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Steady Growth of Machine Learning Models
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Figure adopted from OpenAI 
https://openai.com/blog/ai-and-compute/
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From AlexNet to AlphaGo Zero: 300,000x increase in compute requirements

https://openai.com/blog/ai-and-compute/


The Need for Distributed ML Training

• Rapid development of hardware accelerators and software stacks. 

• New models are invented daily, increasing the memory and computation 
requirements for both inference and training. 

• Future advancements to deep learning are significantly limited by the 
amount of computation and memory that can fit on a single chip package. 

• Distributed training is the key enabler for wide-adoption of ML.
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Problem: Today’s ML tasks still take days and even weeks to train.

Figure adopted from ACM 
https://cacm.acm.org/magazines/2018/4/226374-chips-for-artificial-intelligence/fulltext

TPU

https://cacm.acm.org/magazines/2018/4/226374-chips-for-artificial-intelligence/fulltext
https://cacm.acm.org/magazines/2018/4/226374-chips-for-artificial-intelligence/fulltext


Measurements at Facebook
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50% of Natural Language 
Processing models take over a 

day to train



Where is the Bottleneck?

• Why don’t we throw more GPUs at these DNN jobs? 

• We have been! Each job is running with hundreds, sometimes thousands, GPUs. 

• As the number of ML workers scale, the network bandwidth becomes a bottleneck 
[SIGCOMM’21].

5Image source: https://www.investors.com/wp-content/uploads/2021/04/Stock-manufacturingcar-02-adobe.jpg
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Vision: Next-generation DNN Training Clusters
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Outline

• Key Concepts for Designing Scalable ML Training Interconnects 

• Parallelization strategies 

• Weak and strong scaling 

• Network bandwidth requirements for strong scaling 

• Silicon photonics  

• Optical network designs, their advantages and challenges to build high-performance 
ML training interconnects
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Background on Distributed Training
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DNN Training

• Stochastic Gradient Descent (SGD) 

• Training starts with randomly initialized weights 

• Iterate through a batch of training data samples at a time: 

• Forward pass, Backward pass, Weight update 

• Three important metrics: 

• Throughput 

• Iteration time 

• Time-to-accuracy
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The main goal of systems for training is to reduce the time-to-accuracy



Parallelization Strategies

Data Parallel Model Parallel Hybrid Data/Model 
Parallel

Inter-layer 
(Pipeline Parallel) Intra-layer

Distributed Training
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Data Parallelism: A Popular Parallelization Strategy
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• At the end of every iteration, GPUs need to exchange gradient updates with each other 

• Parameter server, ring-allreduce, tree-allreduce, … 

• The amount of data per GPU is proportional to the size of the DNN model



Model Parallelism: Effective but Challenging

12
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• Within each iteration, GPUs need to exchange activation updates with each other 

• The amount of data per GPU depends on the batch size and where the model was cut.



Weak and Strong Scaling of ML Jobs
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Main Goal of Distributed ML Training

• Reduce the time-to-accuracy as the number of workers is scaled.  

• Two dominating scaling approaches: 

• Weak scaling 

• Strong scaling 

• Key insight: strong scaling requires high bandwidth.
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Weak Scaling (aka Throughput Scaling)

• Reduce the number of training iterations by increasing the throughput of data processing (number of 
processed data samples/sec) as the number of workers is increased.  

• Principle technique for throughput scaling:  

• Keep the local batch size per worker fixed, and grow the global batch size as more worker are added to 
the training job.
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Weak Scaling (aka Throughput Scaling)

• Iteration time per worker is the same 

• But the entire system is able to process a larger global batch  

• It is widely believed that training with large batches reduces the time-to-accuracy 

• Many systems today have been successful at demonstrating throughput scaling with 
thousands of worker nodes without requiring a high bandwidth interconnect 

• What’s the problem? 
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Transformer Model

Source: Measuring the Effects of Data Parallelism on Neural Network Training

Christopher J. Shallue et al., Google

https://arxiv.org/pdf/1811.03600.pdf

LSTM Model

The Problem with Weak Scaling
Increasing the global batch size does not always translate to 

improving the number of iterations.

https://arxiv.org/pdf/1811.03600.pdf


Strong Scaling (aka Latency Scaling)

• Instead of reducing the number of iterations, reduce the iteration time as more workers 
are participating in the training job.  

• Guaranteed to improve the time-to-accuracy.  

• Strong scaling parallelizes the computation either by reducing the local batch size per 
worker or by partitioning the computation task across workers.  

• Achieving strong scaling is challenging.

18



What is the Bandwidth Requirement for Strong Scaling?

• In strong scaling approaches, the bandwidth requirement increases as the system is 
scaled: 

• (i) Strong scaling leads into reduced computation time per worker hence the model 
needs more frequent updates. 

• (ii) The amount of data exchanged at each iteration depends on the model 
partitioning strategy.  

• Today: the degree of MP has been limited to 8–32 workers within one box with Tbps 
communication bandwidth per GPU.
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This talk will show how to enable model parallelism at 1,000-GPU scale. 



The Problem with Today’s Clusters
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Today’s interconnects are not optimal for scaling Model Parallel strategies.



Silicon Photonics
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For building the next generation of ML systems



Electrical Networks vs. Optical Networks?

• Straightforward design: electrical fabric

What would an optical future look like?
Figure source:

Ballani et al., Sirius: A Flat Datacenter Network with Nanosecond Optical Switching [SIGCOMM 2020]

• At the same time: substantial progress with Silicon Photonics chiplets to bring optical 
interconnect very close (essentially on die) to the training ASICs. 

• Recent trends in SERDES/
packet switching technology 
suggest that we may hit a 
wall in capacity with standard 
electrical packet switching. 



What is Silicon Photonics?

• Integrated CMOS-based silicon (Si) photonics monolithically combines electrical and 
optical functions on a single Si chip.
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• The top candidate to provide bandwidth 
scalability.

Source: Adiabatic optical coupling

Bert Jan Offrein, IBM

https://www.zurich.ibm.com/st/photonics/adiabatic.html

https://ibm.biz/BertJanOffrein
https://www.zurich.ibm.com/st/photonics/adiabatic.html


24



Optical I/O interfaces}

Image source: Intel

https://blogs.intel.com/psg/ayar-labs-and-intel-demo-fpga-with-optical-transceivers-in-darpa-pipes-project-2-tbps-now-100-tbps-is-the-goal/

• Intel's FPGA board with SiP interfaces capable of 2 Tbps I/O 
bandwidth 

• Intel's projection is to achieve 100 Tbps I/O bandwidth 
integrated directly into CPU/GPU/FPGA/ASIC chiplets.



Reconfigurable Optical Links for Next-generation Clusters

• Tbps SiP I/O integration enables building next-generation computer architectures that 
are fundamentally impossible with today's technologies. 

• Significant benefits from reconfigurable optical links.
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Current server Disaggregated rack Pool and compose

[IEEE Optical Interconnects’18]



Reconfigurable Optical Links and Hogwarts Grand Staircase

27Movie Scene: Harry Potter and the Sorcerer's Stone

Credit: Fred Douglis, https://spectrum.ieee.org/tech-talk/computing/hardware/darpa-supercomputer-network-interface



• Several optical proposals in the past decade to address the bandwidth growth of data 
center workloads.  

• ML workloads open up new possibilities to build specialized circuit-based interconnects.  

• Conventional datacenter workloads: 

• Unpredictable, mostly short flows. 

• ML workloads: 

• Predictable, mostly large transfers.

Match Made in Heaven: ML workloads and Optical Interconnects
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The parallelization algorithm determines the circuit schedules and the 
entire training repeats the same communication pattern.
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Spectrum of Possible Optical Topologies

30

Ring

Dragonfly

TorusMEMS OCS

CirculantHierarchical

RotorNet

Switch-freeSwitch-based



31

Node1 Node2 Noden-1 Noden

OCS

TeraPHY

GPU

TeraPHY

GPU

TeraPHY

GPU

TeraPHY

GPU

OCS OCS

Optical Circuit Switch (OCS)

• Commercially available today 
• Long reconfiguration delay (~30 ms) 
• Suitable only for circuits that can last for several hundreds of millisecond 
• Reconfigure the fabric once before the training job starts.

Switch-based Optical Topology
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Switch-free Optical Topology

• Extreme design point 
• Fast reconfiguration (~20 us) 
• Less expensive than switch-based design 
• Not palatable for general-purpose data center workloads, but we identify a unique opportunity to 

build switch-free optical interconnects for dedicated ML clusters. 



Task Placement Algorithm

• The choice of topology influences the parallelization strategy.  

• Switch-based topologies: 

• General-purpose interconnects that can support all-to-all traffic patterns.  

• But high reconfiguration latency enforces a one-shot circuit establishment 
requirement.  

• Switch-free topologies: 

• The parallelization strategy favors short path lengths (i.e.,  most  communication  
should  occur  between  nearby nodes) to allow wavelengths to be reused around the 
ring.
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Task Placement Finds the Best MP based on per-GPU Bandwidth
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512 GPUs with 8-way DP and 64-way MP
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Impact of Network Bandwidth on Training Time
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Balance Between Model and Data Parallel
1024 GPUs, Transformer model



Summary
• SiP-based optical I/O-enabled GPUs for building high 

bandwidth DNN training clusters. 

• The interplay between topology and parallelization 
strategy provides a powerful tool to design ML 
networks.  

• Despite the seemingly limited connectivity in switch-
free topologies, they can support a logically rich 
communicate pattern by reconfiguring wavelengths 
in SiP ports.
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Paper: M. Khani et al., SiP-ML: High-Bandwidth Optical Network Interconnects for Machine Learning Training [SIGCOMM’21] 
Code: https://github.com/MLNetwork/rostam 
Email: ghobadi@mit.edu
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