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Abstract: We experimentally realize photonic edge computing over an 86-km fiber link with 3 THz 
optical bandwidth and demonstrate DNN inference at 98.8% accuracy with optical energy consumption 
below 40 aJ/MAC. 
Keywords: Edge computing, neural networks, fiber optics, WDM 

 INTRODUCTION 

Machine learning is ubiquitous in cloud computing and data centers, but recently, network and privacy constraints are 
pushing processing closer to the end user [1]. In this “edge computing” paradigm, processing is instead done on size, 
weight, and power (SWaP)-constrained smart sensors and end stations, which have difficulty running state-of-the-art deep 
neural networks (DNNs) due to the large power and memory requirements of the latter.  This problem has persisted 
despite great efforts toward SWaP-constrained hardware [2] and model compression [3].  Photonic DNN accelerators aim 
to bridge this gap [4, 5], but chip-area constraints arising from the weight-stationarity [2] of existing architectures (and 
error propagation issues [6-9]) likely preclude their application to very large DNNs.  As the limitations to existing designs 
stem from weight stationarity, where each DNN weight maps to a discrete photonic element, recently we proposed an 
alternative based on output-stationary coherent detection and integration [10, 11] where weights are encoded optically in 
the temporal domain and the chip area scales with the number of neurons, not synapses (O(N) rather than O(N2)). This 
optical weight encoding suggests an edge computing architecture where weights are distributed to edge clients optically, 
pushing the bulk of the computational cost to the server while the computation is still performed at the edge. However, 
the imaging requirements of Ref. [10] rendered this particular approach impractical for such an edge-computing scenario. 

 NETCAST PROTOCOL 

Recently, we proposed NetCast, an optical server-client protocol based on wavelength-division multiplexing (WDM), 
difference detection and integration, and optical weight delivery [12, 13]. Our protocol splits the computation over two 
components: a “weight server” consisting of a WDM modulator array, connected by an optical link to a SWaP- 
constrained client. As shown in Fig. 1, over a sequence of time steps, the weight server encodes the DNN weights as an 
analog signal in an optical time-frequency basis. This signal is transmitted to the client, where it is modulated and 
demultiplexed; the time-integrated photocurrent encodes the neuron activations for the next DNN layer. 

 

 
Fig. 1.  NetCast architecture and dataflow.  (a) DNN model weights are encoded on an optical pulse train at the server, a WDM modulator bank.   
(b) Matrix rows and columns mapped to a time-frequency basis.  (c) Matrix-vector multiplication is performed at the client by modulation and 

integration detection.  (d) Dataflow of a single wavelength channel. 
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As linear algebra is the rate-limiting step for DNNs, here we focus on how NetCast accelerates matrix multiplication 
𝑦𝑦𝑚𝑚 = ∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚  (activations, normalization and pooling can be performed locally at the client for minimal added cost). 
The server (Fig. 1(a)) consists of a broadband WDM transmitter source with multiple channels that transmits the DNN 
weight matrices 𝑤𝑤𝑚𝑚𝑚𝑚 to the client in a time-frequency basis, with rows (resp. columns) of 𝑤𝑤𝑚𝑚𝑚𝑚 mapped to WDM channels 
(resp. time bins) of the optical signal (Fig. 1(b)). At the client, this signal passes through a broadband modulator encoding 
the activations 𝑥𝑥𝑗𝑗, and is demultiplexed into WDM channels for integration detection (Fig. 1(c)).  To understand how this 
operation maps to multiplication, consider the path of a the mth WDM channel, Fig. 1(d). On the server side, at the nth 
time step, a dual-port MZM splits the input into two channels with amplitudes �⃗�𝑎𝑚𝑚𝑚𝑚 = [cos(𝜙𝜙𝑚𝑚𝑚𝑚) , 𝑖𝑖 sin(𝜙𝜙𝑚𝑚𝑚𝑚)], where the 
signals encode the weight 𝑤𝑤𝑚𝑚𝑚𝑚 through differential signaling. A polarization beamsplitter (PBS) combines these channels 
onto orthogonal polarizations of a fiber (or free-space link) which connects the server to the client. At the client side, the 
polarizations are recombined onto a second (broadband) MZM whose coupling angle 𝜃𝜃𝑚𝑚 encodes the nth vector element 
𝑥𝑥𝑚𝑚. After demultiplexing, the accumulated differential current is: 

 

𝑄𝑄𝑚𝑚 ∝ cos(2𝜙𝜙𝑚𝑚𝑚𝑚) cos(2𝜃𝜃𝑚𝑚) 
In this way, with the encodings 2𝜙𝜙𝑚𝑚𝑚𝑚 = cos−1(𝑤𝑤𝑚𝑚𝑚𝑚) and 2𝜃𝜃𝑚𝑚 = cos−1(𝑥𝑥𝑚𝑚), the client generates a signal proportional 

to 𝑦𝑦𝑚𝑚 = ∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚 , performing the desired matrix-vector product via optical modulation and detection.  The key insight 
here is that the optical link allows us to separate the tasks of logic (client) and memory access (server), significantly 
reducing the cost of the computation at the client side—for large DNNs in particular, the energy and memory costs at the 
client are dwarfed by that at the server.  This liberates the edge device from its SWaP constraints, enabling the edge 
deployment of whole new classes of DNNs that have heretofore been restricted to data centers. 

 EXPERIMENT 

We realize the NetCast protocol using a smart transceiver, shown in Fig. 2(a), fabricated on a 220-nm silicon-photonics 
(SiPh) process at OpSIS/IME (now AMF).  This chip consists of 48 MZMs, each capable of modulation up to 50 Gbps 
for a total bandwidth of 2.4 Tbps [14].  The smart transceiver supports WDM, and we demonstrated multiplexing of 16 
WDM lasers simultaneously transmitting through the chip with -10 dBm (100 µW) power per wavelength.  Fig. 2(b) 
shows an open eye diagram for on-off keying (OOK) of a single modulator channel at 50 GHz.  For a field demonstration, 
weights are transmitted over 43 km of deployed optical fiber connecting MIT’s main campus with MIT Lincoln 
Laboratory (MIT-LL), for a total round-trip distance of 86 km (Fig. 2(c)).   

At the client, a passive wavelength demultiplexer separates each wavelength channel for detection onto an array of 
custom time-integrating receivers.  With uniformly distributed random data, we measured an r.m.s. error of 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = 0.005, 
corresponding to at least 8 bits of precision, primarily limited by calibration of modulator and detector nonlinearities, 
which is comfortably higher than the ~5 bits of precision required for common DNN inference [15, 16].  As proof of this, 
we perform image classification by running a benchmark image classification task (MNIST) on a pre-trained DNN using 
the NetCast hardware.  The observed classification accuracy of 98.8% (Fig. 2(d)) performed using 3 THz of optical 
bandwidth over the deployed fiber, is statistically indistinguishable from the model’s canonical accuracy, and is 
independent of whether the server and client are connected locally or over the 86-km link.  This result shows the potential 
for this architecture to support edge computing at ultra-high bandwidths in real-world deployed systems using presently-
available telecom components. 

 

  
Fig. 2.  Experimental demonstration of NetCast.  (a) SiPh smart transceiver used as a weight server. (b) Eye diagram showing 50 Gbps OOK 

transmission through a single MZM.  (c) Trunk link consisting of 43km of deployed optical fiber between MIT campus and MIT-LL, for a round-trip 
distance of 86 km.  (d) MNIST classification accuracy for weight delivery over the deployed fiber. 
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To evaluate the energy consumption of NetCast, we also operated the client in a photon-starved environment by 
attenuating the input laser power.  Consistent with Ref. [10], both shot noise and thermal noise limit the performance of 
the system in this regime.  By measuring the classification accuracy as a function of optical input power, we can derive a 
lower bound for the optical energy consumption required for this system.  With conventional photodetectors and time-
integrateing receivers, we find that high accuracy is attainable with < 40 aJ/MAC optical power, limited by Johnson-noise 
fluctuations in the accumulated charge 𝜎𝜎𝑡𝑡ℎ = √𝑘𝑘𝑘𝑘𝐶𝐶/𝑞𝑞.  Improvements to time-integrating receivers aimed at reducing 
the integration capacitance may reduce this figure still further, suggesting high-fidelity edge inference is possible even 
over very high-loss links.  The electrical energy consumption at the client side is also reduced by a factor of the matrix 
dimension N [12].  

 CONCLUSION 

As computing moves to the edge, optics offers new possibilities to deliver high performance while adhering to strict 
SWaP constraints. In this paper, we have introduced and experimentally demonstrated NetCast, a server-client 
architecture that leverages unique advantages of optics—the bandwidth of fiber links, support for WDM, and analog 
integration detection—to split the DNN inference problem into two tasks, effectively pushing the energy- and memory-
intensive tasks to the server. We used this protocol to perform DNN inference over an 86-km deployed fiber using 3 THz 
of optical bandwidth, and showed classification accuracy is not degraded compared to the model’s canonical performance.  
Moreover, we operated the receiver in a photon-starved environment to show that accurate inference is possible with as 
low as 40 aJ/MAC, limited by thermal charge fluctuations. This demonstration suggest NetCast is a promising approach 
to optical information processing at the edge. 
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