Optimizing AI Systems with Optical Technologies

Manya Ghobadi MIT CSAIL ghobadi@csail.mit.edu

Steady Growth of Machine Learning Models

From AlexNet to AlphaGo Zero: 300,000x increase in compute requirements

Figure adopted from <u>OpenAI</u> https://openai.com/blog/ai-and-compute/

The Need for Distributed ML Training

- Rapid development of hardware accelerators and software stacks.
- New models are invented daily, increasing the memory and computation requirements for both inference and training.
- Future advancements to deep learning are significantly limited by the amount of computation and memory that can fit on a single chip package.
- Distributed training is the key enabler for wide-adoption of ML.

Problem: Today's ML tasks still take days and even weeks to train.

Measurements at Facebook

Where is the Bottleneck?

- Why don't we throw more GPUs at these DNN jobs?
- As the number of ML workers scale, the network bandwidth becomes a bottleneck [SIGCOMM'21].

Car parts are delivered slowly

• We have been! Each job is running with hundreds, sometimes thousands, GPUs.

Can produce 1 car per second

Vision: Next-generation DNN Training Clusters

Outline

- Key Concepts for Designing Scalable ML Training Interconnects
 - Parallelization strategies
 - Weak and strong scaling
- Network bandwidth requirements for strong scaling
- Silicon photonics
- ML training interconnects

• Optical network designs, their advantages and challenges to build high-performance

Background on Distributed Training

DNN Training

- Stochastic Gradient Descent (SGD)
- Training starts with randomly initialized weights
 - Iterate through a batch of training data samples at a time:
 - Forward pass, Backward pass, Weight update
- Three important metrics:
 - Throughput
 - Iteration time
 - Time-to-accuracy

The main goal of systems for training is to reduce the time-to-accuracy

Distributed Training

Data Parallelism: A Popular Parallelization Strategy

- At the end of every iteration, GPUs need to exchange gradient updates with each other
 - Parameter server, ring-allreduce, tree-allreduce, ...
- The amount of data per GPU is proportional to the size of the DNN model

Model Parallelism: Effective but Challenging

- Within each iteration, GPUs need to exchange activation updates with each other
 - The amount of data per GPU depends on the batch size and where the model was cut.

Weak and Strong Scaling of ML Jobs

Main Goal of Distributed ML Training

- Reduce the time-to-accuracy as the number of workers is scaled.
- Two dominating scaling approaches:
 - Weak scaling
 - Strong scaling
- Key insight: strong scaling requires high bandwidth.

Weak Scaling (aka Throughput Scaling)

- processed data samples/sec) as the number of workers is increased.
- Principle technique for throughput scaling:
 - the training job.

• Reduce the *number* of training iterations by increasing the throughput of data processing (number of

• Keep the local batch size per worker fixed, and grow the global batch size as more worker are added to

Weak Scaling (aka Throughput Scaling)

- Iteration time per worker is the same
- But the entire system is able to process a larger global batch
- It is widely believed that training with large batches reduces the time-to-accuracy
- Many systems today have been successful at demonstrating throughput scaling with thousands of worker nodes without requiring a high bandwidth interconnect
- What's the problem?

The Problem with Weak Scaling

Increasing the global batch size does not always translate to improving the number of iterations.

Source: Measuring the Effects of Data Parallelism on Neural Network Training Christopher J. Shallue et al., Google https://arxiv.org/pdf/1811.03600.pdf

Strong Scaling (aka Latency Scaling)

- are participating in the training job.
- Guaranteed to improve the time-to-accuracy.
- worker or by partitioning the computation task across workers.
- Achieving strong scaling is challenging.

• Instead of reducing the number of iterations, reduce the iteration time as more workers

• Strong scaling parallelizes the computation either by reducing the local batch size per

What is the Bandwidth Requirement for Strong Scaling?

- scaled:
 - needs more frequent updates.
 - (ii) The amount of data exchanged at each iteration depends on the model partitioning strategy.
- communication bandwidth per GPU.

This talk will show how to enable model parallelism at 1,000-GPU scale.

• In strong scaling approaches, the bandwidth requirement increases as the system is

• (i) Strong scaling leads into reduced computation time per worker hence the model

• Today: the degree of MP has been limited to 8–32 workers within one box with Tbps

The Problem with Today's Clusters

Today's interconnects are not optimal for scaling Model Parallel strategies.

Silicon Photonics

For building the next generation of ML systems

Electrical Networks vs. Optical Networks?

(Pbps)

Capacity

- Straightforward design: electrical fabric
- Recent trends in SERDES/ packet switching technology suggest that we may hit a wall in capacity with standard electrical packet switching.

interconnect very close (essentially on die) to the training ASICs.

Figure source:

Ballani et al., Sirius: A Flat Datacenter Network with Nanosecond Optical Switching [SIGCOMM 2020]

• At the same time: substantial progress with Silicon Photonics chiplets to bring optical

What would an optical future look like?

What is Silicon Photonics?

optical functions on a single Si chip.

• The top candidate to provide bandwidth scalability.

Source: Adiabatic optical coupling Bert Jan Offrein, IBM https://www.zurich.ibm.com/st/photonics/adiabatic.html

• Integrated CMOS-based silicon (Si) photonics monolithically combines electrical and

Si photonics chips

Technology@Intel Technology Provider

PROGRAMMABLE LOGIC

earch Programmable Logi

AYAR LABS AND INTEL DEMO FPGA WITH OPTICAL TRANSCEIVERS IN DARPA PIPES PROJECT: 2 TBPS NOW, >100 TBPS IS THE GOAL

Written by Steven Leibson | March 27, 2020

TECHNOLOGIES > ANALOG

CMOS Plus On-Chip Electro-Optical Interconnect Zooms Past 2 Tb/s

A highly advanced management of electronics, CMOS, and optical physics is pushing system-in-package designs past the terabitper-second boundary in this DARPA-sponsored project with Ayar Labs and Intel.

Bill Schweber AUG 19, 2020

Image source: Intel https://blogs.intel.com/psg/ayar-labs-and-intel-demo-fpga-with-optical-transceivers-in-darpa-pipes-project-2-tbps-now-100-tbps-is-the-goal/

- Intel's FPGA board with SiP interfaces capable of 2 Tbps I/O bandwidth
- Intel's projection is to achieve 100 Tbps I/O bandwidth integrated directly into CPU/GPU/FPGA/ASIC chiplets.

Optical I/O interfaces

Reconfigurable Optical Links for Next-generation Clusters

- are fundamentally impossible with today's technologies.
- Significant benefits from reconfigurable optical links.

<u>Current server</u>

[IEEE Optical Interconnects'18]

• Tbps SiP I/O integration enables building next-generation computer architectures that

Disaggregated rack

Reconfigurable Optical Links and Hogwarts Grand Staircase

Movie Scene: Harry Potter and the Sorcerer's Stone Credit: Fred Douglis, https://spectrum.ieee.org/tech-talk/computing/hardware/darpa-supercomputer-network-interface

Match Made in Heaven: ML workloads and Optical Interconnects

- center workloads.
- Conventional datacenter workloads:
 - Unpredictable, mostly short flows.
- ML workloads:
 - Predictable, mostly large transfers.

The parallelization algorithm determines the circuit schedules and the entire training repeats the same communication pattern.

• Several optical proposals in the past decade to address the bandwidth growth of data

ML workloads open up new possibilities to build specialized circuit-based interconnects.

Novel Data Center Architecture

Today's ML clusters

Spectrum of Possible Optical Topologies

Switch-based Optical Topology

- Commercially available today
- Long reconfiguration delay (~30 ms)
- Suitable only for circuits that can last for several hundreds of millisecond
- Reconfigure the fabric once before the training job starts.

Optical Circuit Switch (OCS)

Switch-free Optical Topology

- Extreme design point
- Fast reconfiguration (~20 us)
- Less expensive than switch-based design
- Not palatable for general-purpose data center workloads, but we identify a unique opportunity to build switch-free optical interconnects for dedicated ML clusters.

- Ring topology

Task Placement Algorithm

- The choice of topology influences the parallelization strategy.
- Switch-based topologies:
 - General-purpose interconnects that can support all-to-all traffic patterns.
 - But high reconfiguration latency enforces a one-shot circuit establishment requirement.
- Switch-free topologies:
 - ring.

• The parallelization strategy favors short path lengths (i.e., most communication should occur between nearby nodes) to allow wavelengths to be reused around the

Task Placement Finds the Best MP based on per-GPU Bandwidth

512 GPUs with 8-way DP and 64-way MP

Impact of Network Bandwidth on Training Time

Megatron DNN with 18 billion parameters distributed across 1024 GPUs

Time-to-Accuracy (min)

Bandwidth per GPU (Gbps)

Balance Between Model and Data Parallel

1024 GPUs, Transformer model

Bandwidth per Node (Gbps)

Summary

- SiP-based optical I/O-enabled GPUs for building high bandwidth DNN training clusters.
- The interplay between topology and parallelization strategy provides a powerful tool to design ML networks.
- Despite the seemingly limited connectivity in switchfree topologies, they can support a logically rich communicate pattern by reconfiguring wavelengths in SiP ports.

Paper: M. Khani et al., SiP-ML: High-Bandwidth Optical Network Interconnects for Machine Learning Training [SIGCOMM'21] **Code:** <u>https://github.com/MLNetwork/rostam</u> Email: ghobadi@mit.edu

