
Congestion Control in Machine Learning Clusters
Sudarsanan Rajasekaran

Massachusetts Institute of Technology
Manya Ghobadi

Massachusetts Institute of Technology

Gautam Kumar
Google

Aditya Akella
UT Austin

ABSTRACT
This paper argues that fair-sharing, the holy grail of conges-
tion control algorithms for decades, is not necessarily a desir-
able property in Machine Learning (ML) training clusters. We
demonstrate that for a specific combination of jobs, introduc-
ing unfairness improves the training time for all competing
jobs. We call this specific combination of jobs compatible
and define the compatibility criterion using a novel geometric
abstraction. Our abstraction rolls time around a circle and
rotates the communication phases of jobs to identify fully
compatible jobs. Using this abstraction, we demonstrate up
to 1.3× improvement in the average training iteration time of
popular ML models. We advocate that resource management
algorithms should take job compatibility on network links
into account. We then propose three directions to ameliorate
the impact of network congestion in ML training clusters: (𝑖)
an adaptively unfair congestion control scheme, (𝑖𝑖) priority
queues on switches, and (𝑖𝑖𝑖) precise flow scheduling.

CCS CONCEPTS
• Networks → Data center networks; Network resources
allocation; Transport protocols; Network management;
• Computing methodologies → Neural networks;

KEYWORDS
Congestion control, Networks for ML, Resource allocation,
Datacenters for ML, Transport layer, DNN training

ACM Reference Format:
Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar,
and Aditya Akella. 2022. Congestion Control in Machine Learn-
ing Clusters. In The 21st ACM Workshop on Hot Topics in Networks
(HotNets ’22), November 14–15, 2022, Austin, TX, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3563766.3564115

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
HotNets’22, November 14–15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9899-2/22/11.
https://doi.org/10.1145/3563766.3564115

1 INTRODUCTION
The ever-growing increase in dataset and model sizes of deep
neural networks (DNNs) has created a massive demand for
efficient GPU clusters. Several studies have demonstrated that
as the number of GPUs increases, the communication over-
head of distributed Machine Learning (ML) training work-
loads quickly takes up a significant portion of training itera-
tion time [6, 11, 20, 24, 29, 30, 38, 48].

To alleviate the communication overhead of distributed ML
training, many training platforms overlap the compute and
communication phases of a single job using pipelining [30],
smart memory management [37], or prioritized parameter
transfers [19, 21, 32]. But these approaches tend to consider
a job in isolation, and the impact of congestion control algo-
rithms, when two or more training jobs share a bottleneck
link is largely ignored. Today’s systems for ML simply at-
tempt to place workers of the same job close to each other
to minimize the probability of congesting the network and
rely on default TCP or RDMA protocols to handle conges-
tion [18, 23, 26, 28, 31, 32, 34, 51]. For instance, Themis [26]
uses a slowdown factor to give preference to place workers of
the same job under the same Top-of-Rack (ToR) switch, but it
does not take network congestion into account when workers
are spread across ToRs.

Even with careful job placement, cross-job network con-
tention is inevitable in large-scale GPU clusters. Today, when
two or more ML jobs compete for bandwidth, congestion
control approaches share the network resources fairly, but we
demonstrate that for a specific combination of jobs, introduc-
ing unfairness creates a desirable side effect that improves
the training time of all jobs competing for bandwidth (§2).
Essentially, unfairness interleaves the computation and com-
munication phases of different jobs, enabling them to claim
the network bandwidth one-at-a-time, thereby improving the
training time of all competing jobs. We refer to this set of
jobs as compatible.

However, if jobs are incompatible, unfairness unnecessarily
hurts those that are less aggressive. Identifying compatible
jobs is challenging because it depends on the duration of com-
pute and communication phases of competing jobs, and their
network bandwidth requirements. To address this challenge,

https://doi.org/10.1145/3563766.3564115
https://doi.org/10.1145/3563766.3564115


HotNets’22, November 14–15, 2022, Austin, TX, USA Sudarsanan Rajasekaran et al.

0

10

20

30

40

50

0 0.1 0.2 0.3

Li
nk

 U
til

iza
tio

n 
(G

bp
s)

Time (sec)

(b) First iteration in scenario1: Fair 
bandwidth sharing

0

10

20

30

40

50

0 0.1 0.2 0.3

Li
nk

 U
til

iza
tio

n 
(G

bp
s)

Time (sec)

(c) First iteration in scenario2: Unfair 
bandwidth sharing

(d) CDF of iteration times (J1 and J2
curves in each scenario overlap)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3

CD
F

Iteration Time (sec)

J1 Scenario2 J2 Scenario2 J2 Scenario1J2 Scenario2

J1 Scenario2J1 Scenario1 J2 Scenario1

(a) Our testbed with four A100 
GPU servers, 50 Gbps links, and 

Mellanox RDMA NICs

J1 Scenario1

1.23x

J1

J2

Link L1

S1 S2

S3 S4

Figure 1: Impact of unfairness on training iteration time of two VGG19 training jobs sharing bottleneck link 𝐿1.

we propose a geometric abstraction that leverages the peri-
odic on-off pattern of DNN training (§3). The key idea of our
abstraction is to roll time around a circle whose perimeter is
proportional to the training iteration time of the ML jobs.

Using our geometric abstraction, we argue ML cluster op-
erators can manage network congestion by ensuring fully
compatible jobs are placed on the same network links, and
introducing some form of unfairness to enable cross-job com-
munication/computation interleaving across compatible jobs
(§4). Toward this goal, we propose three potential future direc-
tions that use our geometric abstraction to alleviate congestion
in ML training clusters : (𝑖) an adaptively unfair congestion
control scheme, (𝑖𝑖) priority queues on switches, and (𝑖𝑖𝑖)
precise flow scheduling.

2 SURPRISING PAYOFF OF UNFAIRNESS
Distributed DNN training. A common approach for training
large DNN models is data parallelism, where the training data
is distributed across multiple accelerators. During each train-
ing iteration, accelerators need to synchronize their model
weights. This step is called allreduce and can be performed
using various techniques, such as broadcasting [53], parame-
ter servers [25], ring-allreduce [1, 22, 44], tree-reduce [35],
or hierarchical ring-allreduce [45, 46].

Compute and communication phases. To consider the
impact of network congestion in data parallel training jobs,
we refer to the forward pass as the compute phase and refer
to the backpropagation and allreduce phases together as the
communication phase because congestion impacts any period
of time when data is being injected into the network.

Pipeline parallelism. To speed up training, many plat-
forms pipeline the computation in the backpropagation
step with the communication in the allreduce step [19–
21, 30, 32, 37]. Pipelining techniques are effective at over-
lapping the computation and communication phases of the
same job, but they ignore the interaction between multiple
jobs when they share a bottleneck link.

Goal. We consider GPU training clusters where large DNN
models are distributed across GPUs. Our ultimate goal is to
avoid network congestion to slow down the training time of
jobs sharing a link. We argue that achieving this goal does
not always require augmenting the network bandwidth, and
compatible jobs can share network links without experiencing
any slowdowns, as if the jobs are running with dedicated
network resources.

A surprising observation. We begin our argument with an
observation from a testbed with A100 GPUs and ConnectX-5
Mellanox NICs, shown in Figure 1a. The capacity of each
NIC is 50 Gbps. We run two distributed DNN training jobs,
called 𝐽1 and 𝐽2, across the servers such that they share a
bottleneck link 𝐿1. We run each job for 1,000 iterations under
two scenarios. In the first scenario, two VGG19 [41] training
jobs start simultaneously and share 𝐿1 fairly under the default
RDMA-based DCQCN congestion control algorithm [57].
DCQCN has a parameter𝑇 that corresponds to the time period
of its rate increase. The default value of 𝑇 in our testbed is
125 𝜇s. Figure 1b shows both jobs achieve roughly 21 Gbps
bandwidth (i.e., half of 𝐿1’s capacity) during the first iteration.
This is not surprising, as DCQCN is designed to divide the
capacity equally between jobs [58]. In the second scenario,
we artificially introduce unfairness by adjusting DCQCN’s 𝑇
parameter on 𝐽1’s servers to 100 𝜇s, making it more aggressive.
As a result, in the very first iteration, 𝐽1 achieves roughly
30 Gbps of bandwidth, whereas 𝐽2 achieves 15 Gbps, as shown
in Figure 1c. At first blush, it appears continuous unfairness
will hurt 𝐽2’s iteration time in subsequent iterations. But we
find that as training progresses, unfairness helps both 𝐽1 and
𝐽2. Figure 1d plots the CDF of training iteration times for
both scenarios, demonstrating that the unfairness in scenario2
accelerates the median iteration time of both jobs by 1.23×.

Why would unfairness in congestion control help ML
training? DNN training jobs have a unique on-off pattern [26,
32, 34, 51] where the off period corresponds to the compute
phase and the on period represents the communication phase.



Congestion Control in Machine Learning Clusters HotNets’22, November 14–15, 2022, Austin, TX, USA

0
10
20
30
40
50
60
70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Li
nk

 U
til

iza
tio

n 
(G

bp
s)

Time (sec)

(b) Unfair bandwidth sharing

0
10
20
30
40
50
60
70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Li
nk

 U
til

iza
tio

n 
(G

bp
s)

Time (sec)

(a) Fair bandwidth sharing

J1 Comm. phase

J2 Comm. phase J2 Comm. phase J2 Comm. phase

J1 Comm. phase J1 Comm. phase J1 Comm. phase

J2 Comm. phase

J1

J1
J2

J2

J1 takes more bandwidth 
because its congestion control
algorithm is more aggressive

Iteration 1 Iteration 2 Iteration 3

Jobs share bandwidth equally

J1 starts its comm. phase
for the next iteration before J2

Unfairness keeps sliding the 
comm. phase of J2 to the right

Jobs share bandwidth equally Jobs share bandwidth equally

The sliding continues until there is minimal overlap between the 
comm. phases of jobs. Subsequent iterations maintain this pattern.

Jobs share bandwidth equally

Iteration 4

J2 Comm. phase

J1 Comm. phase

J2 Comm. phase

J1 Comm. phase

Iteration 5

Jobs share bandwidth equally

Figure 2: Comparing the iteration times with fair and unfair bandwidth allocations.

Intuitively, when two training jobs share a network link, fair
bandwidth sharing slows down both jobs by prolonging their
communication phases. In contrast, unfair bandwidth sharing
speeds up one job while slowing down the other, creating a
side effect that slides the on-off pattern of the two competing
jobs to fit into each other after a few iterations.

Figure 2 demonstrates the sliding impact for the two scenar-
ios in Figure 1 by showing the link utilization of back-to-back
iterations. For clarity of presentation, we assume both jobs
start at the same time, and we smooth out the plots to help
with the visualization. Figure 2a shows that when the bottle-
neck link is shared fairly, both jobs continue to occupy ≈50%
of the available bandwidth across all iterations. In contrast,
Figure 2b shows that for the very first iteration, unfairness
gives more bandwidth to 𝐽1, allowing it to accelerate and com-
plete the first iteration at 𝑡 = 0.28 sec, whereas 𝐽2 takes longer
and completes its first iteration at 𝑡 = 0.32 sec. This imbalance
means the second communication phase of 𝐽1 starts earlier
(at 𝑡 = 0.38 sec) and utilizes the full bandwidth temporarily,
while the second communication phase of 𝐽2 starts later (at
𝑡 = 0.42 sec). Similarly, in the second iteration, when both
jobs are communicating, due to unfairness, 𝐽1 occupies a big-
ger share of the bandwidth. Interestingly, the region where
both jobs compete for network communication gradually re-
duces as we move from the first iteration to the fourth iteration.
By the fourth iteration, unfairness pulls apart the communi-
cation phases of the jobs and interleaves the computation
phase of 𝐽1 with the communication phase of 𝐽2 perpetually.
Hence, the iteration times of both jobs become almost equal

Jobs competing for
bandwidth (batch size)

Fairness
iter. time

Unfairness
iter. time

Unfairness
speed-up

Fully com-
patible

BERT (8) 183 ms 157 ms 1.17× ✗
VGG19 (1200) 297 ms 315 ms 0.94×
DLRM (2000) 1301 ms 1001 ms 1.3× ✓
DLRM (2000) 1300 ms 1019 ms 1.28×
BERT (8) 320 ms 216 ms 1.48×
VGG19 (1400) 494 ms 466 ms 1.06× ✗
WideResNet (800) 466 ms 505 ms 0.92×
WideResNet (800) 295 ms 273 ms 1.08× ✓
VGG16 (1400) 294 ms 274 ms 1.07×
VGG19 (1400) 389 ms 329 ms 1.18×
VGG16 (1700) 389 ms 329 ms 1.18× ✓
ResNet50 (1600) 167 ms 165 ms 1.01×

Table 1: Unfairness speeds up only fully compatible jobs.

to what they would have been had the jobs been running in a
dedicated cluster; i.e., faster than fair sharing.

Is unfairness helpful for all ML jobs? It turns out that
the above desirable side effect of unfair bandwidth sharing
can only help jobs whose communication and computation
phases can fit perfectly into each other. As Table 1 shows,
unfairness only helps a specific combination of jobs. Each
row represents a different group of popular DNN training jobs
(and batch sizes). We first measure the average iteration time
when each group of jobs competes for bandwidth using the
default (fair) DCQCN algorithm. Then, for each group of jobs,
we make the DCQCN algorithm unfair such that the order
of aggressiveness is based on the jobs’ order of appearance
in the table, with each job more aggressive than subsequent
jobs in its row. The first group shows that when BERT [15]
and VGG19 [41] models share a link, making BERT more
aggressive ends up negatively hurting the iteration time of
VGG19. But the second group shows when two DLRM [2]



HotNets’22, November 14–15, 2022, Austin, TX, USA Sudarsanan Rajasekaran et al.

141 % 255

(a) Network demand

0

10

20

30

40

50

0 400 800 1200

Li
nk

 U
til

iza
tio

n 
(G

bp
s)

Time (ms)

(c) Geometric abstraction
(b) Network demand rolled 

around a circle

141 % 255

0 % 255 0 % 255

Iteration time (255 ms)

Figure 3: Our geometric abstraction.

(a) Communication phases
are colliding

(b) Communication phases 
are interleaved

J1

J2

J1

J2

Figure 4: Jobs 𝐽1 and 𝐽2 are compatible.

models share a link, making the first DLRM more aggressive
accelerates the average iteration time of both jobs by 1.28 ×
−1.3×, compared to fair bandwidth sharing. The green color
indicates the set of jobs for which unfairness leads to faster
iteration times than fair bandwidth sharing. We refer to a
group of jobs for which unfairness results in faster iterations
time for all the jobs in the group as compatible jobs.

3 GEOMETRIC ABSTRACTION
To determine whether a set of jobs competing on a link is
compatible, we seek to answer the following question: “Is
there a way to slide the communication pattern of the jobs
such that their communication phases have almost no overlap
with each other?

Roll time around a circle. To answer above question, we
propose a novel geometric abstraction. Consider the time-
series representation of the network demand for a job running
in a dedicated cluster with no congestion. Given the periodic
on-off pattern of DNN training, the duration of the compute
and communication phases remains more or less the same
across training iterations. Consequently, if we roll time around
a circle whose perimeter is equal to the training iteration time,
the communication phases of all iterations will appear approx-
imately on the same arc of the circle. For instance, Figure 3a
illustrates the time-series network demand of VGG16 with
a training iteration time of 255 ms where the first 141 ms
are pure computation (i.e., forward pass). Figure 3b shows a
circle with perimeter 255 time units and the time-series data
plotted around it in a counter-clockwise direction. The com-
pute phase of all iterations occupies the arc starting at 0 and
ending at 141 time units, and the communication phases span
the rest of the circle. This representation demonstrates that
the compute and communication phases of different iterations
always cover the same arcs of the circle. We design our geo-
metric abstraction to capture this circular property. Figure 3c
shows our geometric abstraction. The circle’s perimeter rep-
resents the iteration time, set to 255 time units. The compute
phase spans 141 time units, represented by the uncolored arc,
and the communication phase, represented by the colored arc,
occupies the remainder of the circle.

Rotate the circle to avoid congestion. To determine the
compatibility of two (or more) jobs, we place each job on its
corresponding circle and overlay the circles on top of each
other. Congestion happens when the communication phases
collide, as shown in Figure 4a. To avoid congestion, we rotate
the circles to find a position where the communication arcs do
not collide, as shown in Figure 4b. If such a rotation is found,
the jobs are deemed compatible. Note that rotating the circles
clockwise and counterclockwise is equivalent to the sliding
effect of unfairness. Moreover, overlapping the computation
times of each job (the uncolored regions) is acceptable, as we
assume jobs are not sharing the compute resources with each
other.

How to capture jobs with different iteration times? The
above technique is only applicable when circles have the same
perimeter. To generalize our geometric abstraction to the case
where jobs have different iteration times, we place each job
on a unified circle whose perimeter is equal to the Least
Common Multiple (LCM) of the iteration times of all jobs
competing on the link. For instance, consider two jobs 𝐽1 and
𝐽2 competing on a bottleneck link with iteration times 40 ms
and 60 ms, respectively. To determine the compatibility of
these two jobs, we place them on a circle with a perimeter
equal to 𝐿𝐶𝑀 (40, 60) = 120 units. Figure 5a shows 𝐽1 on
this unified circle. Given that the perimeter of the circle is
3× 𝐽1’s iteration time, there are three communication and
computation phases in the figure. Similarly, Figure 5b shows
𝐽2 on the unified circle. We then overlay the unified circles
(shown in Figure 5c) and rotate them to determine whether the
jobs are compatible. Figure 5d shows that when 𝐽1 is rotated
30◦ counterclockwise, the colored areas on the circles do not
collide; i.e., the jobs are fully compatible.

Optimization formulation. We use an optimization for-
mulation to determine whether a set of jobs is fully com-
patible and if so, what the best angle of rotation is for each
job such that the communication phases do not overlap. Our
formulation searches for rotation angles such that there is
no region on the unified circle where more than one job is
communicating. For scalability, we discretize the circle into
small sectors and add constraints capping the number of jobs



Congestion Control in Machine Learning Clusters HotNets’22, November 14–15, 2022, Austin, TX, USA

(c) Overlaying the unified circles

(a) J1 on unified circle (b) J2 on unified circle

(d) Rotating J1 by 30 degrees

J1

J2

0 % 120

40

80

0 % 12060
120 ∘ 180∘

J1

J2

30∘

Figure 5: Geometric abstraction for jobs with different
training iteration times using a unified circle.

communicating in each sector at one. If the optimization for-
mulation finds the rotation angles satisfying the constraints,
the jobs are deemed compatible.1

4 CONGESTION-FREE ML CLUSTERS
Today’s ML cluster scheduling techniques consider end-hosts
that are topologically near each other as the main criterion for
reducing network congestion [18, 23, 26, 28, 31, 32, 34, 51].
This section argues for two requirements to move toward
congestion-free ML clusters. First, ML schedulers should be
augmented to take compatibility into account and to place
compatible jobs on network links. In other words, the problem
of job placement should be related not only to available re-
sources on servers but also to compatibility on links. Second,
once compatible jobs are placed on the same link(s), service
providers need to artificially create the desirable side effect
of unfairness to enable compatible jobs to occupy the entire
link bandwidth without slowing each other down.

Placing compatible jobs on links. To place compatible
jobs on network links, the ML scheduler should first profile
each ML training job in isolation to measure its iteration time,
communication pattern, and bandwidth demand for different
hyper-parameters. Next, the scheduling algorithm should be-
come aware of network routes (e.g., ECMP routing decisions)
for each job. Once the routes are known, the scheduler runs
our optimization formulation for the set of jobs placed on a
network link to determine their compatibility. If the jobs are
incompatible, the scheduler should look for alternative place-
ments. We believe this approach applies to today’s ML sched-
ulers, including BytePS [23, 32], Themis [26], Pollux [34],
and Muri [56].

Creating unfairness for compatible jobs. After placing
compatible jobs on network links, the next step is to avoid

1The details of the optimization formulation are omitted for brevity.

colliding the communication phases of jobs, so that they can
co-exist on the same link while using the link bandwidth one
at a time. This property can be achieved by: (𝑖) deploying
an unfair congestion control algorithm; or (𝑖𝑖) using packet
priorities to achieve unfairness; or (𝑖𝑖𝑖) scheduling the com-
munication phases in the appropriate time slots. Below we
summarize each approach.

Using an unfair transport protocol. Intuitively, deploy-
ing an unfair congestion control algorithm throughout a clus-
ter seems like a bad idea. In particular, as shown in Table 1,
when incompatible jobs share a link, our unfair transport pro-
tocol favors more aggressive jobs and slows down the less
aggressive ones without creating any desirable side effects.
However, we argue that an adaptively unfair congestion con-
trol algorithm can achieve the desired side effect of unfairness
when the jobs are compatible without negatively impacting in-
compatible jobs. For instance, the DCQCN algorithm [57, 58]
uses the following equation to determine the increase in its
target sending rate: 𝑅𝑇 = 𝑅𝑇 + 𝑅𝐴𝐼 , where 𝑅𝑇 represents the
target sending rate, and 𝑅𝐴𝐼 denotes the Additive Increase
step. To enable adaptive unfairness, we adjust 𝑅𝐴𝐼 from a con-
stant to 𝑅𝐴𝐼 (1 + 𝐷𝑎𝑡𝑎𝑠𝑒𝑛𝑡

𝐷𝑎𝑡𝑎𝑐𝑜𝑚𝑚. 𝑝ℎ𝑎𝑠𝑒
), where 𝐷𝑎𝑡𝑎𝑠𝑒𝑛𝑡 represents

the amount of progress in the communication phase. Hence,
a job closer to completing its communication phase is more
aggressive than a job just about to start its communication
phase (𝐷𝑎𝑡𝑎𝑠𝑒𝑛𝑡 = 0), enabling interleaving of compatible
jobs. Meanwhile, incompatible jobs continue to take turns in
becoming the aggressive party to claim the bandwidth, and
they end up sharing the bandwidth fairly in steady state.

Using priority queues. An alternative approach is to use
priority queues in network switches. This approach is sim-
ilar to prior techniques using application-aware semantics
in datacenters to achieve differential performance [3, 4, 12–
14, 16, 17, 55]. For ML workloads, the assigned priority for
jobs can be arbitrary as long as the jobs competing for the
same link are compatible and have a unique priority. In this
approach, the scheduler assigns the priority value to each job
sharing the same link. Then, the end-hosts mark packets with
the assigned priority, allowing the switch [36, 42] to divide
the link bandwidth accordingly, thereby mimicking the desir-
able side effect of unfairness. This approach does not require
any changes to the congestion control algorithm. However, a
potential challenge is that today’s switches support a few pri-
ority queues; thus, maintaining unique priorities when there
is a large number of jobs becomes challenging.

Flow scheduling. Instead of creating explicit unfairness in
the congestion control algorithm, service providers can use
the centralized scheduler to schedule flows for each job at
precise time intervals. Concretely, the output of our optimiza-
tion formulation provides an angle of rotation for each job
such that the communication phases do not collide. This angle



HotNets’22, November 14–15, 2022, Austin, TX, USA Sudarsanan Rajasekaran et al.

corresponds to a time-shift for the communication phase of a
job. Using this time-shift, the scheduler can schedule flows
at appropriate times to avoid colliding the communication
phases of jobs sharing network links. This approach is simi-
lar to flow-scheduling techniques in datacenters [33, 39, 47].
However, it is challenging to schedule short transfers at pre-
cise times without a high-resolution clock synchronization
across the cluster.

5 DISCUSSION
Cluster-level compatibility. In large-scale clusters, jobs are
likely to traverse multiple links, and they may compete with
different jobs on different links. Given the interdependence
of all servers participating in a training job, service providers
must ensure compatibility is preserved across all links. A
potential solution to address this is to expand the perimeter of
the unified circle to become the LCM of the iteration times of
the jobs sharing at least one link with other jobs and solving
the optimization formulation to find a unique rotation angle
for each job.

GPU multi-tenancy. For simplicity, we assume GPUs are
dedicated resources for each job, and different jobs do not
share the same GPU – this is not far from how many pro-
duction clusters run today to ensure predictable and high
throughput training performance. Thus, our geometric ab-
straction only considers the network links as shared resources
and allows the compute phases of different jobs to overlap.
Recent proposals demonstrate the feasibility of multi-tenancy
on GPUs [5, 49, 51, 52, 56]. We note that capturing GPU
multi-tenancy is possible by adding more constraints in our
optimization formulation, but we omit the details for brevity.

Impact of hyper-parameters. The iteration time and com-
munication demand of a job are affected by the batch size,
the number of workers, and the all-reduce algorithm. If these
hyper-parameters are changed during the lifetime of a job,
its geometric abstraction changes accordingly, and the sched-
uler should take the new abstraction into account. This also
provides an opportunity for the scheduler to adjust the hyper-
parameters to improve the compatibility of jobs sharing links
while making job placement decisions.

6 RELATED WORK
Congestion control for ML. RDMA is currently the stan-
dard technology used in ML clusters. Congestion control al-
gorithms for RDMA include DCQCN [57, 58], IRN [27], and
RoCC [43]. These schemes strive to achieve fairness across
all flows sharing a link and do not leverage the unique prop-
erties of ML workloads, such as periodicity and predictable
network demand. Xia et al. [50] leverage the loss-tolerance
of ML training and propose a bounded-loss tolerant transport

as a new congestion control paradigm for ML training work-
loads. In contrast, our approach does not require bounding
the loss.

Scheduling techniques. DNN scheduling algorithms de-
cide where jobs are placed in the cluster. Today’s schedulers,
such as Gandiva [51], Themis [26], Pollux [34], Tiresias [18],
ByteScheduler [23, 32], and Optimus [31], try to minimize
congestion by placing workers of the same job as close to
each other as possible. But these approaches do not consider
placing compatible jobs on network links to avoid sharing the
network bandwidth. Flow-scheduling approaches such as Sin-
cronia [3], Orchestra [9], and Coflows [7, 8, 10, 39, 40, 54]
provide differential treatment for flows instead of sharing the
network fairly. But these approaches are designed for legacy
datacenter traffic and do not leverage the periodic behavior of
ML traffic. In contrast, our approach is custom-designed for
ML workloads. Muri [56] and Synergy [28] recently proposed
DL scheduling techniques to interleave critical resources (e.g.,
GPU, CPU, network, storage) of DL training jobs. However,
Muri considered a restrictive setting where resource inter-
leaving is only possible for jobs distributed across the exact
same set of servers, and Synergy only considered GPU, CPU,
and memory as critical resources. Our approach captures a
more generic case where network links are shared across jobs,
irrespective of the set of GPUs they use.

7 CONCLUSION
We present a surprising finding: unfair bandwidth allocation
helps certain combinations of DNN jobs achieve congestion-
free performance even though the network is shared. We for-
malize our finding by defining a novel geometric abstraction
to capture job compatibility and argue ML schedulers should
use an optimization formulation to take job compatibility
into account. We discuss potential approaches to systemati-
cally unlock this opportunity to optimize network sharing for
compatible jobs.

Acknowledgments. We would like to thank HotNets’
anonymous reviewers for their valuable feedback. Special
thanks to Zhizhen Zhong for help with the optimization for-
mulation, Weiyang Wang for help with the testbed, Mingran
Yang for help with the Tofino switch, Benoit Pit–Claudel, Pan-
tea Karimi, Dousabel Tay, Kapil Vaidya, Nandita Dukkipati,
and Amin Vahdat for giving valuable suggestions. The MIT-
affiliated authors are supported by ARPA-E ENLITENED
PINE DE-AR0000843, DARPA FastNICs 4202290027, NSF
CNS-2008624, NSF SHF-2107244, NSF ASCENT-2023468,
NSF CAREER-2144766, NSF PPoSS-2217099, NSF CNS-
2211382, Meta faculty award, Google faculty award, and
Sloan fellowship FG-2022-18504. The UT Austin author is
supported by NSF CNS-2105890, NSF CNS-2106199 and
gifts from Meta and Cisco.



Congestion Control in Machine Learning Clusters HotNets’22, November 14–15, 2022, Austin, TX, USA

REFERENCES
[1] Baidu, 2017. https://github.com/baidu-research/baidu-allreduce.
[2] Deep Learning Recommendation Model for Personalization and Recom-

mendation Systems, 2021. https://github.com/facebookresearch/dlrm.
[3] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys,

and A. Vahdat. Sincronia: Near-optimal network design for coflows.
SIGCOMM ’18, page 16–29, New York, NY, USA, 2018. Association
for Computing Machinery.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. pfabric: Minimal near-optimal datacenter transport. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 435–446, New York, NY, USA, 2013. ACM.

[5] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog,
C. J. Rossbach, and O. Mutlu. Mask: Redesigning the gpu memory
hierarchy to support multi-application concurrency. SIGPLAN Not.,
53(2):503–518, mar 2018.

[6] M. A. Chang, A. Panda, D. Bottini, L. Jian, P. Kumar, and S. Shenker.
Network evolution for dnns. SysML, 2018.

[7] M. Chowdhury and I. Stoica. Coflow: A networking abstraction for
cluster applications. In Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, HotNets-XI, page 31–36, New York, NY, USA,
2012. Association for Computing Machinery.

[8] M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior
knowledge. In Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM ’15, page 393–406,
New York, NY, USA, 2015. Association for Computing Machinery.

[9] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing
data transfers in computer clusters with orchestra. In Proceedings of
the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, page 98–109,
New York, NY, USA, 2011. Association for Computing Machinery.

[10] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling
with varys. In Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, page 443–454, New York, NY, USA, 2014.
Association for Computing Machinery.

[11] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengil, M. Liu, D. Lo, S. Alkalay, and M. Haselman. Accelerating
persistent neural networks at datacenter scale. In Hot Chips, volume 29,
2017.

[12] R. Cruz. Quality of service guarantees in virtual circuit switched
networks. IEEE Journal on Selected Areas in Communications,
13(6):1048–1056, 1995.

[13] R. L. Cruz. Service burstiness and dynamic burstiness measures: A
framework. J. High Speed Netw., 1(2):105–127, apr 1992.

[14] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. SIGCOMM Comput. Commun. Rev., 19(4):1–12,
aug 1989.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[16] N. Figueira and J. Pasquale. Rate-function scheduling. In Proceedings
of INFOCOM ’97, volume 3, pages 1063–1071 vol.3, 1997.

[17] N. R. Figueira and J. Pasquale. Leave-in-time: A new service disci-
pline for real-time communications in a packet-switching network. In
Proceedings of the Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIGCOMM ’95,
page 207–218, New York, NY, USA, 1995. Association for Computing
Machinery.

[18] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo. Tiresias: A GPU cluster manager for distributed deep
learning. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 485–500, Boston, MA, Feb. 2019.

USENIX Association.
[19] S. H. Hashemi, S. Abdu Jyothi, and R. Campbell. Tictac: Accelerating

distributed deep learning with communication scheduling. In A. Tal-
walkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine
Learning and Systems, volume 1, pages 418–430, 2019.

[20] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen.
Gpipe: Efficient training of giant neural networks using pipeline paral-
lelism. NeurIPS, 2019.

[21] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko.
Priority-based parameter propagation for distributed dnn training. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Ma-
chine Learning and Systems, volume 1, pages 132–145, 2019.

[22] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu. Highly scalable
deep learning training system with mixed-precision: Training imagenet
in four minutes. CoRR, abs/1807.11205, 2018.

[23] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A unified architec-
ture for accelerating distributed DNN training in heterogeneous gpu/cpu
clusters. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 463–479. USENIX Association,
Nov. 2020.

[24] M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick, K. Bergman,
A. Vahdat, B. Klenk, and E. Ebrahimi. Sip-ml: High-bandwidth optical
network interconnects for machine learning training. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, pages
657–675, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[25] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine
learning with the parameter server. OSDI’14, pages 583–598. USENIX
Association, 2014.

[26] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla. Themis: Fair and efficient
GPU cluster scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 289–304, Santa
Clara, CA, Feb. 2020. USENIX Association.

[27] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Rat-
nasamy, and S. Shenker. Revisiting network support for rdma. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, page 313–326, New York,
NY, USA, 2018. Association for Computing Machinery.

[28] J. Mohan, A. Phanishayee, J. J. Kulkarni, and V. Chidambaram. Look-
ing beyond gpus for dnn scheduling on multi-tenant clusters. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI
2022), July 2022.

[29] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X. Liu,
M. Ozdal, J. Nie, J. Park, L. Luo, J. A. Yang, L. Gao, D. Ivchenko,
A. Basant, Y. Hu, J. Yang, E. K. Ardestani, X. Wang, R. Komuravelli,
C.-H. Chu, S. Yilmaz, H. Li, J. Qian, Z. Feng, Y. Ma, J. Yang, E. Wen,
H. Li, L. Yang, C. Sun, W. Zhao, D. Melts, K. Dhulipala, K. Kishore,
T. Graf, A. Eisenman, K. K. Matam, A. Gangidi, G. J. Chen, M. Krish-
nan, A. Nayak, K. Nair, B. Muthiah, M. khorashadi, P. Bhattacharya,
P. Lapukhov, M. Naumov, L. Qiao, M. Smelyanskiy, B. Jia, and V. Rao.
Software-hardware co-design for fast and scalable training of deep
learning recommendation models, 2021.

[30] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia. Pipedream: Generalized
pipeline parallelism for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP’19, pages 1–15,
New York, NY, USA, 2019. Association for Computing Machinery.

[31] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus: An efficient
dynamic resource scheduler for deep learning clusters. In Proceedings

https://github.com/baidu-research/baidu-allreduce
https://github.com/facebookresearch/dlrm


HotNets’22, November 14–15, 2022, Austin, TX, USA Sudarsanan Rajasekaran et al.

of the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[32] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo.
A generic communication scheduler for distributed dnn training accel-
eration. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 16–29, New York, NY, USA, 2019.
Association for Computing Machinery.

[33] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fast-
pass: A centralized "zero-queue" datacenter network. In Proceedings
of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, page
307–318, New York, NY, USA, 2014. Association for Computing Ma-
chinery.

[34] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing. Pollux: Co-adaptive clus-
ter scheduling for goodput-optimized deep learning. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), pages 1–18. USENIX Association, July 2021.

[35] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106,
Mar. 1986.

[36] S. Ramabhadran and J. Pasquale. Stratified round robin: A low com-
plexity packet scheduler with bandwidth fairness and bounded delay. In
Proceedings of the 2003 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, SIGCOMM
’03, page 239–250, New York, NY, USA, 2003. Association for Com-
puting Machinery.

[37] S. Rashidi, M. Denton, S. Sridharan, S. Srinivasan, A. Suresh, J. Nie,
and T. Krishna. Enabling Compute-Communication Overlap in Dis-
tributed Deep Learning Training Platforms, page 540–553. IEEE Press,
2021.

[38] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep
learning in tensorflow. CoRR, abs/1802.05799, 2018.

[39] M. Shafiee and J. Ghaderi. Scheduling coflows in datacenter networks:
Improved bound for total weighted completion time. In Proceedings of
the 2017 ACM SIGMETRICS / International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS ’17 Abstracts,
page 29–30, New York, NY, USA, 2017. Association for Computing
Machinery.

[40] M. Shafiee and J. Ghaderi. Scheduling coflows with dependency graph.
IEEE/ACM Trans. Netw., 30(1):450–463, feb 2022.

[41] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition, 2015.

[42] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown.
Programmable packet scheduling at line rate. In Proceedings of the
2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 44–57, New
York, NY, USA, 2016. Association for Computing Machinery.

[43] P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster, and
T. Edsall. RoCC: Robust Congestion Control for RDMA, page 17–30.
Association for Computing Machinery, New York, NY, USA, 2020.

[44] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective
communication operations in mpich. Int. J. High Perform. Comput.
Appl., 19(1):49–66, Feb. 2005.

[45] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective
communication operations in mpich. Int. J. High Perform. Comput.
Appl., 19(1):49–66, Feb. 2005.

[46] Y. Ueno and R. Yokota. Exhaustive study of hierarchical allreduce
patterns for large messages between gpus. In 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 430–439, 2019.

[47] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren. Practical
tdma for datacenter ethernet. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, page 225–238, New

York, NY, USA, 2012. Association for Computing Machinery.
[48] W. Wang, M. Khazraee, Z. Zhong, M. Ghobadi, Z. Jia, D. Mudigere,

Y. Zhang, and A. Kewitsch. Topoopt: Co-optimizing network topol-
ogy and parallelization strategy for distributed training jobs. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 2023.

[49] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding. MLaaS in the wild: Workload analysis and sched-
uling in Large-Scale heterogeneous GPU clusters. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), pages 945–960, Renton, WA, Apr. 2022. USENIX Association.

[50] J. Xia, G. Zeng, J. Zhang, W. Wang, W. Bai, J. Jiang, and K. Chen.
Rethinking transport layer design for distributed machine learning. In
Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019,
APNet ’19, page 22–28, New York, NY, USA, 2019. Association for
Computing Machinery.

[51] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou. Gandiva:
Introspective cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 595–610, Carlsbad, CA, Oct. 2018. USENIX Association.

[52] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia. AntMan: Dynamic scaling on GPU clusters for deep learning.
In 14th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 20), pages 533–548. USENIX Association, Nov.
2020.

[53] P. Xie, J. K. Kim, Y. Zhou, Q. Ho, A. Kumar, Y. Yu, and E. Xing.
Lighter-communication distributed machine learning via sufficient fac-
tor broadcasting. In Proceedings of the Thirty-Second Conference
on Uncertainty in Artificial Intelligence, pages 795–804, Arlington,
Virginia, USA, 2016. AUAI Press.

[54] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng. Coda:
Toward automatically identifying and scheduling coflows in the dark. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 160–173, New York, NY, USA, 2016. Association for Computing
Machinery.

[55] L. Zhang. Virtualclock: A new traffic control algorithm for packet-
switched networks. ACM Trans. Comput. Syst., 9(2):101–124, may
1991.

[56] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin. Multi-resource
interleaving for deep learning training. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page 428–440, New
York, NY, USA, 2022. Association for Computing Machinery.

[57] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. Congestion control for large-
scale rdma deployments. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM ’15,
page 523–536, New York, NY, USA, 2015. Association for Computing
Machinery.

[58] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye. Ecn or delay: Lessons
learnt from analysis of dcqcn and timely. In CoNEXT’16, September
2016.


	Abstract
	1 Introduction
	2 Surprising Payoff of Unfairness
	3 Geometric Abstraction
	4 Congestion-free ML Clusters
	5 Discussion
	6 Related Work
	7 Conclusion
	References

