
Aikido: Toward Straggler Mitigation for Distributed
Machine Learning Training in Cloud Data Centers

by

Ayush Sharma

S.B., Massachusetts Institute of Technology (2019)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2020

Certified by. .
Manya Ghobadi

Assistant Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Aikido: Toward Straggler Mitigation for Distributed Machine

Learning Training in Cloud Data Centers

by

Ayush Sharma

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As artificial intelligence becomes a critical component of everyday life, the popularity
of using cloud data centers for training deep neural networks is relentlessly growing.
This poses a significant challenge for data center operators where the network band-
width is shared among multiple ML jobs as well as between ML jobs and data center
flows. At high loads, the network experiences transient congestion events frequently
which in turn delays the parameter updates between ML workers. Consequently, the
training convergence suffers as some workers behind congested links straggle to update
the model parameters in time, hence delaying all workers. We propose Aikido as a
first step towards mitigating the impact of transient network-induced stragglers on
training workloads caused by the dynamic nature of the data center traffic. Aikido
exploits the inherent robustness of ML training on occasional loss of gradient updates
and implements a Skip-Straggler communication strategy where the updates from
straggling workers are simply skipped. In addition, Aikido introduces an Active-
Backup strategy as an improvement to the Skip method to maintain a high accuracy
convergence while using fewer resources than full worker replication. In our experi-
ment, we use Google Cloud Engine environment to train ResNet-50 on ImageNet at
various scales and demonstrate that Aikido is able to mitigate the effect of stragglers
and achieve the time-to-accuracy as if there are no stragglers.

Thesis Supervisor: Manya Ghobadi
Title: Assistant Professor

3

4

Acknowledgments

I would like to extend my deepest gratitude to my advisor Manya Ghobadi. Her

continued support for this project - both academic and professional - was invaluable.

Special thanks to my collaborator James Salamy for his help with brain-storming

ideas and running experiments. I would also like to express my deepest gratitude to

my parents as well as my partner Gabriella Garcia for their ongoing love and support

without which I would not be where I am today. Finally, many thanks to MIT, the

brilliant professors here, and the extraordinary peers from whom I have learnt a great

deal in life.

This research was sponsored in part by MIT’s Google Cloud Engine Program

and the United States Air Force Research Laboratory and was accomplished under

Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions con-

tained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the United States Air

Force or the U.S. Government. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any copyright notation

herein.

5

6

Contents

1 Introduction 13

2 Background and Related Work 17

2.1 Distributed Computation . 17

2.2 Distributed Computation in Machine Learning 17

2.2.1 Stochastic Gradient Descent 17

2.2.2 Parallelizing Synchronous-SGD 18

2.2.3 Aggregation using Parameter-Servers 19

2.3 Distributed Machine Learning Framework 20

2.3.1 TASO: Optimizing Deep Learning Computation with Auto-

matic Generation of Graph Substitutions 20

2.3.2 FlexFlow . 21

2.3.3 PipeDream . 21

2.3.4 Horovod: Fast and Easy Distributed Deep Learning in Tensorflow 22

2.3.5 KungFu . 27

2.4 Approaches to Straggler Protection 31

2.4.1 Gradient Coding . 31

2.4.2 Google’s Sync-SGD Primary-Backup System 32

2.4.3 Async Decentralized Parallel Stochastic Gradient Descent . . . 32

2.4.4 Trend-Smooth . 33

3 Aikido: A First Step Towards Straggler-Mitigating Distributed Ma-

chine Learning Framework 35

7

3.1 Straggler Mitigation within a Ring-AllReduce Aggregation Paradigm 37

3.2 Flexible Topology for Collective Communication Operations 41

3.3 Active-Backups as an Alternative to Skip Strategy for Straggler Miti-

gation . 44

3.4 The Aikido Profiler . 47

4 Experiments and Results 49

4.1 Current performance measures in distributed ML 50

4.1.1 Measuring scalability of GPU throughput via ResNet-50 Bench-

mark . 50

4.1.2 Measuring scalability of iteration times via ResNet-50 on Cats

vs. Dogs dataset . 52

4.1.3 ResNet-50 on ImageNet: Training to Convergence 53

4.2 Impact of network load on performance 54

4.3 Curbing the effect of stragglers using Aikido 55

4.3.1 Straggler simulation with four GPUs 55

4.3.2 Straggler simulation with 16 GPUs 57

4.3.3 Training ResNet-50 on ImageNet until convergence using sim-

ulated stragglers and Aikido 59

4.4 Chrome Profiler tool for visual inspection of the characteristics of train-

ing runs . 62

4.5 Lessons Learned . 64

5 Conclusion 67

8

List of Figures

2-1 Single Parameter-Server Sync-SGD 19

2-2 Multiple Parameter-Server Sync-SGD 20

2-3 MPI AllReduce example with MPI_SUM 24

2-4 Decentralized Ring AllReduce Sync-SGD 25

2-5 Ring Strategy: Reduce graph . 29

2-6 Ring Strategy: Broadcast Graph . 30

2-7 Star Strategy: left to right Topology with state of workers, Reduce

graph ops, Broadcast graph ops . 30

3-1 Aikido’s Overview of Design with Straggler Simulator 40

3-2 Ring-AllReduce Skip in Aikido . 42

3-3 Aikido’s Skip Mechanism Example 43

3-4 Active Backup in Aikido . 45

3-5 Ring-AllReduce Active Backup Architecture Example 46

3-6 Aikido’s Profiler in Chrome . 47

4-1 ResNet-50, benchmark – Linear speedup vs. Achieved throughput . . 51

4-2 ResNet-50, Cats vs Dogs dataset - Achieved vs Linear epoch time . . 52

4-3 ResNet-50, ImageNet - Time to Convergence, local batch size=128 . . 53

4-4 Impact of network congestion on performance, 16 GPUs, local batch

size=128 . 54

4-5 CDF of measured iteration duration for ResNet50 + ImageNet, 4

GPUs, global batch size=128 . 56

9

4-6 CDF of measured iteration duration for ResNet50 + ImageNet, 16

GPUs, global batch size 512. 58

4-7 Categorical Cross Entropy Loss: ResNet50 + ImageNet on 16 V100

GPUs, global batch size 1024. 60

4-8 Top 5 Accuracy for ResNet50 training + ImageNet, 16 GPUs, global

batch size 1024. 61

4-9 CDF of gradient wait times: ResNet-50, ImageNet, 4 GPUs, local

batch size=128 . 63

10

List of Tables

3.1 State of current distributed ML frameworks and where Aikido fits.
* Our code is available online at https://github.com/ayushs7752/

AIKIDO . 36

4.1 Summary of results on ResNet-50 + ImageNet run, local batch size=64,

16 GPUs . 59

11

https://github.com/ayushs7752/AIKIDO
https://github.com/ayushs7752/AIKIDO

12

Chapter 1

Introduction

State-of-the-art Machine Learning models increasingly require massive amounts of

resources to train [2, 39, 61]. For instance, GPT-2 [47], a large transformer-based

language model with 1.5 billion parameters, requires 1000 NVIDIA Tesla V100 GPUs

to train under one hour [43], which implies that it will likely take around 1000 hours

to converge on one NVIDIA Tesla V100 GPU. Simply put, training large models

on one GPU is too slow. Hence, there is an enormous need for efficient distributed

machine learning training frameworks [23, 18, 41, 25, 42, 53, 3, 35, 4].

The most common approach for distributed training is called data parallelism

in which a given neural network is replicated across 𝑁 workers with each worker

processing a small subset of the training data. At every iteration, the local model

updates need to be aggregated and distributed across all the workers to ensure model

convergence. This step is called AllReduce and is often implemented with a parameter-

server [31] or Ring-AllReduce [46]. In the parameter-server architecture, one or

more parameter-servers holds the current model and synchronizes it between a set

of worker-nodes for each iteration [5]. The problem with this approach is that the

network links between the parameter-server and the workers become a bottleneck.

As a result, the workers cannot utilize their full compute power, while the bandwidth

to the parameter-server becomes a bottleneck, slowing down training. To mitigate

this problem, Uber recently open-sourced a first-of-its-kind data parallel machine

learning framework, called Horovod, which uses Ring-AllReduce to allow users to

13

distribute their existing machine learning training with minimal code changes at the

TensorFlow/Python abstraction layer [52].

Although Ring-AllReduce frameworks improve the training time compared to

parameter-server frameworks, they are more sensitive to the problem of stragglers.

Stragglers are worker nodes that lag behind their peers and add delay to the train-

ing [19, 56, 24]. This is because the ring-based communication scheme creates an

inter-dependency across workers, hence, the training will proceed at the speed of

the slowest worker(s). Stragglers can happen due to several reasons, such as het-

erogeneous hardware and congested links. Current training frameworks, mitigate

hardware-based stragglers by ensuring the training job is launched across workers with

the same compute capabilities. However, network-based stragglers, such as workers

behind transiently congested links, are much harder to detect and react to given their

unpredictable nature. This thesis proposes a solution to mitigate congestion-induced

stragglers.

Today’s approaches to mitigate network-induced stragglers includes asynchronous

distributed training [35]. However asynchronous training frameworks often do not pro-

vide the same performance and convergence guarantees as synchronous training [62].

As a result, synchronous Stochastic Gradient Descent (SGD) remains the algorithm of

choice for training large-scale models [61]. Recent work proposed using backup work-

ers to mitigate the impact of stragglers under the parameter-server communication

pattern [9]. However, as the ML field moves away from parameter-server aggregation

mechanism to ring-AllReduce based approaches, there is a need for new mechanisms

to provide network-induced straggler protection. This is the opportunity we notice,

and therefore we propose Aikido as a first step towards straggler protection in large-

scale distributed machine learning under allreduce parameter aggregation.

With Aikido, we provide a flexible primary-backup architecture under All-Reduce

communication pattern to curb the impact of stragglers on training. Building on top

of ring-All-Reduce communication pattern, Aikido introduces a Ring-Reshape Mod-

ule as well as a Straggler Simulator into the shared context of the 𝑁 distributed ML

workers. The Straggler Simulator allows us to inject arbitrary amounts of straggler

14

behavior into any number of workers in each sync-SGD iteration. The Ring- Reshape

Module seamlessly switches the straggler worker out of the aggregation ring for the

duration of straggling behavior that is determined by the simulator. We call this

approach a Skip Strategy. Additionally, we explore an Active-Backup strategy where

a set of dedicated backup workers are mapped to cover for the straggler workers for

a given iteration. These active backup workers can be tuned to work with fewer

resources such as quantized model or smaller batch sizes.

We demonstrate the effect of stragglers on training throughput by creating cross

traffic TCP flows while training a neural network on real hardware and measuring the

impact of network congestion on the workload. Next, we demonstrate the efficacy of

Aikido in curbing stragglers using upto 16 NVIDIA Tesla V100 workers training a

ResNet-50 [20] model with ImageNet dataset [14]. Our results show that, in the face

of simulated stragglers, Aikido is able to bypass them and achieves the same time-

to-convergence as if the stragglers where not present. More specifically, we simulate

a 20% straggler rate as follows by adding 75ms of delay to one of the workers on top

of the 180ms iteration time for every alternate iteration. On average, this amounts

to
1
2
*75*100
180

= 20% delay to every iteration. As a result, the training job is delayed

by approximately 20% in terms of the iteration times, throughput, and time to reach

threshold validation accuracy. We show that Aikido is able to mitigate the impact

of simulated stragglers on par with the ideal run with no simulated stragglers.

The rest of this thesis is organized as follows. First, we cover existing literature

and introduce important prior concepts in Chapter 2. Next, we describe our system

in depth in Chapter 3. Then, we present and summarize our experimental results in

Chapter 4. Finally, we conclude with Chapter 5 by providing a concise summary of

our work as well as the direction for future work.

15

16

Chapter 2

Background and Related Work

2.1 Distributed Computation

A distributed system is a system in which separate computers are connected on a net-

work. Each component does its share of computation individually and then commu-

nicates the results via message-passing. The components are marked by concurrency,

lack of a global clock, and independent failures of components [57]. Unlike parallel

computing where all processors may have access to shared memory, distributed com-

puting has components with its own private memory. Information is transmitted via

message-passing mechanisms [29]. In recent years, machine learning community has

come to embrace distributed computing [17]. The early work in this direction was

launched by Zinkevich with his first implementation of a parallel stochastic gradi-

ent descent [66]. Since then, much more investigation has been conducted towards

efficiently distributing ML [51, 30, 49].

2.2 Distributed Computation in Machine Learning

2.2.1 Stochastic Gradient Descent

Consider a supervised learning setup as such - given each example 𝑧 that lives in

R𝑑 with its associated label 𝑦, we choose a family of functions 𝐹, 𝑓𝑤(𝑥) that is

17

parametrized by 𝑤. Our goal is to minimize the empirical loss function 𝑙(𝑓𝑤(𝑥), 𝑦)

averaged on the examples. A simple iterative process is proposed to find such a

predictive function 𝑓 .

𝑤𝑡+1 = 𝑤𝑡 − 𝜂
1

𝑛

𝑛∑︁
𝑖=1

𝑙(𝑓(𝑥𝑖, 𝑦𝑖)

Each iteration updates the weights 𝑤 towards the minima and 𝜂 is appropriately

chosen as the learning rate.

Often, the number of examples 𝑧 in each iteration is too large and the above

method is not computationally feasible. This is where Stochastic Gradient Descent

is useful [50, 8]. As a simplification of equation 1, we consider the gradient update

from a stochastically chosen sample 𝑧𝑖

Algorithm 1: Stochastic Gradient Descent
Initialize random weight matrix 𝑊 and learning rate 𝜂 ;
while not at an appropriate minima do

Randomly shuffle examples in the training set;
for i=1,..n do

𝑤𝑖 ← 𝑤𝑖 − 𝜂𝜕𝑤𝑄(𝑤𝑖);
end

end

2.2.2 Parallelizing Synchronous-SGD

To better leverage the power of distributed systems, Sync-SGD is proposed with the

following modification [66].

𝑤𝑖,𝑡 ← 𝑤𝑖,𝑡−1 − 𝜂𝜕𝑤𝑐
𝑖(𝑤𝑖,𝑡−1)

Where each worker 𝑊𝑖 applies the above equation individually, and then ag-

gregates the resulting gradients, followed by averaging and applying those gradi-

ents.Aggregate from all workers 1
𝑘

∑︀𝑘
𝑖=1 𝑤𝑖,𝑡 and return 𝑣

This process translates to the following protocol below.

18

1. Distribute multiple copies of the training script and data where each of the 𝑘

worker -

(a) Independently sample data 𝐷𝑖

(b) Forward and back-propagate the samples 𝐷𝑖 through their model Θ𝑖

(c) Computes gradient updates 𝐺𝑖

2. Average gradient updates 𝐺𝑖 as
∑︀𝑘

𝑖=1 𝐺𝑖

3. Apply the updates to model as 𝑀𝑖 ← Θ𝑖 +
∑︀𝑘

𝑖=1 𝐺𝑖

Further, researchers have been investigating the convergence behavior, perfor-

mance, as well as stability of parallel-SGD methods [34, 64, 33].

2.2.3 Aggregation using Parameter-Servers

One could imagine several architectural designs that would allow for the achieve Sync-

SGD as described above. The simplest such choice is of a single Parameter-Server [31,

12, 22].

Figure 2-1: Single Parameter-Server Sync-SGD

While the single parameter-server approach works, it is not ideal from commu-

nications standpoint. A single aggregation point quickly becomes a network bottle-

neck as the user scales the number of workers. To alleviate this bottleneck, multiple

19

parameter-servers can be used. This parameter-server design is primarily used as the

Tensorflow’s out of the box distribution methods.

Figure 2-2: Multiple Parameter-Server Sync-SGD

2.3 Distributed Machine Learning Framework

2.3.1 TASO: Optimizing Deep Learning Computation with

Automatic Generation of Graph Substitutions

Modern Machine Learning frameworks commonly utilize an abstraction known as a

computation graph [36]. A computation graph is a representation of a computation

where a node knows how to compute its value and its derivative w.r.t. each edge

and the edges correspond to a function argument. Computation graphs are directed

and often acyclic. In frameworks like Tensorflow, a computation graph is built first

and then executed only when necessary. This approach, known as lazy evaluation,

serves to reduce computation load and increase efficiency. Additionally, it allows for

optimization of the computation graph itself. Consider two computation graphs as

𝐴 × (𝐵 × 𝐶) vs (𝐴 × 𝐵) × 𝐶, where the operator matrix multiplication is com-

mutative. The results of the two computation graphs are equivalent, however, the

runtime may differ. In practice, complex computation graphs can often be simplified

to save runtime. Frameworks like Tensorflow apply graph substitutions to achieve

this optimization.

20

TASO automates the optimization of computation graphs traditionally done man-

ually by experts [26]. This approach is more scalable in the face of growing number

DNN operators [7]. TASO achieves this by a cost-based backtracking search and then

applying the optimization to the computation graph.

2.3.2 FlexFlow

Going beyond the standard data and model parallel approaches, FlexFlow introduces

a richer parallelization space called SOAP - Sample, Operation, Attribute, and Pa-

rameter [37]. Sample and parameter dimensions refer to how training samples and

model parameters are distributed. The attribute dimension is for different attributes

within a sample. And operation dimension refers to how different operations are par-

allelized. FlexFlow introduces a deep learning framework that searches this SOAP

space to produce optimal parallelization strategies. Given the larger search space,

FlexFlow utilizes a more efficient evaluation method to quickly find an optimized

strategy. They also contribute towards faster simulations of DNN model and show

that the simulation can be run up to three times faster than the actual computation.

The results show that FlexFlow can speed up throughput by up to 3.8x over other

manual parallelization techniques.

2.3.3 PipeDream

Current parallelization techniques in deep learning employ intra-batch paralleliza-

tion, in which a single iteration is split across workers and the gradients are then

averaged [10, 13]. PipeDream introduces inter-batch parallelism to further improve

throughput and reduce communication overhead [44]. Contrary to the traditional

model parallel systems, PipeDream pipelines minibatch processing where different

workers are computing different parts of the input at any instant of time. This en-

sures high utilization of GPUs and low communication overhead. They achieve up

to 5x speed-up in time to target accuracy for experiments with five different DNNs.

21

However, their system does not speed up RNNs [40] as much due to the inherent

challenges with recurrent neural networks.

2.3.4 Horovod: Fast and Easy Distributed Deep Learning in

Tensorflow

Horovod is Uber’s open-source distributed machine learning framework and is the

most widely used and well-maintained framework in this field [52]. Horovod imple-

ments AllReduce using Open-MPI (message-passing interface) allowing for fast and

easy distributed training of ML models.

Message Passing Interface

Message Passing Interface (MPI) is a standard communication interface for dis-

tributed programs [16]. MPI’s abstractions consist of a communicator, which is de-

fined as the group of processes each assigned a unique rank. Processes refer to each

other using their ranks. MPI defines communication of one-to-one, one-to-many, and

many-to-many paradigms. This fits naturally into the distributed workers’ operations

since two workers may need to communicate directly with each other, or one process

may need to send/receive information from multiple processes, and, finally, multiple

processes may communicate with several processes at once [57].

MPI Send Directive

MPI_Send(

void ∗ data ,

i n t count ,

MPI_Datatype dtype ,

i n t de s t ina t i on ,

i n t tag ,

MPI_Comm communicator)

22

MPI Send Directive

MPI_Recv(

void ∗ data ,

i n t count ,

MPI_Datatype dtype ,

i n t source ,

i n t tag ,

MPI_Comm communicator ,

MPI_Status∗ s t a tu s)

AllReduce

Reduce MPI defines many operators as parts of its collective operations library.

One of the most important ones is Reduce. Reduce is a concept derived from func-

tional programming [58, 45]. Formally, we define 𝐷 a Collection of objects 𝑑𝑖 and

a associative reduction operator 𝐹 such that it can reduce 𝐷 to a singular value 𝑥.

For example, consider the binary function max(a,b) and input [1,-10,13,2,20].

Reduce operator applied to this input given the function would yield 20.

MPI Reduce Directive

MPI_Reduce(

void ∗ send_data ,

void ∗ recv_data ,

i n t count ,

MPI_Datatype datatype ,

MPI_Op op ,

i n t root ,

MPI_Comm communicator)

Often, we would like to access reduced results across multiple parallel processes

23

rather than just the root process. This directive is defined as the AllReduce [6].

Here, processes reduce results across workers and then broadcast across all workers.

Thus, an AllReduce is a Reduce operator followed by a Broadcast operator. See

Figure 2-3.

Figure 2-3: MPI AllReduce example with MPI_SUM

MPI AllReduce Directive

MPI_Allreduce (

void ∗ send_data ,

void ∗ recv_data ,

i n t count ,

MPI_Datatype datatype ,

MPI_Op op ,

MPI_Comm communicator)

Ring-AllReduce In the early versions of All-Reduce algorithms, a centralized

parameter-server was required. This server is responsible for coordinating the mes-

sages between workers. Researchers quickly realized the inherent limitations of this

approach - it does not scale. Tensorflow has parameter-server based distribution

strategy built-in but it suffers the same drawbacks of lacking scalability [1].

Ring-AllReduce does away with needing a centralized parameter-server. As the

name suggests, in this algorithm workers are connected in a ring topology. Each of

24

the 𝑁 workers exchanges information with its two neighbors. One can show that after

2 * (𝑁 − 1) messages, all workers become synchronized with the same values. This

algorithm is bandwidth-optimal according to Baidu’s paper [46]. Figure 2-4 shown

an example of workers exchanging updates using Ring-AllReduce.

Figure 2-4: Decentralized Ring AllReduce Sync-SGD

Horovod As a system, Horovod combines all the ideas discussed in this section

so far. Therefore, Horovod’s contributions include -

• Standalone Python package that works with Tensorflow Keras backend.

• Leveraging NCCL All-Reduce algorithm as an optimized GPU implementation

of Baidu’s Ring-AllReduce.

• APIs to enforce consistent initialization of models across workers.

Usage Horovod provides high-level APIs that ensure that the user is able to

correctly and efficiently distribute their machine learning training.

25

Listing 2.1: Horovod usage example
import t en so r f l ow as t f
import horovod . t en so r f l ow . keras as hvd

I n i t i a l i z e Horovod
hvd . i n i t ()

Pin GPU to be used to proces s l o c a l rank (one GPU per proces s)
gpus = t f . c on f i g . exper imenta l . l i s t_phys i c a l_dev i c e s (’GPU’)
for gpu in gpus :

t f . c on f i g . exper imenta l . set_memory_growth (gpu , True)
i f gpus :

t f . c on f i g . exper imenta l . s e t_v i s i b l e_dev i c e s (gpus [hvd . loca l_rank ()] , ’GPU’)

Bui ld model and da t a s e t
datase t = . . .
model = . . .
opt = t f . op t im i z e r s .Adam(0 .001 ∗ hvd . s i z e ())

Horovod : add Horovod Di s t r i bu t edOp t imi z e r .
opt = hvd . Dis t r ibutedOpt imizer (opt)

mnist_model . compile (l o s s=t f . l o s s e s . Spar seCategor i ca lCros sent ropy () ,
opt imize r=opt ,
met r i c s =[’ accuracy ’] ,
experimental_run_tf_function=False)

c a l l b a ck s = [
Horovod : broadcas t i n i t i a l v a r i a b l e s t a t e s from rank 0 to a l l o ther p roce s s e s .
This i s necessary to ensure c on s i s t e n t i n i t i a l i z a t i o n o f a l l workers when
t r a i n i n g i s s t a r t e d wi th random we igh t s or r e s t o r ed from a checkpo in t .
hvd . c a l l b a c k s . BroadcastGloba lVar iab le sCa l lback (0) ,

]

model . f i t (dataset ,
steps_per_epoch=500 // hvd . s i z e () ,
c a l l b a c k s=ca l l back s ,
epochs=24,
verbose=1 i f hvd . rank () == 0 else 0)

26

2.3.5 KungFu

Horovod, being the first reliable distributed ML framework, has gained popularity in

the industry. However, Horovod has its own limitations [52]. First, Horovod’s distri-

bution strategy is static. This means the user can’t change the workers dynamically

to adapt to their amount of workload and compute capacity. KungFu aims to provide

an adaptive distributed framework [38] by allowing the training to dynamically adjust

the number of workers participating in a training job. Also it rewrites the commu-

nications layer instead of using MPI and thus allowing for faster syncing across the

workers. KungFu introduces parallel AllReduce operations. This is made possible

by associating a unique hash-key corresponding to each tensor and then buffering

the data in its queue before reducing. That said, KungFu still has a lot of room for

improvement. In section 4.5 we describe our lessons learned working with KungFu.

While we relied on KungFu to implement our ideas in this thesis, our recommenda-

tion to the reader is to use Horovod instead of KungFu since we encountered several

unexplained challenges and bugs in KungFu.

KungFu focuses on adaptive scaling of resources while training large machine

learning models. It provides basic distribution API similar to that of Horovod, but

it also adds new methods such as - resize_cluster and monitor.

27

Listing 2.2: KungFu base API usage example

import t en so r f l ow as t f
from kungfu . t en so r f l ow . op t im i z e r s import SynchronousSGDOptimizer
from kungfu . t en so r f l ow . i n i t i a l i z e r import BroadcastGlobalVariablesOp

Bui ld model . . .
l o s s = . . .
opt = t f . t r a i n . AdamOptimizer (0 . 0 1)

KungFu Step 1 : Wrap t f . op t imi ze r in KungFu op t im i z e r s

opt = SynchronousSGDOptimizer (opt)

Make t r a i n i n g opera t ion
t ra in_step = opt . minimize (l o s s)

Train your model
with t f . S e s s i on () as s e s s :

s e s s . run (t f . g l o b a l_v a r i a b l e s_ i n i t i a l i z e r ())

KungFu Step 2 : ensure d i s t r i b u t e d workers s t a r t wi th c on s i s t e n t s t a t e s
s e s s . run (BroadcastGlobalVariablesOp ())

for s tep in range (1 0) :
s e s s . run (tra in_step)

KungFu’s Design Primitives

This section contains important background of a select few design primitives from

KungFu that are used in Aikido.

• Reduce graph: A graph 𝒢(𝑉,𝐸), where 𝑣 ∈ 𝑉 represents a worker and 𝑒 ∈ 𝐸

is an edge (𝑣1, 𝑣2) representing direction of a Reduce primitive from 𝑣1 to 𝑣2

• Broadcast graph: A graph 𝒢(𝑉,𝐸), where 𝑣 ∈ 𝑉 represents a worker and

𝑒 ∈ 𝐸 is an edge (𝑣1, 𝑣2) representing direction of a Broadcast primitive from

𝑣1 to 𝑣2

• Strategy: A Strategy is defined as a pair of Reduce graph and Broadcast

graph. Formally a Strategy 𝑆 = {𝒢ℛ(𝑉,𝐸), 𝒢ℬ(𝑉,𝐸)}

28

Figure 2-5: Ring Strategy: Reduce graph

Let us consider how these strategies are executed. First, we look at the often used

ring strategy, which is based on the popular Ring-AllReduce algorithm. Figure 2-5

and 2-6 respectively illustrate the Reduce graph and Broadcast graph topologies.

Reduce Graph

1. Each of the four workers 𝑊𝑖 where 𝑖 ∈ {1, 2, 3, 4}, begin in their initial state
holding data 𝐷𝑖 in memory.

2. 𝑊1 sends 𝐷1 to 𝑊2 which sums it to 𝐷2

3. 𝑊2 sends 𝐷1 + 𝐷2 to 𝑊3 which sums it to 𝐷3

4. 𝑊3 sends 𝐷1 + 𝐷2 + 𝐷3 to 𝑊4 which sums it to 𝐷4

Broadcast Graph

1. The worker 𝑊4 begins in its initial state holding data
∑︀4

𝑛=1𝐷𝑖 in memory.

2. 𝑊4 sends
∑︀4

𝑛=1 𝐷𝑖 to 𝑊1 which replaces the existing buffer.

3. 𝑊1 sends
∑︀4

𝑛=1 𝐷𝑖 to 𝑊2 which replaces the existing buffer.

4. 𝑊2 sends
∑︀4

𝑛=1 𝐷𝑖 to 𝑊3 which replaces the existing buffer.

Next, we consider the Star strategy, based on the topology of a star graph struc-

ture. Figure 2-7 illustrates the initial state and the following Reduce graph and

Broadcast graph for a 4 worker Star Strategy.

29

Figure 2-6: Ring Strategy: Broadcast Graph

Figure 2-7: Star Strategy: left to right Topology with state of workers, Reduce graph
ops, Broadcast graph ops

1. Each of the four workers 𝑊𝑖 where 𝑖 ∈ {1, 2, 3, 4}, begin in their initial state
holding data 𝐷𝑖 in memory.

2. Reduce Step: The workers 𝑊2, 𝑊3, 𝑊4 all send their data to 𝑊1, which sums
it up.

3. Broadcast Step: The worker 𝑊1 stores
∑︀4

𝑛=1 𝐷𝑖 in memory, which it sends to
workers 𝑊2, 𝑊3, 𝑊4, each of which replace their existing buffer with

∑︀4
𝑛=1𝐷𝑖

30

2.4 Approaches to Straggler Protection

Current approaches to straggler protection largely fall into two camps. One idea is

to use the synchronous training combined with replication and intelligent restarting

of computation [48, 63]. Next, we have asynchronous training as a means to avoid

the straggler problem altogether [35, 62, 3]. While the recent progress in async is

exciting, synchronous algorithms are often preferred due to better performance and

convergence guarantees.

2.4.1 Gradient Coding

Gradient coding turns to the area of coding theory to provide better strategies for

replicating data blocks that are tolerant to failures and stragglers [48]. To understand

their basic idea, consider three workers labeled as 𝑊1,𝑊2,𝑊3 each computing gradi-

ents in for the synchronized SGD algorithm. Without modification, the workers would

compute gradients 𝐺1, 𝐺2, 𝐺3. If one of the workers 𝑊𝑖 is a straggler and loses 𝐺𝑖, the

aggregation step can not be completed. However, now consider a slightly modified

gradient sharing scheme as follows. The workers 𝑊1,𝑊2,𝑊3 now respectively com-

pute gradients as 𝐺1/2+ 𝑡𝐺2, 𝐺2−𝐺3, 𝐺1/2+𝐺3. Now, the vector 𝐺1 +𝐺2 +𝐺3 is in

the span of any of the two vectors out of three. The major contribution from this pa-

per is that this gradient coding approach does not require feedback and coordination,

and that we can configure each worker to independently send linear combinations of

gradients such that the aggregated sum can be obtained from the combinations [48].

This work shows the promise of mining the rich field of coding and information theory

for developing better systems.

31

2.4.2 Google’s Sync-SGD Primary-Backup System

Google’s Revisiting Distributed Synchronous SGD, hereafter referred to as GRD-

SGD, presents the case for the need to mitigate stragglers in distributed ML train-

ing [9]. First, they demonstrate the straggler effect in aggregating increasing number

of gradients from distributed workers. Their results closely follow our proposed model

for stragglers in section 3.1.1 and chart a poisson CDF. Next, GRD-SGD proposes a

straggler-mitigating system design based on the parameter-server paradigm. In their

method, the parameter-server 𝑃𝑖 chooses to drop the last 𝑏 number of updates from

their corresponding delayed workers. Following this approach, GRD-SGD is able to

reach both faster and better convergence [9].

There are many aspects of GRD-SGD that could be improved in future work, but

their fundamental bottleneck comes from having to rely on centralized parameter-

server architecture [9]. While parameter-servers make it easier to perform centralized

logic such as that of dropping the tail-end of gradient updates during aggregation,

this also inherently limits the scalability of such a system.

2.4.3 Async Decentralized Parallel Stochastic Gradient De-

scent

Most of the techniques commonly used in distributed machine learning are either 1)

synchronous 2) centralized asynchronous. Synchronous algorithms suffer from the is-

sue of stragglers and therefore don’t perform well in heterogeneous or communication-

bottlenecked environment. Asynchronous algorithms aim to solve this problem by

making SGD async. However, often this achieved by using a centralized parameter-

server [31]. This leads to scaling issues as parameter-server can get overwhelmed in

the face of larger number of workers. AD-PSGD provides a parallel and decentralized

algorithm for Stochastic Gradient Descent along with convergence bound of 𝒪(1√
𝐾

)

32

achieving linear speedup w.r.t. number of workers [35].

An interesting aspect of AD-PSGD is their design to avoid deadlocks that uses

bipartite graph topology. This ensures that the graph is partitioned into active set(A)

and passive set(B), where the edges only go from one set to the other [35].

2.4.4 Trend-Smooth

Asynchronous SGD algorithms are an active area of research. Currently, the major

issue with such algorithms is that they 1) converge slowly due to stale information

and 2) often don’t converge on global minima [21, 65]. Trend-smooth paper aims to

accelerate asynchronous SGD by smoothing parameters, i.e, shrinking the learning

rate in some dimensions where the gradient directions are opposite of the parameter

trend [12]. Trend-Smooth is empirically shown to asynchronously converge to state

of the art accuracies in MNSIT and CIFAR-10 datasets [11].

33

34

Chapter 3

Aikido: A First Step Towards

Straggler-Mitigating Distributed

Machine Learning Framework

As Machine Learning (ML) becomes ubiquitous and training models increasingly

harder, there is a greater need of an easy-to-use, flexible, straggler-resistant dis-

tributed ML framework. We propose our framework, Aikido. Aikido’s goal is to

curb the effects of stragglers in large-scale training jobs with Ring-AllReduce commu-

nication pattern. In synchronous distributed computation, stragglers are workers that

lag behind the rest of the workers. This section describes our proposed framework to

help mitigate the effects of stragglers for distributed machine learning.

Straggler nodes cause delays in synchronous computation. This happens when

the results from all workers need to be aggregated before proceeding to next state

in the computation. The problem of stragglers is more pronounced in the case of

distributed machine learning due to iterative nature of Stochastic Gradient Descent

like algorithms. Thus, even a few stragglers every iteration can significantly slow

down performance as measured via throughput and time to accuracy.

35

Stragglers have always posed a challenge in the field of distributed computa-

tion [28, 59, 15, 19]. They waste precious computation cycles that need to be re-

covered either by replicating machines or restarting the computation. In ML, the

problem is further exacerbated due to the iterative and synchronous nature of the

underlying training algorithms.

State of the art methods for straggler mitigation in distributed computation rely

on replication which can be a costly measure as it requires additional resources [59].

Prior work proposed straggler mitigation via a primary-backup architecture [9]. We

refer to this approach as GRD-SGD. However, this architecture relies on the central-

ized parameter-servers and hence suffers from the same scaling limitations that are

imposed by parameter-servers [5]. Despite frameworks like Horovod gaining recent

popularity, no current frameworks provide out-of-the-box straggler mitigation mech-

anisms for ML. Table 3 below summarizes the state-of-the-art training frameworks

and compares them with Aikido.

Approach Aggregation Open-Source Straggler Mitigation

GRD-SGD [9] Parameter-Server No Yes

Horovod [52] Ring-AllReduce Yes No

Aikido Ring-AllReduce Yes* Yes

Table 3.1: State of current distributed ML frameworks and where Aikido fits. * Our

code is available online at https://github.com/ayushs7752/AIKIDO

36

https://github.com/ayushs7752/AIKIDO

In proposing Aikido, we hope to fill the existing gap in curbing the effects of

stragglers in large-scale distributed ML. We build on two primary insights. First,

modern neural networks and training methods are fairly robust against occasional

loss of data. Second, parameter aggregation can be performed in a decentralized

fashion; that is without needing parameter-servers due to existence of algorithms like

Ring-AllReduce. We combine these two ideas and put forward Aikido where we

design a primary-backup architecture that curbs stragglers by selectively removing

them from the AllReduce topology while retaining the fully-decentralized nature of

underlying Ring-AllReduce algorithm.

Our work in developing Aikido makes the following contributions

• A Ring-AllReduce based primary-backup architecture including a skip and ac-

tive backup strategies to mitigate stragglers.

• A Ring-Reshape Module that helps in curbing stragglers at the aggregation level

of training iterations.

• An easy-to-use straggler simulation framework for quantifying and experiment-

ing with stragglers in real-world training.

3.1 Straggler Mitigation within a Ring-AllReduce Ag-

gregation Paradigm

Aikido is built on top of KungFu [38] which provides us with distributed computation

primitives such as Reduce, Broadcast, and Sync-SGD as described in Chapter 2.

Aikido resides in the shared context that is common across the 𝑁 workers con-

nected in a directed graph topology. Underneath Aikido, we reuse KungFu’s com-

munications layer for message-passing. Aikido initializes the workers in a canonical

ring topology and changes that topology according to a pre-determined configuration

37

file that mocks the straggler behaviour. In real world, this configuration file should

be replaced by a straggler detection daemon that runs as a background process inside

each of the 𝑊𝑖 workers Aikido’s context. The daemon should periodically monitor

two key metrics: the current iteration time 𝑡𝑖 and the current waiting time 𝑤𝑎𝑖𝑡𝑖 for

a given gradient update from the worker 𝑊𝑖−1. While this thesis does not implement

the straggler detection daemon, we propose two potential methods to implement it:

• Keep the running average of waiting times
∑︀𝑇

𝑖=𝑤𝑎𝑖𝑡𝑖. Flag the previous worker

as a straggler if 𝑤𝑎𝑖𝑡𝑖∑︀𝑇
𝑖= 𝑤𝑎𝑖𝑡𝑖

> 𝑤𝑎𝑖𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Here, 𝑤𝑎𝑖𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is an ad-

justable parameter that the user can specify for their use-case.

• Keep the running average of waiting times
∑︀𝑇

𝑖=𝑤𝑎𝑖𝑡𝑖 as well as iteration times∑︀𝑇
𝑖= 𝑡𝑖. Flag the previous worker as straggler if 𝑡𝑖∑︀𝑇

𝑖= 𝑡𝑖
> 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

Here, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a parameter that would differ in each application

and therefore would be chosen by the user per their constraints.

We note that for this thesis, we did not realize any of these methods and simply

mock out the straggler daemon component with a configuration file. The configura-

tion file includes a worker ID, iteration number, and the amount of straggling time.

Aikido reads this configuration file and hard-codes the delays accordingly by adding

a sleep before the reduce operation. Mocking straggler behavior lets us better control

our experiments and we leave implementing the straggler detection daemon to future

work.

Straggler Simulator in Aikido

Our straggler simulator component in Aikido consists of the following parts.

• Straggler Model: Formalizing the concept of stragglers for our project as well

as theoretical justification for our simulated straggler model.

38

• DelayConfig: Pipeline for generating straggler configurations and the parame-

ters we can vary.

• DelayOp: Implemented operator for injecting delays into a given worker 𝑊𝑖.

We describe the straggler model here in detail, followed by a summary of the De-

layConfig and DelayOp.

Straggler Model: Let us build a statistical model for the arrival times of gradient
updates in distributed machine learning. Here are the key assumptions we will make.

• The arrival of gradient from worker 𝑊𝑖 is independent of worker 𝑊𝑗∀𝑗 ∈ (1, 𝑘)
if 𝑗 ̸= 𝑖

• The number of arrivals in a continuous interval takes discrete values 𝑘 = 0, 1, 2, ..

Given the above assumptions, a natural candidate for the gradient arrival times

is the Poisson Distribution. Let 𝑘 be the number of gradient arrivals in any interval

𝑇 and 𝜆 be the rate parameter. Then we have 𝑓(𝑘;𝜆) = 𝜆𝑘𝑒−𝜆

𝑘!
. An important

consequence of a Poisson distribution for gradient updates is that while most workers

finish in average time, there is a tail-end of updates that lag behind.

DelayConfig and DelayOp

We utilize DelayConfig and DelayOp to configure the straggler simulation as well

as to inject the given amount of delay in an arbitrary worker during an iteration.

The DelayConfig is a file generated using the above Poisson model of straggler rate

distribution. Each row consists of the WorkerID, IterationID, and Delay. Next,

the DelayOp takes the DelayConfig and inserts simulated time delay into the node

WorkerID right before the reduce step, at the iteration IterationID for a duration

of Delay.

Put together, this system, as depicted in Figure 3-1, allows us to introduce arbi-

trary rates of straggling in any number of distributed workers and see the aggregate

39

Figure 3-1: Aikido’s Overview of Design with Straggler Simulator

behavior as reflected in mini-batch iteration times for a given model. The Straggler

Simulator, S consists of the straggler model, delayConfig, and delayOp. Each of

the 𝑊𝑖 workers start out with the same delayConfig in their local storage. Once the

workers start training a given model using Sync-SGD, the Ring-Reshape Module, R

communicates with S to load the config, and reshape the topology to switch out the

straggler worker 𝑆𝑡 out of the reduce graph with a low operational overhead. Note

that Aikido keeps the worker 𝑆𝑡 connected in broadcast graph. This ensures that

the straggler worker does not impact the iteration time of the rest of the ring during

this given iteration, and received the latest updated copy of the model. The next

section describes the Ring-Reshape Module in detail.

40

3.2 Flexible Topology for Collective Communication

Operations

Aikido introduces the Ring-Reshape Module as one of our primary contributions.

This module allows for seamless switching of AllReduce topologies dynamically dur-

ing a run. This is critical because of two main reasons. First, our design does not rely

on centralized parameter-servers. Secondly, straggler behavior is often sporadic and

short-lived [9]. As discussed in our straggler model section, we assume that a Poisson

distribution governs the nature of straggler finish times. The independence of strag-

gler finish times implies that the phenomenon occurs often on the order of iterations -

so few hundred milliseconds, not minutes. Existing distributed ML frameworks either

do not address this problem or they turn to the assumption that stragglers persist

over the duration of at least a few minutes. As such, they are fundamentally limited

to this low level of granularity because adding and/or removing servers into a par-

ticipatory topology takes time at least on the order of a few minutes. In contrast,

Aikido’s flexible topology is implemented at the level of abstraction of Collective

Communications Ops and therefore it frees us from the low granularity constraint as

communication ops are orders of magnitudes faster than rebooting a machine. Conse-

quently, this approach puts our performance on par with centralized approaches like

GRD-SGD [9].

In Aikido’s Skip strategy, we designate straggler nodes using the straggler simu-

lator and its delay config. Next, the Ring-Reshape Module seamlessly swaps out the

straggler node and completes the ring topology with the next available worker. Addi-

tionally, we keep the straggler node in Broadcast graph so it can receive its updated

copy of the ML model. This works for a few reasons. First, note that a straggler node,

by definition, is the one lagging behind in its share of the distributed computation and

41

Figure 3-2: Ring-AllReduce Skip in Aikido

therefore does not return its gradients in time. Assume a simple yet characteristically

typical scenario with a set of nodes and edges as 𝑊𝑖−2 → 𝑊𝑖−1 → 𝑊𝑖 with 𝑊𝑖−1 be-

ing the straggler node. Here, we introduce our custom operator - ReshapeStrategy.

The ReshapeStrategy operator, when called before the All-Reduce step in Sync-

SGD during this iteration, changes the workers’ topology from a ring to a ring with

the following edge modified as 𝑊𝑖−2 → 𝑊𝑖. In effect, this accomplishes the task of

bypassing the straggler node for the given iteration in which worker 𝑊𝑖−1 straggles.

The straggler simulator continuously runs and returns the delay configuration for each

iteration and the Ring-Reshape Module updates the workers’ topology to the right

configuration.

We describe this mechanism using an illustrative example below as shown in Fig-

ure 3-3:

1. Initialize Aikido context with 4 workers in a ring topology running a sync-SGD

iterations. Initialize straggler simulator with a given delay configuration.

42

2. The workers 𝑊𝑖 begin in their initial state holding gradient updates data 𝐷𝑖 in

memory.

3. Straggler Simulator 𝑆 delays 𝑊4 for this iteration.

4. The Ring-Reshape Module removes 𝑊4 out of the Ring-Reduce topology and

instead connects 𝑊1 with 𝑊3 to exchange gradients updates and successfully

finish this iteration.

5. Worker 𝑊4 is kept in the Broadcast graph topology so it receives the updated

copy of the model 𝜃.

Figure 3-3: Aikido’s Skip Mechanism Example

43

3.3 Active-Backups as an Alternative to Skip Strat-

egy for Straggler Mitigation

Unlike Skip-Backups approach, we also consider backups which actively substitute

for lost results. This form of replication is already prevalent in traditional distributed

computation and it is worth exploring it for machine learning [32, 60, 57]. Similar

to the Skip-Backup case, assume a typical scenario with a set of nodes and edges as

𝑊𝑖−2 → 𝑊𝑖−1 → 𝑊𝑖 with 𝑊𝑖−1 being the straggler node. Here, we use our custom

operator - ReshapeStrategy but with the additional introduction of active-backup

𝐴𝑖. ReshapeStrategy operator, when called before the AllReduce step in Sync-

SGD during this iteration, changes the workers’ topology from a ring to a ring with

the following edge modified as 𝑊𝑖−2 → 𝐴𝑖 → 𝑊𝑖. Aikido keeps the set of active

backups 𝐴𝑖 connected in the Broadcast graph so they share the same updated copy

of the model as the rest of the primary workers 𝑊𝑖. Note that primary workers are

defined as workers that participate in the ring in all iterations unless a given primary

straggles, in which case an active-backup is swapped in lieu of that primary worker.

44

Figure 3-4: Active Backup in Aikido

Figure 3-5 provides an example for a case with four workers:

1. Initialize Aikido context with 3 primary workers in a ring topology running

sync-SGD. Initialize straggler simulator with a given delay configuration. Fi-

nally, initialize an active backup worker 𝐴𝑖.

2. The workers 𝑊𝑖 begin in their initial state holding gradient updates data 𝐷𝑖 in

memory.

3. Straggler Simulator 𝑆 delays 𝑊4 for this iteration.

4. The Ring-Reshape Module removes 𝑊3 out of the Ring-Reduce topology and

instead connects 𝑊1 to 𝐴𝑖𝑡𝑜 𝑊2 to exchange gradients updates and successfully

finish this iteration.

5. Worker 𝑊3 is kept in the broadcast graph topology so it receives the updated

copy of the model 𝜃.

45

Figure 3-5: Ring-AllReduce Active Backup Architecture Example

In this thesis, we explore active backups with random partitions of data. Modi-

fications to active backups could be further studied to establish the benefits of this

approach.

46

3.4 The Aikido Profiler

As we worked on this project, we often found ourselves wanting more capable tools

for analysing distributed ML. As a result, we implement a profiling tool to help with

debugging. There is large variation among different models in terms of their com-

pute/communications profile and discovering it quickly would help users effectively

target their optimization efforts. Additionally, being able to visually glean what the

time distribution is between all the complicated and interacting steps in a distributed

ML job would be crucial to advance the state of research in this area. This is where

a Profiler is useful.

Figure 3-6: Aikido’s Profiler in Chrome

Aikido’s profiler is composed of two components -

47

1. The Aikido Logger: This component provides an API to enable logging

of the key steps within an all-reduce cycle such as beginning of the allreduce

operation, beginning of reduce, end of reduce operation, beginning of broadcast

operation, and end of broadcast operation.

2. Chrome tracing for visualization: Google Chrome provides a convenient

utility within the browser to visualize traces [54]. We utiliz Google Chrome’s

tracing API and therefore build Aikido logger to be compatible with Chrome’s

tracing JSON format.

48

Chapter 4

Experiments and Results

In this section, we evaluate the performance of Aikido on ResNet-50 with synthetic

training data, Cats vs. Dogs dataset, and ImageNet. For synthetic benchmarks

and Cats vs. Dogs, we use a local batch size of 128 images. For ImageNet, we use

TensorFlow’s guidelines on loading and processing ImageNet data on local storage

in TFRecords format [55]. For ImageNet, we vary the local batch-size between 32

and 64, which we specify for any given experiment below. To evaluate Aikido’s

performance, we choose Google Cloud Engine and provision virtual machines with

four NVIDIA Tesla V100 GPUs per virtual machine. We scale the number of GPUs

between 4-96 for various experiments, with exact parameters specified below for each

experiment. As noted earlier in Chapter 3, we base Aikido’s implementation on top

of KungFu [38].

For our experiments to compare ideal, straggler, skip, and active backup runs, we

simulate a 20% straggler rate. This is done as follows: Aikido adds 75ms of delay

to one of the workers on top of the 180ms iteration time, every alternate iteration.

On average, this amounts to
1
2
*75*100
180

= 20% delay. Further, note that we define

ideal performance to have linearly scaled throughput. In our setup, ResNet-50 ideal

iteration time with local batch size 32 on ImageNet with 4 GPUs is observed at around

49

130ms on average. With 16 GPUs, the same configuration yields ideal iteration time

at around 175ms. Note that this is due to imperfect scaling of existing distributed

ML framework.

4.1 Current performance measures in distributed ML

One of the first results we establish in this project is to quantify the gap between

linear scaling and measured scaling of distributed ML as the number of workers scale.

This is necessary to get a measure of the room of improvement present in the current

system.

4.1.1 Measuring scalability of GPU throughput via ResNet-50

Benchmark

In this experiment, we measure the performance in terms of GPU throughput (im-

ages/sec) in ResNet-50 Sync-SGD with synthetic training data [55]. We scale the

number of GPUs from 4 to 56. Figure 4-1 shows the average aggregate throughput

of GPUs for each experiment. We note that despite running each GPU close to the

maximum capacity, the throughput does not scale linearly as compared to the linear

speedup line. In fact, scaling up from 4 GPUs to 56 GPUs only achieves 1
2

of the

linear average aggregate throughput.

50

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

1 · 105

1.1 · 105

Number of GPUs

Av
er

ag
e

G
P

U
T

hr
ou

gh
pu

t
(i

m
ag

es
/s

ec
)

Linear Speedup Throughput
Achieved Throughput

Figure 4-1: ResNet-50, benchmark – Linear speedup vs. Achieved throughput

51

4.1.2 Measuring scalability of iteration times via ResNet-50

on Cats vs. Dogs dataset

Next, we conduct a similar experiment to measure time per epoch of ResNet-50 on

the popular Cats vs. Dogs dataset [27]. This dataset consists of 25,000 photos of

dogs and cats. In this run, we tested the number of GPUs in the range of 4-56.

Figure 4-2 shows a significant gap in performance as the achieved average time per

epoch is 3.8× slower than the ideal linear speedup time per epoch. As mentioned

earlier, linear speedup performance is calculated by linearly extrapolating the time

per epoch of one VM.

0 10 20 30 40 50 60

2

4

6

8

10

Number of GPUs

Av
er

ag
e

E
po

ch
T

im
e

(s
ec

)

Achieved Epoch Time
Linear Speedup Epoch Time

Figure 4-2: ResNet-50, Cats vs Dogs dataset - Achieved vs Linear epoch time

52

4.1.3 ResNet-50 on ImageNet: Training to Convergence

To establish full baseline performance on a state-of-the-art model, we trained ResNet-

50 on ImageNet with local batch size of 128 for 90 epochs until convergence to achieve

92% top-5 accuracy. Figure 4-3 shows that the total time to train, as we double the

compute and go from 48 GPUs to 96 GPUs, decreases only a factor of 1.5× and that

there is an extra lag of 50 minutes between ideal and achieved time to convergence.

45 50 55 60 65 70 75 80 85 90 95 100

140

160

180

200

220

240

260

280

300

Number of GPUs

T
im

e
to

C
on

ve
rg

en
ce

(m
in

s)

Ideal
Achieved

Figure 4-3: ResNet-50, ImageNet - Time to Convergence, local batch size=128

53

4.2 Impact of network load on performance

Often, distributed machine learning jobs run in cloud clusters and share the infras-

tructure with other jobs. This means the gradient update traffic is sharing the same

links with other jobs and/or legacy data center traffic causing congestion that further

induce stragglers. In this experiment, we test this assumption on Google Cloud En-

gine by creating controlled TCP flows across 2 of the 4 VMs in a distributed run. In

this experiment, we measure throughput in images/sec/gpu of ResNet-50 benchmark

running on 16 GPUs over 4 VMs. Figure 4-4 shows that by increasing the number

of TCP flows across two of the VMs, one can significantly slow down the perfor-

mance. With 30 TCP flows, the throughput drops to around 15% of the throughput

in absence of any interfering TCP flows. This points to a greater need of creating

distributed ML frameworks that are robust against crossing traffic in a shared cluster.

0 5 10 15 20 25 30

50

100

150

200

250

300

350

Number of cross-traffic TCP flows

G
P

U
T

hr
ou

gh
pu

t
(i

m
ag

es
/s

ec
)

Figure 4-4: Impact of network congestion on performance, 16 GPUs, local batch

size=128

54

4.3 Curbing the effect of stragglers using Aikido

In this set of experiments, we use Aikido to simulate straggler behavior on 1 of the

4 GPUs on a single Google Cloud VM running ResNet-50 on ImageNet [20, 14] and

measure the Cumulative Distribution Function (CDF) of iteration duration times.

Note that the ideal run here is a run without adding any simulated delay.

4.3.1 Straggler simulation with four GPUs

We use a delayConfig file to delay one pre-determined worker (worker ID=2) by 75ms

every other iteration. Figure 4-5 shows that adding a 75 ms in this setup results in

all iterations being somewhat delayed. While the overall shape of the CDF retains

its step nature at Y=0.5, the other iterations are also delayed between 20-30ms. We

believe that this is due to the interaction of compute and communication cycle in

gradient updates. Delaying on one iteration can cause ripple effects into the next

iteration being slow as well. More research is needed here to profile compute and

communications cycle times and identify the non-linear interaction effects due to

straggling workers. That being said, the aggregate behavior of straggler is consistent

with the delayConfig that is being simulated here. More importantly, Figure 4-5 shows

that both the Skip and Active-Backup strategies in Aikido are able to mitigate the

straggler effect and bring the performance (iteration times) closer to the ideal.

55

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Duration (seconds)

C
D

F

Ideal
Straggler

Skip
Active-Backup

Figure 4-5: CDF of measured iteration duration for ResNet50 + ImageNet, 4 GPUs,

global batch size=128

56

4.3.2 Straggler simulation with 16 GPUs

Similarly, we repeat the above experiment with the same delayConfig but instead

scale the number of workers to 16 GPUs. The delayConfig here remains the same as

that of previous experiment in which worker ID 2 is selected as the straggling node.

Note that the ideal run here is a run without adding any simulated delay. For the

Active-Backup experiment, we use a total of 16 GPUs in which Aikido designates

15 workers as primaries and 1 as an active backup. The primaries participate in

the ring topology at every iteration, unless one of them straggles, in which case an

active backup is swapped in its place. This allows Aikido to active provide gradient

updates despite removing the straggler workers out of the ring.

In this run, the baseline iteration time is higher at around 175ms due to imperfect

scaling in going from one VM with four GPUs to four VMs with 16 GPUs. We do

not observe any spillover effect in this run. Again, we suggest that more future work

is needed to understand the differences in compute and communications cycle as one

scales to greater number of GPUs. Figure 4-6 shows both the Skip and Active-Backup

strategies are able to mitigate the straggler and bring the performance close to the

ideal with no stragglers.

57

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Duration (seconds)

C
D

F

Ideal
Straggler

Skip
Active-Backup

Figure 4-6: CDF of measured iteration duration for ResNet50 + ImageNet, 16 GPUs,
global batch size 512.

58

4.3.3 Training ResNet-50 on ImageNet until convergence us-

ing simulated stragglers and Aikido

Finally, we test Aikido on a full run of ResNet-50 on ImageNet until convergence

and measure how well Skip and Active-Backup strategies perform against the straggler

and ideal runs. As demonstrated in Figures 4-7 and 4-8, both the loss functions and

time to accuracy plot show that Aikido is able to curb the impact of stragglers while

maintaining a low operational overhead. Table 4.3.3 summarizes our results from the

full ResNet-50 + ImageNet run for various approaches.

Approach Time to reach 92% top-5 accuracy

Ideal 392 mins

Straggler 444 mins

Skip 395 mins

Active 410 mins

Table 4.1: Summary of results on ResNet-50 + ImageNet run, local batch size=64,

16 GPUs

59

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

14

16

18

Time (mins)

C
at

eg
or

ic
al

C
ro

ss
E

nt
ro

py
Lo

ss

Ideal
Straggler

Skip-Backup
Active-Backup

Figure 4-7: Categorical Cross Entropy Loss: ResNet50 + ImageNet on 16 V100
GPUs, global batch size 1024.

60

0 50 100 150 200 250 300 350 400 450

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (mins)

To
p-

5
A

cc
ur

ac
y

Ideal
Straggler

Skip-Backup
Active-Backup

Figure 4-8: Top 5 Accuracy for ResNet50 training + ImageNet, 16 GPUs, global
batch size 1024.

61

4.4 Chrome Profiler tool for visual inspection of the

characteristics of training runs

We use Aikido profiler to analyse the amount of time that a training job is spent

on communication time. We use four V100 GPU to train ResNet-50 on ImageNet.

On this hardware, with hard-disk drive storage on Google VMs, we achieve average

iteration times closer to 380ms. In this setting, we use the profiler to parse gradient

wait times for a given chunk throughout the ResNet-50 training. Note that the

waiting times are defined as the difference between the end of Reduce operation and

the beginning of the broadcast operation (similar to Horovod’s usage). Figure 4-9

shows the CDF of gradient wait times for 1000 iterations. Figure 4-9 shows that 50%

of iterations spend over 80ms idle time waiting for gradients to arrive. We believe

that this is largely due to software and scheduling inefficiencies. More research is

needed to fully understand the involved bottlenecks to scaling distributed ML.

62

0 20 40 60 80 100 120 140 160 180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gradient Wait Time (ms)

C
D

F

Figure 4-9: CDF of gradient wait times: ResNet-50, ImageNet, 4 GPUs, local batch
size=128

63

4.5 Lessons Learned

Some of the key design choices for this project include using KungFu as our base dis-

tributed ML framework as opposed to Horovod. We faced a few significant challenges

that we document here to aid future work.

• Non-Standard package for distributed ML: As a framework still in its experi-

mental phase, KungFu has its set of quirks. For instance, KungFu rewrites its

communications layer instead of using the standard MPI library. While their

claim is that it helps in speeding up All-Reduce operation, it may be possible to

work within the MPI framework and thus retain its reliability. For future work,

we recommend the reader to avoid using KungFu and instead use Horovod

as it has become the industry-standard for distributed ML. Furthermore, as

with any standard framework, Horovod has more online support and documen-

tation available than KungFu. We experienced several setbacks debugging a

non-standard codebase.

• Tensorflow and Python versioning pitfalls: KungFu has known bugs and per-

formance issues with certain Tensorflow version, and there is limited testing

available for its performance beyond a few versions of TF and Python. Com-

patibility and performance guarantees are often demanded out of industry-level

frameworrk, and therefore Horovod would be better suited for this purpose too.

Additionally, we note that TensorFlow’s new version - TF 2.0.0 - has eager exe-

cution mode on by default, and we faced compatibility and performance issues

while working with it alongside KungFu.

• Google Cloud configuration pitfalls: In our Google Cloud Environment, we

noticed a few issues in working with large scale distributed ML. One of the

known issues in this project with KungFu was that of bottlenecks in scaling

ResNet-50 training on ImageNet. We were able to fix it partially by switching

64

from Hard-disk drive to Solid-state drive for storing ImageNet, but still faced

the issue at higher local batch sizes. While our suspicion is that it is an issue due

to non-optimized TensorFlow data pipelining for loading ImageNet TFRecords

into memory and pre-processing, further research is needed to completely profile

these experiments and pin-point where the bottleneck lies.

65

66

Chapter 5

Conclusion

As the world embraces deep learning, training models are becoming ever more resource-

intensive and distributed machine learning is gaining wider attention from researchers

and professionals alike. In this thesis, we have shown that synchronous-SGD and

AllReduce, while performing better than their counterparts, still present a unique set

of challenges at scale. As we scale machine learning jobs in data centers to hundreds

of workers, the problem of stragglers needs to be solved. Aikido provides a first step

towards curbing the impact of network-induced stragglers on distributed machine

learning training jobs. More research is required to fully protect against stragglers in

modern heterogeneous data center environments.

67

68

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 265–283, Savannah, GA, November 2016. USENIX
Association.

[2] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch
sgd: Training resnet-50 on imagenet in 15 minutes. https://arxiv.org/abs/
1711.04325, 2017.

[3] Julaiti Alafate and Yoav Freund. Tell me something new: A new framework for
asynchronous parallel learning. https://arxiv.org/abs/1805.07483, 2018.

[4] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.
Qsgd: Communication-efficient sgd via gradient quantization and encoding. In
Advances in Neural Information Processing Systems, pages 1709–1720, 2017.

[5] Robin Andersson, Jim Dowling, Ermias Gebremeskel, and Kim Hammar. Good-
bye horovod, hello collectiveallreduce, Oct 2018. https://www.logicalclocks.
com/blog/goodbye-horovod-hello-collectiveallreduce.

[6] Charles J Archer, Gabor Dozsa, Joseph D Ratterman, and Brian E Smith. Per-
forming an allreduce operation using shared memory, April 17 2012. US Patent
8,161,480.

[7] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M
Aamodt. Analyzing cuda workloads using a detailed gpu simulator. In 2009
IEEE International Symposium on Performance Analysis of Systems and Soft-
ware, pages 163–174. IEEE, 2009.

[8] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In
Advances in neural information processing systems, pages 161–168, 2008.

[9] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
Revisiting distributed synchronous sgd. https://arxiv.org/abs/1604.00981,
2016.

69

https://arxiv.org/abs/1711.04325
https://arxiv.org/abs/1711.04325
https://arxiv.org/abs/1805.07483
https://www.logicalclocks.com/blog/goodbye-horovod-hello-collectiveallreduce
https://www.logicalclocks.com/blog/goodbye-horovod-hello-collectiveallreduce
https://arxiv.org/abs/1604.00981

[10] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an efficient and scalable deep learning training system. In
11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), pages 571–582, 2014.

[11] Guoxin Cui, Jiafeng Guo, Yixing Fan, Yanyan Lan, and Xueqi Cheng. Trend-
smooth: Accelerate asynchronous sgd by smoothing parameters using parameter
trends. IEEE Access, 7:156848–156859, 2019.

[12] Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth Gibson, and Eric P
Xing. High-performance distributed ml at scale through parameter server con-
sistency models. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[13] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large
scale distributed deep networks. In Advances in neural information processing
systems, pages 1223–1231, 2012.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[15] Farshid Farhat, Diman Zad Tootaghaj, Yuxiong He, Anand Sivasubramaniam,
Mahmut Kandemir, and Chita R. Das. Stochastic modeling and optimization of
stragglers. IEEE Transactions on Cloud Computing, 6(4):1164–1177, oct 2018.

[16] Message Passing Forum. mpi: A message-passing interface standard. Technical
report.

[17] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. Inte-
grated model, batch, and domain parallelism in training neural networks. In
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Archi-
tectures - SPAA '18. ACM Press, 2018.

[18] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017.

[19] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R. Ganger,
Phillip B. Gibbons, Garth A. Gibson, and Eric P. Xing. Addressing the straggler
problem for iterative convergent parallel ml. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, pages 98–111, New York, NY, USA,
2016. ACM.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.

70

[21] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. More effective dis-
tributed ml via a stale synchronous parallel parameter server. In Advances in
neural information processing systems, pages 1223–1231, 2013.

[22] Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jin-
feng Li, Yuying Guo, and James Cheng. Flexps: Flexible parallelism control in
parameter server architecture. Proceedings of the VLDB Endowment, 11(5):566–
579, 2018.

[23] Forrest N. Iandola, Khalid Ashraf, Matthew W. Moskewicz, and Kurt Keutzer.
Firecaffe: near-linear acceleration of deep neural network training on compute
clusters. CoRR, abs/1511.00175, 2015.

[24] Manya Ghobadi Muriel Médard James Salamy, Ayush Sharma. Flexent: Entropy
coding to curb stragglers in large-scale distributed machine learning. In SOSP
AI Systems Workshop, 2019.

[25] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,
Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, Tiegang Chen, Guangx-
iao Hu, Shaohuai Shi, and Xiaowen Chu. Highly scalable deep learning train-
ing system with mixed-precision: Training imagenet in four minutes. CoRR,
abs/1807.11205, 2018.

[26] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. Taso: Optimizing deep learning computation with automatic gener-
ation of graph substitutions. In Proceedings of the 27th Symposium on Operating
Systems Principles, SOSP ’19, 2019.

[27] Kaggle. https://www.kaggle.com/c/dogs-vs-cats.

[28] Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. Straggler mitigation
in distributed optimization through data encoding. In Advances in Neural In-
formation Processing Systems, pages 5434–5442, 2017.

[29] Idit Keidar. ACM SIGACT news distributed computing column 32: the year in
review. ACM SIGACT News, 39(4):53–54, 2008.

[30] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos,
and Kannan Ramchandran. Speeding up distributed machine learning using
codes. IEEE Transactions on Information Theory, NeurIPS Workshop on Ma-
chine Learning Systems, and IEEE International Symposium on Information
Theory (ISIT), 2015.

[31] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling dis-
tributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14), pages
583–598, 2014.

71

https://www.kaggle.com/c/dogs-vs-cats

[32] Zongpeng Li and Baochun Li. Efficient and distributed computation of maximum
multicast rates. In Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies., volume 3, pages 1618–1628. IEEE,
2005.

[33] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel
stochastic gradient for nonconvex optimization. In Advances in Neural Informa-
tion Processing Systems, pages 2737–2745, 2015.

[34] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
Can decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent. In Advances in Neural
Information Processing Systems, pages 5330–5340, 2017.

[35] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized par-
allel stochastic gradient descent. https://arxiv.org/abs/1710.06952, 2017.

[36] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. Deep
learning with dynamic computation graphs. https://arxiv.org/abs/1702.
02181, 2017.

[37] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li.
Flexflow: A flexible dataflow accelerator architecture for convolutional neural
networks. In 2017 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 553–564. IEEE, 2017.

[38] Andrei-Octavian Brabete Alexandros Koliousis Peter Pietzuch Luo Mai,
Guo Li. Adaptive distributed training of deep learning models. In SOSP
AI Systems Workshop, 2019. 2-Page Abstract: http://learningsys.org/
sosp19/assets/papers/13_CameraReadySubmission_camera_ready.pdf
and Base commit: https://github.com/lsds/KungFu/commit/
6f22b4f457bb5ebebd9400a9a3eda673228d6db8.

[39] Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U.-Chupala, Yoshiki Tanaka,
and Yuichi Kageyama. Imagenet/resnet-50 training in 224 seconds. CoRR,
abs/1811.05233, 2018.

[40] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev
Khudanpur. Recurrent neural network based language model. In Eleventh annual
conference of the international speech communication association, 2010.

[41] David Kung Hillery Hunter Minsik Cho, Ulrich Finkler. Blueconnect: Decom-
posing all-reduce for deep learning on heterogeneous network hierarchy. SysML
Conference, 2019.

[42] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Maria Florina Balcan and Kilian Q.

72

https://arxiv.org/abs/1710.06952
https://arxiv.org/abs/1702.02181
https://arxiv.org/abs/1702.02181
http://learningsys.org/sosp19/assets/papers/13_CameraReadySubmission_camera_ready.pdf
http://learningsys.org/sosp19/assets/papers/13_CameraReadySubmission_camera_ready.pdf
https://github.com/lsds/KungFu/commit/6f22b4f457bb5ebebd9400a9a3eda673228d6db8
https://github.com/lsds/KungFu/commit/6f22b4f457bb5ebebd9400a9a3eda673228d6db8

Weinberger, editors, Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

[43] Shar Narasimhan. Sr. product manager, ai, nvidia. https://devblogs.nvidia.
com/training-bert-with-gpus/, August 2019.

[44] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream:
generalized pipeline parallelism for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 1–15, 2019.

[45] Martin Odersky, Lex Spoon, and Bill Venners. Programming in scala. Artima
Inc, 2008.

[46] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms
for clusters of workstations. Journal of Parallel and Distributed Computing,
69(2):117–124, 2009.

[47] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[48] Netanel Raviv, Itzhak Tamo, Rashish Tandon, and Alexandros G. Dimakis. Gra-
dient coding from cyclic mds codes and expander graphs. International Confer-
ence on Machine Learning, 2018.

[49] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 693–701. Curran
Associates, Inc., 2011.

[50] Sebastian Ruder. An overview of gradient descent optimization algorithms.
https://arxiv.org/abs/1609.04747, 2016.

[51] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K. Ports,
and Peter Richtárik. Scaling distributed machine learning with in-network ag-
gregation.

[52] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in tensorflow. https://arxiv.org/pdf/1802.05799.pdf, 2018.

[53] Hang Shi, Yue Zhao, Bofeng Zhang, Kenji Yoshigoe, and Athanasios V. Vasilakos.
A free stale synchronous parallel strategy for distributed machine learning. In
Proceedings of the 2019 International Conference on Big Data Engineering (BDE
2019) - BDE 2019. ACM Press, 2019.

73

https://devblogs.nvidia.com/training-bert-with-gpus/
https://devblogs.nvidia.com/training-bert-with-gpus/
https://arxiv.org/abs/1609.04747
https://arxiv.org/pdf/1802.05799.pdf

[54] Chromium Open Source. https://www.chromium.org/developers/how-tos/
trace-event-profiling-tool.

[55] TensorFlow Open Source. https://github.com/tensorflow/models/tree/
master/official/vision/image_classification/.

[56] Rashish Tandon, Qi Lei, Alexandros G. Dimakis, and Nikos Karampatziakis.
Gradient coding: Avoiding stragglers in distributed learning. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 3368–3376, International Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. http://proceedings.mlr.press/v70/tandon17a.html.

[57] Maarten Van Steen and A Tanenbaum. Distributed systems principles and
paradigms. Network, 2:28, 2002.

[58] Dean Wampler and Alex Payne. Programming Scala: Scalability= Functional
Programming+ Objects. " O’Reilly Media, Inc.", 2014.

[59] Da Wang, Gauri Joshi, and Gregory W. Wornell. Efficient straggler replication
in large-scale parallel computing. ACM Trans. Model. Perform. Eval. Comput.
Syst., 4(2):7:1–7:23, April 2019.

[60] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme, and
Gustavo Alonso. Understanding replication in databases and distributed systems.
In Proceedings 20th IEEE International Conference on Distributed Computing
Systems, pages 464–474. IEEE, 2000.

[61] Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui
Hsieh. Reducing bert pre-training time from 3 days to 76 minutes. arXiv preprint
arXiv:1904.00962, 2019.

[62] Hsiang-Fu Yu, Cho-Jui Hsieh, and Inderjit S. Dhillon. Parallel asynchronous
stochastic coordinate descent with auxiliary variables. In Kamalika Chaudhuri
and Masashi Sugiyama, editors, Proceedings of Machine Learning Research, vol-
ume 89 of Proceedings of Machine Learning Research, pages 2641–2649. PMLR,
16–18 Apr 2019.

[63] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion
Stoica. Improving mapreduce performance in heterogeneous environments. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 29–42, Berkeley, CA, USA, 2008. USENIX As-
sociation.

[64] Shen-Yi Zhao and Wu-Jun Li. Fast asynchronous parallel stochastic gradient
descent: A lock-free approach with convergence guarantee. In Thirtieth AAAI
conference on artificial intelligence, 2016.

74

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/
http://proceedings.mlr.press/v70/tandon17a.html

[65] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhiming Ma, and
Tie-Yan Liu. Asynchronous stochastic gradient descent with delay compensation
for distributed deep learning. arXiv preprint arXiv:1609.08326, 2016.

[66] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized
stochastic gradient descent. In Advances in neural information processing sys-
tems, pages 2595–2603, 2010.

75

	Introduction
	Background and Related Work
	Distributed Computation
	Distributed Computation in Machine Learning
	Stochastic Gradient Descent
	Parallelizing Synchronous-SGD
	Aggregation using Parameter-Servers

	Distributed Machine Learning Framework
	TASO: Optimizing Deep Learning Computation with Automatic Generation of Graph Substitutions
	FlexFlow
	PipeDream
	Horovod: Fast and Easy Distributed Deep Learning in Tensorflow
	KungFu

	Approaches to Straggler Protection
	Gradient Coding
	Google's Sync-SGD Primary-Backup System
	Async Decentralized Parallel Stochastic Gradient Descent
	Trend-Smooth

	Aikido: A First Step Towards Straggler-Mitigating Distributed Machine Learning Framework
	Straggler Mitigation within a Ring-AllReduce Aggregation Paradigm
	Flexible Topology for Collective Communication Operations
	Active-Backups as an Alternative to Skip Strategy for Straggler Mitigation
	The Aikido Profiler

	Experiments and Results
	Current performance measures in distributed ML
	Measuring scalability of GPU throughput via ResNet-50 Benchmark
	Measuring scalability of iteration times via ResNet-50 on Cats vs. Dogs dataset
	ResNet-50 on ImageNet: Training to Convergence

	Impact of network load on performance
	Curbing the effect of stragglers using Aikido
	Straggler simulation with four GPUs
	Straggler simulation with 16 GPUs
	Training ResNet-50 on ImageNet until convergence using simulated stragglers and Aikido

	Chrome Profiler tool for visual inspection of the characteristics of training runs
	Lessons Learned

	Conclusion

