
Congestion Control Policy 1

CUE 1

Update Rule:
 (_drop < 1%) ⇒ _init_cwnd = 12

Statistics Mask: [1, 0, 1, 1, 1]

Optimization:
- variable(s): w0

- objective: maximize w0

- constraints:
 (i) 4 < w0 < 20
 (ii)

Mapping Rule(s):

{5..8}: (_drop<1%)⇒_init_cwnd =⎡w0⎤
{1..4}: (TRUE) ⇒ _init_cwnd = 5

(a)

have a major impact on long-lived flows. For short-lived
flows the improvements in flow completion times is not
a linear function of w0. However, if we limit the range
of w0 (say to a range of 4 to 20 segments), using linear
regression we can approximate the flow completion time
for short-lived flows by k×(w0−wd), where k is constant
and wd is the default congestion window. Based on this
approximation we can represent the objective function
as “maximize w0”.

In addition to the objective function, the operator has
to define the constraints for the optimization function.
A good constraint would be keeping the utilization
always less than 70%. We note that this is the
utilization observed every 1-10 minutes so we need to be
a bit conservative here. Limiting the bandwidth ensures
congestion control windows are not arbitrarily increase
causing a large drop rate in the system. We can state
this constraint as: U(l) × (1 + w × ξ(l) × F(l)) ≤ 0.70
where ξ(l) × F(l) is an estimation of the number of
short-lived flows on link l. In other words, OpenTCP
needs to solve the following linear program:

maximize w
s.t.: ∀l ∈ L, U(l)× (1 + w0 × ξ(l)× F(l)) ≤ 70%
s.t.: ∀l ∈ L, U(l) ≤ 80%

4 ≤ w ≤ 20 (Variable Range)
(2)

Maximizing the initial congestion window can reduce
flow completion times, and keeping the utilization below
a certain threshold ensure stability. The solution to
this optimization problem is any real number between
4 and 20. The operator can simply define a mapping
rules which updates the initial window size in each end-
host with a discretized version of w0. The operator can
also define a stability region. Here, we can define the
stability region as bounds on the acceptable drop rates
(say 1%). In other words, the CCA will enforce changes
to initial congestion window size only if packet drop
rate is below 1%. Otherwise, the system will use the
default initial congestion window size. Finally, in this
example since we are not using P(l) (number of packets
transferred on l) the operator can remove it using an
appropriate statistics mask.
Example 2: If the operator wants to switch from
TCP Reno to CUBIC while keeping an eye on packet
drop rates, she can use the CCP shown in Figure 3.1.
Here the optimization problem is null which means
changes will happen as long as the stability conditions
are satisfied. The Oracle in this example will change
if link utilizations are below 80%. If so, the Oracle
will send CUEs to all CCAs. Each CCA will switch to
CUBIC as long as the local drop rate is below 1%. If
either of these conditions fail, the CCA will switch back
to TCP Reno.

3.3 TCP Adaptation

The final step in OpenTCP’s operation is changing
TCP based on CUEs generated by the Oracle. After
solving the optimization problem, the Oracle forms
CUEs and sends them directly to CCAs sitting at the
end-hosts. CUEs are distributed as broadcast and
multicast messages sent to SDN switches, which in turn
deliver them to individual CCAs. OpenTCP sends
distributes CUEs over time in order to have minimum
impact on the underlying network.
CUEs have a very small overhead: CUEs are
usually very small packets. In our implementation each
CUE is usually less than 100 bytes. Even if we have
CUEs as big as 200 bytes, and assuming we use mul-
ticast (one message per 50 nodes), CUE dissemination
will have an average bandwidth requirement of less than
100Kb/s for a data center with 1,000,000 nodes and an
update period of 10 minutes.
CCAs are responsible for receiving and enforc-
ing updates: Upon receiving a CUE, each CCA will
check the stability region conditions. If we are in
this region, the CCA immediately applies the required
changes. Based on the mapping rules defined by the
operator these changes can be simple tweaks of TCP
parameters, or switching between different variants of
TCP. If the CCA does not received any CUEs from
the Oracle for a long time (we use 2T where T is the
period of operation by the Oracle), or when the CCA
recognizes stability conditions are violated, changes are
reverted and OpenTCP goes back to the default TCP
settings, which can ensure the stability of the system.
Example: In our example, all CCAs receive the same
CUE as we have only one optimization variable. Since
the stability region is defined as “Packet Drop Rate
≤ 1%” as long as packet drop rates are not increased
significantly, the CCA will change the initial congestion
window size to 10 packets in this example. The CCAs
constantly monitor flows and if the drop rate goes above
1%, the initial congestion window will be set to its
default value.

4. STABILITY OF OPENTCP

At a high level, OpenTCP can make two types of
changes: (i) it can switch from one variations of TCP to
a completely different variation, or (ii) it can tweak and
tune a specific implementation of TCP by modifying
some variables. These changes have different stability
implications which we will discuss in this section.
Transitioning between TCP variants: OpenTCP
can be used to choose between two or more variants
of TCP based on network and traffic conditions. The-
orem 1 shows that OpenTCP keeps the system stable
under reasonable constraints.

Theorem 1. Let us consider K variants of TCP, say

6

have a major impact on long-lived flows. For short-lived
flows the improvements in flow completion times is not
a linear function of w0. However, if we limit the range
of w0 (say to a range of 4 to 20 segments), using linear
regression we can approximate the flow completion time
for short-lived flows by k×(w0−wd), where k is constant
and wd is the default congestion window. Based on this
approximation we can represent the objective function
as “maximize w0”.

In addition to the objective function, the operator has
to define the constraints for the optimization function.
A good constraint would be keeping the utilization
always less than 70%. We note that this is the
utilization observed every 1-10 minutes so we need to be
a bit conservative here. Limiting the bandwidth ensures
congestion control windows are not arbitrarily increase
causing a large drop rate in the system. We can state
this constraint as: U(l) × (1 + w × ξ(l) × F(l)) ≤ 0.70
where ξ(l) × F(l) is an estimation of the number of
short-lived flows on link l. In other words, OpenTCP
needs to solve the following linear program:

maximize w
s.t.: ∀l ∈ L, U(l)× (1 + w0 × ξ(l)× F(l)) ≤ 70%
s.t.: ∀l ∈ L, U(l) ≤ 80%

4 ≤ w ≤ 20 (Variable Range)
(2)

Maximizing the initial congestion window can reduce
flow completion times, and keeping the utilization below
a certain threshold ensure stability. The solution to
this optimization problem is any real number between
4 and 20. The operator can simply define a mapping
rules which updates the initial window size in each end-
host with a discretized version of w0. The operator can
also define a stability region. Here, we can define the
stability region as bounds on the acceptable drop rates
(say 1%). In other words, the CCA will enforce changes
to initial congestion window size only if packet drop
rate is below 1%. Otherwise, the system will use the
default initial congestion window size. Finally, in this
example since we are not using P(l) (number of packets
transferred on l) the operator can remove it using an
appropriate statistics mask.
Example 2: If the operator wants to switch from
TCP Reno to CUBIC while keeping an eye on packet
drop rates, she can use the CCP shown in Figure 3.1.
Here the optimization problem is null which means
changes will happen as long as the stability conditions
are satisfied. The Oracle in this example will change
if link utilizations are below 80%. If so, the Oracle
will send CUEs to all CCAs. Each CCA will switch to
CUBIC as long as the local drop rate is below 1%. If
either of these conditions fail, the CCA will switch back
to TCP Reno.

3.3 TCP Adaptation

The final step in OpenTCP’s operation is changing
TCP based on CUEs generated by the Oracle. After
solving the optimization problem, the Oracle forms
CUEs and sends them directly to CCAs sitting at the
end-hosts. CUEs are distributed as broadcast and
multicast messages sent to SDN switches, which in turn
deliver them to individual CCAs. OpenTCP sends
distributes CUEs over time in order to have minimum
impact on the underlying network.
CUEs have a very small overhead: CUEs are
usually very small packets. In our implementation each
CUE is usually less than 100 bytes. Even if we have
CUEs as big as 200 bytes, and assuming we use mul-
ticast (one message per 50 nodes), CUE dissemination
will have an average bandwidth requirement of less than
100Kb/s for a data center with 1,000,000 nodes and an
update period of 10 minutes.
CCAs are responsible for receiving and enforc-
ing updates: Upon receiving a CUE, each CCA will
check the stability region conditions. If we are in
this region, the CCA immediately applies the required
changes. Based on the mapping rules defined by the
operator these changes can be simple tweaks of TCP
parameters, or switching between different variants of
TCP. If the CCA does not received any CUEs from
the Oracle for a long time (we use 2T where T is the
period of operation by the Oracle), or when the CCA
recognizes stability conditions are violated, changes are
reverted and OpenTCP goes back to the default TCP
settings, which can ensure the stability of the system.
Example: In our example, all CCAs receive the same
CUE as we have only one optimization variable. Since
the stability region is defined as “Packet Drop Rate
≤ 1%” as long as packet drop rates are not increased
significantly, the CCA will change the initial congestion
window size to 10 packets in this example. The CCAs
constantly monitor flows and if the drop rate goes above
1%, the initial congestion window will be set to its
default value.

4. STABILITY OF OPENTCP

At a high level, OpenTCP can make two types of
changes: (i) it can switch from one variations of TCP to
a completely different variation, or (ii) it can tweak and
tune a specific implementation of TCP by modifying
some variables. These changes have different stability
implications which we will discuss in this section.
Transitioning between TCP variants: OpenTCP
can be used to choose between two or more variants
of TCP based on network and traffic conditions. The-
orem 1 shows that OpenTCP keeps the system stable
under reasonable constraints.

Theorem 1. Let us consider K variants of TCP, say

6

Congestion Control Policy 2

Statistics Mask: [1, 0, 0, 0, 0]

Optimization:
- variable(s): null
- objective: null
- constraints:

Mapping Rule(s):

{1..8}: (TRUE) ⇒ _tcp_variant = CUBIC

have a major impact on long-lived flows. For short-lived
flows the improvements in flow completion times is not
a linear function of w0. However, if we limit the range
of w0 (say to a range of 4 to 20 segments), using linear
regression we can approximate the flow completion time
for short-lived flows by k×(w0−wd), where k is constant
and wd is the default congestion window. Based on this
approximation we can represent the objective function
as “maximize w0”.

In addition to the objective function, the operator has
to define the constraints for the optimization function.
A good constraint would be keeping the utilization
always less than 70%. We note that this is the
utilization observed every 1-10 minutes so we need to be
a bit conservative here. Limiting the bandwidth ensures
congestion control windows are not arbitrarily increase
causing a large drop rate in the system. We can state
this constraint as: U(l) × (1 + w × ξ(l) × F(l)) ≤ 0.70
where ξ(l) × F(l) is an estimation of the number of
short-lived flows on link l. In other words, OpenTCP
needs to solve the following linear program:

maximize w
s.t.: ∀l ∈ L, U(l)× (1 + w0 × ξ(l)× F(l)) ≤ 70%
s.t.: ∀l ∈ L, U(l) ≤ 80%

4 ≤ w ≤ 20 (Variable Range)
(2)

Maximizing the initial congestion window can reduce
flow completion times, and keeping the utilization below
a certain threshold ensure stability. The solution to
this optimization problem is any real number between
4 and 20. The operator can simply define a mapping
rules which updates the initial window size in each end-
host with a discretized version of w0. The operator can
also define a stability region. Here, we can define the
stability region as bounds on the acceptable drop rates
(say 1%). In other words, the CCA will enforce changes
to initial congestion window size only if packet drop
rate is below 1%. Otherwise, the system will use the
default initial congestion window size. Finally, in this
example since we are not using P(l) (number of packets
transferred on l) the operator can remove it using an
appropriate statistics mask.
Example 2: If the operator wants to switch from
TCP Reno to CUBIC while keeping an eye on packet
drop rates, she can use the CCP shown in Figure 3.1.
Here the optimization problem is null which means
changes will happen as long as the stability conditions
are satisfied. The Oracle in this example will change
if link utilizations are below 80%. If so, the Oracle
will send CUEs to all CCAs. Each CCA will switch to
CUBIC as long as the local drop rate is below 1%. If
either of these conditions fail, the CCA will switch back
to TCP Reno.

3.3 TCP Adaptation

The final step in OpenTCP’s operation is changing
TCP based on CUEs generated by the Oracle. After
solving the optimization problem, the Oracle forms
CUEs and sends them directly to CCAs sitting at the
end-hosts. CUEs are distributed as broadcast and
multicast messages sent to SDN switches, which in turn
deliver them to individual CCAs. OpenTCP sends
distributes CUEs over time in order to have minimum
impact on the underlying network.
CUEs have a very small overhead: CUEs are
usually very small packets. In our implementation each
CUE is usually less than 100 bytes. Even if we have
CUEs as big as 200 bytes, and assuming we use mul-
ticast (one message per 50 nodes), CUE dissemination
will have an average bandwidth requirement of less than
100Kb/s for a data center with 1,000,000 nodes and an
update period of 10 minutes.
CCAs are responsible for receiving and enforc-
ing updates: Upon receiving a CUE, each CCA will
check the stability region conditions. If we are in
this region, the CCA immediately applies the required
changes. Based on the mapping rules defined by the
operator these changes can be simple tweaks of TCP
parameters, or switching between different variants of
TCP. If the CCA does not received any CUEs from
the Oracle for a long time (we use 2T where T is the
period of operation by the Oracle), or when the CCA
recognizes stability conditions are violated, changes are
reverted and OpenTCP goes back to the default TCP
settings, which can ensure the stability of the system.
Example: In our example, all CCAs receive the same
CUE as we have only one optimization variable. Since
the stability region is defined as “Packet Drop Rate
≤ 1%” as long as packet drop rates are not increased
significantly, the CCA will change the initial congestion
window size to 10 packets in this example. The CCAs
constantly monitor flows and if the drop rate goes above
1%, the initial congestion window will be set to its
default value.

4. STABILITY OF OPENTCP

At a high level, OpenTCP can make two types of
changes: (i) it can switch from one variations of TCP to
a completely different variation, or (ii) it can tweak and
tune a specific implementation of TCP by modifying
some variables. These changes have different stability
implications which we will discuss in this section.
Transitioning between TCP variants: OpenTCP
can be used to choose between two or more variants
of TCP based on network and traffic conditions. The-
orem 1 shows that OpenTCP keeps the system stable
under reasonable constraints.

Theorem 1. Let us consider K variants of TCP, say

6

CUE 2

Update Rule:
 (TRUE) ⇒ _tcp_variant = CUBIC

(b)

