
Communication Patterns in Distributed Deep
Learning

Amir Farhat Manya Ghobadi
Massachusetts Institute of Technology
amirf@mit.edu,ghobadi@csail.mit.edu

ABSTRACT
Machine learning has been increasingly deployed in the
cloud to take advantage of massive scaling capability as a
means of reducing the time-to-accuracy of training. To this
end, different machine learning training distribution frame-
works are put to use, with Horovod from Uber emerging as a
popular choice. To squeeze as much performance as possible
from the distribution framework, it is important tomaximally
overlap computation and communication while maintaining
high GPU utilization as a way of reducing the duration of
each iteration of training. As a first step in this direction,
this project sets out to study the communication component
of training. We train Deep Neural Network (DNN) models
of various sizes on sixteen GPUs in Google Cloud Compute
Engine platform and record information about the data the
workers exchange as well as the timing of each iteration of
training. Our two main observations are: (i) the amount of
data exchanged between workers at each training iteration
is proportional to the model size; and (ii) the duration of
training is not fully determined by the model size, it depends
also on the compute hardware, communication bandwidth,
and batch sizes in addition. The significance of these find-
ings does not offer a complete enough picture for improving
the TTA for models, but can do that in combination with
information about computation.

1 INTRODUCTION
Machine learning models are instrumental in solving com-
plex non-traditional problems such as image processing, con-
trolling autonomous vehicles, natural language processing,
and more. The power of such techniques, specifically deep
learning, has inspired the development of increasingly com-
plex and large models. To ensure their effectiveness, machine
learning engineers put these models through several rounds
of training, fine-tuning, and testing before deployment. As
models increase in size, engineers have begun distributing
the training on multiple servers in order to leverage par-
allelism of training tasks. Specifically, engineers, through
the training environment, coordinate each server to train
on a subset of the data that is disjoint from other subsets
of the data that other servers handle. In this fashion, an N-
fold increase in the number of servers participating in the

training process will ideally lead to an N-fold speedup in
training performance. In particular, a crucial metric used for
evaluating training is the time-to-accuracy (TTA), a measure
of the time required to train a given model until it achieves a
specific accuracy [1]. Thus, the machine learning community
has adopted distributed machine learning frameworks for
use in their training in an effort to improve the speed of
their training [2]. Tensorflow, a widely used machine learn-
ing training framework, comes equipped with a method to
distribute training across multiple machines, but it is hard
to use in a distributed fashion and can be slow [2, 3]. Users
were consequently motivated to develop different machine
learning distribution frameworks like Horovod, a flexible
open source platform for distributing training from Uber.

Horovod includes a profiler named Horovod Timeline, but
its information is limited in that it only displays computa-
tion time [2, 3]. A full analysis of training must measure
not only computation (on each server and on its GPUs), it
must also measure communication (between servers and
between GPUs). In the case that there is little or no overlap
between the computation and communication stages during
training, this method of profiling would identify opportu-
nities to increase the overlap between communication and
computation as a means of reducing the overall TTA of a
model. In addition to overlap, this method, when combined
with knowledge of the inner-workings of the distribution
framework at hand, exposes potential bottlenecks in the com-
putation and communication stages. These can be used to
optimize the training process for even better TTA.
As a first step to achieving this large goal, this project

focuses on the communication patterns during distributed
training. Specifically, we make use of five different models
of varying size (highlighted in Table 1) for training with
the Horovod distributed training framework. We design a
measurement tool to measure inter-server communication.
In particular, we measure all-to-all server communication
over the network using tcpdump while training is running
[4]. Later, we post-process the raw communication data to
extract information about the communication. Our obser-
vations are as follows. First, we confirm empirically that
Horovod establishes a ring topology between its workers
according to the order they appear in the execution com-
mand. Second, we observe that inter-server TCP flows come

https://eng.uber.com/horovod/
https://www.uber.com/
https://cloud.google.com/compute
https://cloud.google.com/compute
https://www.tensorflow.org/
https://eng.uber.com/horovod/
https://www.uber.com/
https://eng.uber.com/horovod/
https://horovod.readthedocs.io/en/latest/timeline_include.html
https://eng.uber.com/horovod/
https://www.tcpdump.org
https://eng.uber.com/horovod/


Amir Farhat

Model Name Number of Parameters Model Size (MB)

MobileNet [5] 4, 253, 864 16
DenseNet121 [6] 8, 062, 504 33
InceptionV3 [7] 23, 851, 784 92
ResNet50 [8] 25, 636, 712 98
VGG19 [9] 143, 667, 240 549

Figure 1: Model Metadata. The table shows informa-
tion about each of the threemodels we used to run dis-
tributed training. Information obtained from Keras
applications [10]

in small, medium, and large sizes. Thirdly, we find a direct
relationship between the model size and size of the flows
transmitted during each iteration of training. Finally, we find
that the model size does not fully determine the iteration
duration on its own, though it is a factor.

2 EXPERIMENT METHODOLOGY
First we discuss the setup of servers and the workflows we
run. Then, we discuss in detail how we measure commu-
nication between the servers as they engage in distributed
machine learning training.

2.1 Infrastructure and Workflows
2.1.1 Servers. To study different aspects of servers run-

ning distributed training in the cloud, we acquire and config-
ure servers to run training on.We use Google Cloud Compute
Engine virtual machines due to the large capacity of compute,
memory, and GPUs. Specifically, we set up four GPU-enabled
VMs running Ubuntu 18.04. We use the words server and
VM interchangeably, with both pointing to a GPU-enabled
Google Cloud Compute Engine instance unit that we run
training on. Each server has four NVIDIA Tesla T4 GPUs,
sixteen virtual CPUs, and 104GB of RAM. Atop these servers
we install Tensorflow 1.13 for executing training on each
GPU, and install Horovod 0.18.1 for distributing training
across servers [11].

2.1.2 Workflows. We chose to run training for five dif-
ferent models that, together, represented a relatively wide
span in the model size. The model size is determined by
the number of parameters in the model. At 4, 253, 864 pa-
rameters, the smallest model, MobileNet has a model size
of 16MB. The medium model, InceptionV3, has 23, 851, 784
parameters which produce a model size of 92MB. The largest,
VGG19, comes with 143, 667, 240 parameters and has a model
size of 549MB. This information is detailed in Table 1. We
coordinated training of these models to be distributed on
the four servers, each of which further divided its training

responsibilities to its four GPUs. The servers ran 200 iter-
ations of training while the current time before and after
each iteration of training was recorded. We made use of
one batch of synthetic data per iteration, where each batch
contained 64 synthetic images, in addition to five warm up
batches before actual training began. The virtual topology
of communication during training forms a ring (as per ring-
allreduce), where each server sends data to the next server
and receives data from the previous server [2]. Open MPI
is used as the underlying communication mechanism be-
tween nodes through Horovod. The training data used is
synthetic, since real data and synthetic data don’t affect the
computation and communication during training. We ran
communication measurements during the training interval,
and the methods are highlighted in more detail in section
2.2.

2.2 Measuring Communication
We limit our focus to inter-server communication. Inter-
server communication consists of the packets sent over the
network between servers as they undergo training. We ob-
serve that the servers communicate using TCP. Therefore,
we capture incoming and outgoing packets on each of the
servers using the tcpdump 1 command by running it before
training begins and terminating it when training ends. Each
packet in the tcpdump output contains a superset of the
crucial fields we need to construct a high-level view of com-
munication. In particular, the packet’s Ethernet and TCP/IP
headers contain this information. Consequently, we capture
only the first 150 bytes of the packet so save space.

The source/destination and address/port combinations in
addition to TCP flags enable us to distinguish between differ-
ent TCP connections between different servers. For example,
recognizing the first and last packets of a TCP connection via
the SYN/FIN TCP flag proved to be useful for flow duration
delimiting. The len field tells us the size of the packet that is
sent, and the timestamp field informs us of the capture time
of this packet. Putting these together and cross-referencing
with the time before and after training iterations, we can
determine all the TCP connections between our servers, and
can tell exactly when each packet was sent and the size of the
data that it contained. Filtering by source/destination and
address/port combination is done during post-processing,
after the tcpdump capture terminates. After that, a script we
wrote determines the time boundaries for each iteration of
training and bins all the captured packets from each worker
machine into their appropriate iteration.

1sudo /usr/sbin/tcpdump -s 150

https://cloud.google.com/compute
https://cloud.google.com/compute
https://cloud.google.com/compute
https://www.tensorflow.org/
https://eng.uber.com/horovod/
https://www.open-mpi.org/
https://eng.uber.com/horovod/
https://www.tcpdump.org
https://www.tcpdump.org
https://www.tcpdump.org


Communication Patterns in Distributed Deep Learning

Model Name Packets Before Packets During

MobileNet 10.02% 89.96%
DenseNet121 9.68% 90.29%
InceptionV3 6.44% 93.55%
ResNet50 4.81% 95.18%
VGG19 3.05% 96.95%

Figure 2: Packet Count Binning. The Table shows the
percentage of packets which fall in different time po-
sitions of training

Model Name Data Before Data During

MobileNet 2.68% 97.32%
DenseNet121 2.89% 97.11%
InceptionV3 2.66% 97.34%
ResNet50 2.65% 97.35%
VGG19 2.63% 97.37%

Figure 3: Transmitted Data Binning. The Table shows
the percentage of transmitted data via TCP packets
which fall in different time positions of training

3 RESULTS
We present the findings of the experiment in three forms for
each model. First, we plot markers representing the start and
end of training and overlay the timestamps of packets sent by
data flows during training in Figures 2 and 3. Second, we plot
CDFs of iteration durations in Figure 4. Third, we plot CDFs
of flow sizes in Figure 5. To generate these results, we ran
distributed learning of the different models mentioned above
for 200 iterations and measure the communication between
the four different servers during training via system com-
mand tcpdump, which captures packets sent and received
by the NIC. We additionally recorded timing iteration about
training: start and end timestamp of each iteration. This
helps to differentiate between communication happening in
different iterations. Then, and most importantly, we used
the timestamp information from each packet to determine
which iteration that packet belongs to, if any.

The results show that, as expected, the flow size per itera-
tion increases linearly with the model size. In particular, data
from all models showed flow sizes around twice the size of
the model (see Figures 1 and 5). Timestamp data from Fig-
ures 2 and 3 shows packets which lie outside of the training
interval in all cases, even though a majority of packets are
found inside the training interval. Interestingly, the median
iteration duration does not directly correlate with the model
size, as can be seen in Figure 4. For example, DenseNet121

and ResNet50 had nearly identical median iteration dura-
tions, at around 0.7 seconds, but the ResNet50 is larger than
DenseNet121 by a factor of 3. Similarly, even though Incep-
tionV3 and ResNet50 have approximately the same model
size, 92MB and 98MB respectively, their median iteration
durations differ by 200 milliseconds, with InceptionV3 tak-
ing 0.5 seconds and ResNet taking 0.7 seconds per iteration.
We suspect that this disparity is due to the way GPU perfor-
mance changes with the architecture of the model at hand,
where GPUs can more efficiently do calculations for some
models because of a simpler architecture.
One conclusion from these results show that training it-

erations are relatively fast when there is GPU-backed dis-
tributed training. But perhaps the most important results are
as follows. First, there is a linear increase in the flow size per
iteration across all models as the model size grows, which
empirically confirms that the model is being sent around
between servers in a ring all-reduce fashion, consistently
with Horovod’s claim [2]. Second, the order and nodes of the
ring are fully determined by the initial run command sup-
plied to Open MPI. Specifically, server hostnames supplied
to the mpirun command form a list; the elements of this list
form the nodes of the ring while the order of the elements in
the list determine the edges of the ring. Third, and perhaps
more interesting is the inconsistency between training dura-
tion and model size. We expect that this is because training
efficiency is highly model-dependent.
The nature of these measurements makes it difficult to

define the notion of a baseline because these numbers are
likely to change from setup to setup, with swings in network
throughput and latency, and GPU utilization from other run-
ning jobs. Since we do not own the Google Cloud Compute
Engine hardware running this training, we had to make some
assumptions about the utilization of our setup. In future iter-
ations, we wish to replicate our results on a physical testbed
where we have more control over the hardware and network
setup. Since all this dedicated hardware is in the cloud, we do
not know with certainty whether the GPUs are being shared
by other tenants. We are also unsure if the GPUs requested
for a single VM are all found on the underlying hardware of
the machine supporting the VM or if they are on a separate
machine. Since we deployed these VMs in the same region
and zone, we assume that they are utilizing the same net-
work. However, we cannot say with certainty whether these
VMs are on the same rack or in the same cluster.

4 CONCLUSION
Through measuring information about packets sent over
the network during machine learning training distributed
via Horovod on servers in the cloud, we learn more about
the relationship between the model, the iteration durations,

https://www.tcpdump.org
https://eng.uber.com/horovod/
https://www.open-mpi.org/
https://cloud.google.com/compute
https://cloud.google.com/compute
https://eng.uber.com/horovod/


Amir Farhat

Figure 4: CDF Iterations. Time taken, for each model,
to complete iterations of training during a distributed
training session

Figure 5: CDF Flow Sizes. Size of flows in megabytes
that eachmodel’s dataflows sent during each iteration
of training

and the flow sizes resulting from training. We empirically
confirm that Horovod runs ring-allreduce and learn that the
ring is fully determined by the order of the servers provided
to the training script. We observed that inter-server TCP
flows come in small, medium, and large sizes where the
medium flows are for control and the large flows primarily
send the model. We found a direct relationship between the
model size and size of the flows transmitted during each
iteration of training. We found that the model size does not
fully determine the iteration duration on its own, though
it is a factor. Finally, not all packets that made up the large
flows fell in the training interval. 90% of the packets were
within the interval 10% were outside. Further, 97% of the
bytes transmitted were in the interval, with 3% of bytes lying
outside.

In the journey to improve TTA, this study offers a glimpse
into the communication component necessary to understand
the much needed overlap between communication and com-
putation. The next steps for this research involve measuring
inter-GPU communication and GPU utilization. These pieces,
when put together with the communication profile high-
lighted in this paper’s methods (see section 2.2), would then
provide a fuller picture regarding communication and com-
putation for a given training run. This study approximated
the TTA by running a fixed number of training iterations, but
a more realistic scenario would involve training the model
to a high, predefined, specific accuracy, ergo TTA. Doing
this will enable the user to observe the amount of overlap
between communication and computation and find oppor-
tunities for additional overlap as a means of reducing the
training time.

REFERENCES
[1] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi,

Tian Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Re,
andMatei Zaharia. Analysis of dawnbench, a time-to-accuracy
machine learning performance benchmark. 2018.

[2] Alexander Sergeev andMike Del Balso. Horovod: fast and easy
distributed deep learning in tensorflow. CoRR, abs/1802.05799,
2018.

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Gregory S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J. Good-
fellow, AndrewHarp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, DanMané, Rajat Monga, SherryMoore, Derek Gor-
don Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas,
Oriol Vinyals, PeteWarden, MartinWattenberg, MartinWicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale ma-
chine learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016.

[4] The Tcpdump Group. Tcpdump/Libpcap public repository.
Library Catalog: www.tcpdump.org Publisher: The Tcpdump
Group.

[5] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient Convo-
lutional Neural Networks for Mobile Vision Applications.
arXiv:1704.04861 [cs], April 2017. arXiv: 1704.04861.

[6] GaoHuang, Zhuang Liu, Laurens van derMaaten, and Kilian Q.
Weinberger. Densely Connected Convolutional Networks.
arXiv:1608.06993 [cs], January 2018. arXiv: 1608.06993.

[7] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, and Zbigniew Wojna. Rethinking the Inception Archi-
tecture for Computer Vision. arXiv:1512.00567 [cs], December
2015. arXiv: 1512.00567.

https://eng.uber.com/horovod/


Communication Patterns in Distributed Deep Learning

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
arXiv:1512.03385 [cs], December 2015. arXiv: 1512.03385.

[9] Karen Simonyan and Andrew Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition.

arXiv:1409.1556 [cs], April 2015. arXiv: 1409.1556.
[10] Applications - Keras Documentation.
[11] horovod/horovod. Library Catalog: github.com.


	Abstract
	1 Introduction
	2 Experiment Methodology
	2.1 Infrastructure and Workflows
	2.2 Measuring Communication

	3 Results
	4 Conclusion
	References

