
LightSpeed: A Framework to Profile and Evaluate
Inference Accelerators at Scale

by

Christian Williams

S.B. Computer Science and Engineering
Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Christian Williams. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Christian Williams
Department of Electrical Engineering and Computer Science
May 12, 2023

Certified by: Manya Ghobadi
Associate Professor
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

LightSpeed: A Framework to Profile and Evaluate Inference

Accelerators at Scale

by

Christian Williams

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The massive growth of machine learning-based applications, and the end of Moore’s
law, created a pressing need to build highly efficient computing platforms from the
ground up. Consequently, researchers and practitioners have been developing highly
innovative cutting-edge architectures to meet today’s exponentially increasing de-
mands for machine learning services.

However, evaluating the performance gains of newly developed machine learning
systems at scale is extremely challenging. Existing evaluation platforms are often
specialized to a specific hardware target, such as GPUs, making them less amenable
to novel designs. Moreover, evaluating the performance of a newly designed system
at scale requires careful consideration of workload and traffic patterns.

To address the above challenges, I introduce LightSpeed, a framework to profile
and evaluate inference accelerators at scale. LightSpeed is an event-based simu-
lator that enables users to compare the performance of their system to best-in-class
accelerators at scale. LightSpeed profiles the computation and communication re-
quirements of real-world deep neural networks through accurate measurements on
hardware. It then simulates the service time of inference requests under a variety of
accelerators and scheduling algorithms.

Thesis Supervisor: Manya Ghobadi
Title: Associate Professor

3

4

Acknowledgments

First and foremost, thank you to Manya Ghobadi, whose sponsorship, guidance, and

support were vital to the completion of my work. I would also like to thank Zhizhen

Zhong, my post-doctorate advisor, and mentor, who worked closely with me in all

aspects of this project, from high-level vision to the finest implementation details. Fi-

nally, I would like to acknowledge Homa Esfahanizadeh, for her guidance in simulator

development, and Mingran Yang, for her help in both evaluations and simulation.

This thesis was supported in part by ARPA-E ENLITENED PINE DE-AR0000843,

DARPA FastNICs 4202290027, NSF SHF-2107244, NSF ASCENT-2023468, NSF

CAREER-2144766, NSF PPoSS-2217099, NSF CNS-2211382, and Sloan fellowship

FG-2022-18504.

5

6

Contents

1 Introduction 13

2 Background and Related Work 17

3 LightSpeed Simulator Design 21

3.1 Motivation . 21

3.2 Simulator Design . 21

3.2.1 Neural Network Basics . 22

3.2.2 Abstractions and High-Level Design 23

3.2.3 Event Queue . 25

3.2.4 Calculating Event Start and Completion Times 30

4 Measurements and Profiling 33

4.1 Motivation . 33

4.2 NVIDIA Triton Setup . 34

4.2.1 Motivation for Using NVIDIA Inference Triton Server 34

4.2.2 How NVIDIA Triton Works 34

4.3 Google Cloud Setup . 35

4.3.1 Google v3 TPU . 35

4.3.2 Measurements on Google VM 36

4.4 Profiling Evaluations . 37

5 Simulation Evaluations 41

5.1 Simulated Systems and Workloads . 41

7

5.1.1 Lightning . 41

5.1.2 NVIDIA A100 and P4 GPUs 42

5.1.3 NVIDIA A100X DPU . 43

5.1.4 Microsoft Brainwave . 43

5.1.5 Simulated DNN Models . 44

5.2 Inference Serve-Time Simulations . 46

5.2.1 Inference Serve Times . 46

6 Conclusion 49

8

List of Figures

3-1 Simple feed-forward neural network [22]. 22

3-2 High-level Request object design . 24

3-3 High-level Processor representation 25

3-4 Sample snapshot of the Event Queue 26

3-5 Snapshots of the Event Queue through time 27

3-6 Sample min-heap queue sorted by event start time 28

4-1 End-to-End Latency Measurements on Hardware 38

4-2 End-to-End Latency for Experimental Models on NVIDIA P4 39

4-3 Datapath Latency Versus End-to-End Latency on NVIDIA P4 40

5-1 Simulated inference serve times . 47

5-2 Average core utilization across simulations 48

9

10

List of Tables

5.1 Hardware parameters used in LightSpeed 44

5.2 DNN models used in LightSpeed 46

11

12

Chapter 1

Introduction

New machine-learning models are being developed at a breakneck pace, causing sim-

ilarly unprecedented growth in data center needs and demands. For example, Chat-

GPT [28] is hosted on Microsoft Azure and serves over 10 million live inference queries

per day [17]. In general, the market for data center accelerators is projected to grow at

a compounded rate of nearly 25% over the next 10 years [18], due in large part to the

rapid growth of machine learning applications that demand significant computational

resources.

Traditionally, this demand is met using GPUs, which benefit from massive par-

allelization in computation. Among the most popular hardware devices for serving

inference requests are GPUs, such as NVIDIA’s A100 GPU and P4 GPU. The high

computing throughput of host-based accelerators makes them popular platforms for

offline deep neural network (DNN) training and inference. But using GPUs to serve

online inference traffic requires transferring packets from the NIC across the PCI-e

and kernel through several latency bottlenecks [21, 34]. As a result, GPUs often suffer

from low utilization [7, 1, 37, 8, 11].

To make strides in this space, many research groups develop application-specific

hardware or ASICs (Application-Specific Integrated Circuits). A prime example of

this is Google’s TPU [10], which does not perform general computation, and in-

stead focuses on performing matrix multiplication at high speeds. The hardware

architecture of a TPU varies greatly from a traditional GPU as a result of being

13

application-specific. Other, more experimental solutions, such as quantum comput-

ing [13] and photonic computing [32] for machine learning, feature architectures that

are even more unique as compared to existing solutions. Such architectures might fea-

ture computing using qubits, light modulators, or other highly distinct computation

hardware and architectures.

However, building complex and experimental hardware architectures for machine

learning often takes years of research and development. During this time, it is chal-

lenging to evaluate the effectiveness of new hardware architecture at scale, since re-

search often spends a significant amount of time in the prototyping phase. Because of

this long development cycle, there is a distinct need for simulation tools to accurately

project the performance of novel machine learning accelerators at scale, to either an-

ticipate unexpected challenges or obstacles in the development cycle or validate the

current research trajectory and time invested in the work.

As a result of the significant hardware diversity between experimental hardware

solutions, however, existing simulation tools often do not provide a sufficiently scaled,

yet accurate, one-size-fits-all simulation platform for different varieties of hardware

accelerators. This requires researchers of such hardware accelerator prototypes to

build their own simulators from the ground up, which can be difficult and time-

consuming.

Fortunately, among most hardware accelerators, even the most distinct, there

exist a set of common attraction elements. The first of these is a processing unit.

Processing units are modular components that take computation input (e.g., matrices)

and output a result. Beyond this, many processing units are often parallelized, to

the constraints of what the hardware is capable of running in parallel. Finally, in

the case of simulating inference requests, there are certain inherent properties of

multiplication within a neural network that must be followed, particularly the input-

output dependency between the different layers of the network.

To this end, I introduce LightSpeed, a generic, all-purpose machine-learning

simulation framework that leverages the above commonalities of machine-learning

accelerators to profile and evaluate these systems at scale. LightSpeed’s simulator

14

instantiates general machine learning accelerators, with adjustable parameters that

can be tailored to the characteristics of a particular hardware. LightSpeed simulates

inference requests at scale, allowing the end user to calculate metrics for hundreds

of processed inference requests. Moreover, LightSpeed establishes a methodology

for running real-world experiments with existing hardware, to serve as a litmus and

comparison point to simulated results.

In this thesis, I present the LightSpeed framework, go into depth with respect to

the design of the simulator, discuss real-world experiments that were run on existing

hardware, and leverage the results of these experiments, including vital metrics mea-

sured like datapath latency, to compare an existing experimental machine-learning

accelerator prototype to best-in-class hardware in simulation. With this work, I hope

to provide a useful toolkit for systems for machine learning researchers. LightSpeed

establishes a starting point for these researchers to progress in their development

phase with additional confidence and insight.

The rest of this thesis is organized as follows. Chapter 2 discusses related work,

with a particular focus on existing DNN workload simulators. Chapter 3 features the

simulator design. It overviews how inference accelerators are modeled in the simula-

tion, as well as inference requests, from the inter-layer level down to individual matrix

multiplies. It then discusses the queueing mechanism of the simulator, which is an

important component of the design. Chapter 4 details the measurement and profiling

efforts for the industry accelerators that served as relevant comparison points for the

experimental accelerators, including focused efforts with profiling the NVIDIA P4

GPU using NVIDIA Triton [27, 26], which was critical to establishing GPU datap-

ath latency. Finally, Chapter 5 provides the evaluation, which involves the data and

results from both the measurements and profiling, as well as the simulations.

15

16

Chapter 2

Background and Related Work

Of course, simulation is extremely common in networking, and there exists significant

prior work in the space. Cloud computing services like Microsoft Azure and Google

Cloud, which host thousands of NVIDIA A100 GPUs, handle millions of DNN infer-

ence requests a day for popular models like ChatGPT, DLRM, VGG-19, and more. As

a result, there is a significant need to develop simulators to project the performance

of accelerators that seek to improve the runtime of popular DNN workloads.

There are a few existing simulators in the space of simulating DNN inferences on

hardware accelerators. In general, these simulators are highly capable but do not

suffice for our specific purposes.

Accel-Sim: An Extensible Simulation Framework for Validated GPU Mod-

eling

Accel-Sim [15], an extension of the original GPGPU-Sim [2], is a detailed simulation

model of contemporary NVIDIA GPUs running CUDA and/or OpenCL workloads.

Accel-Sim updates GP-GPU sim in that it increases GPGPU-Sim’s accuracy and

configurability. It also emphasizes a new frontend, to improve ease of use in simulating

different architectures as compared to the previous design. However, this simulator

does not provide the level of extensibility and flexibility to simulate some experimental

hardware outside of GPUs, while LightSpeed is a more general-purpose system for

a variety of accelerators, even those in the experimental stages.

17

STONNE: A Simulation Tool for Neural Networks Engines

STONNE [20] is a modular simulation framework that takes general DNN frameworks,

flexibly models an accelerator device and performs end-to-end simulations of DNN

inference. There is a special focus on introducing support for sparse models, which

many accelerators aim to leverage in their design. However, while this simulator is

flexible in its ability to simulate a wide variety of accelerator architectures, it still

does not seem to easily support expressly unique datapath designs, such as potential

analog computing designs to run inference. Moreover, it does not simulate inference

requests at scale, simulating many requests at once or heavy workloads.

Timeloop: A Systematic Approach to DNN Accelerator Evaluation

Timeloop [30] is a DNN accelerator evaluator whose motivation sits close to the

basis of this work, which is to create a broadly applicable DNN workload simulator.

Timeloop, however, employs its own custom mapper that automatically defines how

workloads are deployed and distributed across an accelerator’s resources. Timeloop

does this in order to provide an optimized comparison across accelerators. However,

some hardware is especially fast, and researchers might have concerns that the runtime

of this mapspace optimization may not be feasible to run in real-time, especially if

the compute of their experimental hardware is so fast that the scheduling is actually

a bottleneck. For this reason, I build LightSpeed as a simulator with a simple,

constant runtime scheduler using round-robin (which may not be optimized) with the

additional flexibility of introducing custom scheduling algorithms if desired.

Sparseloop: An Analytical Approach To Sparse Tensor Accelerator Mod-

eling

Sparseloop [36] is an extension of Timeloop that aims to improve support for accel-

erators that wish to leverage model sparsity in their acceleration schema specifically.

Sparseloop cites a lack of modeling support for sparse tensor accelerators, which

makes efficient accelerator design space exploration difficult. While this is a useful

18

extension of Timeloop, the earlier concerns with respect to fast and feasible runtime

scheduling remain.

HSIM-DNN: Hardware Simulator for Computation-, Storage- and Power-

Efficient Deep Neural Networks

HSIM-DNN [35] is another DNN training and inference accelerator simulator that

aims to provide additional insight for hardware design. HSIM-DNN seeks to provide

accurate models for storage and power efficiency as well as computation for DNN

workloads. It features a block-circulant matrix-based representation to model DNN

weights. However, this work emphasizes a special focus on hardware designs that

integrate with FPGAs or ASICs, which is not always the case with some accelera-

tors, which may not use FPGA at all, or where FPGAs are not the key acceleration

component of the design.

Neurophox: Photonic Simulation Framework

Neurophox [29] specializes in simulating optical neural networks (ONNs), which are

a specific, and unique experimental innovation in machine learning accelerators. It

has a specific focus on scalable ONNs, which use reconfigurable nanophotonic proces-

sors, which are essentially two-by-two feed-forward networks for matrix multiplication.

While this simulator does well in this domain and makes significant strides in photonic

simulations, it is not extensible to all varieties of machine-learning accelerators.

PIMulator-NN: An Event-Driven, Cross-Level Simulation Framework for

Processing-In-Memory-Based Neural Network Accelerators

PIMulator-NN [38] is another neural network acceleration framework that is similar

to this work due to its event-driven approach. It focuses on "processing-in-memory"

architectures, where the processor and memory component are integrated, rather than

having the processor separate load from main memory. It also provides additional

functionality for analog computation. However, PIMulator while applies a special

19

focus to analog computing and processing-in-memory, it is not generally or widely

applicable to any variety of experimental accelerators.

20

Chapter 3

LightSpeed Simulator Design

3.1 Motivation

An event-based simulator is a type of simulation that models a system as an evolving

sequence of events. LightSpeed’s goal is to simulate a generic machine learning

accelerator (e.g. a GPU, a CPU, or a new hardware) that is processing deep neural

network (DNN) inference requests. At the highest level, the notable ‘events’ in the

simulation are inference request arrivals and inference request completions. By accu-

rately simulating the arrival and completion times for all inference requests handled

by a processor, LightSpeed calculates request latency and outputs how quickly a

given processor specification (such as an NVIDIA A100 GPU) is completing requests.

3.2 Simulator Design

The following section describes the basic architecture of a neural network (i.e., the

structure of an inference request). The goal of this section is to enable the reader to

better understand what exactly is being simulated, which is necessary to understand

the high-level design of the simulator.

21

3.2.1 Neural Network Basics

A neural network [9] is a variety of machine learning model that is inspired by the

human brain. Nodes in the network, called neurons, are connected to one another and

pass information from layer to layer. A feed-forward neural network is a simple kind

of neural network that processes input data exclusively in the forward direction, from

the input layer, through the hidden layers, and to the output layer. Each layer will

transform the data until the output layer gives the result of the inference. We may

refer to a neural network as a DNN, or a deep neural network, which is simply a very

large variety of neural networks, often with many layers and connections. Figure 3-1

shows an example of a simple neural network with this general architecture.

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
5

a
(4)
1

a
(4)
2

a
(4)
3

input
layer

hidden layers output
layer

Figure 3-1: Simple feed-forward neural network [22].

If we consider a basic neural network, like one that classifies images, we can

think of the input layer can be thought of as the layer that processes that initial

image, which is often represented as an array of values from 0 to 255. The earlier

"transformation" of data as it is passed through the network is essentially matrix

multiplication, particularly in a feed-forward neural network. Each neuron has a

vector of "weights," which is essentially just a list of numbers a corresponding vector

in the input data will be multiplied by. We can also think of the vectors for each

22

neuron together as a matrix of weights. After the input vector is multiplied by the

weight matrix, the result is passed through an "activation function," a nonlinear

transformation of the data [9]. The output of each layer is passed through as an

input to the next layer until the output layer produces the final prediction.

In this work, I focus on the simulation of these linear components, or matrix

multiplication, during model inference. For large neural networks or DNNs, there can

be millions of matrix multiplies in a single inference. It is these matrix multiplies we

want to simulate, in order to get an accurate idea of just how much time an accelerator

spends on matrix multiplication during inference, and thus its inference latency.

3.2.2 Abstractions and High-Level Design

With any simulator, the goal is to simulate what would happen in reality as closely

as possible. Throughout developing the LightSpeed simulator, I continued to add

functionality and constraints to achieve this goal. However, making certain abstrac-

tions was necessary, especially within the scope of this project. In the following

section, I will detail the high-level design of the simulator, as well as address and

justify all assumptions made.

As seen in the previous section, most of the computation that occurs in an infer-

ence request is matrix multiplication, thereby the bulk of LightSpeed is to simulate

matrix multiplication operations. As a result, each inference request is abstracted

as essentially a batch of matrix multiplications, which are further subdivided into

vector-vector products.

To consider an inference request “completed,” all of the constituent vector-vector

products of a request must be computed by the processing cores of the architecture

that is being simulated. I abstract a processor as a collection of parallel computing

cores, each of which is capable of processing one vector-vector product at a time.

Aside from cores, I establish multiple other fundamental data structures, described

below.

23

Figure 3-2: High-level Request object design

Data Structures

Figure 3-2 shows the high-level architecture of an inference request in the simulator.

I refer to every inference request as a Request, every layer of the request (i.e., a layer

of the DNN) as a Job, and every vector-vector product (or VVP, for short) within a

DNN layer as a Task.

Why Subdivide into Jobs and Tasks?

The natural question to ask is why to subdivide inference requests at all. I divide

DNN requests into Jobs because each layer of a DNN request cannot be computed

before the prior layer is finished computing. This is because the outputs of the first

layer are also the inputs of the second layer, and so on. We need to ensure that the

simulator respects this dependency between DNN layers. Furthermore, some more

complex neural networks (not considered in this work) might have more complex

dependency structures, which define computation sequence on an intralayer basis.

This dependency is captured in a dependency graph, called the directed acyclic graph.

I further divide Jobs into Tasks (vector-vector products) to schedule VVP in

the simulator. In reality, some processors and GPUs are capable of doing more

complicated subdivisions, but subdividing based on vector-vector products is already

highly granular, so I consider this a fair abstraction.

24

Processors and Cores

To keep the simulator straightforward, every processor is represented by three at-

tributes: its total number of cores, its clock frequency, and its datapath latency. I

choose this abstraction because these are the three relevant and analogous compo-

nents of today’s inference accelerators.

Figure 3-3 shows the basic task scheduling procedure. When LightSpeed sched-

ules a Request, it divides it into its individual Tasks, and schedules each Task onto a

Core on the Processor, in a round-robin fashion.

Figure 3-3: High-level Processor representation

Why Event-Based Simulation?

As introduced in the motivation, the simulator is event-based. This means that

the process of completing inference requests is represented as a sequence of events,

most notably inference request arrival events and inference request completion events

(among other relevant events such as job completions, task completions, etc). The

main advantage of event-driven simulations is their flexibility to simulate arbitrary

events throughout the system.

3.2.3 Event Queue

Naturally, to keep track of arrival and completion events, there needs to be a queueing

data structure, where the queue is sorted by the time associated with each event in

25

the system. The design choices made with this queue are where the bulk of the

innovation in the simulator lies (including both the queue architecture and speed and

memory optimizations), so I will justify and discuss this design in detail.

Figure 3-4 shows an example snapshot of the simulation EventQueue. The Even-

tQueue is a FIFO (first-in-first-out) queue that keeps track of when all computation

starts in the simulation (request start times, task start times, etc). At a high level, it

is a Python list of Event objects, which are sorted by the order in which they begin

in simulator time.

Figure 3-4: Sample snapshot of the Event Queue

The simulator pops the first event of the queue, takes the appropriate action based

on the event’s type, and proceeds to the next event. This is how the simulator proceeds

in time. There are five different possible events in the simulator - RequestStart,

RequestFinish, JobStart, JobFinish, and TaskStart. There is no TaskFinish in the

simulation because it makes the queue doubly long. Some Requests may consist of

tens of millions of Tasks, so this has a significant effect. Moreover, keeping track of

TaskFinish events does not produce any especially important metrics for our purposes,

so I choose not to represent them.

Populating the Queue

Events are populated in the queue through one of two processes - event generation

and event dissolving. I define event generation as the case where an event is simply

added to the queue - for example, generating a new inference request (which is rep-

resented as a RequestStart object) or generating Finish objects, such as JobFinish or

RequestFinish. This is handled by the EventGenerator object, which simply generates

26

all such Events. Event dissolving is the case where an event is replaced by its con-

stituent subevents - for example, when a JobStart event is replaced by the TaskStart

events which make up that Job. Figure 3-5 shows an example of how the EventQueue

might evolve over time as a result of both event generation and dissolving.

Figure 3-5: Snapshots of the Event Queue through time

In either case, whenever LightSpeed adds event(s) to the queue, it must meet the

constraint that the queue is sorted by Event start time. As a result, LightSpeed

maintains the Event Queue as a min-heap sorted by start time, which enables us

to both quickly pop events off the queue, and quickly re-sort the queue when new

events are added during simulation. This architecture becomes especially necessary

when handling large requests, which may consist of tens of millions of vector-vector

products, and thus tens of millions of Tasks (and tens of millions of Python objects,

just for one request). The following section details exactly how popping and merging

with this min-heap architecture works.

Min-Heap Queue

A min-heap [3] is a binary tree data structure that maintains the property that

each parent node has a value less than or equal to its children nodes. This tree is

implemented as an array where each element represents a node in the tree. The root

of the tree (i.e. the node with the smallest value) is the first element of the array.

Each subsequent element is that element with the next-largest value (which in this

case is event start time).

A min-heap maintains two properties - first, the shape property, which is that

27

each level of the tree is fully filled, except for the last level which may be partially

filled from left to right. This is to ensure operations are efficient, and that reaching

any node in the tree can be done in the minimum number of iterations. The second

property is the heap property, which is the property that each parent node has a value

less than or equal to its children nodes, as described earlier. Figure 3-6 shows what

a min-heap looks like in the context of the simulation, sorted by event start time.

t=1

t=3

t=7 t=8

t=4

t=9 t=10

Figure 3-6: Sample min-heap queue sorted by event start time

To remove the smallest element from the heap, or pop the next event of the queue,

we first swap it with the last element in the array, which removes it from the tree.

Then, we “sift down", where the new root is compared with its children. If the new

root has a larger value than one of its children, we swap it with the child that has

the smallest value. We continue this process until the new root’s value is less than or

equal to its children.

To merge a list of events into the queue (i.e. add an event to the queue), Light-

Speed first builds another min-heap using the events to be added. Then, it instanti-

ates an empty min-heap and performs a minimum element-wise comparison between

the heap of events to add and the heap which is the current event queue, in order to

build the new event queue.

This process is efficient for large merges, such as merging a list of Tasks, but less

efficient for situations when merging a few or just one event, just as generating a

single request. However, since merging Tasks constitutes the vast majority of the

overhead for this process, and merging just one event is still relatively fast regardless,

this remains the procedure for all such merges into the event queue.

28

Job Generation Schema

One important characteristic of the simulator is that LightSpeed generates Jobs one

at a time after encountering a Request in the queue, rather than all at once (which

is technically feasible given the simulator design). We make this design choice for

simulator efficiency purposes. In order to generate a Job, it has to be assigned a start

time, to add it to the queue - thus, the completion time of the previous Job must be

known, since there may be a DAG dependency that defines when the following Job

can begin computation. Establishing the completion time of a Job requires generating

all of its constituent Tasks, such that the completion time of its final Task can be

accurately calculated (details of Event start and completion time calculations are

further discussed in Section 3.2.4.

However, in large DNNs, even one Job may consist of millions of Tasks. As a

result, maintaining tens of millions of Tasks in memory for an entire Request both

slows down the simulation and introduces memory constraints.

Fortunately, LightSpeed does not have to generate all of the Jobs for a given

Request at once. Since the computation for a Job cannot begin until the computa-

tion for the previous Job completes, LightSpeed delays generating a Job until the

completion of the previous Job. This is why one Job at a time is generated, rather

than all of them at once, as in Figure 3-5.

Core Queues

Aside from the primary Event Queue, each Core in the simulator also has its own

queue, which maintains the order in which the Core handles Tasks (vector-vector

products). This is necessary because the completion time of Task t0 constitutes the

start time of Task t1, where t0 and t1 are Tasks scheduled to the same Core (in

general, although this can change slightly based on DAG dependencies, which will

be discussed in the following section). As a result, individual queues for each core

are vital to maintaining information about when Tasks start and complete, and thus

when Jobs and Requests start and complete.

29

3.2.4 Calculating Event Start and Completion Times

In order to establish when an Event begins its computation, LightSpeed precal-

cluates its parameters based on known values maintained in the simulator state. By

design, the start or finish times of any Task, Job, or Request are known at the moment

that the Event is generated.

For example, the simulation time at which a Task begins computation is the

maximum of:

1. The finish time of the previous Task scheduled to the same core.

2. The finish time of the previous Job of the same Request (to obey the DAG).

3. The time at which the Task itself was generated (in case the processor is idle).

This property follows from simply reasoning about the start time of a Task, and what

could possibly delay its calculation. In the simplest case, a Task is scheduled to an

idle Core and immediately begins calculation, in which case the start time of the

Task is equivalent to its generation time (plus any potential datapath latency - I will

discuss how datapath latency is addressed in a later section). This is represented by

Item 3. If the Core is not idle, and there are no DAG dependencies, then this Task

will begin when the previous Task ends, i.e. Item 1. In the case that there are DAG

dependencies, for example when the Task could potentially begin computation before

the Tasks from the previous Job are completed, this Task will then begin computation

at the moment the last Task of the previous Job is completed (Item 2), assuming this

is the maximum time of the three scenarios.

In reality, the simulator only generates one Job at a time. As a result, it is

actually impossible for a Task to be generated before the completion of the previous

Job within the same Request. So while this is still a constraint of Task start times,

it is not necessary to consider at runtime due to the design of the simulator.

The completion time of a Task is simply the start time plus the size of the Task.

This reveals a couple of important abstractions within the simulator. First, the size

of a Task is defined as the number of multiplications that it represents. For example,

30

if the Task represents a vector-vector product between two size 5 vectors, this would

be a Task of size 5. Moreover, one unit of time in the simulator is equivalent to one

multiplication. This is a useful baseline because this means the simulation runs at

1GHz (or one multiply per nanosecond) which can then be scaled up or down based on

the real clock frequency of the processor being simulated. As a result, the simulator

runs on the nanosecond scale.

Calculating the start and completion times of Jobs and Requests is much simpler.

The start time of a Job is simply the minimum start time of its constituent Tasks, and

the start time of a Request is the start time of its first Job. Conversely, the completion

time of a Job is the maximum completion time of its constituent Tasks, and the

completion time of a Request is the completion time of its final Job. LightSpeed

calculates these values, and then generates JobFinish and RequestFinish Events and

adds them to the Event Queue to represent them in the simulation.

31

32

Chapter 4

Measurements and Profiling

4.1 Motivation

In order to make the inference request simulations as accurate and close to a real-world

setting as possible, it is vital to profile the hardware that is being simulated, to get

accurate metrics for characteristics like datapath latency, which are used directly in

simulation. Accurately representing the datapath latency is critical because for some

experimental hardware, much of the innovation is in the datapath, and therefore

the overall end-to-end inference latency. As a result, this must be represented in

simulation, to demonstrate whatever gains might be made as a result of improving in

this domain.

Moreover, results from measurements and profiling are useful to broadly cross-

validate the results of real-world experiments with simulated results. To this end, we

have access to NVIDIA P4 GPUs as well as Google’s v3 TPU, which are best-in-class

for model inference. I set up a series of experiments using a combination of NVIDIA’s

Triton Inference Server and Google Cloud Computing platform to evaluate each of

these processors on popular ML models (i.e. AlexNet, VGG-19, etc.)

33

4.2 NVIDIA Triton Setup

This section is dedicated to a brief overview of NVIDIA’s Triton Inference Server, how

it works, and how I leverage it to measure various inference metrics in a real-world

setting.

4.2.1 Motivation for Using NVIDIA Inference Triton Server

NVIDIA Triton Inference Server [27] is an open-source inference serving software that

helps standardize model deployment and execution and delivers fast and scalable AI in

production [27]. For the purpose of this work, I use it to evaluate model performance

for one model at a time, sending inference requests from a client machine to a server

machine. I use NVIDIA Triton instead of simply running models on the hardware for

multiple reasons.

First and foremost, NVIDIA Triton has access to hardware-level code for NVIDIA

GPUs. As a result, Triton is able to distinguish between which part of an inference

request is network or datapath latency time, and which part is actually compute

time on the hardware. This means Triton not only gives precise measurements with

respect to inference latency but also gives a number of other useful and informative

metrics about the end-to-end latency for an inference request. I am interested in

these metrics because most inference today is done in massive data centers, which are

handling millions of latency requests every day.

4.2.2 How NVIDIA Triton Works

Using NVIDIA Triton first requires defining and configuring the desired models and

inference data. Models are then downloaded within your preferred framework (I use

PyTorch) and configured in a Triton-specific format. After choosing a model, that

model and its corresponding inference data (for example, a batch of images in the

case of a vision model like VGG-19) are then loaded by Triton, which starts serving

inference requests.

When a client sends a request, Triton first preprocesses the input data, such as

34

matrix resizing or normalization. Then Triton passes the preprocessed data to the

model for inference. The output of the model is then post-processed, such as applying

a softmax or converting to a human-readable format, and then returned to the client.

For these experiments, I configured LeNet [19], AlexNet [16], VGG-11 [12], VGG-

16 [4], VGG-19 [14], and two binary neural networks (BNNs) from a networking paper

called N3IC [34] on a machine with an NVIDIA P4 GPU.

Triton also enables variable concurrency and batch size for inference requests.

In inference, batch size essentially defines how many individual inferences are made

within a single inference request. For example, if passing one size 64 vector through

a model constitutes one inference, then passing a 128x64 matrix through that same

model would be a batch size of 128. Concurrency, however, defines how many inference

requests are sent side-by-side along the networking datapath. For this work, I run

all experiments with concurrency 1, and test batch sizes ranging from 1 to 128 for a

subset of those models. For all other models, I also run experiments at batch size 1

for simplicity.

4.3 Google Cloud Setup

4.3.1 Google v3 TPU

I run experiments on Google’s TPU (Tensor Processing Unit) [10] as an additional

benchmark. A Google TPU is a specialized processor designed to accelerate machine

learning workloads. It is also specifically optimized for performing large-scale matrix

operations.

Some useful specification details about the TPU we use, TPU v3 [10]:

• The TPU v3 has two tensor cores, which are specialized hardware units for

matrix multiplication. Tensor cores are highly optimized for inference workloads

and compute at 123 teraflops (1.23× 1014 operations per second).

• 1.6 terabytes per second (TB/s) of memory bandwidth, for quick memory access

to large amounts of data.

35

• TPU v3 uses a high-speed interconnect which connects multiple TPUs together

to form a ’TPU pod’. This interconnect has 6.4 terabits per second (TB/s) of

bisection bandwidth across a pod, which enables TPUs in the pod to commu-

nicate efficiently.

• 32 GB of high-bandwidth memory (HBM), which supports large models that

can’t fit onto the memory of just one GPU.

Overall, the TPU v3 is a highly powerful machine learning workload accelerator

with strong performance metrics, memory capabilities, and an interconnect which

make it well-suited for handling inference requests at scale. This makes it both a

useful and necessary comparison point for LightSpeed.

NVIDIA T4 on Google VM

Google Cloud also provides quick and convenient to other NVIDIA GPUs, such as

NVIDIA T4, which is another one of NVIDIA’s GPUs that is specialized for inference.

I also took measurements on one of Google’s NVIDIA T4 GPUs, to provide a more

complete picture for the latency experiments.

4.3.2 Measurements on Google VM

Measuring the latency capabilities of Google’s TPU is slightly less straightforward

since there is no convenient software like NVIDIA Trition to take complex measure-

ments. For this reason, I constrain the experiments on Google’s VM to just inference

latency and take measurements simply with Python’s time module. Of course, the

datapath latency is included in this measurement, but I include the datapath latency

in the final measurements for NVIDIA GPUs as well. Moreover, I found that these

measurements were consistent with those provided by Google for their hardware, so

I consider it a reasonable approximation.

36

4.4 Profiling Evaluations

The following section provides the results and data from measuring and profiling the

NVIDIA GPUs and Google TPU.

The models I choose to deploy for measurements are a collection of vision models

(LeNet [19], AlexNet [16], VGG-11 [12], VGG-16 [4], VGG-19 [14]) and two binary

neural networks, including a model I refer to as IoT, for network traffic classification,

and a model I refer to as Anomaly, a security model for network traffic anomaly

detection [34]. I choose vision models because their datasets, which consist of images,

are a common inference request input that also sufficiently strains the datapath to

get an accurate view of datapath latency. The binary neural networks (BNNs) [34]

are small models, which provide a useful comparison point to large vision models like

VGG-16 and VGG-19, which furthers the overall goal to get a strong general idea of

how GPUs perform on a variety of models, both small and large.

The following plots summarize the results from the experiments that were run on

the profiled hardware. Since I focus on GPUs in simulation, I especially focus on

Triton experiments with the NVIDIA P4 GPU [26], to get the best possible data to

accurately represent GPU datapath latency. Figure 4-1 and Figure 4-2 show the end-

to-end latency results for the models I chose to measure. From these measurements,

we have a more complete picture of how these accelerators perform on this selection

of models in the real world - as a result, we should expect comparable results in

simulation. Furthermore, Figure 4-3 separates datapath latency measurements from

end-to-end latency - from these results, I found that datapath latency for a GPU

(specifically, P4) is around 1549 µs. Therefore, this is the value I use moving forward

in simulations.

37

Le
Net

Alex
Net

VGG-11

VGG-16

VGG-19
100

101

102

103

104

33
9

97
3 13

03 17
58 20

94

73
6.

94

5.
00

e3

1.
05

e4

1.
39

e4

1.
58

e4

22
0

64
5

60
1 71

7

78
4

La
te

nc
y

(µ
s)

NVIDIA T4
NVIDIA P4
Google v3 TPU

Figure 4-1: End-to-End Latency Measurements on Hardware

38

1 2 4 8 16 32 64 96 12
8

102

102.2

102.4

102.6

102.8

103

103.2

44
6

40
4

38
4 41

4 45
6

53
1

71
0

1,
59

1

90
7

34
5

34
2

41
3 43
3 46

2

57
3

74
0

1,
71

0

1,
02

2

60
4

42
1

58
5

50
5 56

7 61
7

77
0 83

8

1,
85

3

Batch Size

E
nd

-t
o-

E
nd

La
te

nc
y

(µ
s)

Anomaly
IOT
LeNet

Figure 4-2: End-to-End Latency for Experimental Models on NVIDIA P4

39

Le
Net

Alex
Net

VGG-11

VGG-16

VGG-19

103

104

4
0
6

1
,7
7
9

1
,8
7
7

1
,8
1
1

1
,8
6
9

7
3
6

4
,9
9
9

1
0
,5
2
5

1
3
,8
6
7

1
5
,8
2
1

La
te

nc
y

(µ
s)

Datapath Latency End-to-End Latency

Figure 4-3: Datapath Latency Versus End-to-End Latency on NVIDIA P4

40

Chapter 5

Simulation Evaluations

To evaluate LightSpeed, I run several simulations comparing state-of-the-art infer-

ence accelerators using real-world DNN models. In this section, I begin by detailing

each inference accelerator that I use for evaluation. I then discuss their features

such as the number of cores, clock frequency, datapath latency, and other relevant

characteristics of the hardware. Then, I outline the models which are supported in

the simulation. The simulation is highly customizable, and additional models can be

supplemented relatively easily. Finally, I discuss simulation results, specifically the

average inference latencies across different DNNs and hardware architectures.

5.1 Simulated Systems and Workloads

5.1.1 Lightning

Lightning [39] is a novel machine-learning inference accelerator that leverages pho-

tonic computing to perform fast and energy-efficient multiplication in the analog do-

main. A Lightning system has several hardware components, including optical modu-

lators, digital-to-analog converters, analog-to-digital converters, photodetectors, and

a Xilinx FPGA. Lightning’s key concept is to feed voltages into the optical modula-

tors, each of which encodes a number from 0 to 255 (i.e., an 8-bit fixed-point number).

It then applies the output from the first modulator to that of the second, and the

41

resultant output is equivalent to the pairwise multiplication of each element. From

this signal, Lightning is able to read a multiplication result.

LightSpeed models a Lightning accelerator with 200 cores - this is because

we expect a prototype with 1 photonic core and 200 wavelengths (which computes

equivalently to 200 cores) to be a realistic goal for later-stage prototypes. Moreover,

I simulate Lightning with compute frequency of 100 GHz. The Lightning paper

mentions that it has average datapath latency of 344 ns, so this is what is used in

simulation [39].

I compare the performance of Lightning to the following real-world hardware. This

hardware is the best-in-class for machine learning inference. In the following sections,

I will overview each architecture, as well as detail and justify how each architecture

is modeled and approximated in the simulator.

5.1.2 NVIDIA A100 and P4 GPUs

NVIDIA A100 GPU

NVIDIA’s A100 GPU [23] is a flagship compute platform, and is used in most data

centers today for machine learning applications, in both training and inference. It

has two specialized core architectures, CUDA cores and Tensor cores. These cores are

specialized for math operations and matrix multiplication. CUDA cores, in simple

terms, are capable of performing eight multiplications in parallel. Tensor Cores are

able to achieve approximately 3× performance across multiplications. The A100 GPU

has 6912 CUDA cores and 432 Tensor Cores. It also has a clock frequency of 1.41

GHz, when overclocked [24].

In LightSpeed’s simulation for the A100, I represent the architecture using the

following parameters:

• The 6912 CUDA cores and 432 Tensor Cores are represented as 6912 × 8 and

432× 3 cores, for 56,592 cores in total.

• Compute is simulated at the 1.41 GHz overclock frequency.

42

• The measurements gathered in Chapter 4 give an average datapath latency of

1549 µs for GPUs. This value is used to represent the datapath latency in

simulation.

NVIDIA P4 GPU

NVIDIA’s P4 GPU [26] is their compute platform which is specialized for inference

and energy efficiency. Some data centers may feature this GPU if they desire fast,

cost-effective, and energy-efficient inference. The P4 GPU features 2560 CUDA cores,

and has a clock frequency of 1.114 GHz when overclocked.

In LightSpeed, the 2560 CUDA cores are represented as 2560 × 8 cores, for

20,480 cores in total, along with the 1.114 GHz clock frequency and GPU datapath

latency of 1549 µs.

5.1.3 NVIDIA A100X DPU

The NVIDIA A100X DPU is an extension of the NVIDIA A100 GPU, which connects

directly to the network via an integrated PCIe switch. This creates a dedicated

datapath between the network and GPU that greatly reduces datapath latency [25].

Simulating this hardware can be desirable for comparison against prototypes that

seek to make gains in the datapath latency, as is the case for Lightning.

In LightSpeed, the A100X DPU is represented the same as the A100 GPU in

terms of the number of cores and clock frequency. For datapath latency, measurements

were not available at the time of writing for the A100X DPU. However, the datapath

latency of the DPU is known to be greatly reduced as to be mostly negligible, so to

give the hardware the benefit of the doubt in simulation compared to Lightning, the

aforementioned clock frequency of 344 ns from Lightning is used.

5.1.4 Microsoft Brainwave

Microsoft’s Brainwave [7] is another variety of machine learning inference acceler-

ators. It is an FPGA-based smartNIC that leverages massive parallelism and also

43

massively reduces datapath latency by sitting on the network datapath. However,

since Brainwave leverages FPGAs, which have a relatively slow clock frequency, and

doesn’t compensate compared to a system like Lightning, it computes at a 600 MHz

clock frequency. Brainwave operates with a computational parallelism equivalent to

96,000 cores. Since we also lack datapath latency experimental data as in the case

of DPU, I use a similarly generous 344 ns in simulation. The above metrics are the

values used in LightSpeed.

Table 5.1 summarizes the above simulation parameters for each evaluation plat-

form.

Platforms Simulated Cores Clock Frequency Datapath overhead (µs)

Nvidia A100X DPU 56,592 1.41 GHz .344

Microsoft Brainwave 96,000 600 MHz .344

Nvidia A100 GPU 56,592 1.41 GHz 1549

Nvidia P4 GPU 20,480 1.114 GHz 1549

Table 5.1: Hardware parameters used in LightSpeed

5.1.5 Simulated DNN Models

I evaluate six real-world DNN models: VGG16 [4], VGG19 [14], MegatronBERT [5],

GPT-2 [31], DLRM [6], and ChatGPT∗ [28, 17, 18]. Below are additional details

regarding model configurations.

VGG16 [4]. VGG-16 is a 16-layer convolutional neural network used for image

classification. The bulk of the multiplication is processed in VGG-16 during the con-

volutional process, where increasingly smaller kernels are slid across the pixel values

of an image, resulting in multiplication and summation. LightSpeed calculates the

number of multiplications within each vector-vector product and separates each of

these vector-vector products on a layer-by-layer basis (Tasks and Jobs respectively).

VGG-16 also has 3 dense layers, which are also accounted for.

VGG19 [14]. VGG-19 is essentially the same as VGG-19, except it features 19

layers of convolution, rather than 16. I, therefore, run similar calculations for VGG-19

and account for the same 3 dense layers.

44

MegatronBERT [5, 33]. Is a combination of the BERT architecture, which

is a transformer-based model for natural language processing, and Megatron, which

trains transformers at a massive scale. MegatronBERT is a 24-layer model with 1024

hidden features and 16 attention heads, which are essentially subdivisions of matrix

multiplication within the transformer model architecture. LightSpeed calculates

the number of multiplications within each vector-vector product, for both attention

layers and feed-forward layers. I also account for word embedding layers, which encode

natural language into language model embedding tables, at the beginning and end of

the network.

DLRM [6]. DLRM (Deep Learning Recommendation Model) is a recommenda-

tion model that features an architecture that is highly variable in matrix size on a

layer-to-layer basis, specifically in its embedding layers. It is useful as a simulation

model not only because it is widely used and features another ML use case, but also

because it introduces additional vector size variety and stress-testing to the simula-

tion. I analyze the embedding layers of DLRM, as well as its feed-forward layers, and

calculate the size of vector-vector products for each layer.

GPT-2 [31]. GPT-2 is one of the earlier iterations of the now widely popular

GPT transformer architecture. It is a generative language model, and similar to

BERT, it features attention layers, feed-forward layers, and embedding layers at the

beginning and end of the network. The largest version of GPT-2 (which LightSpeed

simulates) has 48 layers, with a model dimensionality of 1600 (the common dimension

which carries throughout the network).

ChatGPT* [28]. ChatGPT is a much larger version of the GPT architecture,

which specializes in generated chat output. The finer details of the model architecture

are still unknown at the time of writing. However, ChatGPT’s number of parame-

ters is known, with 175 billion parameters. Therefore, to approximate the model in

simulation, LightSpeed instantiates a new instance of GPT-2, with an increase in

the number of layers commensurate with ChatGPT’s parameter count (5750 layers,

or nearly 120× the number of layers in GPT-2).

Table 5.2 lists each model, as well as the total number of multiplications performed

45

by each model end-to-end.

DNN Total # of multiplications Type
VGG16 1.54× 1010 Vision
VGG19 1.96× 1010 Vision

MegatronBERT 3.57× 109 Language
GPT2 1.56× 109 Language

ChatGPT* 1.76× 1011 Language
DLRM 3.14× 109 Recommendation

Table 5.2: DNN models used in LightSpeed

Request arrivals. I use a Poisson distribution for inference request arrivals and

vary the arrival rate between 10 Gbps and 100 Gbps. All models have an equal

probability of occurrence.

5.2 Inference Serve-Time Simulations

For simulations, the primary focus is to compare the simulated serve-time performance

of Lightning to state-of-the-art benchmarks when serving large-scale DNN inference

queries. In these simulations, around 100 inference requests were served, for a total

of around 500 inference requests across accelerators. The final results show how each

accelerator performs and its percent utilization across these simulations.

5.2.1 Inference Serve Times

I define the inference serve time as the time it takes to respond to a DNN inference

query from the moment it arrives at the accelerator. Figure 5-1 compares the average

inference serve time of jobs across different DNNs.

46

VGG-16 VGG-19 MegatronBERT GPT2 ChatGPT* DLRM

100

101

102

103

104
In

fe
re

nc
e

La
te

nc
y

(m
s)

Lightning Brainwave P4 GPU A100 GPU A100X DPU

Figure 5-1: Simulated inference serve times

From Figure 5-1, we see that A100X DPU performs the best among the digi-

tal hardware platforms (Brainwave, A100 GPU, and P4 GPU) because A100X DPU

combines strong compute parallelism with minimal datapath latency to give the best

results among existing digital solutions. Although Brainwave has the greatest paral-

lelism, it suffers from low clock frequency because of its FPGA-based implementation,

highlighting the importance of clock frequency when handling real-time user-facing

inference requests. Finally, the photonic computing system, Lightning, improves the

inference serve time compared to all the other digital accelerators because of its high

clock frequency and efficient datapath latency.

47

Lig
ht
nin

g

Brai
nw

av
e

P4
GPU

A10
0 GPU

A10
0X

DPU
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1

0.61

0.71

0.94

0.71

P
er

ce
nt

ag
e

Figure 5-2: Average core utilization across simulations

Core utilization is an important metric in simulation because it not only validates

whether simulation results are expected, it also hints at whether an accelerator was

used to its full computational capacity, or if more can be done to improve latency

times with better scheduling schema. Figure 5-2 shows that while most accelerators

are mostly utilized, there is potential for additional utilization for digital accelerators,

like Brainwave [7] (even if full utilization is not leveraged in practice). Lightning,

however, is fully utilized [39] due to its efficient datapath design.

48

Chapter 6

Conclusion

LightSpeed is a framework for evaluating and simulating experimental DNN acceler-

ators, inspired by experimental prototypes and hardware. It leverages both simulation

and real-world profiling and measurements to provide an accurate and informative

evaluation of DNN accelerators. LightSpeed takes into account datapath latency,

core parallelism, and clock frequency without being overly demanding or imposing

with respect to what can and cannot be simulated. It supports many popular models

and architectures, with a straightforward implementation design that enables it to be

both flexible and useful. In extensions of this work, the simulation component might

take additional steps towards considering model sparsity and a variety of schedul-

ing algorithms, which are currently implemented but were not thoroughly tested and

evaluated at the time of writing.

49

50

Bibliography

[1] Dennis Abts, Jonathan Ross, Jonathan Sparling, Mark Wong-VanHaren, Max
Baker, Tom Hawkins, Andrew Bell, John Thompson, Temesghen Kahsai, Garrin
Kimmell, Jennifer Hwang, Rebekah Leslie-Hurd, Michael Bye, E.R. Creswick,
Matthew Boyd, Mahitha Venigalla, Evan Laforge, Jon Purdy, Purushotham Ka-
math, Dinesh Maheshwari, Michael Beidler, Geert Rosseel, Omar Ahmad, Gleb
Gagarin, Richard Czekalski, Ashay Rane, Sahil Parmar, Jeff Werner, Jim Sproch,
Adrian Macias, and Brian Kurtz. Think fast: A tensor streaming processor (tsp)
for accelerating deep learning workloads. In 2020 ACM/IEEE 47th Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 145–158, 2020.

[2] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M
Aamodt. Gpgpu-sim: a performance analysis framework for execution driven
simulation of gpus. In Proceedings of the 2009 ACM SIGPLAN/SIGBED con-
ference on Languages, compilers, and tools for embedded systems, pages 53–62,
2009.

[3] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT press, 3 edition, 2009.

[4] Abhipraya Kumar Dash. VGG-16 Architecture. https://iq.opengenus.org/
vgg16/.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

[6] Facebook. Deep Learning Recommendation Model for Personalization and Rec-
ommendation Systems, 2021. https://github.com/facebookresearch/dlrm.

[7] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi
Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods,
Sitaram Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and
Doug Burger. A configurable cloud-scale dnn processor for real-time ai. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pages 1–14, 2018.

51

https://iq.opengenus.org/vgg16/
https://iq.opengenus.org/vgg16/
https://github.com/facebookresearch/dlrm

[8] Tom Goldstein. How many GPUs does it take to run ChatGPT?, Feb. 2023.
https://twitter.com/tomgoldsteincs/status/1600196995389366274?
lang=en.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[10] Google. TPU System Architecture, 2023.

[11] Groq. The Challenge of Batch Size 1, 2020. https://groq.com/wp-content/
uploads/2020/04/GROQP002_groq_whitepaper_V1-DB-1.pdf.

[12] Sonali Gupta. VGG-11 Architecture. https://iq.opengenus.org/vgg-11/.

[13] Hsin-Yuan Huang Jarrod McClean. Quantum Machine Learning and
the Power of Data, 2021. https://ai.googleblog.com/2021/06/
quantum-machine-learning-and-power-of.html.

[14] Aakash Kaushik. VGG-19 Architecture. https://iq.opengenus.org/
vgg19-architecture/.

[15] Mahmoud Khairy, Jason Shen, Tor M. Aamodt, and Timothy G. Rogers. Accel-
sim: An extensible simulation framework for validated gpu modeling. In The
47th International Symposium on Computer Architecture, New York, NY, USA,
May 2020. ACM.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):84–
90, 2017.

[17] Shilpa Lama. ChatGPT Review: Everything You Need to Know, 2023. https:
//beincrypto.com/learn/chatgpt-review/.

[18] Shilpa Lama. ChatGPT Review: Everything You Need to Know, 2023. https:
//www.globenewswire.com/en/news-release/2023/04/18/2649061/0/en/
Data-Center-Accelerator-Market-Is-Expected-to-Reach-USD-130-3-billion-by-2032-Grow-at-a-CAGR-of-24-Exclusive-Report-by-Market-us.
html.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[20] Francisco Muñoz-Martínez, José L. Abellán, Manuel E. Acacio, and Tushar Kr-
ishna. Stonne: Enabling cycle-level microarchitectural simulation for dnn infer-
ence accelerators. In 2021 IEEE International Symposium on Workload Charac-
terization (IISWC), 2021.

52

https://twitter.com/tomgoldsteincs/status/1600196995389366274?lang=en
https://twitter.com/tomgoldsteincs/status/1600196995389366274?lang=en
https://groq.com/wp-content/uploads/2020/04/GROQP002_groq_whitepaper_V1-DB-1.pdf
https://groq.com/wp-content/uploads/2020/04/GROQP002_groq_whitepaper_V1-DB-1.pdf
https://iq.opengenus.org/vgg-11/
https://ai.googleblog.com/2021/06/quantum-machine-learning-and-power-of.html
https://ai.googleblog.com/2021/06/quantum-machine-learning-and-power-of.html
https://iq.opengenus.org/vgg19-architecture/
https://iq.opengenus.org/vgg19-architecture/
https://beincrypto.com/learn/chatgpt-review/
https://beincrypto.com/learn/chatgpt-review/
https://www.globenewswire.com/en/news-release/2023/04/18/2649061/0/en/Data-Center-Accelerator-Market-Is-Expected-to-Reach-USD-130-3-billion-by-2032-Grow-at-a-CAGR-of-24-Exclusive-Report-by-Market-us.html
https://www.globenewswire.com/en/news-release/2023/04/18/2649061/0/en/Data-Center-Accelerator-Market-Is-Expected-to-Reach-USD-130-3-billion-by-2032-Grow-at-a-CAGR-of-24-Exclusive-Report-by-Market-us.html
https://www.globenewswire.com/en/news-release/2023/04/18/2649061/0/en/Data-Center-Accelerator-Market-Is-Expected-to-Reach-USD-130-3-billion-by-2032-Grow-at-a-CAGR-of-24-Exclusive-Report-by-Market-us.html
https://www.globenewswire.com/en/news-release/2023/04/18/2649061/0/en/Data-Center-Accelerator-Market-Is-Expected-to-Reach-USD-130-3-billion-by-2032-Grow-at-a-CAGR-of-24-Exclusive-Report-by-Market-us.html

[21] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. Understanding pcie performance for end
host networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, page 327–341, New
York, NY, USA, 2018. Association for Computing Machinery.

[22] Izaak Neutelings. TikZ.net - Neural Networks, 2021. https://tikz.net/
neural_networks/.

[23] NVIDIA. Nvidia A100 GPU, 2021. https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/
nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf.

[24] NVIDIA. NVIDIA A100 Tensor Core GPU Architecture, 2021.
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

[25] NVIDIA. Nvidia converged accelerators, 2022. https://www.nvidia.
com/content/dam/en-zz/Solutions/gtcf21/converged-accelerator/pdf/
datasheet.pdf.

[26] NVIDIA. Nvidia tesla p4 gpu, 2023. https://images.nvidia.com/content/
pdf/tesla/184457-Tesla-P4-Datasheet-NV-Final-Letter-Web.pdf.

[27] NVIDIA. NVIDIA Triton Inference Server, 2023. https://developer.nvidia.
com/nvidia-triton-inference-server.

[28] OpenAI. ChatGPT: Optimizing Language Models for Dialogue, 2023. https:
//chat.openai.com/chat.

[29] Sunil Pai, Ben Bartlett, Olav Solgaard, and David A. B. Miller. Matrix op-
timization on universal unitary photonic devices. Physical Review Applied,
11(6):064044, June 2019.

[30] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. Timeloop: A systematic approach to dnn
accelerator evaluation. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 304–315, 2019.

[31] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[32] B.J. Shastri, A.N. Tait, and T. et al. Ferreira de Lima. Photonics for arti-
ficial intelligence and neuromorphic computing, 2021. https://www.nature.
com/articles/s41566-020-00754-y.

53

https://tikz.net/neural_networks/
https://tikz.net/neural_networks/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/converged-accelerator/pdf/datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/converged-accelerator/pdf/datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/converged-accelerator/pdf/datasheet.pdf
https://images.nvidia.com/content/pdf/tesla/184457-Tesla-P4-Datasheet-NV-Final-Letter-Web.pdf
https://images.nvidia.com/content/pdf/tesla/184457-Tesla-P4-Datasheet-NV-Final-Letter-Web.pdf
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://chat.openai.com/chat
https://chat.openai.com/chat
https://www.nature.com/articles/s41566-020-00754-y
https://www.nature.com/articles/s41566-020-00754-y

[33] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter
language models using model parallelism, 2020.

[34] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh,
Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco. Re-
architecting traffic analysis with neural network interface cards. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages
513–533, Renton, WA, April 2022. USENIX Association.

[35] Mengshu Sun, Pu Zhao, Yanzhi Wang, Naehyuck Chang, and Xue Lin. Hsim-
dnn: Hardware simulator for computation-, storage- and power-efficient deep
neural networks. In Proceedings of the 2019 on Great Lakes Symposium on
VLSI, GLSVLSI ’19, page 81–86, New York, NY, USA, 2019. Association for
Computing Machinery.

[36] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S.
Emer. Sparseloop: An analytical approach to sparse tensor accelerator modeling,
2023.

[37] Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shahbaz, and
Kunle Olukotun. Sara: Scaling a reconfigurable dataflow accelerator. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 1041–1054, 2021.

[38] Qilin Zheng, Xingchen Li, Yijin Guan, Zongwei Wang, Yimao Cai, Yiran Chen,
Guangyu Sun, and Ru Huang. Pimulator-nn: An event-driven, cross-level sim-
ulation framework for processing-in-memory-based neural network accelerators.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 41(12):5464–5475, 2022.

[39] Zhizhen Zhong, Mingran Yang, Christian Williams, Alexander Sludds, Homa
Esfahanizadeh, Ryan Hamerly, Dirk Englund, and Manya Ghobadi. Lightning: A
reconfigurable photonic-electronic smartnic for fast and energy-efficient inference.
In ACM SIGCOMM 2023 Conference, SIGCOMM ’23, 2023.

54

	Introduction
	Background and Related Work
	LightSpeed Simulator Design
	Motivation
	Simulator Design
	Neural Network Basics
	Abstractions and High-Level Design
	Event Queue
	Calculating Event Start and Completion Times

	Measurements and Profiling
	Motivation
	NVIDIA Triton Setup
	Motivation for Using NVIDIA Inference Triton Server
	How NVIDIA Triton Works

	Google Cloud Setup
	Google v3 TPU
	Measurements on Google VM

	Profiling Evaluations

	Simulation Evaluations
	Simulated Systems and Workloads
	Lightning
	NVIDIA A100 and P4 GPUs
	NVIDIA A100X DPU
	Microsoft Brainwave
	Simulated DNN Models

	Inference Serve-Time Simulations
	Inference Serve Times

	Conclusion

