

Video Streaming

Monia Ghobadi <monia@cs.toronto.edu>

Yuchung Cheng, Ankur Jain, Matt Mathis ycheng, jankur, mattmathis@google.com>

You Wideo Streaming

Aggregate	
Application	Share
HTTP	27.31%
	40-700
YouTube	18.23%
	A 780
Android Market	3.75%
Flash Video	2.66%
SSL	2.48%
RTSP	1.67%
Shockwave Flash	1.63%
MPEG	1.53%
Top 10	83.26%

Aggregate	
Application	Share
Netflix	29.03%
HTTP	16.59%
	12.47%
YouTube	9.90%
Flack-Video	3.04%
RTMP	2.81%
iTunes	2.69%
SSL	1.96%
Facebook	1.84%
MPEG	1.49%
Top 10	82.83%
⊠s	andvine

TCP

Just-in-time video delivery

Ustreamer Application pacing

You Wideo Streaming

The Problem: Burstiness is Bad for TCP

Not specific to YouTube videos.

Netflix sends bursts as large as 2MB.

Main contribution:

A **simple** and **generic** technique to implement just-in-time video delivery by smoothly rate-limiting TCP transfers.

Tricke To Rate Limit TCP

- Dynamic upper bound on TCP's congestion window.
- Periodically computed based on RTT and target rate (R).

```
R = 50 \text{ pkts/sec} (600 \text{Kbps}) RTT = 200 \text{ ms}
max\_cwnd = 50 (pkts/sec) \times 0.2 (sec) = 10 pkts
```

- Only server side changes for easy deployment.
- Not a special mechanism tailored only for YouTube.

Demo*

Smooth

Bursty

Ustreamer

Experiments

Two data centers: India and Europe. 15 days in Fall 2011, total of 23 million videos.

4-way experiment:

- (1) Baseline1: application pacing with 64kB blocks,
- (2) Baseline2: application pacing with 64kB blocks,
- (3) Trickle,
- (4) shrunk-block: application pacing with 16kB blocks.

Experiments Methodology

Western Europe/India data center

- (1) Baseline1
- (2) Baseline2
- (3) Trickle
- (4) shrunk-block

Same number of flows, flow sizes, flow completion times.

Users

Video ID
IP/Port
Bytes sent
Retransmission rate
RTT
Transmission time
Goodput
Target rate

Experiments: Packet Losses

Trickle reduces the average retransmission rate by 43%.

Experiments: Queueing Delay

Trickle reduces the average RTT by 28%.

Conclusions

- Trickle rate limits TCP by dynamically setting the maximum congestion window size.
- Minimal sender-side changes, fast deployment.
- Generally applicable to rate limit other kinds of streaming.