
Niagara: Efficient Traffic
Splitting on Commodity Switches

Nanxi Kang, Monia Ghobadi,
John Reumann, Alexander Shraer,

Jennifer Rexford

Service load balancing

• A network hosts many services (Virtual-IPs)
• Each service is replicated for greater throughput
• A load balancer spreads traffic over service instances

Load Balancer

VIP1 VIP2
2

> Appliances: costly
> Software: limited throughputX

Hierarchical Load Balancer

• Modern LB scales out with a hierarchy[1][2]
– A hardware switch split traffic over SLBs
– SLBs direct requests to servers
– SLBs track connections and monitor health of servers

• Traffic split at the switch is the key to scalability

[1]: Duet (SIGCOMM’14)
[2]: Ananta (SIGCOMM’13)

Hardware switch Software LB (SLB)

3

Load Balancer

Accurate Weighted Split

• SLBs are weighted in the traffic split
– Throughput of SLB
– Deployment of VIP
– Failures, or recovery

4

Symmetry

Asymmetry of server deployment

Asymmetry of LB

Asymmetry across VIPs

Existing hash-based split

• Hash-based ECMP
– Hash 5-tuple header fields of packets
– Dst_SLB = Hash_value mod #SLBs

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …

Equal split over two SLBs

Existing hash-based split

• Hash-based ECMP
– Hash 5-tuple header fields of packets
– Dst_SLB = Hash_value mod #SLBs

• WCMP gives unequal split by repeating

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

1 2 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …

(1/3, 2/3) is achieved by adding the second SLB twice

Existing hash-based split

• ECMP and WCMP only split the flowspace equally
– WCMP cannot scale to many VIPs, due to the rule-table

constraint
– e.g., (1/8, 7/8) takes 8 rules

ECMP Mod Action

1 0 Forward to 1

1 1 Forward to 2

1 2 Forward to 2

… … …

DstIP Action
1.1.1.1 Hash, ECMP Group 1

… …

A wildcard-matching approach

• OpenFlow + TCAM
– OpenFlow : program rules at switches
– TCAM : support wildcard matching on packet headers

• A starting example
– Single service : VIP = 1.1.1.1
–Weight vector: (1/4, 1/4, 1/2)

Match
(dst_ip, src_ip)

Action

1.1.1.1 *00 Forward to 1

1.1.1.1 *01 Forward to 2

1.1.1.1 * Forward to 3

8

1/4
1/4

1/2

Challenges: Accuracy

• How rules achieve the weight vector of a VIP?
– Arbitrary weights
–Non-uniform traffic distribution over flowspace

9

?
1/6
1/3

1/2

Challenges: Accuracy

• How rules achieve the weight vector of a VIP?
– Arbitrary weights
–Non-uniform traffic distribution over flowspace

• How VIPs (100 -10k) share a rule table (~4,000)?

?

Niagara: rule generation algorithms! 10

1/6 1/4
1/3 1/4

1/2 1/2

2. Packing rules for multiple VIPs
3. Sharing default rules
4. Grouping similar VIPs

1. Approximate weights with rules

Challenges: Accuracy

• How rules achieve the weight vector of a VIP?
– Arbitrary weights
–Non-uniform traffic distribution over flowspace

• How VIPs (100 -10k) share a rule table (~4,000)?

?

Niagara: rule generation algorithms! 11

1/6 1/4
1/3 1/4

1/2 1/2

1. Approximate weights with rules

2. Packing rules for multiple VIPs
3. Sharing default rules
4. Grouping similar VIPs

Basic ideas

• Uniform traffic distribution
– e.g., *000 represents 1/8 traffic

• “Approximation” of the weight vector?
– Header matching discretizes portions of traffic
– Use error bound to quantify approximations

• 1/3 ≈ 1/8 + 1/4

12

?
1/6
1/3

1/2

Match Action
 *100 Forward to 1
 *10 Forward to 1

Naïve solution

• Bin pack suffixes
– Round weights to multiples of 1/2k

– When k = 3, (1/6, 1/3, 1/2) ≈ (1/8, 3/8, 4/8)

• Observation
– 1/3 ≈ 3/8 = 1/2 - 1/8 saves one rule
– Use subtraction and rule priority

*000 Fwd to 1

*100 Fwd to 2

*10 Fwd to 2
*1 Fwd to 3

*000 Fwd to 1

*0 Fwd to 2

* Fwd to 3
13

Approximation with 1/2k

• Approximate a weight with powers-of-two terms
– 1/2, 1/4, 1/8, …

• Start with

14

Weight
w

Approx
v

Error
v - w

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2

Approximation with 1/2k

• Reduce errors iteratively
• In each round, move 1/2k from an over-approximated

weight to an under-approximation weight

15

Weight
w

Approx
v

Error
v - w

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2

1 1/6 0 -1/6

2 1/3 1/2 -1/3 + 1/2 = 1/6

3 1/2 1 - 1/2 1/2 - 1/2 = 0

Initial approximation

16

Weight Approx Error

1 1/6 0 -1/6

2 1/3 0 -1/3

3 1/2 1 1/2

 * Fwd to 3

Move 1/2 from W3 to W2

17

Weight Approx Error

1 1/6 0 -1/6

2 1/3 1/2 1/6

3 1/2 1 -1/2 0

 *0 Fwd to 2

 * Fwd to 3

Final result

18

*00100 Fwd to 1

 *000 Fwd to 1

 *0 Fwd to 2

 * Fwd to 3

Weight Approx

1 1/6 1/8 +1/32

2 1/3 1/2 -1/8 -1/32

3 1/2 1 -1/2

Reduce errors
exponentially!

Truncation for less rules
• Limited rule-table size?
– Truncation, i.e., stop iterations earlier

• Imbalance: Σ |errori| / 2
– Total over-approximation

*00100 Fwd to 1
 *000 Fwd to 1
 *0 Fwd to 2

 * Fwd to 3

 *000 Fwd to 1
 *0 Fwd to 2

 * Fwd to 3

Full rules
Imbalance = 1%

Rules after truncation
Imbalance = 4%

19

Stairstep: #Rules v.s. Imbalance

20

Diminishing
Return

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 50%)

(2, 16.7%)

(3, 4.17%) (4, 1%)

Multiple VIPs

• How rules achieve the weight vector of a VIP?
– Arbitrary weights
–Non-uniform traffic distribution over flowspace

• How VIPs (100-10k) share a rule table (~4,000)?

?

Minimize Σ traffic_volumej x Σ |errorij| / 2 21

1/6 1/4
1/3 1/4

1/2 1/2

• Popularity : Traffic Volume

• Easy-to-approximate : Stairsteps

Characteristics of VIPs

55%

45%

22 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 50%)

(2, 16.7%)

(3, 4.17%) (4, 1%)

1/6 1/4
1/3 1/4

1/2 1/2

Stairsteps

• Each stairstep is scaled by its traffic volume
VIP1 55% (1/6, 1/3, 1/2)

VIP2 45% (1/4, 1/4, 1/2)

23

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 27.5%)

(2, 9.17%)

(3, 2.29%)
(4, 0.55%)

(1, 22.5%)

(2, 11.25%)

(3, 0%)

VIP1
VIP2

Rule allocation

24

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 27.5%)

(2, 9.17%)

(3, 2.29%)
(4, 0.55%)

(1, 22.5%)

(2, 11.25%)

(3, 0%)

VIP1
VIP2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5

Im
ba

la
nc

e

#Rules

(1, 27.5%)

(2, 9.17%)

(3, 2.29%)
(4, 0.55%)

(1, 22.5%)

(2, 11.25%)

(3, 0%)

VIP1
VIP2

Rule allocation

25

Packing result for table
capacity C = 5
VIP 1: 2 rules
VIP 2: 3 rules

Total imbalance = 9.17%

Pack Result

26

Match (dst, src) Action

VIP 1, *0 Fwd to 2

VIP 1, * Fwd to 3

VIP 2, *00 Fwd to 1

VIP 2, *01 Fwd to 2

VIP 2, * Fwd to 3

Packing result for table
capacity C = 5
VIP 1: 2 rules
VIP 2: 3 rules

Total imbalance = 9.17%

Sharing default rules

• Build default split for ALL VIPs

1/6 1/4
1/3 1/4

1/2 1/2

 1/6 1/4
-1/6 -1/4

 0 0

 0
1/2
1/2

VIP 1, *00100 Fwd to 1

VIP 1, *000 Fwd to 1

VIP 2, *00 Fwd to 1

 *0 Fwd to 2

 * Fwd to 3

 Weights Default Delta

VIP 1, *0 Fwd to 2

VIP 1, * Fwd to 3

VIP 2, *00 Fwd to 1

VIP 2, *01 Fwd to 2

VIP 2, * Fwd to 3

Imbalance = 0.55%Imbalance = 9.17%

V.S.

27

Evaluation : datacenter network

• Synthetic VIP distributions
• LBer switch connects to SLBs

28

��
�

��
�

�RDO>C

�@MQ@MN

��
�

�RDO>C

�@MQ@MN

���N

Load Balance 10,000 VIPs

• Weights
– Gaussian: equal weights
– Bimodal: big (4x) and small weights
– Pick_Next-hop: big(4x), small and zero-value weights
– 16 weights per VIP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o
ta

l
im

b
a
la

n
ce

Rule-table size

Pick Next-hop
Bimodal

Gaussian

Take-aways

• Wildcard matches approximate weights well
• Exponential drop in errors

• Prioritized packing reduces imbalance sharply
• Default rules serve as a good starting point

• Refer to our full paper for
• Multiple VIP Grouping
• Incremental update to reduce “churn”
• Niagara for multi-pathing

30

Thanks!

31

