Congestion Control Protocols: ECN or Delay or Both?

Vishal Misra

Columbia University (and Google*)
Presenting work of Monia Ghobadi, Jitu Padhye, KK Ramakrishnan, Mohit
Tahiliani and Yibo Zhu

* This work has not be done at Google and does not represent Google’s views

Talk overview

« Distributed Congestion Control: Goals and Approaches
« Background: Analysis of Delay vs ECN in context of RDMA*

« Impossibility result related to delay based protocols

Datacenter simulations for DCTCP and TCP (ECN based) and
TCP BBR (delay based)

Internet simulations for TCP with PI+ECN and TCP BBR
Combining ECN and Delay: Virtual ECN

*Yibo Zhu, Monia Ghobadi, Vishal Misra and Jitendra Padhye, ECN or Delay: Lessons Learnt from Analysis of DCQCN and TIMELY,
Proceedings of 2016 ACM Conference on Emerging network experiment and technology (CoNEXT 2016), December, 2016.

Distributed Congestion Control

» fairnessgoal:if N TCP sessionsshare same
bottleneck link of bandwidth R, each should have

averagerate of R/N

» scalability goal: rate adaptation should happen
without global knowledge

TCP connection 1

ia

q bottleneck
router/switch
— capacity R

TCP connection 2

Simple Scenario: Two flows sharing a bottleneck

* Distributed Congestion control

* Flows should detect
whether the network is
congested or

Full utilization rates

Py

Fair, efficient operating point

e Adjust their sending rates
appropriately: if
Network congested network is

decrease if it is congested
e Full utilization rate

operating points —how

should flows react?

e Come back to this
question

Equal share rates

Connection 2 sending rate

Connection 1 sending rate R

AIMD Congestion Control

Py

Connection 2 throughput

two competing sessions:

% additive increase gives slope of 1, as throughput increases
% multiplicative decrease reduces throughput proportionally

Congestion: decrease window by factor of 2
No congestion: additive increase

Congestion: decrease window by factor of 2
No congestion: additive increase

Network congested

Connection 1 throughput R

Chiu and Jain showed in full generality for N flows that AIMD converges to fair, efficient point

AIMD and TCP: loss as congestion indicator

« Variants of AIMD in TCP running since
1988 (Reno, NewReno, SACK..)

W
» Packet loss used as congestion
indicator
* Al parameter: increase Window size by W

—

1 every RTT, if no loss detected

« MD parameter: reduce Window size by
% on detecting lost packet

+ Leads to “saw tooth” behavior of TCP
throughput

« Throughput of TCP ~ K/(RTT*sqrt(p))
where K is a constant, RTT is the round
trip time and p is the loss probability

ECN: A “drop in” replacement for loss

» Packet dropsresult in wasted capacity

« RTT*sgrt(p) relationship in throughput means for same fixed throughput (e.g. R/N sharing
of some link), reducing RTT leads to increasing loss

 Instead, use routers/switches in the network to mark a bit to indicate congestion
« Requires “Active Queue Management” (AQM) on switches/routers
« Came out of DECbit work in the mid-80s (Ramakrishnan and Jain)

« Competing with DECbit was a delay based protocol with unpredictable and unfair behavior
+ (we will show why)

Packet Mark

o @

/ Acks Reflect Mark

TCP Vegas: Delay as Congestion Indicator

« Uses measured delay as running indicator of congestion in
network

« Uses Additive Increase Additive Decrease to adjust sending
rates

« Able to successfully reduce the number of losses, however

shown to be unfair with unpredictable performance
« (we will show why)

Analyzing Delay vs ECN for
RDMA

DCQCN and TIMELY: Congestion Control for
ROCEv2

DCQCN (Microsoft) TIMELY (Google)
Switch marks packets on detecting « Switch playsno role (FIFO queue
congestion (ECN) assumed)

Receiver reflects marked packets via ACKs . Receiver sends ACKs (once per

burst)
Sender adjusts rate using DCQCN algorithm

« Sender estimates Delay, and

Ongoing deployment in Microsoft Azure ; .
BOINE CEpioy responds to derivative.

* Variant deployed in Google*

DCQCN

DCQCN has a unique fixed point
At the fixed point, all flows share the bottleneck equally

Convergence is fairly rapid
Relationship between stability and number of flows is non-monotonic

90

Ous delay -~
50us delay e
100us delay

D
o

Phase Margin

We don’t have an intuitive explanation

0 20 40 60 80 100
Number of Flows

Rate (Gbps)

TIMELY

o N A O @

* Timely has no fixed point

« changes rate in response to changes in latency (derivative)
« Can stabilize at any point where sum of rates = bottleneck bandwidth

1
0 0.02 0.04 0.06 0.08 0.1
Time(s)

(a) Both flows start at time 0 at 5Gbps

0 10

8/ 8
g 6/ g 6
() / L)
2 4r 2 4
& &

2+ 2

0 e 1 1] 0

0 0.02 0.04 0.06 0.08 0.1
Time(s)

AAARAL 2 AANA R a2
AL AASASAAARANAA A0

(b) Both start at 5Gbps, one starts 10ms late (c¢) One starts at 7Gbps, the other at 3Gbps

“Web Search” workload experiments

90th percentile FCT (us)

CDF

100000 IMELY
10000
1000 }
100
10 . _
0 02 04 06 08 1
Load factor
1 '/—
0.8 |f
0.6
0.4
0.2 TIMELY ———
0 : DCQCN s
0 1000 2000 3000 4000 5000 6000

FCT (us)

Median FCT (us)

Queue Length (KB)

1000 1y ELy ——
DCQCN eeeeeees
100 }
10
0 0.2 0.4 0.6 0.8 1
Load factor
TIMELY —BEQCN weweeeeeeees
10000
1000
100
10
1

Why is TIMELY performing poorly?

« Reliance on delay differential

« Can be fixed by making rate changes in response to absolute delay

Feedback is delayed as queue builds up

Can have fixed queue or fairness — but not both!
ECN marking is resistant to feedback jitter

Why is TIMELY performing poorly?

« Reliance on delay differential

« Can be fixed by making rate changes in response to absolute delay

« Can have fixed queue or fairness — but not both!
 ECN marking is resistant to feedback jitter

What happens with ECN

T0, Q=2
T1,Q=3
T2,Q=4

Marking threshold =4 packets

Blue packet is about to arrive

Blue packet arrival complete

Blue packet ready to depart
... and is marked, reflecting
state of queueat T2

What happens with delay

10, Q=2 l Blue packet is about to arrive

11,Q=3 . Blue packet arrival complete.
... timer starts

T2, Q=4 I I Blue packet ready to depart
... and reflects state of queue

at TO

In other words

140 . |
: 120 L Mark on dequeuing

« Delay inherently reports - | Mark on enqueuing -
“stale” information 2 ol
3 60}
& 40t
» The staleness is affected 207
by queue length! 0

Longer queue =» more stale feedback

« This can lead to instability

Why is TIMELY performing poorly?

* Reliance on delay differential

» Can be fixed by making rate changes in response to absolute delay

» Feedback is delayed as queue builds up

 ECN marking is resistant to feedback jitter

A problem with DCQCN (also TIMELY)

100 | §.oocmmrommmmmmmmmeee

Queue(KB)

[y

-
o

T O T T A L

<

Bottleneck queue is a function of number of flows.

Pl Controller
* Proportional Integral controller based on control theory

* “Integral” control drives an error signal down to O

 Set the error signal to (queue length — desired queue occupancy)
« Guarantees the queue length to a fixed quantity

 Introduced for Active Queue Management (AQM) in
network routers®

 Cisco’s variant of Pl (PIE) part of DOCSIS 3.1 standard to
control bufferbloat in consumer cable modems

*C. V. Hollot, Vishal Misra, Don Towsley and Wei-Bo Gong, On Designing Improved Controllers for AQM Routers Supporting TCP Flows,
Proceedings of IEEE Infocom, April,2001.

Pl control at switch with DCQCN

Rate(Gbps)

25
20
15
10

4 us feedback delay

2 flows
10 flows ------

- 64 flows =

Queue(KB)

4 us feedback delay

1000 p--o___ S
100
10 2 flows
10 flows ------
1| 64 flows -ewemeer | ‘
0 0.5 1 1.5

Pl Controller with TIMELY: lose fairness

1000 3 1000
e 100 * Q 100
T T
3 =1
2 2
& 10 = & 10
: 2Flows 10 Flows
1 | | | | | | 1 | | | | | |
0 1 2 3 4 5 0 1 2 3 4 5
Time(s) Time(s)
10 -
8 [
? ?
& & g
))
g 4r g
a4 a4
2 l"‘"\"'
0 | | | | |
0 1 2 3 4 5

Time(s) Time(s)

Fundamental tradeoff result

« THEOREM: (FAIRNESS/DELAY TRADEOFF). For congestion
control mechanisms that have steady state throughput of
the kind R =f(d,p), for some function f, delay d and feedback
p, if the feedback is based on purely end to end delay
measurements, you can either have fairness or a fixed delay,
but not both simultaneously.

Proof idea: without in network (ECN) feedback, flows don’t have information on who else is

sharing the bottleneck. Results in number of unknowns larger than number of equations ->
infinite fixed points -> unfairness

Why is TIMELY performing poorly?

* Reliance on delay differential

» Can be fixed by making rate changes in response to absolute delay

» Feedback is delayed as queue builds up

« Can have fixed queue or fairness — but not both!

Impact of reverse path delay

ECN is more
resistant as
feedback signal is

1‘218 | TIMELY v only delayed
DCQCN —— With Delay, the
128 [feedback signal is

both delayed and
distorted

Queue(KB)

Delay:ECN::AM:FM

Conclusion: ECN appears better

(Patched)
TIMELY

o2%

+ Generally stable

+ Fair & converging

- Affected by bufferbloat

- Delay increases with
the number of flows

- Sensitive to variable
feedback delay

Pl

RoCEv2

%A

DCQCN

+ Generally stable

+ Fair & converging

+ Addressed bufferbloat

- Delay increases with
the number of flows

+ Resilient to variable
feedback delay

P

+ Generally stable

- Unfair

+ Addressed bufferbloat

+ Fixed delay regardless
of the number of flows

- Sensitive to variable
feedback delay

+ Generally stable

+ Fair & converging

+ Addressed bufferbloat

+ Fixed delay regardless
of the number of flows

+ Resilient to variable
feedback delay

Back to Delay vs ECN for TCP

DCTCP: Data Center TCP

« TCP adapted for datacenter environments

« Uses ECN for congestion indication

* Simple threshold based AQM: mark all packets when
gueue > threshold

* Flows use fraction of marked packets as indicator of
level of congestion

* MD factor adjusted according to inferred level of
congestion: results in smoother behavior

* Doesn’t have a fixed point, but limit cycles around an
“operating point”
* MD adjustment considers distance from efficiency

line, not fairness line: could lead to slow
convergence to fairness

Py

Connection 2 sending rate

.MD high

Limit cycle region

MD low

Connection 1 sending rate R

BBR: Delay based TCP for Internet

* Recent variant of TCP congestion control introduced by
Google R
» Like Vegas, uses delay measurements to estimate
network state congested/uncongested ©
* Aims to get 0 queueing delay at the bottleneck router o
()]
* Has no unique “fixed point”: flows converge to a rate S
where they believe bottleneck queue = 0 -> infinite §
fixed points. N
» Every 10 seconds, flows probe and “release capacity” §
allowing other flows to claim it §
* Adjustment cannot be classified under any classical §
AIMD or AIAD or MIMD scheme
* Infinite fixed points -> widespread unfairness reported Connection 1 sending rate R

Data Center simulations

« Simulations performed in ns-3 for 3 variants of TCP
« DCTCP (ECN based, targeted for data centers)
« TCP NewReno with PI+ECN (regular TCP, multiplicative decrease adjusted to 7/8)

« TCP BBR (end to end delay based TCP)
« BBRis not designed for the data center, but is picked as a representative delay based TCP

Simulation Topology (same as DCTCP paper)

S1: 10 senders

S3: 10 senders

Triumph 1

|\

1 Gbps
50 us

whke des

— . -
:

S2: 20 senders

1 Gbps
50 us
R1
1 Gbps =
50 ps ;l
g Common receiver for
T”u[mﬁh S1 & S3
1 Gbps

_pows

R2: 20 receivers

Throughput (Gbps)

Flow Throughputs

Time (sec)

DCTCP

S2-11
$212 ——
§213 ——
$214 —
2415
$2-16
$217
S218
$2-19

hroughput (Gbps)

0.8

0.6

04

0.2

I n

n

10

15

20

25 30
Time (sec)

35

BBR

40

45

50

Throughput (Gbps)

Time (sec)

PI+ECN

CEEEERETTL T

Fairness

700 — T T T T T T T T s1 700 — T T T T T T T T 1.5 —— 700 — T T T T T T T T $1.5 ——
$1.5-F S1.5PF — - S1.5-PF — -
600 | 1 600 - 1 600 | 1
500 | 1 500 | 1 500 1
n o @
s g g
= 400 - 1 S 400 1 S 400 1
- = =
a 3 2
< = <
(=] =3 [=)
g 300 | 1 5 300 1 § 300 1
£ = =
200 - 1 200 1 200 1
100 E 100 [g 100 [g
b gt W i nh ey sty st s - - - - - - - - - - - T - BV A A ot At kAR Ao, At s At
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Time (sec) Time (sec) Time (sec)

DCTCP BBR PI+ECN

Aggregate Metrics

Utilization
PI + ECN BBR DCTCP
Gbps % Gbps % Gbps %
Triumph 1 10.00 100 4.09 40.9 10.00 100
Scorpion 10.00 100 4.09 40.9 10.00 100
Triumph2 | 1 g 100 0.66 66.0 1.00 100
Drops/Marks
PI + ECN BBR DCTCP
Switches
Triumph 1 270095 marks 0 6480390 marks
Scorpion 0 marks 0 0 marks
Triumph 2 192474 marks 0 776279 marks

Internet simulations

« Simulations performed in ns-3 for 2 variants of TCP

« TCP NewReno with PI+ECN
« TCP BBR

Simulation Topology (GFC-2)

D () EQ) F) He) A CO s)

150 Mbit/s
1000 Km

50 Mbit/s
2000 Km

50 Mbit/s 100 Mbit/s

= 4000 Km 2000 Km
: ﬁ

50 Mbit/s 150 Mbit/s

» B (3)

Throughputs

Throughput (Mbps)

160

140

120 N

100

80 |-

60 |-

LA

40

w‘

30

Throughput (Mbps)

160

B
C
140 1E
F
G
120 | 4 H
100 4
80 |
60 |-

Time (sec)

PI+ECN

Queue lengths

PI+ECN

Link Utilizations

Link Utilization (Mbps)

160

140

120

100

80

60

40

20

1 ! ! L L L 1 1 1

10 20 30 40 50 60 70 80 90
Time (sec)

BBR

10

Link Utilization (Mbps)

160 T T T T T T

140 |

120 |

100

80 |

40 1 L 1 1 1 !

10 20 30 40 50 60
Time (sec)

PI+ECN

70

80

90

100

Fairness

120
100 J
m

*“', ! M W

BBR

120
100
w
a 8
s 80f = 80F
5 5
Q Q
oy ey
g g
5 60 e 9 60
£
) 1[M
s _ _ N\ [
f 'l r 1
A
20 H | * \ \
o 1 1 1 1 L 1 1 1 1
10 20 30 40 50 60 70 80 90 10
Time (sec)

Time (sec)

PI+ECN

Aggregate metrics

Utilization
PI + ECN BBR
Mbps % Mbps %
L1 50.00 100 49.14 98.28
L2 100.00 100 99.35 99.35
L3 50.00 100 49 .31 98.62
L4 150.00 100 148.24 98.83
L5 150.00 100 148.76 99.17
L6 50.00 100 49.31 98.62
Drops/Marks
NewReno + PI + ECN BBR
R1 & marks 0
R2 57 marks 0
R3 42 marks 636 drops
R4 96 marks 1623 drops
RS 182 marks 0
R6 343 marks 3417 drops

Wait there’s more...

* End-to-End delay feedback cannot disambiguate congestion points

)

51: 10 senders 53: 10 senders
l_l_ 51(5) s3(5) 52010 D(6) F(2) 53(5) c(3) 515
- El = &) = =)
] = 1t B 2 /Ell a
1Gbps 150 Mbps 1 Gbps

1 ms of queue buildup ->extreme congestion 1 ms of queue buildup ->noise

* Any increase in delay leads to same reaction, regardless of severity
(0+1)ms is interpreted same as (1+0)ms

Properly configured ECN disambiguates

« Aggregate feedback = 1-(1-p,)* (1-p,) = 1- 1+ p; + p,— P *P;
~ pq +p, (if p; and p, are small)

S1: 10 senders 53: 10 senders

52(10) E(6)

F2) s3(5) c(3)
=

1Gbps 150 Mbps 1Gbps 150 Mbps
1 Gbps 150 Mbps. 150 Mbps 50 s 1us 50 s 1ps
1us

150 Mbps 150 Mbps 150 Mbps

1ps J 1ps L 1ps 1 |.|sL
= =
o®) B3, o c(3) E(6)

52: 10 receivers

P1 P2

ECN AUR Delay
Can we combine the two?

Can we combine ECN and delay?

Packet Mark

B

(@ e

Sender side AQM Packet Mark

What about Fairness and the impossibility result?

7

equal bandwidth share

Connection 2 throughput

Connection 1 throughput R

AIMD to the rescue: probes all fixed points frequently and regardless of starting state,
converges to the fair one

Results from PERT paper*

PERT does AIMD -> fair fixed points Vegas does AIAD -> unfair fixed points

4

PERT Vegas

160 160
2 140 Group 1 2140
S 120 o _—__—_jg:gﬂgg S 120
g 100 — - — -Group 4 2100 |
2 80 - g 80 -
£ 60" | £ 60 g -
= 40 - | C 40 , S
g . 1 8 | 1 m ! |
£ 20 - I i | v | < 20 I : : | ; I

0 +—t——————— ob—+ ¢ ¢
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time (Seconds) Time (Seconds)

Figure 12: Response to sudden changes in respon-
sive traffic.

*Emulating AQM from End Hosts Sigcomm 2007, Bhandarkar, Reddy et al.

Virtual ECN implementation and simulations

* Ongoing work shows the idea works both in implementation
and simulations

« Benefits of Virtual ECN approach
* Pl controller integral action provides multi-bit feedback
* Noise filtered out by the controller, direct delay response leads to sudden fluctuations
» Probabilistic response leads to stable aggregate behavior, removes synchronization

Takeaways

« Network (Router/Switch) based AQM leads to a unique fixed
point

* Then you have relative freedom as to how you go to that fixed point - AIMD with fixed
parameters, MIMD, AIMD with dynamic parameters etc

* For end-to-end delay based congestion control AIMD with fixed
parameters only way to reach fair fixed point and fixed delay

* Even with AIMD, different flows with different notions of delay->congestion map will reach
different fixed points

« For BBR style congestion control flows reach different operating

points, all else being same

* BBR with multiple bottlenecks doesn’t perform well
* Probing with BBR needs to happen at RTT time scales, not a fixed constant (10 seconds)

* AIMD style probing needed

Key abstraction to reason about all Congestion Control

Full utilization rates

R

2

o

(@)}

£

2

o Network congested
AN

&

s Equal share rates
2

c

@]

o

Connection 1 sending rate R

