, Madeleine Glick2, Keren Bergman2, Amin Vahdat3, Benjamin Klenk4, Eiman Ebrahimi4
1Massachusetts Institute of Technology 2Columbia University 3Google 4NVIDIA

ABSTRACT
This paper proposes optical network interconnects as a key enabler for building high-bandwidth ML training clusters with strong scaling properties. Our design, called SiP-ML, accelerates the training time of popular DNN models using silicon photonics links capable of providing multiple terabits-per-second of bandwidth per GPU. SiP-ML partitions the training job across GPUs with hybrid data and model parallelism while ensuring the communication pattern can be supported efficiently on the network interconnect. We develop task partitioning and device placement methods that take the size of providing multiple terabits-per-second of bandwidth per GPU. SiP-ML exploits the predictability of ML training traffic patterns to find a parallelization strategy that meets the limitations of the optical topology at hand. Specifically, we explore two all-optical architectures: (i) SiP-OCS, an Optical Circuit Switch (OCS) design based on commercially available switches; and (ii) SiP-Ring, a switchless ring design enabled by reconfigurable Micro-ring resonators (MRRs) [21] embedded in SiP interfaces [22, 23]. Each of these architectures inherits one of the constraints of optical circuit-switched interconnects to an extreme. Optical Circuit Switches are too slow to reconfigure (e.g., 10 ms [24–26]) for ML models with a few milliseconds of iteration time, while the ring topology can only support communication between nearby GPUs. We show that SiP-ML’s parallelization algorithm can produce traffic patterns suited to both these constraints by taking the degree limitation of all-optical circuit-switched interconnects as an input parameter.

To evaluate SiP-ML, we develop a detailed simulator for distributed neural network training. Our simulation results show the following: (1) for representative Natural Language Processing and Computer Vision DNN models, SiP-ML speeds up the total training time by a factor of 1.3–9.1x compared to today’s electrical network fabrics; (2) although SiP-Ring’s switchless design constrains the physical topology to a ring, it performs similarly to SiP-OCS because of the fast reconfigurability offered by the MRRs; (3) a SiP-ML interconnect with per-GPU bandwidth B performs as well as or better than an ideal, full-bisection electrical switch with per-GPU bandwidth $B/2$; (4) when per-GPU bandwidth is high (e.g., order of Terabits-per-second), hybrid parallelism strategies outperform data parallelism by up to $2x$ in terms of time-to-accuracy.

This work does not raise any ethical issues.
To identify the bandwidth requirements of ML systems, we first describe two fundamental scaling paradigms.

Approach 1: Weak Scaling. The first approach is to scale the throughput of data processing (number of processed data samples/sec) as the number of workers increases. The principal technique for throughput scaling is to keep the local batch size per worker fixed and grow the global batch size as more workers are added to the training job [43]. As a result, the entire system is able to process a larger global batch while keeping the iteration time of each worker the same. It is widely thought that training with large batches reduces the time-to-accuracy because large batches can produce better model updates, allowing the training to converge with fewer total iterations [44, 45]. However, increasing the global batch size in DNN training does not always translate to improving the number of iterations for all models [46, 47]. As an example, Fig. 1 compares the throughput and time-to-accuracy of two DNN models: Transformer [48] and ResNet-50 [49]. The numbers are obtained from Nvidia’s benchmark results [50]. As shown in Fig. 1a, increasing the number of GPUs increases the batch size and thus improves the throughput (images/sec) of both models. However, the time-to-accuracy does not scale at the same rate and starts to plateau at large scales, as shown in Fig. 1b. As we show in our evaluations, reducing the time-to-accuracy at 1000-GPU scale requires significantly higher bandwidth than today’s clusters (§4).

Approach 2: Strong Scaling. Instead of reducing the number of iterations, a more effective scaling approach is to reduce the iteration time as the number of workers increases. This approach is called strong scaling [43]. In contrast to weak scaling where the system operates on a larger global batch size as the system scales, strong scaling parallelizes the computation for a fixed batch size either by reducing the local batch size per worker or by partitioning the computation task across workers. However, achieving strong scaling is challenging, because reducing the iteration time leads to more frequent model updates and, hence, requires the 1/0 bandwidth to scale with the number of workers [47]. Furthermore, since each worker must perform small granular computations, strong scaling can be sensitive to network latency and small inefficiencies in the compute/network software stack.

Bandwidth Requirements of Weak and Strong Scaling. Today, the technique most commonly used to scale a distributed training job is weak scaling using the DP strategy. This approach is popular because as more workers are added to the job: (i) the computation time of each worker remains constant (since the local batch is constant); and (ii) the size of data transfers at each iteration remains constant (because it depends on the DNN model). In contrast, in strong scaling approaches, the bandwidth requirement increases (often super linearly) as the system is scaled, since (i) strong scaling leads to reduced computation time per worker and shorter training iterations, and (ii) the amount of data exchanged at each iteration stays the same or even grows with scale. In today’s systems, the degree of MP is limited to 8 or 16 workers within one DGX box [51] with Tbps communication bandwidth per GPU [42, 52–54].

2.3 Silicon Photonics for ML Training

A straightforward approach to meet the high-bandwidth requirement of large-scale training workloads is to augment the bandwidth of existing electrical switches. However, recent trends in SERDES/packet switching technology suggest that we will hit a wall in...
In this paper, we propose all-optical interconnects as an attractive solution to build the next generation of ML systems. We argue that ML workloads present a unique opportunity to build specialized circuit-based interconnects. While conventional datacenter workloads have unpredictable behavior, with short flows dominating the traffic, ML workloads are predictable, periodic, and consist of mostly large transfers. Importantly, the parallelization algorithm determines the circuit schedules, and the entire training repeats the same communication pattern at every iteration. This unique characteristic simplifies the control-plane logic with which datacenter optical designs have grappled for years.

3 SIP-ML DESIGN

In this section, we introduce degree and reconfiguration latency as fundamental factors affecting all optical circuit-based interconnects (§3.1). We then discuss our parallelization algorithm, explaining how it takes these factors into account to produce a suitable parallelization strategy for a given topology (§3.2). Finally, we discuss SiP-ML’s control plane and wavelength allocation (§3.3).

3.1 Degree and Reconfiguration Latency

Fig. 2 illustrates the differences between today’s ML training clusters and SiP-ML. The state-of-the-art clusters have two bandwidth domains: (i) a Gbps bandwidth domain that interconnects thousands of servers using conventional network fabrics and off-the-shelf NICs; (ii) an all-to-all Tbps bandwidth domain that tightly connects a handful of GPUs inside a server or a DGX. In contrast, a SiP-ML cluster consists of disaggregated GPUs, each equipped with Tbps SiP interfaces, interconnected by an all-optical network. An example of a SiP interface is the TeraPHY optical I/O technology developed by Ayar Labs [64], capable of carrying 2 Tbps bandwidth (80 wavelengths each carrying 25 Gbps [65]). A GPU can be equipped with several of these interfaces. To put the choice of topology into perspective, we first introduce two fundamental factors affecting all optical circuit-switched interconnects.

Degree. Unlike packet-switched networks, optical interconnects are circuit-based. Hence, at any point in time, each node has a limited number of active circuits, thereby limiting the number of nodes it can communicate with directly. We refer to this as the node degree. A topology with degree D means each node can simultaneously maintain, at most, D circuits. Depending on the traffic pattern, these circuits can be established with one to D other nodes. Topologies with higher degree are suited for traffic patterns with high fan-out, but they also tend to have a larger cabling footprint.

Reconfiguration Latency. The reconfiguration latency puts a lower bound on how long the circuits should be kept to achieve a high duty cycle [66]. For a topology with reconfiguration latency r, the circuit hold time should be longer than, for instance, $10\times r$ to achieve a 90% duty cycle.

There are various optical topologies that realize SiP-ML’s vision. At one end of the spectrum are switch-based interconnects, such as MEMS-based Optical Circuit Switch interconnects [24, 25, 55, 67, 68] and Rotor-based interconnects [66, 69]. On the other end lie switch-free topologies such as ring [26, 70, 71], circulant graphs [72], torus [73, 74], hypercube [75] and dragonfly interconnects [76–78].

In this paper, we consider two topologies at opposite ends of the spectrum, as shown in Fig. 3. SiP-OCS is the first natural topology choice because OCSs are commercially available today [79]. However, their reconfiguration latency is ≈ 10 ms, making them suitable for circuits that last through the entire training. Fig. 3a illustrates our SiP-OCS topology. SiP-OCS consists of Q optical switches, each with N ports (the same as the number of GPUs), where each GPU is connected to every OCS in a flat topology. Hence, in SiP-OCS, the degree D is equal to the number of switches (Q).

As an alternate, extreme design point, we also investigate the possibility of removing the switching elements entirely and evaluate the performance of a minimalistic, switch-free topology called SiP-Ring. In contrast to SiP-OCS, SiP-Ring reconfigures wavelengths...
within each port to achieve logically rich topologies. Reconfiguration is done using Micro-ring resonators (MRRs) [21] embedded in SiP ports [22, 23]. MRRs act as spectral filters to select and forward wavelengths, and they enable the reuse of wavelengths across non-overlapping segments of the ring (Fig. 13a in the appendix illustrates an example). Our experiments show MRRs can switch between different wavelengths within 25 µs (§4.4). We discuss the SiP-Ring design in more detail in Appendix A.1.

3.2 Degree-Aware Parallelization Strategy

A DNN can be viewed as a directed acyclic graph (DAG) of operations (ops). To parallelize a DNN training job, we need to decide which GPU is responsible for running each op (or a part of each op). As a simple example, to train a model with global batch size b using DP on N GPUs, we break each op into N parallel sub-ops, each operating on a local batch of size b/N (this is referred to as splitting on the sample dimension [38]), and we map one sub-op to each GPU. In general, MP follows similar steps: first partition each op into parallel ops, then place the sub-ops. However, the partitioning and placement decisions are not as straightforward as in DP.

Our parallelization algorithm takes the following as input: (i) a DNN computation graph, $G_{in} = (V, E)$, where V is the set of operations (nodes) and E is the set of data dependencies (edges) between the operations; (ii) the global batch size denoted by b; (iii) a parameter k denoting the number of GPUs to partition the model using MP; (iv) a parameter l denoting the number of GPUs to partition the data using DP; and (v) the physical degree constraint of the optical network topology, denoted by D. Our algorithm finds a hybrid MP-DP strategy with k-way model parallelism and l-way data parallelism for $N = k \times l$ GPUs, such that the training iteration time is minimized while satisfying the degree constraint (i.e., each GPU communicates with no more than D other GPUs). We assume all GPUs are identical.

The key strategy in our algorithm is to map GPU devices into a DNN computation on k GPUs. Specifically, we begin by splitting the GPUs into l groups, with k GPUs per group, and we divide the global batch equally between the groups (i.e., each group is responsible for a local batch of training data of size b/l). Then, we compute an MP placement across k devices. We replicate the same placement in each group to produce the final hybrid MP-DP strategy. Fig. 4 illustrates the key steps in our parallelization algorithm across 8 GPUs, with $k = 4$-way MP, $l = 2$-way DP, and degree constraint $D=3$. We use this as a running example in the remainder of this section.

(i) Partitioning. DNN training involves sequential stages of computation, as dictated by the data dependencies in the computation graph. For example, the graph in Fig. 4(a) has 4 sequential ops, shown as rectangles of different colors. The size of each rectangle represents the computation time of the op. The key to minimizing training time is to balance the computation load across devices at every stage of computation to maximize parallelism. Note that balancing per-stage computation is not the same as balancing the total load on each device. Sequentially-dependent ops cannot run in parallel, hence placing them on the same device has no impact on run-time compared to placing them on different devices, even though it increases the total load on the device.

To minimize per-op run-time, it is desirable to split ops into smaller pieces of computation. There are many ways to split an op; for example, a 2D convolution can be split across height, width, and channel dimensions [38]. However, in splitting ops, we must take care not to compromise GPU utilization. GPUs (and other ML accelerators) internally distribute an op over a massive number of cores. If we split an op too finely, it will not have enough compute intensity to utilize the cores effectively, and, therefore, we will achieve no reduction in run-time from splitting. As a result, we choose a minimum quantum of computation time, τ, and split ops to sub-ops of a size near τ. We also cap the maximum number of partitions for each op at k (the MP degree), as there is no point in splitting beyond the maximum number of available parallel workers. The result is a balanced computation graph whose vertices are the sub-ops, as shown in Fig. 4(b) for our running example.

The right choice of the split dimension depends on the type of the op and can impact the communication pattern between the sub-ops. For example, in the case of a 2D convolution on an image with multiple output channels, if we divide the op across the height and width dimensions of the input, none of the sub-ops needs to know the entire input image. However, if we split the op across the output channel dimension, every sub-op needs a copy of the input image, leading to a broadcast communication pattern with high overhead. We select the most efficient dimension for each op. Since we always split ops uniformly, sub-ops tend to communicate the same amount of data with their descendants (the edges between the sub-ops at each stage in Fig. 4(b) carry roughly the same amount of traffic).

(ii) Placement. Next, we assign a GPU device to each op in the balanced graph. Our placement aims to minimize the total run-time while respecting the communication degree constraint D required by the optical interconnect. Each GPU has two types of communications: (i) it must communicate with some of the GPUs in its MP group (depending on the op placement); (ii) given the hybrid DP-MP strategy, there are l MP groups that need to synchronize their parameters through DP. Hence, each GPU must communicate with its counterparts in the other l MP groups to perform an all-reduce operation to synchronize the model parameters across the DP partitions. We use the ring-allreduce [29, 30] algorithm for this step. This requires a ring communication pattern between corresponding GPUs in the MP groups, which requires each GPU to send data to one GPU in another group. Therefore a GPU can communicate with, at most, $\Delta = D - 1$ other GPUs within its own MP group to meet the overall degree constraint.

We now present a heuristic algorithm for placing ops within an MP group to minimize run-time with a constraint Δ on the degree of communication. While this problem can be written as an Integer Linear Problem (ILP), it is prohibitive to solve this ILP given the scale of the balanced computation graph (e.g., over 20K sub-ops for the Transformer DNN model). Algorithm 1 provides the pseudocode.

The key strategy in our algorithm is to map GPU devices into a metric space and transform the degree constraint into a distance constraint in that space. We select an arbitrary ordering of GPU devices and place ops to maintain a maximum communication distance of Δ; i.e., devices i and j are allowed to communicate only if $(i-j) \mod k \leq \Delta$. This constraint leads to a sparse diagonal traffic pattern. To handle such cases, we can use a more sophisticated placement algorithm, such as [31], which provides a heuristic solution.
Algorithm 1
Task Placement with a Communication Degree Constraint
1: Input: Balanced compute graph \(g_{in} \), computation quantum \(r \), degree constraint \(\Delta \), local \(\text{batchsize} = b/l \), mp_degree \(k \)
2: Output: A task graph \(g_{out} \) with placed ops
3: for op in \(g_{in} \).topological_sort() do
4: for sub_op in par_ops_map[op] do
5: far_id←farthest sub_op’s predecessor device id
6: near_id←nearest sub_op’s predecessor device id
7: range_lo←near_id
8: range_hi←far_id + \(\Delta \)
9: sub_op.device←get_earliest_avail(\(\text{avail_times} \) , range_lo , range_hi , sub_op.mem_size)
10: cand_start←latest end time of predecessors
11: start←max(cand_start, \(\text{avail_time[sub_op_device]})\)
12: end←start + sub_op_duration
13: \(\text{avail_time[sub_op_device]})\)←end
14: end for
15: end for
16: \(g_{out} \leftarrow \text{add_network_ops}(g_{out}) \)

matrix with zeros outside a \(\Delta \) distance from the main diagonal, satisfying the communication degree constraint.

The algorithm begins with a topological sort of the balanced computation graph (shown in Fig. 4(b) for our example), such that each sub-op appears in the sorted list after its dependencies. It places the sub-ops in this sorted order, guaranteeing that when a sub-op is placed, all of its dependencies have already been placed. For each sub-op, the algorithm first computes a set of placement candidates. These are the devices where the sub-op can be placed without violating the distance constraint mentioned above. We compute the intersection of these ranges for all parents of \(x \) to determine its placement candidates. Then, we select the earliest available device among these candidates to place \(x \), and we schedule the op on that device as soon as its dependencies have completed. If there is a tie at this step, we select the GPU with the smallest index so that we can minimize the distance between communicating GPUs.\(^3\) Notice that since we place the sub-ops in order of their dependencies, keeping track of when each op can be scheduled on each device is straightforward. If the intersection of the feasible ranges for all parents of the sub-op \(x \) is empty, i.e., the maximum distance between the parents is longer than \(\Delta - 1 \), we relocate the parent nodes into a smaller device range so that the placement of \(x \) becomes feasible. For this purpose, we place \(x \) on the GPU that meets a maximal set of range constraints. We then reallocate the remaining parents that violate the constraint into the nearest device that meets the distance constraint with \(x \). As this may create distance violations between parents and grandparents of \(x \), we continue this backward process until all previously placed ops meet the distance constraint with their parents. We then restart a forward pass from the first located op and verify the distance constraints between the placed ops and their children. If any violations have occurred due to reallocation, we relocate the child op. This forward-backward procedure is repeated until all ops are placed. We leave the convergence proof to future work.

Fig. 4(c) shows the MP placement for our running example, with \(\Delta = 2 \). Notice two properties of this placement: (i) each GPU communicates with, at most, \(\Delta = 2 \) other GPUs, as required, and (ii) the sub-ops of each op are balanced well across the 4 GPUs. In fact, the only op that is not perfectly balanced is \(C \), but the 4 sub-ops of this op cannot be placed on all 4 GPUs without violating the communication degree constraint, because whichever GPU op \(B \) resides on would then need to communicate with the other 3 GPUs.

Putting it all together. Fig. 4(d) shows the final hybrid MP-DP placement for our example. As mentioned earlier, it is created simply by replicating the MP placement in the \(l = 2 \) GPU groups. As for the communication pattern, each GPU communicates with, at most, \(\Delta = 2 \) other GPUs in its MP group and one more GPU for the ring topology required for the DP all-reduce step. For example, in Fig. 4(d), GPU 1 must communicate with GPUs 2 and 3 for MP and GPU 5 for DP. Our parallelization algorithm takes the degree of MP and DP (\(k \) and \(l \)) as input, but it is trivial to optimize over these parameters to find the combination that minimizes training time for a given number of GPUs, as discussed in Appendix 4.2.

3.3 Circuit Scheduling

Given that our SiP-OCS topology reconfigures its circuits only once at the beginning of the training job, its control plane logic is simple. In this case, the main task is to compute the total traffic matrix resulting from the parallelization algorithm and then assign circuits to each pair of GPUs that must communicate, such that the maximum transfer time is minimized. We determine the circuit assignment with a simple ILP run once for each training job (details in §A.2).

The control plane for the SiP-Ring topology is more challenging, as circuits can be reconfigured during training. Hence, our controller needs to estimate the traffic and reschedule the circuits periodically. Therefore, every GPU’s host needs to read its GPU transfer buffer counters through PCIe and communicate them to a

\(^3\)This property helps enable wavelength reuse in the ring topology (§A 1).
central controller. Using NVIDIA’s nvml API, we poll the NVLink counters on a Tesla V100 GPU at a 300-microsecond granularity. However, this API is designed for management purposes and is not optimized for latency. We believe obtaining the counters at a sub-100-microsecond scale should be feasible with further engineering. Our experiments confirm that the observed traffic matrix over the past 100µs is a good estimate of the communication demands over the next 100 µs. Using the traffic matrix, we can solve an ILP (see §A.1) for optimal wavelength scheduling on the ring topology. However, solving an ILP is too slow for short-timescale circuit scheduling. Therefore, we propose a fast, approximate wavelength scheduling algorithm that solves a minimum-cost flow routing problem to schedule wavelengths. Appendix A.1 describes this algorithm in detail. Note that while we currently propose to measure the traffic matrix for dynamic circuit establishment, exploiting the predictability of training workloads is a natural step which we leave for future work.

Supporting Multiple Jobs. We anticipate a SiP-ML cluster will typically be used to run multiple jobs at the same time. Each job will run on a subset of GPUs, dedicated to that job. Supporting multiple jobs with SiP-OCS requires no changes to our design, except that we allocate a subset of available GPUs when a job arrives and correspondingly set the total number of GPUs in our placement algorithm. When a job completes, we release its GPUs and optical circuits. SiP-Ring follows a similar logic, but we ideally prefer to allocate each job to a contiguous block of neighboring GPUs on the ring. Fragmentation of the ring space, as jobs arrive and depart, could make this difficult to achieve at all times. One solution is to use a standard OCS to assign GPU interfaces to arbitrary locations on the ring.

Scalability Considerations. While our current version of SiP-OCS assumes each OCS has enough ports to connect to every GPU in a flat topology, a more realistic setting is to use hierarchical Clos [80] or flat designs such as BCube [81] to scale SiP-OCS. Our SiP-Ring topology can be scaled using Theia [72] and SlimFly [82] to build hierarchical rings. Another way to scale SiP-Ring is to consider 2D rings, where we have K horizontal rings, with N GPUs on each ring. We then connect every K GPUs from K different horizontal rings on a single vertical ring. Hence, there will be K+N rings in total, connecting NK GPUs. Each GPU has direct access to one vertical and one horizontal ring and must divide its SiP interfaces between the two. Depending on the vertical bandwidth requirement of the interconnect, this ratio can be adjusted.

4 EVALUATION

In this section, we quantify the performance of SiP-ML by comparing it to other network interconnects. Our results show:

(i) For three representative DNN models (Transformer, ResNet, and Megatron), SiP-ML speeds up training time by a factor of 1.3–9.1× compared to hierarchical electrical network fabrics representative of today’s ML clusters. This is because SiP-ML eliminates bandwidth bottlenecks and enables hybrid DP/MP parallelization strategies that cannot be supported efficiently by today’s fabrics.

(ii) Although SiP-Ring’s switchless design constrains connectivity, it performs similarly to SiP-OCS. SiP-Ring’s limited connectivity is compensated by its ability to rapidly reschedule wavelengths using MRRs and our parallelization algorithm’s ability to adapt its strategy to the topology (e.g., ensuring most communication occurs between nearby nodes on the ring).

(iii) A SiP-ML interconnect with per-GPU bandwidth B performs as well as or better than an ideal, full-bisection electrical switch with per-GPU bandwidth B/2. For instance, given 1024 GPUs and B = 8 Tbps, SiP-ML’s dynamic topology provides at least 4 Tbps of bandwidth, on average, between each pair of GPUs that need to communicate.

(iv) When per-GPU bandwidth is high (e.g., order of terabits-per-second), hybrid parallelism strategies outperform data parallelism by up to 2× in terms of time-to-accuracy.

4.1 Methodology & Setup

To evaluate SiP-ML, we implement a detailed simulator, called ROSTAM, to model several baseline network architectures connecting up to thousands of GPUs. Our simulator is 10K lines of code in C++ and is available online at https://github.com/MLNetwork/rostam.git. We discuss the details of our simulator in §4.2. In our evaluations, we set the quantum of computation for balancing the computation graphs, τ, to 10 µs (§3.2).

Comparisons. We consider the following network architectures:

- **Elect-Flat:** an ideal electrical switch that scales to any number of GPUs, N, for any per-GPU bandwidth of B; i.e., each GPU can simultaneously communicate with N − 1 other GPUs with a total bandwidth of B in both send and receive directions. This baseline has zero reconfiguration delay. For any pair of (B, N), no network can communicate faster than this baseline. In practice, it can be approximated with full-bisection bandwidth topologies such as fat-tree for relatively small values of B (e.g., 100–400 Gbps), or with a small N (e.g., tens of nodes) with large B. Note that no electrical network would be able to perform better than this flat electrical baseline, as it provides full-bisection bandwidth.

- **Elect-Cluster:** a hierarchical electric network fabric representative of today’s ML clusters interconnecting GPUs. Each server hosts eight GPUs, connected with an internal high-speed electrical switch providing per-GPU bandwidth of B, typically in the order of terabits-per-second. The servers are connected with a slower electrical fabric providing 400 Gbps bandwidth per server (unless otherwise stated). In practice, servers can be thought of as DGX [5] boxes with an internal NVSwitch [83] interconnect, communicating over a standard datacenter network fabric (e.g., fat-tree).

- **SiP-Ring:** a ring-based interconnect for SiP-ML, as described in §3.1. Each GPU has W distinct wavelengths that it can dynamically allocate to communicate with its 6 closest neighbors on the ring (in both directions). We assume each wavelength carries 25 Gbps of bandwidth, providing a maximum bandwidth of B = W×25Gbps for each GPU. Unlike SiP-OCS, this topology is rapidly reconfigurable, with a reconfiguration latency of 25 ms (§4.4). We estimate the traffic every 100 µs as described in §3.3 unless stated otherwise.

- **SiP-OCS:** an optical circuit switch interconnect for SiP-ML, as described in §3.1 with Q OCS switches, each with N ports (the same as the number of the GPUs). Each GPU has Q optical links (each with a bandwidth of B/Q) to each OCS. Each GPU can communicate with, at most, D = Q other GPUs at the same time. To study the impact of D, we vary the number of OCS switches in the
interconnect, using a default value of 16. Since OCS reconfiguration delay is too long compared to the typical training iteration time of our DNN models (~20ms), we compute the best one-shot circuit schedule for each workload, as described in §3.3. To evaluate the potential benefits of optical switches with fast reconfiguration [55, 71], we also evaluate the impact of lowering the reconfiguration latency and allowing multiple reconfigurations within each training iteration.4

Training workloads. We consider ResNet, Transformer, and Megatron, three representative DNN models widely used in computer vision and natural language processing applications. ResNet [84] is an image classification model with 25 million parameters. Transformer refers to a Universal Transformer with 350 million parameters. Megatron [52] is a variant of the GPT model [85] with 18 billion parameters.

We focus on time-to-accuracy as our primary metric. We determine the time-to-accuracy by multiplying the time for a single training iteration (obtained via our simulator) by the number of training iterations required to reach the target accuracy. We use numbers reported in prior work for the required training iterations for these models at a given batch size. For ResNet and Transformer, Shallue et al. [86] report the number of training iterations across a range of batch sizes. Hence for these models, we optimize over batch size to find the lowest possible time-to-accuracy in each network configuration. For Megatron, we use batch size 1024 and 240,000 training iterations, following [50, 87]. Note that we report the total pre-training time for Megatron, which requires significantly more training iterations than a typical fine-tuning task. But the relative improvements we report would hold for fine-tuning the model since we are directly decreasing the iteration time.

ResNet and Transformer fit in a typical GPU’s memory. Hence the main reason to parallelize them is to speed up training. Megatron, cannot fit on one GPU and therefore cannot be trained with only DP; MP is required to split it across multiple GPU memories.

4.2 Simulator

The overall flow of an end-to-end simulation in **ROSTAM** is as follows.

4In the extreme, eliminating reconfiguration latency entirely would make SiP-OCS equivalent to the ideal Elect-Flat architecture.

Profiling. We first need to profile the average GPU and CPU compute time, peak memory size, and input/output data sizes of each operation in the model in addition to its data dependencies. Each compute operation typically has one or more input/output arrays of data, “tensors”. Profiling the operations over different input/output tensor shapes helps predict the speed ups of partitioning each operation in different input/output tensor dimensions. We start profiling over a fair range of batch sizes, typically starting with 1 sample/iteration and continuing until we run out of GPU memory. The profiling step is independent from the simulator and can use any convenient profiling tool. Moreover, profiling along other than the samples dimension (e.g., height and width in the 2D convolution) helps improve the simulation’s accuracy. In absence of the profiling data in any dimension, we assume a linear dependency between the total number of splits and each split’s compute time in that dimension. Depending on the dimension of the split, **ROSTAM** adds the required new data dependencies in the placement stage. In addition to the operations profile, we need to know the required number of iterations to achieve a certain level of model accuracy as a function of the global batch. This profile depends on the DNN model and the training dataset [46]. **ROSTAM** can combine the latter two profiles in the placement stage to come up with the best hybrid parallelization strategy. In this paper, we profile all models on an NVIDIA Tesla V100 GPU with 32 GB of memory.

Placement. Our approach to explore the space of hybrid parallelism techniques takes as input: (1) the number of GPUs, (2) the bandwidth available per GPU, (3) the graph profile for the DNN model as described above, and (4) the curve providing the required number of training iterations as a function of the (global) batch size. We search through all possible hybrid parallelizations over a range of global batch size configurations and use the placement algorithm (e.g., Algorithm 1 (§3)) for device placement. We then estimate each configuration’s run-time based on the graph profile and the bottleneck bandwidth. To estimate the effect of the network, we also compute the latency for each data transfer (edge) in the graph profile according to the bottleneck bandwidth. We finally select the fastest of all these parallelization strategies.

Two points are worth noting about this procedure. First, one of the strategies that our task parallelization considers is the conventional DP. However, as our results show (see §4.3), in many cases, DP is not the best strategy for large-scale training. Second, the time...
whenever possible. We compare the different architectures on an equal footing, we run Algorithm 1 for electrical networks by removing the degree constraint. The interconnect can be electrical or optical. Our current implementation includes SiP-Ring, SiP-OCS, electrical, and full-mesh interconnects.

Rostam models a latency for each op launched onto the GPU and a minimum completion time for ops that run on the GPU. Hence, there is a lower-bound on how quickly we can run a compute graph that depends on its critical path length. We set the launch latency and the minimum completion to 1 microsecond in our experiments. Moreover, *Rostam* overlaps the communication and computation whenever possible.

4.3 Results

Fig. 5 compares the time-to-accuracy of our three DNN models with 1024 GPUs on different network architectures. We vary the bandwidth per GPU, B, between 128—8192 Gbps, and compare Elect-Flat, Elect-Cluster with two values of inter-server bandwidth (200 Gbps or 400 Gbps), SiP-OCS, and SiP-Ring. For each value of B and each network architecture, we use Algorithm 1 (§3.2) to search for the best parallelization strategy, as described in §4.2. To compare the different architectures on an equal footing, we run Algorithm 1 for electrical networks by removing the degree constraint. We then compare our results to the state-of-the-art results reported in MLPerf [88] and find that they are comparable or better (§4.3). For reference, we also show data parallel (DP) training on Elect-Flat (except for Megatron which cannot use basic DP).

We also experiment with FlexFlow [38] as a state-of-the-art placement algorithm. FlexFlow’s network model does not support the degree constraints required by our optical interconnects. For electrical interconnects, we run the FlexFlow code [89] for our workloads, but the strategies it finds are very similar to DP. We believe there are two reasons for this. First, the scales we consider (e.g., 1000 GPUs) are much larger than those in FlexFlow, making the search space for its Metropolis algorithm significantly larger. Second, FlexFlow’s implementation only searches for partitioning strategies across the batch dimension (although the approach in [38] is general).

Analysis. We first consider the Elect-Flat architecture. Recall that Elect-Flat has ideal performance. At every value of B, it provides each GPU with its full interface bandwidth regardless of the communication pattern. Thus Elect-Flat’s training time serves as a lower bound for any other network. Fig. 5 shows that increasing B on Elect-Flat improves training time for all models, but the improvement is much larger for Transformer and Megatron than ResNet50. ResNet50 is less sensitive to network bandwidth for two reasons. First, it is a smaller model than the others and therefore requires less bandwidth for all-reduce operations. Second, ResNet50 trains effectively with large batch sizes (via weak scaling), further reducing its bandwidth requirements [86, 90—92].

Comparing DP with the best strategy found using Algorithm 1 on Elect-Flat is also instructive. Consider Transformer: when B is less than 1 Tbps, our placement cannot beat DP. But as B increases to 8 Tbps, SiP-ML’s hybrid strategy outperforms DP by ≈50%.

Now let us turn to the Elect-Cluster architectures. For all three models, the training time plateaus as we increase B, with Elect-Cluster (400 Gbps) outperforming Elect-Cluster (200 Gbps). Recall that here, B is the local bandwidth between the GPUs within each server. The results show that scaling this local bandwidth can improve training time to an extent (by enabling some model parallelism), but the slow server-to-server network eventually becomes a bottleneck and prevents further speedups.

Compared to Elect-Cluster architectures, SiP-OCS and SiP-Ring achieve 1.3—9.1× faster training time as we scale B. The benefits are smallest for ResNet50 (which does not require very high communication bandwidth) and most significant for Megatron. SiP-ML architectures are less efficient than the ideal Elect-Flat (which cannot be realized in practice for large values of B and N): to achieve the same training time, SiP-ML architectures require up to 2× higher bandwidth per GPU (B) (e.g., Transformer), with a smaller gap in many cases (e.g., Megatron). This difference reflects the constraints imposed by optical circuit switching. Specifically, in our evaluations, we set the degree constraint for both SiP-OCS and SiP-Ring at $D=16$. SiP-OCS requires a one-shot reconfiguration, while SiP-Ring imposes a traffic locality requirement on the communication pattern. Despite these constraints, SiP-ML performs quite well, as our placement algorithm adapts the parallelization strategy to suit the degree requirement.

SiP-OCS and SiP-Ring perform similarly overall. Each architecture has pluses and minuses. Unlike SiP-OCS, SiP-Ring has fast reconfiguration, but it makes communication between more distant GPUs on the ring less efficient. Our results show that the impacts of these factors on overall performance effectively cancel each other out.

Parallelization strategies. Fig. 6 plots the degrees of DP and MP for each value of B in SiP-OCS. The figure shows that as the per-node bandwidth increases on the x-axis, the optimal strategy uses more model parallelism to decrease the total training time. This is consistent with current practice: when the network is slow, DP is more efficient but on a fast network, combining MP and DP improves training time. For instance, the Transformer model shown in Fig. 6b starts with 1024-way DP and 1-way MP, but at 10 Tbps bandwidth per-GPU, the best training time is achieved with 16-way MP and 64-way DP.
SiP-MI: Optical Network Interconnects for Machine Learning

The traffic matrices also show how SiP-ML meets the degree constraint. For example, in SiP-OCS, each GPU establishes circuits with members of its MP group and is also part of a ring with its peers in other MP groups. The resulting topology is effectively the union of $l = N/k$ identical direct-connect topologies and k rings. The number of circuits to each destination is chosen based on the traffic intensity towards that destination, although finding the optimal circuit allocation is more subtle and requires solving an ILP (§3.3).

Impact of number of OCSs and reconfiguration latency. Increasing the number of OCSs (or the total number of ports on each

Impact of scale. Fig. 10 compares the training time of ResNet50 and Transformer on different network architectures across different scales, with $B = 8$ Tbps of bandwidth per GPU. As in Fig. 5, we see that SiP-OCS and SiP-Ring are close to the performance of

Communication patterns. To better understand the communication patterns produced by Algorithm 1, Fig. 7 shows the traffic matrices for the Transformer model with MP degree $k = 4, 8, 16$, corresponding to 2 Tbps, 6 Tbps, and 10 Tbps per-GPU bandwidth, respectively. These traffic matrices have two main components: (i) a set of identical $k \times k$ blocks, corresponding to the traffic between the nodes in each MP group (brighter colors represent larger values); (ii) an off-diagonal component, corresponding to the DP ring-all-reduce traffic used by each GPU to synchronize its parameters with its peers in other MP groups (holding the same part of the model). Within the $k \times k$ blocks, the entries near the diagonal are larger (brighter), indicating the GPUs communicate more with their immediate neighbors. This property helps when mapping the communication to SiP-Ring. The off-diagonal entries (DP traffic) are smaller than the largest entries for the MP traffic, but they are still significant. This is the downside of current hierarchical electrical fabrics, as shown in Fig. 5, the low server-to-server bandwidth becomes a chokepoint.

The traffic matrices also show how SiP-ML meets the degree constraint. For example, in SiP-OCS, each GPU establishes circuits with members of its MP group and is also part of a ring with its peers in other MP groups. The resulting topology is effectively the union of $l = N/k$ identical direct-connect topologies and k rings. The number of circuits to each destination is chosen based on the traffic intensity towards that destination, although finding the optimal circuit allocation is more subtle and requires solving an ILP (§3.3).

Impact of number of OCSs and reconfiguration latency. Increasing the number of OCSs (or the total number of ports on each

Impact of scale. Fig. 10 compares the training time of ResNet50 and Transformer on different network architectures across different scales, with $B = 8$ Tbps of bandwidth per GPU. As in Fig. 5, we see that SiP-OCS and SiP-Ring are close to the performance of

OCS) in SiP-OCS can improve performance in two ways: (i) we can increase the maximum permissible communication degree; or (ii) for the same communication degree, we can allow a more fine-grained allocation of circuits (with less bandwidth per circuit). The latter enables SiP-ML to align circuit bandwidth to traffic demands more closely, resulting in less wasted bandwidth. Fig. 8 shows the time-to-accuracy vs. number of OCSs for a one-shot circuit configuration of the Transformer model. Performance improves with more OCSs, but benefits are marginal beyond 12 OCSs. Also, unsurprisingly, a larger bandwidth per GPU (B) reduces sensitivity to the number of OCSs: it has more headroom, thus masking the inefficiencies caused by fewer OCSs.

Fig. 9 shows how future OCSs with faster reconfiguration time could improve the total training time of a Transformer model. For a reconfiguration delay of d, we use the traffic matrix of the past $5d$ seconds to reconfigure the circuit allocations. We maintain circuits for $5d$ to amortize the reconfiguration delay overhead. As expected, reducing the reconfiguration delay always helps. However, note that for $d > 300\mu s$, a one-shot allocation outperforms a dynamic reconfiguration. Once again, higher bandwidth per GPU masks inefficiencies, and one-shot allocation performs as well as rapid dynamic reconfiguration.

Impact of scale. Fig. 10 compares the training time of ResNet50 and Transformer on different network architectures across different scales, with $B = 8$ Tbps of bandwidth per GPU. As in Fig. 5, we see that SiP-OCS and SiP-Ring are close to the performance of
the ideal Elect-Flat at all scales, with SiP-Ring occasionally slightly worse. With Elect-Cluster, the training time improves up to a certain scale, and then the benefits taper off as the low server-to-server bandwidth becomes a bottleneck. Once again, ResNet scales quite well with Elect-Cluster, in line with current practice [31]. But larger models and those less amenable to large-batch training, such as Transformer, can benefit significantly from SiP-ML’s high per-GPU bandwidth at moderate-to-large system scales.

Impact of network latency. Network fabric latency can play an important role in scaling ML workloads at multi Tbps network speeds. Table 1 shows the impact of different minimum interconnect latencies on training performance. The results show the training speedup relative to an Elect-Flat network with 32 GPUs with \(B = 10 \) Tbps, and 1 \(\mu \)s fabric latency. Latencies above \(\sim 10 \mu \)s degrade performance. This suggests another potential advantage of optical networks over electrical switching fabrics, the latter can suffer from variable latency due to the presence of buffers. To compare to the best-case performance of the baselines, our simulations do not model buffering within electrical fabrics, as this depends on factors such as the details of the transport protocols [93, 94].

SiP-Ring reconfiguration delay. While Tbps SiP-enabled chiplets are just about to hit the market [8, 63, 95], their reconfiguration latency has not been evaluated. To evaluate the reconfiguration latency of SiP-ML’s ring topology, we build a small-scale testbed (details in §4.4). Our testbed includes a thermo-optic SiP chip which has six micro-ring resonators (MRRs). To hit 10 Tbps bandwidth we must package 400 MRRs (each modulating light at 25 Gbps). As a result, our testbed only supports 10 Gbps bandwidth. Rather than bandwidth, we focus on validating reconfigurability. Our measurements show a reconfiguration delay of 25 \(\mu \)s (Fig. 12b and Fig. 12c in §4.4).

Table 1: Impact of interconnect latency on the scaling efficiency.

<table>
<thead>
<tr>
<th>#GPUs</th>
<th>1 (\mu)sec</th>
<th>3 (\mu)sec</th>
<th>10 (\mu)sec</th>
<th>30 (\mu)sec</th>
<th>100 (\mu)sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1×</td>
<td>0.99×</td>
<td>0.83×</td>
<td>0.73×</td>
<td>0.64×</td>
</tr>
<tr>
<td>128</td>
<td>2.11×</td>
<td>2.10×</td>
<td>1.52×</td>
<td>1.36×</td>
<td>1.29×</td>
</tr>
<tr>
<td>512</td>
<td>4.27×</td>
<td>4.04×</td>
<td>3.03×</td>
<td>2.49×</td>
<td>2.03×</td>
</tr>
</tbody>
</table>

4.4 Testbed

To benchmark the switching time and throughput of a SiP-based architecture, we build a small-scale testbed.

Testbed setup. Fig. 11a shows a photograph of our experimental testbed. We built a three-node prototype of SiP-ML using FPGA development boards (to emulate GPUs), and a thermo-optic SiP chip which has six micro-ring resonators (MRRs). Each MRR is tuned to select one wavelength by receiving the appropriate bias signal from the bias control board. We use Stratix V FPGAs to emulate the GPU training workflow, as no commercial GPU chip supports optical interfaces. Our FPGAs have 50 Mb embedded memory and 1152 Mb DDR3 memory. The FPGAs are programmed and configured as individual compute nodes with their own local memory. The controller logic is implemented using one of the FPGAs. A digital-to-analog converter (DAC) provides the necessary bias signals to the SiP chip to cause a state change in the MRRs, depending on the scheduling decision. We use commodity SFP+ transceivers connected to the high-speed serial transceiver port on the FPGA board to achieve the conversion between electrical and optical domains. Our three input wavelengths are \(\lambda_1 = 1546.92 \) nm, \(\lambda_2 = 1554.94 \) nm, and \(\lambda_3 = 1556.55 \) nm. Our SiP optical chip consists of six MRRs (we use three of them as shown in Fig. 11b) to select and forward any of the wavelengths to the target emulated GPUs. To evaluate our prototype, we implement 2D convolutional computation workloads in Verilog to perform data fetching, computing, and storing between emulated GPU nodes. A GPU node can get access to the other GPU node’s memory and perform read/write operations, similar to how real GPUs communicate today.

Example: programming the MRRs. We set the first configuration such that GPU1 is connected to GPU2; this means MRR1 is tuned to select and forward \(\lambda_2 \) to GPU1, while MRR2 is tuned to select and forward \(\lambda_1 \) to GPU2. For simplicity of the configuration logic, MRR3 is always tuned to \(\lambda_1 \) but is effectively in idle mode, as the optical power of \(\lambda_1 \) has been dropped through MRR2. To change the state to Configuration2 where GPU1 is connected to GPU3, MRR1 should be tuned to select and forward \(\lambda_3 \), while MRR2 should be detuned from \(\lambda_1 \) for the optical power of \(\lambda_1 \) to pass through MRR3 to GPU3. Note that in this configuration, MRR3, can remain tuned to \(\lambda_1 \).

Testbed limitations. Our use of commodity FPGAs and transceivers is driven by pragmatic concerns. It allows us to implement workloads without needing separate modulation logic at the transmitter or demodulation logic at the receiver. Packets are forwarded to the SFP+ transceiver which modulates the light for us. However, this method has limitations as well. Implementing convolutional neural networks in an FPGA, rather than a GPU as would be the case in the actual system, introduces complex Verilog logic with overhead on (de)serializing the remote memory access commands.

To validate the feasibility of our optical design, we answer the following four key questions. (i) What is the impact of using MRRs to select/bypass wavelengths on throughput? (ii) How fast can we reconfigure the MRRs to dynamically tune to appropriate wavelengths? (iii) What is the end-to-end switching time? (iv) What is the impact of our scheduling algorithm on throughput?

MRRs as select/bypass interfaces. We first examine the select/bypass functions of our MRR-based interfaces. A transceiver channel is instantiated on the FPGA and a SFP+ optical transceiver at
1546.92 nm is used to perform the throughput measurements for select, bypass and loopback cases. As shown in Fig. 12a, the throughput measurement of the select mode (the MRR tuned at 1546.92 nm) is the curve in black while the result for bypassing the MRR is in blue. The red curve is the baseline measurement where the optical transmitter is connected directly to the receiver channel without coupling the optical signal in/out the SiP chip. Our measurements show in all three cases, the throughput is 9 to 9.3 Gbps confirming the feasibility of the idea of using MRRs as select/bypass interfaces.

MRR reconfiguration time. To measure the reconfiguration time of our MRRs, we place InGaAs PIN photodetectors after MRR 1 and MRR 2 in Fig. 11b and change the bias voltage from Config 1 to Config2, where MRR 1 and MRR 2 are tuned into and out of resonance with λ 1. We switch light between the two photodetectors by applying different bias signals to the SiP chip every 125 μs. The photodetectors convert the received photocurrent into voltage. We use an oscilloscope to measure real time light intensity and can therefore measure the reconfiguration speed. Fig. 12b shows the receive signal at the photodetectors. In one case, the signal reaches stable state in approximately 20 μs, and in another case, it takes only 8.4 μs. This is because tuning the MRR into the chosen wavelength is faster than tuning out of that wavelength due to our use of the thermal tuning effect. We conservatively, consider 25 μs as the switching time in our simulations. This experiment micro-benchmarks the micro-ring reconfiguration time; additional time might be required for transceivers to start decoding bits. This additional time is not fundamental, and next we show how we measured the end-to-end reconfiguration time between FPGAs.

End-to-end reconfiguration time. The end-to-end reconfiguration time includes the MRRs’ reconfiguration time, the transceivers’ locking time, and the handshaking time between newly connected nodes. The distribution of end-to-end switching time between Config 1 and Config 2 is shown in Fig. 12c. We perform 300 measurements to obtain the distribution, showing that the average switching time to Config 1 is 13 μs and Config 2 is 15 μs. Indeed, it is reasonable that the fastest end-to-end reconfiguration time may be less than the micro-ring reconfiguration time, as the receiver at the FPGA receives enough optical power to start the synchronization process before stabilization of the light output power. As described above, the micro-ring reconfiguration times for tuning and detuning are not equal, leading to two distinct distributions. The additional variations in the distribution of the reconfiguration time are a consequence of the time required for the transceiver to lock onto the new signal and carry out the handshaking protocol.

Putting it all together. We also measure the achieved throughput while changing the scheduling slot length between the two configurations. We conduct five different case studies with slot lengths of 64, 128, 256, 512 and 1000 μs and measure the ideal throughput. The curve in blue in Fig. 12d indicates the switching state from GPU3 to GPU2 lasting the duration set by the experiment; the curve in red indicates the switching from GPU2 to GPU3. As the plot shows, the link can achieve above 90% of the ideal throughput, when the scheduling slot length is 220 μs. This is because the end-to-end reconfiguration takes only about 20 μs; hence, having a scheduling slot 10 times larger will result in near optimal throughput.

5 DISCUSSION

Power budget and scalability. Optical power loss is a key measure for any optical system. To estimate the D of our SiP-Ring topology, we measure the loss of light in our testbed. Our experiments indicate that the loss per MRR is negligible (0.125–0.025 dB per MRR). However, coupling the light in and out of each node creates 0.5 dB loss because each I/O interface has an input and output coupler with loss. Overall, the total loss incurred by passing through each node on SiP-Ring is 0.625–0.525 dB. Hence, assuming a 10 dB power budget based on transmit power and receiver sensitivity [96], SiP-Ring can send light to 16 back-to-back neighbors without requiring amplification. At first blush, it appears infeasible to scale SiP-Ring, as building a cluster with more than 16 nodes needs amplifiers which add non-linear noise to the system. However, SiP-Ring can capture path length limitations in its placement algorithm. For instance, the path length in our evaluations is limited to 16 nodes (Appendix A.1). This is because the placement algorithm is able to place GPUs locally close to each other such that every GPU only interacts with, at most, a GPU that is 15 nodes away (i.e., the node degree is 16). As a result, SiP-Ring’s design can take path length into account to scale to large numbers of nodes.

Cost of SiP-ML. The entire field of silicon photonics is based on the concept that the fundamental way to reduce the cost of photonic devices is to leverage the high volume manufacturing capabilities of the silicon electronics industry. As a result, it is impossible to provide an accurate cost estimation for SiP-ML. Prior work has built TeraPHY SiP interfaces with size 8.86 mm × 5.5 mm [20, Slide 41]. This area contains optical transmit, receive, and MRRs. The cost of manufacturing this SiP interface is $44,082 for a volume of 20 chips ($4,408/chip) based on 2020 Europractice pricelist [97].

5Europractice is an EC initiative that provides the industry and academia with a platform to develop smart integrated systems, ranging from advanced prototype design to volume production. The cost is listed as $480,000 on page 10 under imec Si-Photonics iSiPP50G; the volume is listed as 20 samples on page 6 under iSiPP50G.

Figure 12: Testbed benchmarks.

(a) Micro-ring select/bypass throughput (b) Micro-ring reconfiguration time (c) End-to-end reconfiguration time (d) End-to-end throughput
Hence, assuming the cost will drop by a factor of 10 at mass production, our current cost estimation for each SiP interface in SiP-ML is ≈$440. We further estimate the cost of on-chip electrical circuitry (drivers, MRR’s tuning control logic, and CMOS transimpedance amplification) to be ≈$300. This estimate is based on Europractice pricelist for a 10 mm² chip area [14, 19, 98, 99]. Another approach to observe the potential cost effectiveness of SiP solutions is to look at it from the standpoint of pluggable transceivers and active copper cables. Today’s SiP-based pluggable optics at 100 Gbps cost roughly $1/Gbps (SiP PSM4 and CWD4M). In comparison, a non SiP-based SR-4 pluggable transceiver is around $3/Gbps (multimode and VCSEL based). Similarly, a 400 Gbps SR8 is $3/Gbps, while a SiP-based 400 Gbps DR4 and FR4 is projected to be $1/Gbps. We note that there is a large distinction between the cost of commodity DWDM transponders used in wide-area networks and SiP-ML’s SiP interfaces. In particular, DWDM transponders are designed to operate at long distances; this imposes strict challenges on the laser, manufacturing, forward-error correction, photodiode sensitivity, modulation scheme, and light coupling. In contrast, SiP interfaces are designed for short distances and do not require coherent detection; hence, they can take advantage of the development and commercialization of photonics components for short distance datacenters.

6 RELATED WORK

Our work builds on two lines of related work.

Software/hardware systems for distributed ML. Many software platforms and techniques have focused on enabling large-scale distributed machine learning in recent years [100–105]. In particular, several papers focus on enabling large-scale data parallel training [45, 100–104, 106]. Relevant to this paper, several aim to reduce communication overhead using techniques such as compression [107–110], asynchronous updates [28, 111–114], partially-exchanged gradients [115], and smart parameter propagation [2, 45, 116–119]. In addition, a variety of algorithmic approaches have been developed to accelerate communication among devices customized for the underlying network [120], or to improve model parallel training using smart task device placement [121, 122], and more efficient pipelining strategies [4, 123]. There is also a significant body of work on new electrical hardware designs to accelerate machine learning computations [118, 124–129]. The work proposed here is orthogonal to the above mentioned techniques, as they can still be applied to further improve both data and model parallel training. Our work differs in that we investigate the system requirements of using SiP as a new underlying technology to interconnect hundreds of GPUs in an all-optical architecture.

Datacenter Interconnects. The broad vision for this paper is to use all-optical interconnects for future distributed ML systems. Optical interconnects have a long and rich history in the datacenter research community [24–26, 55, 66, 70, 71, 130–135]. Prior work shows the benefits of reconfigurable topologies in datacenter networks by adding optical links to the electrical topology [24, 66, 71, 133, 136] or by creating all-optical datacenter interconnects [26, 55, 70, 131, 132]. The unpredictability of legacy datacenter workloads and the complexity of managing hybrid topologies are two main reasons for the lack of adoption of all-optical datacenters so far. In contrast, this paper builds an all-optical interconnect with a simple and practical task placement algorithm primarily used to accelerate ML workloads. Our ring topology (SiP-Ring) is inspired by Quartz [70], Mordia [71], and Megaswitch [26]. They all use a fiber ring to interconnect the datacenter topology, but they do not leverage MRRs. Moreover, Mordia realizes a microsecond switching circuit switch, but it does not reuse wavelengths, and this significantly reduces its bandwidth efficiency compared to SiP-Ring. As a result, Mordia’s number of ports is limited by the number of wavelengths. Jellyfish [137], Rotornet [66], and Opera [69] take advantage of the unpredictability of datacenter workloads and use expander-based topologies to improve the completion time of short and long flows. Random permutations are not ideal for ML workloads, as a training workload is a periodic repetition of thousands of iterations. Shoal [135], Larry [138], XFabric [139], and Sirius [55] have proposed reconfigurable datacenter interconnects with nanosecond switching fabric. We believe these proposals have the potential to change the game in datacenter environments, but they are not commercially available yet and they do not support Tbps bandwidth between communicating nodes. Moreover, our results show μs reconfiguration latency is close to optimal for ML; a control plane with nanosecond response time might be needed for a general purpose datacenter traffic, but it is an overkill for distributed ML training. Finally, there is rich body of research on silicon photonics [17, 140–142], embedding silicon photonics switches in High Performance Computing clusters [143] and energy-efficient datacenters [144]. By focusing on ML, our work takes an application-level perspective to build an interconnect with SiP components.

7 CONCLUSION

In this paper, we propose optical network interconnects for distributed ML training clusters capable of providing multiple terabits-per-second of bandwidth per GPU. Our results show that the predictability of ML workloads makes them a great fit for optical interconnects. We develop a new task partitioning and placement algorithm that exploits the degree requirement of optical networks to find a parallelization strategy suitable for a given network topology. We show this approach can mitigate and in fact largely overcome concerns such as limited communication degree and reconfigurability of optical circuit-switched networks. Simulations using three real DNN models show that, compared to today’s electrical network fabrics with limited server-to-server bandwidth, SiP-ML improves the training time by 1.3–9.1× at scale.

8 ACKNOWLEDGMENTS

We would like to thank our shepherd Hitesh Ballani and anonymous reviewers for their feedback. This work was partly supported by AEPA-E ENLITENED PINE, DARPA FastNICs, DARPA PIPES, a Cisco Research Center Award, NSF ASCENT-2023468, NSF CNS-2008624, NSF CNS-1751009, NSF CNS-2006827, NSF CNS-1563826 as well as by a SystemsThatLearn@CSAIL Ignite Grant and a MachineLearningApplications@CSAIL Award.

George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-Sun, Tajana Rosling, Yeshuahu Fainman, George Papen, and Amin Vahdat. Integrating microsecond circuit switching into the data center. SIGCOMM’15, pages 447–458.

SiP-ML: Optical Network Interconnects for Machine Learning

A APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A.1 SiP-Ring

One of the core properties of SiP-ML-Ring is the ability to dynamically place bandwidth around the static topology to maximize the throughput between communicating nodes for model parallel jobs. Note that for ring-allreduce data parallel jobs, there is no need to reschedule the bandwidth once a physical ring is established by the patch panel. However, we find that model parallel jobs benefit from bandwidth rescheduling. The optimal bandwidth allocation maximizes the throughput while ensuring no two paths sharing the same fiber are assigned the same wavelength. More formally, the bandwidth allocation problem corresponds to the following optimization problem. Let $T M_{ij}$ denote the predicted GPU-to-GPU traffic matrix, and W denote the total number of wavelengths (a.k.a available bandwidth). We can represent a wavelength allocation as a 3-dimensional binary matrix, Λ, where Λ_{ijk} is 1 if GPU i sends data to GPU j using λ_k and is zero otherwise. There are several possible objectives. A natural one is to minimize the maximum completion time for any GPU-to-GPU transfer, where the completion time is $\frac{T M_{ij}}{\sum_k \Lambda_{ijk}}$. This can be expressed as an Integer Linear Program (ILP) by maximizing the minimum inverse of the completion time, as follows:

$$\max_{\Lambda \in \{0,1\}^{N \times N \times W}} \min_{i,j: T M_{ij} > 0} \sum_k \frac{\Lambda_{ijk}}{T M_{ij}}$$

s.t.

1. $\sum_{(j \leq i \leq N+1) \cap (l < j)} \Lambda_{(i \mod N)jk} \leq 1 \quad \forall l, k$
2. $\sum_i \Lambda_{ijk} \leq 1 \quad \forall j, k$
3. $\sum_j \Lambda_{ijk} \leq 1 \quad \forall i, k$

The constraints are (1) ensure fiber segments do not contain overlapping wavelengths (ring constraint), and (2) ensure each GPU can use each wavelength for communication with, at most, one other GPU (node constraint).

Note that the size of the ILP solution space, $\Lambda \in \{0,1\}^{N \times N \times W}$, grows with the number of nodes in the network, rendering it intractable at larger scale. Therefore, instead of solving the ILP, we present a more practical algorithm that turns this discrete optimization problem into a min-cost flow routing problem which can be solved efficiently.

Step 1: Communication graph construction. We construct a directed communication graph, $G = (V,E)$, where V is the set of nodes and for every $T M_{uv} > 0$, there is a directed edge $e = (u,v)$. After including edges for the entire $T M$ in G, we check whether every adjacent node-pair on the topology is connected in G. If not, we add a “dummy” edge between them to E. The direction of all edges in G is the same as that of wave propagation on the fiber. We then add dummy sink and source nodes by cutting the edges in G along an arbitrary topology segment. For simplicity, let us assume for now that this process cuts only one edge of the graph. We add two terminal nodes on the two ends of the cut edge to be the source and sink. The source node injects a unit-sized flow into the ring and the sink node receives it.

Step 2: Compute min-cost flow. Having constructed the graph G, we solve the following flow routing problem:

$$\max_{e \in E: T M_e > 0} \frac{f_e}{T M_e}, \tag{2}$$

where for an edge $e = (u,v)$, f_e is the flow on the edge, and $T M_e = T M_{uv}$ is the traffic demand on that edge. The constraints (not shown for brevity) are the standard flow conservation constraints. The intuition for the above objective is that we wish to maximize throughput but preferentially allocate a larger flow (more wavelengths) to GPU-to-GPU paths with smaller demand. The reason for favoring smaller demands is to complete them quickly, reducing the number of nodes with which each node must communicate. This keeps the unsatisfied traffic pattern sparse over time, allowing the remaining traffic to be handled efficiently in future wavelength reconfiguration events.

The objective in Eq. (2) can be equivalently be written as a min-cost flow routing problem [145] by defining the weight of edge e as $w_e = \frac{1}{T M_e}$ if $T M_e > 0$, and $w_e = 0$ if e is a dummy edge. The problem is then to minimize $\sum_e w_e f_e$. Min-cost flow routing can be solved using the network simplex algorithm [145–147]. The procedure for constructing the graph and defining the flow routing problem is slightly more complicated when the cut chosen for adding the source and sink nodes includes more than one edge. In this case, we need additional constraints to ensure consistency of flows between the cut edges.

In the more general case of cuts with higher degrees, suppose we would like to inject the flows at the segment between Node$_3$ and Node$_4$. The problem remains basically the same, but we need to add the following three constraints in addition to the flow conservation constraints: (1) $X = X'$, (2) $Y = Y'$, and (3) $X + Y = 1$. We can simply add these constraints to our simplex problem as well.

![Figure 13: Wavelength allocation and its equivalent flow routing translation for multiedge cut.](attachment:image.png)

Step 3: Remove and repeat. The solution obtained by solving the above min-cost flow problem may result in some GPU-to-GPU demands completing very quickly. However, since reconfiguration incurs delay (e.g., 25 μs in our prototype), we cannot reconfigure wavelengths too quickly without hurting efficiency (more on this below). Therefore we should plan the wavelength allocation based on a time horizon rather than looking only at the instantaneous traffic demands. To this end, we iteratively solve the min-cost flow
problem in Equation (2), serving the TM with step-size of A based on
the flows obtained after each iteration, and repeating this procedure
until there is no unserved demand left in the TM. We compute the
mean of the flow allocations over all iterations as the final flow alloca-
tion.

Step 4: Mapping flows to bandwidth. Finally, we scale the flows
from the previous step by W and map them to integer numbers using a
technique called randomized rounding [148]. This produces the
final compute and bandwidth allocation. An important con-
sideration in SiP-ML’s design is how frequently to reschedule the
bandwidth allocations. By rescheduling frequently, we can better
tailor the bandwidth allocation to meet the traffic demands. But
rescheduling too quickly is undesirable, because each reconfigu-
ration incurs a delay during which no traffic can be sent. In our
experiments, we found setting the rescheduling period to 100 µs
(4× the reconfiguration delay) provides the best performance.

A.2 SiP-OCS ILP

Similar to §A.1, we assume TM_{ij} denotes the estimated traffic matrix
between GPUs i and j. We have N GPUs and Q OCSs each with N
ports. There is B/Q bandwidth available between each GPU and
OCS. Let P ∈ \{0, 1\}^{N×N×Q} stand for the permutation configuration
of all OCSs with P_{ijk} = 1 if there is a circuit between GPUs i and j
on OCS k. Therefore, the total available bandwidth between GPUs
i and j would be: \((B/Q) (\sum_{k=1}^{Q} P_{ijk})\). Our circuit scheduling goal
can be expressed as an Integer Linear Program (ILP) by maximizing
the minimum inverse of the completion time, as follows:

\[
\begin{align*}
\text{maximize}_{P \in \{0, 1\}^{N \times N \times Q}} & \quad \min_{i \neq j} \frac{\sum_k P_{ijk} / TM_{ij}}{} \\
\text{s.t.} & \quad \sum_i P_{ijk} \leq 1 \quad \forall j, k \quad (1) \\
& \quad \sum_j P_{ijk} \leq 1 \quad \forall i, k \quad (2)
\end{align*}
\]

where constraints (1) and (2) would enforce the OCS configurations
to be in the form of a permutation for each OCS; i.e., each GPU can
establish a circuit with only one other GPU on each OCS. For com-
mercial OCSs that have orders of magnitude higher reconfiguration
delay than MRRs, we only use one-shot configuration. For such
configurations, our experiments show ILPs can be solved reason-
ably fast enough for thousands of nodes. Note that with one-time
scheduling, this optimization happens only once at the beginning
of training each new workload.

A.3 Scaling Efficiency of the Placement

In Fig. 14, we compare the scaling efficiency of SiP-ML’s placement
algorithm on 1024 GPUs to the efficiency achieved in the most
recent version of the MLPerf training benchmark [88]. We highlight
the following takeaways: 1) workloads like ResNet50 are too small to
be efficiently scaled to 1000s of GPUs; 2) our placement generalizes
to electrical topologies without degree constraint; 3) placement
with optical degree constraints respects the compute efficiency in
addition to interconnect constraints; 4) overall, SiP-ML achieves
up to 4.3× better scaling efficiency than today’s expert-designed
parallelization strategies for clusters in MLPerf benchmark.

![Figure 14: Comparing the scaling efficiency of our place-
ment algorithm at different bandwidths to state-of-the-art
expert designed placements in MLPerf benchmark for 1024
GPUs.](image)

A.4 Optical Simulations

Fig. 15 demonstrates our approach to achieve SiP interfaced GPU
nodes at large scale. Every WDM input of 64 wavelengths from the
previous GPU node is first de-interleaved into 4 groups with 16
wavelengths each. We use cascaded SiP micro-ring filters to perform
wavelength selective add/drop or to pass wavelength(s) through the
node based on the requirement of global scheduler. To overcome
the spectral power variability caused by the multi-staged optical
components, we add optical amplifiers, optical (de)multiplexers and
variable optical attenuators (VOAs) to equalize the optical power for
each wavelength at the output of the GPU node. An interleaver then
combines all 4 groups and forwards the new WDM signal to the
next GPU node. We simulate our SiP add/drop interface using the
American Institute for Manufacturing Integrated Photonics (AIM

![Figure 15: System level diagram of GPU nodes with scalable
SiP select/bypass interface. The incoming 64 wavelengths
are separated into four groups with 16 wavelengths each for
select/bypass.](image)
Photonics) process design kit (PDK) in OptSim software. The add/drop filters are from the AIM PDK and the (de)interleavers are built with cascaded 2-stage MZI. The optical multiplexer/demultiplexers are designed using ideal OptSim models with a bandwidth of 0.5nm. The multiplexer/demultiplexer function can also be implemented with multimode interference (MMI) couplers. In the simulation, we achieve an equalized optical spectrum at the output of a GPU node for two cases: 1) 64 bypass wavelengths; 2) 64 wavelengths with 32 wavelengths being dropped and added, while the other 32 wavelengths bypassing the node.