ProjecToR: Agile Reconfigurable Data Center Interconnect

Monia Ghobadi

Ratul Mahajan Amar Phanishayee Nikhil Devanur Janardhan Kulkarni Gireeja Ranade

Pierre Blanche Houman Rastegarfar Madeleine Glick Daniel Kilper

Today's data center interconnects

Β C D Α 3 0 3 3 Α 3 3 3 0 В С 3 3 3 0 D 3 3 0 3

Ideal demand matrix: uniform and static Non-ideal demand matrix: skewed and dynamic

Static capacity between ToR pairs

Need for a reconfigurable interconnect

Data:

- 200K servers across 4 production clusters
- Cluster sizes: 100 -- 2500 racks
 Observation:
 - Many rack pairs exchange little traffic
 - Only some hot rack pairs are active

Implication:

- Static topology with uniform capacity:
 - Over-provisioned for most rack pairs
 - Under-provisioned for few others

Reconfigurable interconnect:

To dynamically provide additional capacity between hot rack pairs

Desirable properties of a reconfigurable interconnect

Traffic matrices differ widely

Implication:

 Difficult to determine static vs. reconfigurable divide (Seamless interconnect)

Desirable properties of a reconfigurable interconnect

Observation:

- Source racks send large amounts of traffic to many other racks Implications:
 - Should create direct links to lots of other racks (high fan-out)
 - Should switch quickly among destinations (low switching time)

Properties of reconfigurable interconnects

	Enabler technology	Seamless	High Fan-out	Low switching time
Helios, Mordia [sigcomm'10, sigcomm'13]	Optical Circuit Switch	X	X	\checkmark
Flyways, 3D Beam forming [sigcomm'11, sigcomm'12]	60GHz	X	X	X
FireFly [sigcomm'14]	Free-Space Optics	\checkmark	X	X
ProjecToR	Free-Space Optics	\checkmark	\checkmark	\checkmark

ProjecToR interconnect

- Free-space topology (seamless)
- 18,000 fan-out (60 x more than optical circuit switches)
- 12 us switching time (2500 x faster than optical circuit switches)

Reconfiguration in a ProjecToR interconnect

- Digital micromirror device to redirect light
- Mirror assembly to magnify reach

Digital Micromirror Device (DMD)

Array of micromirrors (10 um)

Memory cell

- Theoretical number of accessible locations: total number of micromirrors
 - 768x768 = 589824
- Cross-talk between adjacent locations
- Achievable number of accessible locations
 - 768x768 / 32 = 18,432

Using mirror assemblies to magnify reach

- Challenge: DMDs have a narrow angular reach
- Solution: Coupling DMDs with angled mirrors

Questions to answer

- How feasible is a ProjecToR interconnect?
 - Built and micro-benchmarked a small ProjecToR prototype
 - Robustness to environmental conditions
- How should packets be routed in a ProjecToR interconnect?
 - Devised a scheduling algorithm and simulated its performance
- How much does a ProjecToR interconnect cost?
 - Estimated cost based on cost break down of each component

Prototype: A 3-ToR ProjecToR interconnect

Prototype: A 3-ToR ProjecToR interconnect

Mirrors reflecting to ToR₂ and ToR₃

Prototype: A 3-ToR ProjecToR interconnect

Prototype: throughput

—ProjecToR Link —Wired Link

Prototype: switching time

Prototype: switching time

-ToR 1 -> ToR 2 -ToR 1 -> ToR 3

Connecting lasers and photodetectors

- Two topology approach
 - Slow switching topology or dedicated topology
 - Fast switching links or opportunistic links

Routing packets

dedicated topology K-shortest paths routing

Scheduling opportunistic links

• Given a set of potential links and current traffic demand, find a set of active opportunistic links

Scheduling opportunistic links

- Standard switch scheduling problem
- Blossom matching
- Matrix decomposition
- Centralized scheduler
- Single tiered matching

Scheduling opportunistic links

- Standard switch scheduling problem
- Blossom matching
- Matrix decomposition
 Decentralized
- Centralized scheduler Two-tiered
- Two-tiered
 Single tiered matching

Extended the Gale-Shapely algorithm for finding stable matches [GS-1962] Constant competitive against an offline optimal allocation

Simulations

- 128-ToR (1024 servers) with 16 lasers and photodetectors
- Day-long traffic matrix: to build the dedicated topology
- 5-min traffic matrix: to generate probability of ToR pair communication
- TCP flows arrival with poison arrival rate and realistic flow sizes

Simulation results

- Slow switching time

- Low fan-out

- Tail flow completion time
- - Rifferanitatraffic matrices
- Impact of fan-out
- Impact of switching time
 - + Reconfigurable
- ToR + Switching time: 12us
 - + high fan-out

ProjecToR: A reconfigurable data center

Seamless, high fanout, low switching time interconnect Small prototype demonstrates feasibility

Decentralized flow scheduling algorithm