Striking the Right Utilization-Availability Balance in the WAN

Manya Ghobadi MIT

Joint work with: Jeremy Bogle, Nikhil Bhatia (MIT), Ishai Menache, Nikolaj Bjorner (MSR), Asaf Valadarsky, Michael Schapira (Hebrew U)

How to invest smartly in the stock market?

Loss will be \leq \$100 with probability 99%

Solution: financial risk theory

Traffic Engineering (TE) problem

- How to configure the allocation of traffic on network paths?
- Goal: efficiently utilizing the network to match the current traffic demand (periodic process)

Extensive research on TE in a broad variety of environments

- Wide-area networks
 - Kumar et al. [NSDI'18]
 - Liu et al. [SIGCOMM'14]
 - Kumar et al. [SIGCOMM'15]
 - Jain et al. [SIGCOMM'13]
 - Hong et al. [SIGCOMM'13]
- ISP networks
 - Jiang et al.[SIGMETRICS'09]
 - Kandula et al. [SIGCOMM'05]
 - Fortz et al. [INFOCOM'2000]
- Data center networks
 - Alizadeh et al. [SIGCOMM'14]
 - Akyildiz et al. [Journal of Comp. Nets.'14]
 - Benson et al. [CoNEXT'11]

TE problem in Wide-Area Networks

TE problem in Wide-Area Networks

Challenging:

- Billion dollar infrastructure
- High efficiency and availability

Solution:

- Model the network as a graph
- Solve a Linear Program

[B. Fortz, Internet Traffic Engineering by Optimizing OSPF Weights, INFOCOM'2000]

Competing goals: high utilization and availability

Competing goals: high utilization and availability

Traffic engineering under failures

- Today: optimize for the worst conceivable (potentially unlikely) failure scenarios
- Problem: under-utilizing the network

Admissible traffic: 5 Gbps 99.999% of the time

Traffic engineering under failures

Our approach to traffic engineering under failures

- Use the failure probabilities to reason about the likelihood of failure scenarios
- Provide a mathematical probabilistic guarantee for availability

Our approach to traffic engineering under failures

- Use the failure probabilities to reason about the likelihood of failure scenarios
- Provide a mathematical probabilistic guarantee for availability

For all flows, 90% of the demand is satisfied 99.9% of the time For all flows, loss will be $\leq 10\%$ of the demand 99.9% of the time

Find x that minimizes the loss with probability β

The loss will be $\leq 10\%$ of the demand with probability 99% Find *x* that minimizes the loss with probability β

Key technique: scenario-based formulation

Key technique: scenario-based formulation

TeaVaR: Traffic Engineering Applying Value-at-Risk

 $\psi(x, VaR) = P(q|L(x, y(q)) \le VaR)$ $min\{VaR|\psi(x, VaR) \geq \beta\}$ Probability What about the worst 5% of scenarios? $min\{E[Loss|Loss \ge VaR]\}$ $\beta = 0.95$ 5 10 Loss (%)

Challenges unique to networking

- Achieving fairness across network users.
- Enabling computational tractability as the network scales.
- Capturing fast rerouting of traffic in data plane.
- Accounting for correlated failures.

Achieving fairness

Objective: Find *x* that minimizes the loss with probability β

R_i: routes for flow *i* x_r : flow allocation on route $r \in R_i$ y_r : binary variable indicating if route *r* is up

Satisfied demand for flow $i: \sum_{r \in R_i} x_r y_r$

Starvation-aware loss function:

• Worst case normalized unmet demand

$$L(x,y) = max_i \left[1 - \frac{\sum_{r \in R_i} x_r y_r}{d_i}\right]^+$$

Handling scale

Topology	# Edges	# Scenarios
B4	38	O(1E11)
IBM	48	O(1E14)
MSFT	100	O(1E30)
ATT	112	O(1E33)

TEAVAR Demo

Topology	B4 ~	
Demand	1 ~	
Paths	ED ~	
Beta (%)	0.9	
Cutoff (%)	0.0001	
Submit		

Evaluations

- Topologies: B4, IBM, ATT, and MSFT
- Traffic matrix:
 - Four months of MSFT traffic matrix (one sample/hour), for the rest of topologies, used 24 TMs from YATES [SOSR'18]
- Tunnel selection:
 - Our optimization framework is orthogonal to tunnel selection
 - Oblivious paths, link disjoint paths, and k-shortest paths
- Baselines:
 - SMORE [NSDI'18]
 - FFC [SIGCOMM'14]
 - •B4 [SIGCOMM'13]
 - ECMP

Availability vs. demand scale

- Availability is measured as the probability mass of scenarios in which demand is fully satisfied ("all-or-nothing" requirement)
 - If a TE scheme's bandwidth allocation is unable to fully satisfy demand in 0.1% of scenarios, it has an availability of 99.9%

Robustness to probability estimates

Noise in probability estimations	% error in throughput
1%	1.43%
5%	2.95%
10%	3.07%
15%	3.95%
20%	6.73%

Summary

• TeaVaR uses financial risk theory for solving Traffic Engineering under failures.

• TeaVaR's approach is applicable to networking resource allocation problems such as capacity planning.

• Code and demo available at: http://teavar.csail.mit.edu/