

Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures

Klaus-T. Foerster (U. Vienna), Manya Ghobadi (Microsoft Research), Stefan Schmid (U. Vienna)

Helios (core)
Farrington et al., SIGCOMM '10

c-Through (HyPaC architecture) Wang et al., SIGCOMM '10

ProjecToR interconnect Ghobadi et al., SIGCOMM '16

Rotornet (rotor switches) Mellette et al., SIGCOMM '17

Solstice (architecture & scheduling) Liu et al., CoNEXT '15

REACTOR Liu et al., NSDI '15

Hamedazimi et al., SIGCOMM '14

... and many more ...

- Results and conclusions often not portable
 - Between topologies/technologies

- Results and conclusions often not portable
 - Between topologies/technologies
- Assumption in routing takes away optimality

- Results and conclusions often not portable
 - Between topologies/technologies
- Assumption in routing takes away optimality
- We take a look from a theoretical perspective

- Results and conclusions often not portable
 - Between topologies/technologies
- Assumption in routing takes away optimality
- We take a look from a theoretical perspective
 - With average path length as an objective

- Results and conclusions often not portable
 - Between topologies/technologies
- Assumption in routing takes away optimality
- We take a look from a theoretical perspective
 - With average path length as an objective
 - For one switch (with/without this assumption)
 - Also briefly for multiple switches

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

reconfig

Weighted average path length: 1*10+6*5=40

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Weighted average path length: 4*10+6*5=70

reconfig

Weighted average path length: 1*10+6*5=40

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Weighted average path length: 4*10+6*5=70

reconfig

optimum

Weighted average path length: 1*10+6*5=40 1*10+(1+2)*5=25

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Weighted average path length: **4*10+6*5=70**

reconfig

optimum

Weighted average path length: 1*10+6*5=40

40 **1***10+(**1**+2)***5**=25

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Weighted average path length: **4*10+6*5=70**

Beyond a Single Switch

• Especially important at scale: multiple reconfigurable switches

Rotornet
Mellette et al., SIGCOMM '17

A Tale of Two Topologies Xia et al., SIGCOMM '17

• Model: Either just 1 reconfig or just static

Model: Either just 1 reconfig or just static

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Model: Either just 1 reconfig or just static

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Why this solution?

Model: Either just 1 reconfig or just static

Communication frequency: $A \rightarrow E$: 10, $A \rightarrow G$: 5

Why this solution?

Benefit of $A \rightarrow E$: 10:

• Static-Reconfig: 40-10=**30**

Benefit of $A \rightarrow G$: 5:

• Static-Reconfig: 30-5=**25**

• Model: Either just 1 reconfig or just static

- Model: Either just 1 reconfig or just static
- Optimal solution in polynomial time:

- Model: Either just 1 reconfig or just static
- Optimal solution in polynomial time:
 - 1. Compute & assign benefit to every matching edge

- Model: Either just 1 reconfig or just static
- Optimal solution in polynomial time:
 - Compute & assign benefit to every matching edge
 - 2. Compute optimal weighted matching

- Model: Either just 1 reconfig or just static
- Optimal solution in polynomial time:
 - Compute & assign benefit to every matching edge
 - 2. Compute optimal weighted matching
 - E.g., weighted Edmond's Blossom algorithm

- Model: Either just 1 reconfig or just static
- Optimal solution in polynomial time:
 - Compute & assign benefit to every matching edge
 - 2. Compute optimal weighted matching
 - E.g., weighted Edmond's Blossom algorithm

Downside: Only optimal under (artificially!?) segregated routing policy!

- Model: Either just 1 reconfig or just static
- Optimal solution in polynomial time:
 - Compute & assign benefit to every matching edge
 - Compute optimal weighted matching
 - E.g., weighted Edmond's Blossom algorithm

- Downside: Only optimal under (artificially!?) segregated routing policy!
 - Not optimal under arbitrary routing policies

One Switch: Non-Segregated Routing

One Switch: Non-Segregated Routing

Can improve routing quality

One Switch: Non-Segregated Routing

Can improve routing quality

NP-hard to optimally compute

Can improve routing quality

NP-hard to optimally compute

Already for simple settings (sparse communication patterns, unit weights etc.)

Can improve routing quality

NP-hard to optimally compute

Already for simple settings (sparse communication patterns, unit weights etc.)

Approximation algorithms & restricted topologies

Can improve routing quality

NP-hard to optimally compute

Already for simple settings (sparse communication patterns, unit weights etc.)

Approximation algorithms & restricted topologies

Future Work

Can improve routing quality

NP-hard to optimally compute Already some work in different settings, e.g.:

- network forms a dynamic tree [Schmid et al., ToN '16]
- constant degree and sparse demands [Avin et al., DISC '17]
- degree depends on node popularity [Avin et al., Inf. Pr. Let. '18] (these works assume all links are reconfigurable)

Already for simple setting: (sparse communication patterns, unit weights etc.)

Approximation algorithms & restricted topologies

Future Work

• Makes the setting more scalable ©

- Makes the setting more scalable ©
- But of course, still NP-hard (3)
 (already for one switch)

- Makes the setting more scalable ©
- But of course, still NP-hard (3)
 (already for one switch)
- Let's make things simpler

Can we optimize max. path length?

- Can we optimize max. path length?
 - For 2 flows?

- Can we optimize max. path length?
 - For 2 flows?
 - NP-hard again ☺

Consider weights

Consider weights

Consider weights

Consider weights

• Challenge:

- Challenge:
 - Proper matchings

- Challenge:
 - Proper matchings
 - Polynomial algorithm

- Challenge:
 - Proper matchings
 - Polynomial algorithm

Idea: Use flow algorithms

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

Unidirectionality

Same conceptual idea

- Challenge:
 - Proper matchings
 - Polynomial algorithm
- Idea: Use flow algorithms
 - Min-cost integral flow is polynomial

Unidirectionality

Same conceptual idea

Summary and Outlook

- one reconfigurable switch
 - segregated: Easy. Not optimal.
 - not seg.: NP-hard. Improves solutions.
- multiple reconfigurable switches
 - multiple flows: NP-hard
 - just one flow: Easy.

- approximation algorithms
- special topologies

Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures

Klaus-T. Foerster (U. Vienna), Manya Ghobadi (Microsoft Research), Stefan Schmid (U. Vienna)

Thank you! ©