
Network Requirements for Distributed Machine
Learning Training in the Cloud

by

James Salamy

BE(ECS)(Hons) & BSc, Monash University, 2018

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

c○ Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

October 15, 2021

Certified by. .
Manya Ghobadi

TIBCO Career Development Assistant Professor of Electrical
Engineering and Computer Science

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Network Requirements for Distributed Machine Learning

Training in the Cloud

by

James Salamy

Submitted to the Department of Electrical Engineering and Computer Science
on October 15, 2021, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, I characterize the impact of network bandwidth on distributed machine
learning training. I test four popular machine learning models (ResNet, DenseNet,
VGG, and BERT) on an Nvidia A-100 cluster to determine the impact of bursty
and non-bursty cross traffic (such as web-search traffic and long-lived flows) on the
iteration time and throughput of distributed training. By varying the cross traffic
load, I measure the impact of network congestion on training iteration times. I
observe that with heavy web-search cross traffic (80% of link capacity), on average
training iteration time is increased by up to 4 to 8×, for ResNet and BERT models,
respectively. Further, I establish that the ring-all reduce communication collective
is negatively impacted by network congestion even if the congestion is only affecting
part of the ring. I also develop empirical models for the behavior of machine learning
training in the presence of each type of cross traffic deployed. These results provide
the motivation for developing novel congestion control protocols that are tailored for
distributed training environments.

Thesis Supervisor: Manya Ghobadi
Title: TIBCO Career Development Assistant Professor of Electrical Engineering and
Computer Science

3

4

Acknowledgments

First and foremost, I would like to extend my sincere gratitude to my advisor, Profes-

sor Manya Ghobadi, who has supported me across the last two years through many

trials, and has constantly worked to make me a better researcher. You have inspired

me, and without your support and belief I would not be where I am today.

Secondly, I would like to thank the members of the HiPerSys group and the wider

Networks and Mobile Systems group at MIT CSAIL for their advice, friendship,

and feedback. I would also especially like to thank Weiyang Wang, Mingran Yang,

Sudarsanan Rajasekaran, Homa Esfahanizadeh, and Amir Farhat.

To the Heads of House and the Student Government of Sidney Pacific, thank you

for creating a warm and welcoming community, and a home away from home for me

during my time in Cambridge.

To Professor Leslie Kolodziejski and the entire EECS graduate office, and my aca-

demic advisor Professor Hae-Seung Lee, thank you for your advice, recommendations,

and support throughout my time at MIT.

To my family and friends, especially my parents Andrew and Lynn, and my

brother, Mark, thank you from the bottom of my heart for your unconditional support,

advice, and proofreading skills. To my friends at MIT and in Australia, especially

Kiyah and Katie, thank you for your organization skills, company, help, and as always

for your patience, without which this process would have been impossible.

Finally, to my grandfather Malcolm. When I was considering grad school, you

pushed me to take the opportunity in front of me. Thank you for teaching me, telling

stories, and inspiring me to reach further.

5

This research was sponsored in part by MIT’s Google Cloud Engine Program, the

United States Air Force Research Laboratory and the United States Air Force Ar-

tificial Intelligence Accelerator and was accomplished under Cooperative Agreement

Number FA8750-19-2-1000. The views and conclusions contained in this document

are those of the authors and should not be interpreted as representing the official

policies, either expressed or implied, of the United States Air Force or the U.S. Gov-

ernment. The U.S. Government is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation herein.

6

Contents

1 Introduction 17

2 Background and Related Work 23

2.1 Machine Learning . 23

2.1.1 Introduction to Key Techniques 23

2.1.2 Popular DNN Models . 24

2.2 Distributed ML Training . 26

2.2.1 Networking Limitations . 27

2.2.2 Parameter Synchronization Strategies 28

2.2.3 Parallelization Strategies . 28

2.3 ML Training Frameworks . 30

2.3.1 Horovod . 33

2.4 Profiling Tools . 34

2.5 Data Center Workload . 35

3 Experimentation and Analysis 37

3.1 Configuration and Methodology . 37

3.2 Performance Against iperf Cross Traffic 40

3.3 Performance Against Web-Search Cross Traffic 46

3.3.1 Consistent Web-Search Cross Traffic 46

3.3.2 Burst Web-Search Cross Traffic 50

3.4 Analysis of Cross Traffic Types . 56

3.4.1 Variance of Cross Traffic Effects by Loading 57

7

3.4.2 Effect of Cross Traffic Type on Model Performance 60

3.5 Iteration Scale Network Interactions 67

4 Conclusion 73

A Additional Methodology and Set up Instructions 75

A.1 Web-Search Load Generation Algorithms 75

A.2 Congestion Point Identification . 77

B Additional Results and Details 79

B.1 DL Performance utilizing RDMA and TCP for Transport 79

B.2 Empirical Models from Traffic Graphs 81

B.3 Web-Search Traffic Samples . 81

8

List of Figures

1-1 Visual timeline of the evolution of ML model size [1], CPU transistor

count [2] and GPU/ML accelerator floating point operations per second

(FLOPS) [3] in the last decade. Each trend is exponential, but the

growth in ML parameter counts is more rapid. 18

1-2 In a heterogeneous environment a range of ML jobs (blue, orange) and

cross traffic (for example, MapReduce [4, 5], green) must share the

bottleneck network resources to ensure both maximum utilization of

local resources and the minimum possible job completion times. This

poses the question: what is the most efficient allocation of C between

these three arbitrary jobs sharing a common path out of a ToR? . . . 19

2-1 Horovod ring all-reduce algorithm, demonstrating the distribution of

gradient updates across the worker nodes. In Step 1, the first par-

tial gradient is sent to a neighboring worker. Step 2 represents a

reduce-scatter step, where a partial aggregate is sent and added

to the local corresponding value. Step 3 represents a all-gather step,

where partial final gradient values are sent around the ring to build

the full result at each worker as shown in Step 4 [6]. 33

9

3-1 In configuration A, cross traffic is introduced into the outbound queue

of the NIC on server 𝑆0 and a Horovod ring all-reduce loop connects

the 4 servers. This creates a bottleneck in the outbound queue of

the 𝑆0 NIC. In configuration B, cross traffic is generated at a separate

server, in this example 𝑆2, which feeds into the bottleneck link between

the ToR and 𝑆0 at the switch end. All links in this network have a

maximum capacity of 25 Gbps. 38

3-2 Mean behavior of DL tasks in the presence of iperf cross traffic plot-

ted on a logarithmic scale. The maximum link capacity is 25 Gbps.

The vertical bars on each data point represent the measured 99% tail

iteration time of that experiment. Graph (a) plots the degradation of

iteration performance against the quantity of iperf cross traffic, while

graph (b) re-scales the x-axis using a hyperbola to produce a linear

relationship between iteration time and the reduction in available DL

bandwidth. Graph (b) also includes exponential lines of best fit and

𝑅2 values for the BERT-large and VGG series. 43

3-3 Mean behavior of DL tasks in the presence of consistent web-search

cross traffic. The vertical bars on each data point represent the mea-

sured 99% tail iteration time of that experiment. Graph (a) plots the

degradation of iteration performance against the quantity of consistent

web-search cross traffic, while graph (b) re-scales the x-axis using a hy-

perbola to produce a more linear relationship between degradation and

the reduction in available DL bandwidth. 47

10

3-4 Mean behavior of DL tasks in the presence of burst dominated web-

search cross traffic. The maximum link capacity is 25 Gbps. The

vertical bars on each data point represent the measured 99% tail it-

eration time of that experiment. Graph (a) plots the degradation of

iteration performance against the quantity of burst web-search cross

traffic, while graph (b) re-scales the x-axis using a hyperbola to pro-

duce a more linear relationship between degradation and the reduction

in available DL bandwidth. 52

3-5 CDF of DL iteration times for three models, BERT, VGG and ResNet,

comparing burst and consistent web-search cross traffic. Figure (a)

shows a light (30%) cross traffic load, while (b) shows a heavy (80%)

load. Note the time axis in graph (a) is considerably shorter than the

logarithmic axis in graph (b). 58

3-6 Mean iteration times of (a) BERT-large and (b) ResNet-50 DL tasks in

the presence of iperf, consistent web-search (DL on RDMA), consistent

web-search (DL on TCP) and burst web-search (DL on TCP) cross

traffic. The maximum link capacity is 25 Gbps. The vertical bars on

each data point represent the measured 99% tail iteration time of that

experiment. 61

3-7 Mean iteration times of (a) BERT-large and (b) ResNet-50 DL tasks in

the presence of consistent web-search and burst web-search cross traffic.

The maximum link capacity is 25 Gbps. Fits based on equation 3.5

are included for all series in both graphs (a) and (b). Coefficients

of determination are presented for each fit, and the vertical bars on

each data point represent the measured 99% tail iteration time of that

experiment. 64

11

3-8 Histogram of 60,000 instantaneous measurements of the packet injec-

tion rate for burst web-search traffic and consistent web-search traffic,

both for the requested load of 24 Gbps. A significant tail is present in

the burst traffic histogram that is not present in the symmetric con-

sistent traffic. The height of both distributions is normalized to the

highest peak, and the mean of each distribution is shown with the

dotted vertical line. 66

3-9 IP logical view of Configuration B from Figure 3-1. Flows 1, 2 and

3 are monitored using tcpdump and are reported in Figure 3-10 and

Figure 3-11. The Horovod training ring consists of servers 𝑆0, 𝑆1 and

𝑆3, with switch 𝑆2 feeding cross traffic into 𝑆0. Although all servers

use the switch, only the inbound path to switch 𝑆0, the location of the

bottleneck link, is shown. 68

3-10 Instantaneous synchronized packet injection rate readings for several

iterations of ResNet-50 with (a) 8 Gbps and (b) 20 Gbps of consistent

web-search cross traffic. The distance between two subsequent itera-

tions is clearly visible at several times in each graph. The three flows

shown correspond to the flows labeled in Figure 3-9. Each graph uses

a moving average filter of width (a):30/(b):50 to increase clarity. . . 69

3-11 Instantaneous synchronized packet injection rate readings for the tran-

sition between two iterations of BERT-large (24) with (a) 8 Gbps

and (b) 20 Gbps of consistent web-search cross traffic. The transi-

tion between the two subsequent iterations is clearly visible at 23.5

and 18.9 s respectively. The three flows shown correspond to the flows

labeled in Figure 3-9. Each graph uses a moving average filter of width

(a):30/(b):50 to increase clarity. 71

A-1 Method for calculating the congestion point on an iteration time against

bandwidth graph (sample graph taken is web-search traffic). 77

12

B-1 CDF of DL iteration times for three different size models, BERT, VGG

and ResNet, under (a) light (30%) and (b) heavy (80%) cross traffic.

The two series show the performance of DL training utilizing either the

RDMA protocol or TCP for its communication phase. Note the time

axis in graph (a) is considerably shorter than in graph (b). 80

B-2 Exponential trend-lines for the similar, consistent web-search and burst

web-search cross traffic scenarios, listing coefficients of determination

for each fit case. These 𝑅2 values are reported in the main body of

this thesis. 82

B-3 Model fits for the iteration time behavior of (a) BERT-large, (b) ResNet

DL training running over RDMA and TCP while competing against

consistent web-search cross traffic. The maximum link capacity is

25 Gbps. The coefficients of determination for each case is labeled

next to the fit, with the corresponding equation provided in Table 3.9. 83

B-4 Example of a load (configuration) file generated by Algorithm 2. Burst

locations are automatically identified in orange, with the requested

flows marked with blue dots, ordered by the yellow line. This case

creates bursts of 1000 𝜇s length with 10 ms spacing and an average

load of 7.3 Gbps. 84

B-5 Examples of (a) burst web-search traffic and (b) consistent web-search

traces from tcpdump. The gray line corresponds to the long term av-

erage measured across the sample trace, the short term average is ob-

tained from a moving average filter of width 18. 85

13

14

List of Tables

2.1 Summary of the key parameters of the ML models used in my dis-

tributed training experiments. 25

3.1 Mean achieved iteration time of each model used in my thesis (car-

ried by RDMA) with no cross traffic compared with the theoretical

communication demand per iteration as calculated from equation 3.1. 40

3.2 Comparison of the data required for a single DL iteration derived from

theory and calculated from the congestion point observed in Figure 3-2

using iperf cross traffic. 44

3.3 Comparison of the theoretical and experimental bandwidths required

by DL training in the most NIC bottlenecked test case from Figure 3-2

using iperf cross traffic. 45

3.4 Comparison of the data required for a single DL iteration derived from

theory and calculated from the observed congestion point in Figure 3-3

when competing with consistent web-search cross traffic. 49

3.5 Comparison of the theoretical and experimental bandwidths required

by DL training in the most congested test case from Figure 3-3 using

consistent web-search cross traffic. 50

3.6 Comparison of the data required for a single DL iteration derived from

theory and calculated from the discontinuity observed in Figure 3-4

when competing with burst web-search cross traffic. The observed

discontinuity is then compared to the equivalent consistent web-search

cross traffic result. 54

15

3.7 Comparison of the theoretical and experimental bandwidths required

by DL training in the most congested test case from Figure 3-4 us-

ing burst web-search cross traffic. Note BERT and ResNet were both

tested up to 24.7 Gbps of cross traffic, while VGG and DenseNet were

only tested up to approximately 21.5 Gbps. 55

3.8 Mean under-performance by DL tasks (spare capacity) over bottleneck

for the range of test cases where the link is saturated. Values are cal-

culated as the difference (delta) between the bandwidth required to

theoretically sustain the measured iteration time, and observed avail-

able bandwidth. Note: Very heavy cross traffic points in the BERT

and ResNet series are excluded. 56

3.9 Numeric fits for the functions modeling the degradation of BERT-large

and ResNet-50 iteration times for DL tasks running RDMA and TCP

communications in the presence of consistent web-search cross traffic.

The corresponding graphs are presented in Figure B-3. 62

3.10 Numeric fits for the functions modeling the degradation of BERT-large

and ResNet-50 iteration times in the presence of consistent and burst

web-search cross traffic. 65

3.11 Average estimated bandwidths for the iterations graphed in Figure 3-

10 and Figure 3-11 from the point of view of a DL only node and a DL

shared node. 70

16

Chapter 1

Introduction

Distributed Machine Learning (DL) has been a field of growing interest and impor-

tance for the last several years, in line with the growth of Machine Learning (ML)

as a key tool in research and industry used to solve a wide range of technical chal-

lenges. The ever-growing demand for more accurate ML models has resulted in a

steady increase in dataset and model sizes used in deep neural networks (DNN). ML

researchers develop new models at a rapid rate [7, 8], leading to steady growth in

computational and memory requirements.

Figure 1-1 demonstrates the rate of this increase by plotting published model

parameter counts [1], transistor counts for CPU designs [2], and floating point oper-

ations per second (FLOPS) for ML accelerators [3]. This equates to an increase in

model size of ∼100× every two years; this is 50× faster growth rate than the pace

predicted by Moore’s Law. DL has therefore become the focus of research efforts as

modern ML models and datasets are too large and have been growing too quickly to

be supported by developments in individual servers and accelerators [9, 10, 11].

The increase in ML training performance demands has been partly met by the

development of specialized hardware accelerators and software stacks supporting ef-

ficient localized processing and distributed workloads. While hardware accelerators

such as Nvidia’s Ampere Architecture [12], or domain-specific examples such as Mi-

crosoft’s Catapult FPGAs [13] or Google’s TPUs [14], have provided a significant

amount of speed-up compared to preexisting options, today’s training tasks can still

17

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1.E+14

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Timeline from 2010 to Mid-2021

ML Parameters Transistor Count Accelerator FLOPS
Parameter Trend Transistor Trend Accelerator Trend

#M
L

Pa
ra

m
et

er
s,

 #
CP

U
 T

ra
ns

ist
or

s a
nd

#A

cc
el

er
at

or
 F

LO
PS

Figure 1-1: Visual timeline of the evolution of ML model size [1], CPU transistor
count [2] and GPU/ML accelerator floating point operations per second (FLOPS) [3]
in the last decade. Each trend is exponential, but the growth in ML parameter counts
is more rapid.

take days and even weeks to complete [9, 10]. Future advancements to deep learning

are significantly limited by the efficiency of large-scale distributed ML systems [15].

The primary challenge of DL training emerges from the tightly integrated nature

of common aggregation algorithms, as individual worker nodes require their aggregate

ML model updates to be supplied at precisely the right moment to make full use of

the available accelerator resources [16]. A considerable body of work looks at how

the training time of DL algorithms can be accelerated through scheduling, tensor

operator choice, or new software frameworks [6, 9, 10, 11, 17, 18, 19, 20].

The scaling of DL training to increasingly large cluster sizes while maintaining

linear performance gains has been a major focus of research and presents an ongoing

challenge [6, 15, 17, 18, 21, 22]. The traditional method of DL scaling, increasing the

per iteration throughput, has been found to have diminishing returns at large scale [11,

15]. This performance gap has led to the development of alternative scaling techniques

that reduce iteration time, such as reducing the local throughput or splitting a model

18

uplink capacity C Gbps
ML Job 1 – x% C
ML Job 2 – y% C

Cross Traffic – z% C

ML Job 2
Server

ML Job 1
Server

Top of Rack Switch

ML Job 1
Server

ML Job 2
Server

Cross
Traffic

i servers
n accelerators
per server

Fat Tree Topology

…

… …

…

j servers
1 accelerator
per server

…

…

k servers

Bottlenecked Link

Figure 1-2: In a heterogeneous environment a range of ML jobs (blue, orange) and
cross traffic (for example, MapReduce [4, 5], green) must share the bottleneck network
resources to ensure both maximum utilization of local resources and the minimum
possible job completion times. This poses the question: what is the most efficient
allocation of C between these three arbitrary jobs sharing a common path out of a
ToR?

between nodes - both of which require significantly higher bandwidths [15]. As both

clusters and models continue to scale, the network performance of DL training is

therefore a crucial bottleneck to improved overall performance.

The heterogeneous network conditions found in cloud environments represent a

second challenge for DL acceleration, as the long-lived DL flows must coexist effi-

ciently with competing traffic from a wide variety of applications, which predomi-

nately consist of small sized flows. This scenario is illustrated in Figure 1-2, in which

I divide a group of servers under a typical data center top of rack (ToR) switch into

three groups: two groups performing two distinct DL jobs, and the third group per-

forming unrelated cross traffic jobs. As these servers all share the same ToR, they all

utilize the same links between it and higher level switches within a standard topology,

giving rise to a potential bottleneck.

19

From a user perspective, we wish our distributed framework to make the best use of

the link capacity it is given, while from the perspective of the overall system, we want

to obtain the most total work from all of the servers. Developing a characterization

of how DL loads respond to different types of cross traffic is therefore a crucial step

to understanding the trade-offs present in Figure 1-2, and therefore how to design

(i) improvements to frameworks that are able to maximize throughput for a given

bandwidth, and (ii) future congestion management systems that are DL aware and

cater to its nuances.

My goal is to develop our understanding of the key network dynamics and param-

eters that impact distributed training, in order to provide a framework for answers to

the key ‘what-if’ questions encountered when developing new efficient large-scale plat-

forms. To do this, I study the impact of competing or ‘cross’ traffic on DL workloads.

These observations can then be used in future work to help develop and characterize

a DL aware congestion control protocol.

My key contributions form an evaluation of the performance of image recognition

and natural language processing training in the presence of cross traffic, and can be

summarized as:

∙ The impact of cross traffic on the utilization of accelerators;

∙ The effect of network bursts on ML training times and utilization;

∙ The consistency and variance of iteration times in the presence of competing

network traffic;

∙ And the differences in intra-iteration communication demand observed from DL

training task nodes.

In this thesis, I demonstrate that the variance and burst behavior of cross traffic

plays a significant role in determining the efficiency of distributed ML training, in

line with my theoretical predictions and the models I develop. At high cross traffic

loads, I observe variations in the mean of 40% for bursty traffic and 8% for non-bursty

traffic, as well as 99% tails on average 60% larger than the mean value of the iteration

20

time across all models tested. Further, I observe that when the Horovod platform

competes with heavy cross traffic loads, the bottleneck link is underutilized by around

10%. I also establish that distributed learning frameworks do not consistently reduce

their usage of non-bottlenecked links when they encounter cross traffic, and therefore

they consume more bandwidth on these links than required to maintain their iteration

time performance.

This thesis is organized as follows: First, I introduce key concepts and conduct

a literature review in Chapter 2. Then, I describe the experimental activity and

present the results and subsequent analysis in Chapter 3. Finally, I summarize key

results in Chapter 4. I also include additional methodology notes in Appendix A, and

supplementary results in Appendix B.

21

22

Chapter 2

Background and Related Work

In this chapter, I first contextualize ML techniques in Section 2.1.1, and then explore

the four model families I have chosen to work with in Section 2.1.2. Next, I intro-

duce the operation of Distributed ML (DL) training as an extension of ML training

in Section 2.2, and cover the limitations imposed by the networking environment in

Section 2.2.1. I discuss the available parameter synchronization strategies in Sec-

tion 2.2.2 and parallelization strategies in Section 2.2.3, and survey state of the art

developments in training frameworks in Section 2.3, before introducing the Horovod

framework I utilize in this thesis in Section 2.3.1. I explore profiling tools that are

available to assist in the characterization of DL in Section 2.4. Finally, I discuss how

typical data center network workloads are structured in Section 2.5.

2.1 Machine Learning

2.1.1 Introduction to Key Techniques

A supervised ML model is a mapping from some raw input space to a set of labels

or categories. A model is learned (trained) by repeatedly adjusting parameters so as

to achieve a high accuracy on a dataset of examples whose correct labels are known.

Once trained, the model can be used to predict the labels of unseen examples. As deep

learning systems continue to advance the state of the art across many domains in-

23

cluding vision and language, the use of increasingly large models and datasets creates

a growing computational burden [23, 24, 25, 26].

The primary algorithm used for much of ML training is Stochastic Gradient De-

scent (SGD), which calculates from a random sample of examples (referred to as a

batch) the local prediction from the model, and its loss, or accuracy relative to the

known data, which is used to determine the ideal direction to move down the op-

timization surface. These steps make up the forward pass of the algorithm. The

backward pass calculates the gradients, and then updates the model with the new

gradients [23, 24]. SGD can be applied in a distributed fashion, where, after the back-

ward pass has calculated the local gradients, they are aggregated across all worker

nodes before the global gradient is broadcast to all models [16, 27]. The hyperpa-

rameters that define the algorithm or its variants must be carefully designed for the

specific use cases to achieve the best time-to-accuracy.

SGD itself supports both synchronous and asynchronous execution when running

in a distributed fashion. SGD is a robust algorithm, however, it has been empirically

observed that excessive batch size (taking overly many examples to average before

recalculating the model) leads to degradation in the performance of models at infer-

ence, this is especially a problem in large-scale distributed training scenarios where

the use of large batch sizes is a key acceleration strategy [11].

2.1.2 Popular DNN Models

In order to test and characterize network response to training activity in different

scenarios, I analyze a variety of common models. I utilize four types of models: (i)

light-weight communication with light-weight computation requirements, (ii) light-

weight communication with heavy computation requirements, (iii) medium commu-

nication and computation requirements, and (iv) heavy-weight communication and

computation requirements.

In this thesis I test with ResNet-50 [28], DenseNet-161 [29], and VGG-16 [30]

models on the ImageNet [31] dataset, and the BERT-large [7] model on the imbd

dataset, to ensure a selection of models with different characteristics and sizes are

24

Table 2.1: Summary of the key parameters of the ML models used in my distributed
training experiments.

ResNet [28] DenseNet [29] VGG [30] BERT [7]
Model Version 50 161 16 large-uncased
Parameters 25,557,032 28,681,000 138,357,444 366,428,986

Batch Size per GPU 64 64 64 8
Abstract Blocks 16 Bottlenecks 4 Dense Blocks 5 Groups 24 Transformers

Layer Size (squared) 64 to 1536 128 to 640 192 to 1536 1024
Input Size 3× 2242 pixels 3× 2242 pixels 3× 2242 pixels 512 tokens (max)

Convolution Layers 53 184 13 0
Linear Layers 1 1 3 146

Embedding Layers 0 0 0 4
Attention Heads - - - 12

available for analysis. The key parameters of the models selected from each category

are outlined in Table 2.1.

Residual Networks - ResNet

My selection for a light-weight communication light computation model is ResNet,

a popular image recognition ML model. The ResNet series of models was developed

in response to the ImageNet dataset challenge [28], and ResNet-50 is routinely used

today for an initial trial scale for many experiments, as it has a reasonably complex

structure without being prohibitively expensive to test. This model consists of a series

of shortcut ‘residual’ paths that skip convolutional filters, which are followed by the

standard pooling layers. This produces higher performance from fewer floating point

operations [28]. ResNet is known to be relatively computationally intensive but not

communication heavy [6, 10]. This model family, specifically ResNet-50, therefore

serves as a good benchmark for a lightweight networking baseline.

Dense Networks - DenseNet, and the VGG Model

After ResNets, DenseNets are the next step up in terms of network depth, featur-

ing more layers, more complexity, but a manageable number of parameters through

feature reuse. Another key identifying feature of this type of network is that every

layer is connected to every other layer [29]. These models therefore represent a mid-

point between the smaller earlier models and the larger NLP style models in terms

25

of scale, and thus I selected DenseNet-161 to act as the light-weight communication

model with heavy computation requirements. I also test with VGG-16 [30], a simple

network predating ResNet, but one which has a significantly larger communication

load relative to either ResNet or DenseNet, and so is well suited to act as the medium

intensity model.

Bidirectional Encoder Representations from Transformers - BERT

I also wish to test with a type (iv) model, with heavy computation and communication

requirements, to investigate the effects of scaling, and of the additional communica-

tion requirements larger models demand. A good candidate for this is the BERT

family [7], and other transformer-based models such as GTP-2 and GTP-3, which

have hundreds of millions to hundreds of billions of parameters [7, 8]. These models

achieve good performance on natural language processing (NLP) applications, such

as rapid automatic translation [32], and at time of writing are some of the largest

common models. Due to the size of these NLP models, they cannot be implemented

effectively without some form of distribution, due to the memory and computational

requirements. I selected BERT-large, with 336m parameters, to use as a representa-

tive of this class of models, it is approximately 14× larger than the smaller ResNet-50

model, as outlined in Table 2.1, and therefore provides insight into network impacts

for large, heavy communication models.

2.2 Distributed ML Training

A common approach to accelerate the training time of large ML models is distributed

training, which uses a large number of parallel, independent calculations, performed

in an interleaved fashion, with communication between processes required to ensure

model convergence [22, 33, 34]. Multiple frameworks have been devised to enable

increasingly efficient distributed training for a variety of scenarios [6, 15, 17, 18, 19,

20, 21, 35, 36, 37, 38, 39].

The key distribution block underlying every framework is the all-reduce algo-

26

rithm [9, 40], which is typically implemented as a ring [6], and is available as part of

Nvidia’s NCCL communication library [41] and MPI. It can be broken down into a

series of both reduce-scatter and all-gather operations. reduce-scatter opera-

tions share the work of computing a subset of a DL gradient update across a subset of

worker nodes. An individual node reduces (or aggregates) all gradient updates for a

particular set of parameters. An all-gather operation then collects these aggregated

updates from each node to create the final result [6, 42].

2.2.1 Networking Limitations

The network itself is still a bottleneck for large DNN training jobs [6, 10, 17, 18, 21, 22].

As an example, the Microsoft ZeRO (Zero Redundancy) optimizer [21] has scaling

inefficiencies above hundred billion parameter models on a 400 GPU DGX-2H clus-

ter [43]. ZeRO is able to achieve super-linear scaling in GPU numbers up to this

model size by redesigning the memory management of DL training to reduce the

memory footprint. However at the maximum model size tested of 170 billion parame-

ters, the efficiency of the system degraded to only 53% of its sustained performance at

lower sizes, demonstrating the scaling challenge still to be met [21]. This degradation

occurs because while increasing the cluster size typically either reduces or maintains

the computation required per worker, it does not significantly affect the bandwidth

required for the computation phase, as it is dependent on model size and the paral-

lelism employed [6, 9, 11]. Increasing the batch size of a data parallel training job can

potentially compensate for the performance degradation experienced from scaling,

but due to limits in model convergence with arbitrarily large batch sizes, there is an

upper bound on reducing training time by increasing batch sizes [11, 44].

In very large-scale environments, the total training time becomes dominated by

the communication time, which results in a diminishing return if more workers are

added. As workers become more computationally efficient, this set of conditions

becomes more common, which drives the motivation for designing efficient large-scale

systems for training ML workloads at massive scale that remove the network as a

potential bottleneck altogether.

27

2.2.2 Parameter Synchronization Strategies

Distributed ML training can be categorized into synchronous, asynchronous, or par-

tially synchronous settings. These designs are built into various software frameworks,

discussed in Section 2.3, that support distributed training. Synchronous designs

maintain a strict lockstep across all workers per iteration, benefiting from guaran-

tees on convergence [16, 22, 33, 45]. Asynchronous designs allow some workers to

lag the leading iteration, allowing anything from a degree of staleness (or slack) in

updates, but implementing limits to achieve partial synchronous behavior and guar-

antees [36, 46, 47, 48, 49], to operating entirely without synchronization steps to

achieve faster run times or resource utilization at the expense of convergence qual-

ity [16, 50, 51]. Recent developments such as Hoplite improve the utility of asyn-

chronous systems by redesigning the communications layer to provide efficient col-

lective communication and fault tolerance [37]. SGD itself converges robustly, even

in the presence of slack-asynchronous systems such as Hogwild! [46, 52]. Due to the

presence of these complex timing requirements, and the non-uniform access times

present in cloud settings [53], distribution often requires expert tuning to achieve the

maximum performance of the hardware [54, 55]. Removing the reliance on expert

tuning therefore requires a full and automated understanding of the nuances of timing

requirements and scheduling decisions. I utilize synchronous designs in this thesis for

simplicity to allow focus on network interactions in the worst case. This choice also

removes some complexities expected from asynchronous systems due to changes in

training accuracy convergence behavior.

2.2.3 Parallelization Strategies

We can also classify ML algorithms into three types by considering the parallelization

used - distributed systems can use data parallelism, model parallelism, or a hybrid of

the two.

28

Data Parallelism

The first and most common classification in use in DL frameworks is data paralleliza-

tion, which repeats the model across each worker, and sends a different segment of

data (a shard) to each worker to work on in parallel. This allows a larger quantity of

computational resources to be leveraged to share the same problem, directly increas-

ing the effective throughput. The individual worker’s gradient updates are pooled

and aggregated, before being fed back to the workers for the next step [19, 45]. This

approach lifts the I/O limits on individual machines, and enables larger batch sizes

to be used, provided SGD convergence limits are respected [11]. The networking load

is proportional to the throughput of examples, the size of the model, and the size of

the cluster.

Examples of data parallelization implemented as a framework include the default

Pytorch and TensorFlow distribution options, the Litz framework, and state of the art

distributed frameworks such as Horovod [6, 35, 45, 56, 57]. In this thesis, I focus on

data parallelism, as it is the most common form of parallelism, and therefore provides

a good base point for comparisons of the effects of cross traffic.

Model Parallelism

As an alternative strategy, frameworks can use model parallelism to manage large

models that do not fit within individual accelerator memories [54]. Here, we divide

a model’s neurons between multiple accelerators, with the same work (minibatch)

passed to each process. This reduces the memory required to process the DNN lo-

cally, as it is split between multiple processors, but requires a considerably larger

communication bandwidth as any fully-connected layer requires all-to-all communi-

cation, and the connecting edges between accelerators must communicate with each

other at low latency. Its use in convolutional layers is less efficient, and it suffers from

efficiency bottlenecks if the model is spread to widely separated workers [19, 33].

29

Hybrid Parallelism

Frameworks using a pipe-lining strategy make an attempt to use the best features of

both data and model parallelism in a hybrid form. We can break a model of interest

into multi-layer slices, with dependencies that can be used to form a pipeline. Training

is thus conducted over a minibatch in a pipe-lined fashion, increasing utilization and

reducing waiting time for communications, which may be efficiently overlapped [10].

The Pipedream framework is one example of a hybrid parallel framework of this form,

PipeSwitch as an alternative, which makes use of pipelining to enable spare inference

cycles to be returned to training utilization without affecting the inference service

level agreement latencies [58]

2.3 ML Training Frameworks

The community has been developing various ML training and scheduling platforms

to support both fast iteration times and model convergence, often by overlapping the

communication between nodes and computation on accelerators [59], efficiently using

resources [6, 39], or improving the scheduling or optimization of the task graphs [19,

60, 61]. This section provides a short survey of today’s ML training frameworks.

One of the commonly used distribution frameworks for ML training is a param-

eter server. It is the default option in many frameworks, including Tensorflow and

Pytorch [45]. In a parameter server training, all nodes send their updates to a central

node, which performs aggregation and returns the calculated gradient update for the

back propagation step as a broadcast message [45, 62]. This system works well for

small clusters, as it is simple to reason about and debug, and has significant sim-

plicity advantages for checking timing behavior between workers as the controller has

a global view. However, it is not the most efficient solution, as the server process

is idle during computation, and the workers are idle during aggregation. At scale,

these problems compound, and it is unable to keep up with the increased demand

and remain efficient, necessitating other options [6].

Another approach is to accelerate the training time of multiple ML training jobs

30

through smart cluster scheduling schemes. An example of this approach is TicTac [59],

a research platform that provides improvements to iteration times compared to stan-

dard out of the box implementations by generating a tighter overlap of communication

and computation by operating on the graphs of popular ML frameworks like Tensor-

Flow and Pytorch to discover optimizations. TicTac then schedules communications

on a priority based on the level of dependency in the computation graph. A variant

of this approach is to work directly on the scheduling problem, such as the recent

Apathetic Future Share (AFS) algorithm [61], which provides elastic scheduling and

maintains an awareness of future job demands compared to a greedy approach, which

particularly penalizes ML, to achieve better job completion times overall. Pollux and

ByteScheduler both aim for a similar goal, but achieve this by measuring the through-

put and statistical efficacy together to balance cross traffic and dependency proxies,

and through a Bayesian optimization approach respectively [57, 63]. Other schedulers

make use of accelerator heterogeneity [64], sub-GPU scale allocation of resources [65],

an auction mechanism to achieve a finish time fair distribution [66], or a placement

based on trial execution and careful leverage of relaxations on consolidations [67] to

deliver fairness and high resource utilization.

Another common approach is to distribute the computational graphs of DNN

models across several accelerators. For example, FlexFlow [19] improves training by

distributing DNN computation graphs across several dimensions, including Sample,

Operator, Attributes, and Parameter. The FlexFlow training framework covers both

data and model parallelism. FlexFlow’s simulator searches for parallelization strate-

gies using Markov chain Monte Carlo (MCMC) techniques to generate candidates,

allowing an optima to be found, beating the performance of expert-designed strate-

gies. Other related approaches seek reductions in the complexity of searching for

equivalent operators to simplify graph execution [60, 68, 69].

A more recent development, the PET system [70], takes this further by searching

for and applying partially equivalent tensor operators to achieve computational opti-

mizations. Coupled with correction tensors that return the operation to the original

statistical behavior, this leads to an overall improvement in the system capacity.

31

The Daydream platform [71] takes an alternate approach to FlexFlow’s simulation,

utilizing seen examples to predict and therefore accelerate future behavior as opposed

to running an MCMC simulation. Simulation backed approaches are feasible as, due

to the significant costs associated with running training, using a small amount of

computational effort to improve the process before launch can lead to big savings

overall [19, 71].

While simulation is often used to model scheduling performance, virtual machine

resource utilization [72], or data center topology [73], for general tasks outside an ML

context, these networking simulations do not map well to ML training scenarios, as

they do not account for the specifics of ML operations [71]. For example, an ML

sensitive network simulation could make use of the transmission patterns inherent

in the NCCL libraries and algorithms chosen, such as ring all-reduce [42], as op-

posed to the random utilization model [74] common in data center used to construct

simulators. Combining knowledge of network response to ML into existing ML ac-

celeration frameworks would lead to better estimates in communication dominated

configurations.

A growing number of research platforms approach the challenge of accelerating

ML by focusing on the spare capacity in the network itself to support in-network

aggregation using a variety of networking devices such as programmable switches for

SwitchML or the ATP system [39, 75], or FPGAs as in the PANAMA system [35].

These approaches succeed in reducing the communication load associated with gra-

dient updates by performing aggregation on partial gradients associated with specific

ML jobs at line rate as they pass through networking devices. This reduces the num-

ber of upstream packets required to carry the aggregated information, reducing the

impact of bottlenecks and simplifying the congestion problem. An alternate approach

detailed in the PLink proposal [76], which makes use of network probes to establish

locality information, then used to develop dynamic aggregation schemes to make use

of the topology and react to changes.

In OmniReduce [38], the underlying all-reduce algorithm is modified to take into

account the sparsity of the values presented for aggregation. The system only sends

32

non-zero tensor blocks on the network, drastically reducing the communication de-

mand and improving communication time, especially for models with a high degree

of sparsity.

1 2

3

Horovod Algorithm

Worker i
N… …

Worker j
N… …

Worker i
ai… …

Worker j
aj… …

Send aw

Send ay

Aggregate ax

Aggregate az

Worker i
ni… …

Worker j
nj… …Send nj

Aggregate ni+1

Aggregate nj+1

Send ni

Worker i
Ni-1… …

Worker j
Nj-1… …

Send Ni-1

Send Nj-1

Replace ai with Ni

Replace aj with Nj

𝑛 – local gradient
N – global gradient

a – partial aggregate result
For an arbitrary number of
worker nodes

4

Figure 2-1: Horovod ring all-reduce algorithm, demonstrating the distribution of
gradient updates across the worker nodes. In Step 1, the first partial gradient is sent
to a neighboring worker. Step 2 represents a reduce-scatter step, where a partial
aggregate is sent and added to the local corresponding value. Step 3 represents a
all-gather step, where partial final gradient values are sent around the ring to build
the full result at each worker as shown in Step 4 [6].

2.3.1 Horovod

The distribution system I focus on in this thesis is Horovod [6] from the Linux Foun-

dation AI & Data Foundation, which is based on the logical structure of a ring and

designed for production environments. This fully distributed architecture does not

incur the bottleneck penalties of a parameter server when scaling, as no broadcast

steps are required, and is bandwidth optimal in reducing the load placed on the net-

33

work by the all-reduce algorithm [42]. This algorithm makes a series of exchange and

aggregate steps, where a portion of the gradient vector, or its intermediate aggregated

values, are passed around in a ring-like fashion until all workers possess a fraction

of the complete update, these are illustrated in Figure 2-1. These updates are then

passed around to produce an updated model, replacing the unaggregated model pa-

rameters in sequence. A total of 2(𝑋 − 1) steps are required for a process with 𝑋

workers [6]. This approach is effective, but it is vulnerable to stragglers, as any single

point of failure holds up the ring.

2.4 Profiling Tools

Profiling tools are a critical component of understanding the performance and bot-

tlenecks of distributed ML training systems. Hardware profiling tools provide infor-

mation on physical ML accelerators and the associated cores, memory, and storage,

while software profiling tools provide top level overviews, graph execution, and over-

all performance. Hardware manufacturers, such as Nvidia, provide profilers that

make use of counters embedded in the hardware drivers themselves to produce fine

grained typical low-level information on the operation of their components. These

tools typically contain hundreds of low level counters such as speeds, clock rates, and

in/out flows [77]. However, these tools are limited as they do not leverage ML-specific

knowledge, because they are designed for general purpose applications. An example

of this type of proprietary tool is Nvidia’s Nsight [77], which provides information

on multi GPU synchronization behavior, communication and compute overlap, GPU

utilization, and memory accesses, allowing for performance monitoring and tweaks.

Other examples of these tools include nvprof [78], an earlier version of Nsight, and

Intel’s vTune Profiler [79], which serves a similar purpose around Intel CPU/GPU

and FPGA IP blocks, allowing bottlenecks to be discovered and addressed within

programs.

Hardware tools are not able to monitor network utilization directly. Network

monitoring tools, such as the MLNX_OFED NIC driver package [80], are able to

34

monitor incoming/outgoing traffic, but these tools do not correlate network traffic to

the accelerator processes. As a result, fine-grained analysis of network traffic during

training is challenging.

In contrast to pure hardware profiling tools, the Google Cloud Platform provides

the TPU tools [14] to allow detailed analysis of ML program execution on TPU

accelerators. This allows association of the low level metric features of hardware

profiling with the high level graph view of the DNN being trained, which is more

common in purely software profiling tools. It also monitors the intra-TPU cluster

network.

Software training frameworks such as MXNet and Pytorch have built in profiling

tools [81, 82], which provide high level performance information and graphical anal-

ysis. However, as these frameworks do not have knowledge of the low level profiling

details such as packet drops, cache hit rates, or memory speeds, and so they are less

able to point at improvements from these hardware layers [71]. Daydream [71] pro-

poses a system that is able to build acceleration efficacy estimates for different ML

implementations by both utilizing both kernel-level dependency information from

dedicated profilers and mapping low-level traces to specific DNN application layers.

This provides an alternate pathway to answer interconnected ‘what-if’ questions that

are the goal of this type of profiling work.

2.5 Data Center Workload

To be able to study the impact of network conditions on ML training, I must first

identify the common types of flows in data center environments. Typically, data

center workload analysis is performed on publicly released measurements provided

by large online service providers, such as those supplied by Google in 2011 [83] and

2019 [74], Facebook in 2015 [84], or Microsoft in 2017 [72, 85, 86].

We look to these studies to understand how the system functions as a connected

entity overall. Important points identified by Google in the initial analysis of the

2019 Google data, in comparison to the 2011 traces, include an increase in scheduling

35

costs, the dominance of ‘hog’ tasks, with 1% of tasks consuming 99% of the available

resources, and an increase in average utilization of about 30% [74]. In all of these

traces, a high level of heterogeneity in the workload is present, in terms of the lengths,

sizes, and types of tasks run [83]. The performance of ML jobs in these large scale

cloud clusters can be improved by scheduling improvements focusing on fair resource

sharing, handling of long term tasks, and relative sub-task placement [66]. Network

paths outside the core are typically underutilized on average, however, losses still

occur due to burst traffic [87]. Therefore, bursts can be a significant factor in the

performance of DL tasks running on a spatially concentrated group of nodes that do

not need to cross the core switch fabric.

Well understood traffic models have been established based on these publicly

released measurements, such as the pFabric model [88] which I utilize in this thesis.

This models web-search traffic with a CDF providing an average flow size of 2.4 kB,

which compares well with the known data center traffic observations of the majority

of flows being short lived of size 10 kB or less [85].

In order to make use of this model in the test-bed I utilize for my experimental

work, I co-developed a custom-designed multi-threaded TCP flow generation script in

C++ with Sudarasanan Rajasekaran. This script acts in a similar way to the iperf

tool, by sending TCP flows between a client and a series of servers, but in contrast to

iperf, it uses a microsecond timing mechanism to launch flows on the client side in

response to the specifications laid out in a configuration file; for flow start time, flow

destination and flow size. The data sent is default dummy text, which is received and

discarded at the server. Both client and server are implemented as multi-threaded

programs to increase the capacity of the tool, allowing it to saturate a 25 Gbps link.

Configuration files are generated according to either the straight web-search traffic

model [85, 88], or a modified version of the same that provides periodic bursts on

demand, which for this thesis are defined as 1 ms 300% demand spikes every 10 ms.

The details of the algorithms that generate both these traffic types are provided in

Appendix A.1. Loads for consistent demand are generated using Algorithm 1, while

burst loads are generated using Algorithm 2.

36

Chapter 3

Experimentation and Analysis

3.1 Configuration and Methodology

In this thesis, I use the Horovod framework [6] to train distributed DNN models

developed using Pytorch [82] and Tensorflow [45] packages. The primary all-reduce

technique in Horovod is ring all-reduce. Iteration times are recorded from Horovod’s

outputs. I use the tcpdump and iperf tools to capture network traffic and generate

iperf cross traffic respectively. I also implemented a separate script to provide logging

from Mellanox’s Network Interface Card (NIC) packet counters. Finally, to generate

web-search cross traffic, I used a custom-designed multi-threaded TCP flow generation

script (described in Section 2.5), with loads generated as specified in the pFabric and

DCTCP papers [85, 88].

Testbed Infrastructure

All experiments in this thesis are performed on a testbed with four ASUS ECS4000A-

E10 servers. Each server is equipped with an AMD EPYC 7502P 32-core proces-

sor [89] and an Nvidia A100 accelerator with 40 GB of HBM2e memory [12]. Net-

working is provided by Mellanox ConnectX-5 100 Gbps NICs [80] on each server

directly connected to a Juniper MX480 SDN Switch [90]. The switch is configured in

25 Gbps mode for all experiments in this thesis. As a result, each NIC is limited to

25 Gbps. I made this choice to explore the impact of high network congestion levels

37

ML ring-reduce
traffic

Cross traffic
S0 to S1

S1 S2 S3

Top of Rack Switch

25Gbps Links

A100 Accelerators

S0

ML ring-reduce
trafficCross traffic

S2 to S0

S1 S2 S3

25Gbps Links

A

B

S0
Outbound

NIC Queue

Top of Rack Switch

Switch Queue

Bottleneck Link

NIC Bottleneck

Figure 3-1: In configuration A, cross traffic is introduced into the outbound queue
of the NIC on server 𝑆0 and a Horovod ring all-reduce loop connects the 4 servers.
This creates a bottleneck in the outbound queue of the 𝑆0 NIC. In configuration B,
cross traffic is generated at a separate server, in this example 𝑆2, which feeds into the
bottleneck link between the ToR and 𝑆0 at the switch end. All links in this network
have a maximum capacity of 25 Gbps.

between reasonably sized DL loads and cross traffic at a significant link capacity,

without needing to be concerned about additional bottlenecks or confounding factors

present at the full 100 Gbps system capability. I utilize Ubuntu 18.04, CUDA v11.1,

cuDNN v8.0.5 and NCCL v2.7.8 [41], Horovod v0.21.3 [91], Pytorch v1.7.1 [92] and

Tensorflow v2.4.1 [93].

Topology

I configure the topologies described in Figure 3-1 to study two alternate toy network

scenarios for cross traffic competing with Distributed Machine Learning (DL) traffic,

depending on whether server ingress or egress is the bottleneck. In configuration A,

38

cross traffic is introduced into the outbound queue of the NIC on server 𝑆0. DL

training is performed on the four servers, with its associated traffic, carried by the

Horovod framework, passing in a ring all-reduce loop between these servers as shown

in Figure 3-1(a). This creates a bottleneck in the outbound queue of the 𝑆0 NIC.

In configuration B, cross traffic is generated at a separate server, in this example

𝑆2, which feeds into the bottleneck link between the ToR and 𝑆0 at the top of rack

switch (ToR) end of the link. The other three servers perform DL training using the

ring-all reduce communication pattern as shown in Figure 3-1(b). Configuration B

also describes the scenario in which the bottlenecked link is between two switches at

a higher aggregation level in the full topology (above the ToR shown in Figure 3-1),

as the servers 𝑆0 and 𝑆2 must respond to congestion in the network without control

of all outbound competing flows.

Models

I compare the iteration times of each model running on the infrastructure described

in the previous section to understand the relative dominance of the computational

and communication requirements of each model. The achieved iteration times and

theoretical networking loads calculated from the ring all-reduce paper [42] are listed

in Table 3.1, using equation 3.1, where 𝑃 is the number of parameters of the given

ML model, and 𝑁 is the number of workers training the ML model. 𝑁 = 4 for

configuration 𝐴, while 𝑁 = 3 for configuration 𝐵, as one node is set aside in this

configuration to provide cross traffic.

𝐷 = 2× 𝑁 − 1

𝑁
× 𝑃 × 32 bits/parameter (3.1)

Table 3.1 ranks the four models utilized in this thesis in order of decreasing re-

quired data per iteration. The BERT, VGG, and ResNet models, as listed in this

table, follow a consistent trend where the required data per iteration decreases along

with the iteration time observed. This is expected as the number of parameters is

directly proportional to the data required, by equation 3.1, and the number of pa-

39

Table 3.1: Mean achieved iteration time of each model used in my thesis (carried by
RDMA) with no cross traffic compared with the theoretical communication demand
per iteration as calculated from equation 3.1.

Model Data per Iter (Theory) Mean Iter Time BW Required
BERT-large 2011 MB 0.84 s 19.15 Gbps
VGG-16 830 MB 0.37 s 17.95 Gbps
DenseNet-161 172 MB 0.38 s 3.63 Gbps
ResNet-50 153 MB 0.16 s 7.69 Gbps

rameters is expected to be roughly proportional to the iteration time, provided the

complexity of applying each parameter to incoming data is constant.

I divide the data required per iteration by the mean time per iteration to establish

the estimated theoretical bandwidth required by each model, as listed in Table 3.1.

This is a key difference between the different models as it determines the network

capacity required to support their training. The largest model, BERT-large, requires

19.15 Gbps to train without experiencing congestion, and in general, this value de-

creases in line with model size. However, the DenseNet structure does not follow

this pattern: DenseNet-161 contains a similar number of parameters to ResNet-50,

as listed in Table 2.1, but takes 2.4× as long to complete an iteration (as shown in

Table 3.1). This reduces the relative bandwidth required to train DenseNet without

experiencing a bottleneck to only 3.63 Gbps compared to 7.69 Gbps for ResNet, as

the computational complexity per parameter of this model (which I have estimated

as the time taken per parameter) is higher, at 𝑂(10−8) compared to 𝑂(10−9) for the

other models in this thesis.

3.2 Performance Against iperf Cross Traffic

I utilize the cluster in configuration A for this series of experiments. I generate cross

traffic with the iperf tool to generate1 a programmable bandwidth of long lived TCP

1The general form of iperf command used was iperf -s on the server side using the default ports,
and iperf -c 𝐼𝑃 -b 𝐵𝑊 -t 180 -i 1 -P 𝑝𝑡ℎ𝑟 on the client size. Client parameters were the
server’s 𝐼𝑃 , a 𝐵𝑊 in Gbps appropriate for the test case, a 3 minute run-time in seconds, printing
every second for logging, and 𝑝𝑡ℎ𝑟, typically ranged between 1 and 10 indicating the number of
parallel threads sufficient to reach as close as possible to the requested 𝐵𝑊 load when competing
with DL traffic.

40

flows between a single or several pairs of ports. This traffic then competes on the same

link as the remote direct memory access (RDMA) Horovod traffic between neighbor

GPUs. When the NIC bottleneck is highly utilized by both DL and iperf traffic, it is

increasingly difficult to use iperf to force the NIC to allocate above approximately

81% or more of the total available bandwidth to itself, due to the practical limit on

the number of flows and the behavior of the competing Horovod/NCCL traffic.

I begin each experiment in the series by verifying that iperf is able to achieve

25 Gbps on the link, before running the relevant DL job without competition, building

the cross traffic, and increasing the number of parallel flows utilized by iperf until

saturation is achieved. All training experiments are run for 180 s or until a minimum

of 100 training iterations occur. The average number of iterations across all models

is 1880.

Expected impacts of iperf traffic: Considering the iperf results as a whole,

my hypothesis is that we expect to observe a minimal change in the iteration time

from zero cross traffic up to the point at which there is insufficient bandwidth to

transport the parameters of the given model in time for the next iteration to begin.

Figure 3-2 plots the mean recorded iteration times against the level of iperf cross

traffic applied to the network. The 99th percentile tail of each iteration time data

point, calculated from all of the measured iteration times in that experiment, is

shown for each series in Figure 3-2 as a vertical bar extending above the mean value.

Figure 3-2(a) demonstrates the hypothesized relationship showing two distinct regions

for all series. We observe that the expected minimal change in iteration time for low

traffic levels is also true for the DenseNet and ResNet series. These series, which

remain flat through the low demand region of Figure 3-2(a), are calculated to require

3.6 Gbps and 7.7 Gbps respectively in Table 3.1, and thus experience no degradation

to performance up to their respective congestion points (defined later in this section)

at 19.7 Gbps and 18.1 Gbps of cross traffic respectively. Once the cross traffic is higher

than the respective congestion points, the remaining bandwidth can not satisfy the

zero load demand, and we enter the high load region of the plot, where both models’

iteration times increase sharply, as the accelerators must wait for the aggregation

41

stage to complete. The growth in iteration time is super exponential.

The larger models, with measured network demands of 18.2 Gbps for VGG-16

and 19.2 Gbps for BERT-large, show initial degradation in Figure 3-2(a), as the

idle bandwidth is a minor component of the 25 Gbps link capacity for these series.

The rate of the initial degradation in iteration time increases significantly as the

bandwidth available to the model is more severely cut, leading to a similar non-linear

(and therefore super-exponential) characteristic across both regions of the plot.

In Figure 3-2(b), I re-scale the cross traffic axis to understand the underlying

mathematical function in operation. I expect an asymptote to occur in the iteration

time data at a cross traffic level of 25 Gbps as this is the capacity of the bottle-

neck. Therefore, I apply a hyperbola transformation in Microsoft Excel, described in

equation 3.2, with its asymptote set at 25 Gbps, to linearize the data points as they

approach this value. I also normalize the values, so that a cross traffic level of zero

(the initial no-load point) corresponds to a value of one.

𝐵𝑊𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝐵𝑊) =
25

25−𝐵𝑊
(3.2)

Figure 3-2(b) has two distinct sets of trends, corresponding to the small and large

size model series shown in Figure 3-2(a). The small models remain flat before the

congestion point, and now grow linearly past this. I observe linear growth for the

larger models (BERT and VGG) across the entire cross traffic range, suggesting a

linear fit, which is plotted in Figure 3-2(b) as well as in in Appendix B.2, would be

appropriate for these models. The form of this fit, for coefficients 𝐴 = 0.618, 0.254

and 𝐵 = 9.95, 10.75 (for BERT, VGG respectively), is given in equation 3.3, and

achieves an average 𝑅2 = 0.99 for the two series in Figure 3-2(b).

𝑡 = 𝐴𝑒
𝐵

25−𝐵𝑊 (3.3)

To analyze the performance of DL training against iperf traffic, I first extract the

congestion point of each model under iperf cross traffic. I define the congestion point

to be the point on a DL iteration time against cross traffic plot where congestion

42

0.1

1

10

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Cross Traffic Load (iperf) (Gbps)

BERT-large (24) VGG-16 DenseNet-161 ResNet-50

R² = 0.9965

R² = 0.991

0.1

1

10

1.00 2.00 3.00 4.00 5.00 6.00 7.00

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Reciprocal of Bandwidth Available Scaled to 1 at 0 Gbps Cross Traffic

a)

b)

Figure 3-2: Mean behavior of DL tasks in the presence of iperf cross traffic plotted on
a logarithmic scale. The maximum link capacity is 25 Gbps. The vertical bars on each
data point represent the measured 99% tail iteration time of that experiment. Graph
(a) plots the degradation of iteration performance against the quantity of iperf cross
traffic, while graph (b) re-scales the x-axis using a hyperbola to produce a linear
relationship between iteration time and the reduction in available DL bandwidth.
Graph (b) also includes exponential lines of best fit and 𝑅2 values for the BERT-
large and VGG series.

43

Table 3.2: Comparison of the data required for a single DL iteration derived from
theory and calculated from the congestion point observed in Figure 3-2 using iperf
cross traffic.

Model Theoretical Experimental Value % DifferenceDemand of Congestion Point
BERT-large 2011.0 MB 2216.2 MB 10%
VGG-16 830.1 MB 928.7 MB 12%
DenseNet-161 172.1 MB 268.8 MB 56%
ResNet-50 153.3 MB 182.5 MB 19%

first dominates the curve’s behavior. Below this point, there is sufficient bandwidth

to sustain both DL and cross traffic jobs without interference. Above this point,

the two traffic types must compete, leading to congestion. I calculate the congestion

point in two steps; first, by finding the intersection of two lines: one fitted to the

sufficient (spare) bandwidth region, and one fitted to the first several points (tangent

to the curve) of the congestion region; and second by then multiplying the available

DL bandwidth by the iteration time at this point. The full procedure is outlined in

Appendix A.2. For example, the congestion point for VGG-16 occurs at (13.99, 0.68)

in Figure 3-2(a).

I then compare the theoretical demand for each model, calculated as per equa-

tion 3.1, with this experimental congestion point in Table 3.2. I can now analyze

systematic differences between the theoretical and empirical values for each loading

scenario. I observe that the calculated congestion point is larger than the theoretical

point for every model. This systematic difference occurs as the calculated conges-

tion point assumes all bandwidth unused by the cross traffic is carrying productive

DL traffic, which is not necessarily the case, and will lead to an overestimate of the

congestion point’s data value. The difference between the theoretical and congestion

point estimate is small, around 10% for BERT-large and VGG-16, but larger for the

smaller models, especially for the computationally heavy model DenseNet, with a

56% difference. This difference is likely due to the computational performance of the

model still making a notable contribution to the iteration time despite the presence

of congestion during model communication.

44

Table 3.3: Comparison of the theoretical and experimental bandwidths required by
DL training in the most NIC bottlenecked test case from Figure 3-2 using iperf cross
traffic.

Model Theoretical Experimental Difference
BERT-large 3.06 Gbps 4.54 Gbps 1.48 Gbps
VGG-16 5.19 Gbps 6.52 Gbps 1.33 Gbps
DenseNet-161 2.04 Gbps 3.42 Gbps 1.38 Gbps
ResNet-50 2.90 Gbps 4.21 Gbps 1.31 Gbps

I extrapolate the ideal (theoretical) bandwidth required to serve the DL train-

ing from the most NIC bottlenecked sample point of each model series. The ideal

bandwidth can be calculated by dividing the theoretical data transfer per iteration

by the experimentally observed iteration time, for example, BERT-large’s theoretical

consumption is calculated in equation 3.4:

𝐵𝑊 (BERT Exp.) = 2011 MB÷ 5.257 s = 3.06 Gbps (3.4)

I compare this ideal figure with the experimental bandwidth used in Table 3.3 for

an alternative insight into the performance of DL when competing with iperf cross

traffic. This provides a quantitative sense of how much of the bandwidth available to

the DL training is being used efficiently, for example, BERT requires 3.06 Gbps as

calculated in equation 3.4, but I observe it utilizes 4.52 Gbps, leaving a difference of

1.48 Gbps available for improvements.

Takeaways: The key takeaways from my analysis of iperf traffic are that: (i) the

congestion points of a series of DL models tested against increasing levels of cross traf-

fic were well predicted by the theoretical demand calculated by equation 3.1. (ii) As

expected, cross traffic negatively impacts the iteration time of distributed DL train-

ing when the degree of congestion exceeds the required bandwidth for training. For

example, when the cross traffic load is 20.5 Gbps, BERT’s iteration time is increased

by 5.3× compared to the zero cross traffic case.

45

3.3 Performance Against Web-Search Cross Traffic

I utilize the cluster in configuration B for this series of experiments. I generate cross

traffic between two servers as shown in Figure 3-1(b), with the TCP flow generation

script described in Section 2.5. I apply a web-search profile load, either with a con-

sistent demand level, or with millisecond long bursts in the form of a 1 ms 300%

demand spike every 10 ms. The traffic competes with the incoming RDMA or TCP

Horovod traffic on the incoming link. I find that in most cases, high cross traffic levels

are easier to achieve than with the iperf tool. Each model’s low cross traffic cases

are compared against those obtained from the low iperf cross traffic results, as at

low link utilization, there should be no congestion, allowing for verification of correct

operation at this level.

3.3.1 Consistent Web-Search Cross Traffic

I begin each experiment in the series by verifying that the TCP flow generation script

is able to achieve a minimum of at least 22 Gbps on the bottleneck link and that

all links are in 25 Gbps mode using iperf. I then run the relevant DL jobs with

stepped growth in cross traffic demand for a minimum of 120 s, or approximately 100

iterations, to minimize disruption due to socket errors, and potential memory and

handling issues with large quantities of parallel communications from the TCP flow

generation script at heavy loads. The average number of iterations across all models

is 880.

Expected impacts of consistent traffic: As in the iperf cross traffic scenario,

my hypothesis is that we should expect to observe a minimal change in the iteration

time from zero cross traffic, up to a point at which there is insufficient bandwidth

to transport the parameters required, with an additional note: I expect the use of

consistent web-search flows as the source of cross traffic to lead to a greater degree

of interference between the DL task and the cross traffic, and thus worse iteration

times. This expectation is drawn from the behavior of congestion control; if all flows

are relatively large and long lived, as in the iperf traffic case, this is an easy problem

46

0.1

1

10

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Cross Traffic Load (Consistent Web-Search) (Gbps)

BERT-large (24) VGG-16 DenseNet-161 ResNet-50

0.1

1

10

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Reciprocal of Bandwidth Available Scaled to 1 at 0 Gbps Cross Traffic

a)

b)

Figure 3-3: Mean behavior of DL tasks in the presence of consistent web-search cross
traffic. The vertical bars on each data point represent the measured 99% tail iteration
time of that experiment. Graph (a) plots the degradation of iteration performance
against the quantity of consistent web-search cross traffic, while graph (b) re-scales the
x-axis using a hyperbola to produce a more linear relationship between degradation
and the reduction in available DL bandwidth.

47

to solve. However, if the flows are numerous, small, and unpredictable, like the

consistent web-search traffic profile, the algorithm must attempt to control flows that

may have already ended, making a fair share and full utilization harder to achieve.

Figure 3-3 plots the mean recorded iteration times against the level of consistent

web-search cross traffic applied to the network. The 99th percentile tail of each it-

eration time data point, calculated from all of the measured iteration times in that

experiment, is shown for each series in Figure 3-3 as a vertical bar extending above

the mean value. Figure 3-3(a) again demonstrates the hypothesized relationship for

DenseNet and ResNet, with minimal changes in iteration time for the region up to

their respective congestion points at 17.9 Gbps and 15.8 Gbps of cross traffic. The

BERT and VGG model series in Figure 3-3(a) showed a more significant early increase

in iteration time in this cross traffic scenario.

The increase in early degradation to iteration time is especially noticeable in the

visibly higher 99% tail iteration times in Figure 3-3(a), shown by the vertical bars

attached to each series’ data points, even at low cross traffic levels. Tail iteration

time performance is an important consideration for overall job completion time in

synchronous DL, as the next step of the computation phase cannot proceed until

all workers have completed their previous iteration. The rate of the iteration time

increase in Figure 3-3(a) across all models increases with the level of cross traffic,

as in the iperf traffic scenario, leading to a similar non-linear (and therefore super-

exponential) characteristic function.

In Figure 3-3(b), I re-scale the cross traffic axis to understand the underlying

mathematical function in operation. I apply a hyperbola transformation, described in

equation 3.2, as before. Figure 3-3(b) has two distinct sets of trends, corresponding

to the smaller two and larger two sized model series shown in Figure 3-3(a). The

behavior of the small models in Figure 3-3(b) still falls into the flat and non-linear

two region behavior observed in the iperf traffic results, but the large size models are

now non-linear. A close visual inspection of Figure 3-3(b) suggests that the iteration

time decay is slower than in the iperf cross traffic case. After the hyperbola transform

has been applied, the BERT and VGG model series iteration times increase at a

48

Table 3.4: Comparison of the data required for a single DL iteration derived from the-
ory and calculated from the observed congestion point in Figure 3-3 when competing
with consistent web-search cross traffic.

Model Theoretical Experimental Value % DifferenceDemand of Congestion Point
BERT-large 1787.6 MB 2296.4 MB 28%
VGG-16 737.9 MB 990.7 MB 34%
DenseNet-161 153.0 MB 355.2 MB 132%
ResNet-50 136.3 MB 198.8 MB 46%

decreasing rate along the re-scaled x-axis. This implies that the remaining function

is highly likely to be of the form 𝑥𝑘 where 0 < 𝑘 < 1. Testing the simplest choice,

𝑘 = 1/2, gives a excellent fit, as shown in Figure B.2(b) in Appendix B.2, with an

average 𝑅2 = 0.99 across both series. The general form of the fit equation, with

fit coefficients 𝐴 and 𝐵 (for example 𝐴 = 0.204, 𝐵 = 1.44 for BERT) is given in

equation 3.5.

𝑡 = 𝐴𝑒
𝐵√

25−𝐵𝑊 (3.5)

To analyze the performance of DL training against consistent web-search traffic, I

first calculate the volume of data required by each model per iteration in configuration

B from Figure 3-1, and find the congestion point of each model under consistent web-

search cross traffic, for example, it occurs for VGG-16 at (15.70,0.85) in Figure 3-3(a).

These values are presented in Table 3.4. As the observed volume of data required to be

transmitted is larger than the theoretical ideal value, a greater share of bandwidth is

required for a longer period than necessary to complete the transfer. This implies that

the DL task is unable to utilize the network as efficiently as is theoretically possible.

Further, as expected, I observe a larger gap between the theoretical demand and the

experimental congestion point, at an average of 31% for BERT and VGG, suggesting

the DL task is more highly impacted by the consistent cross traffic, compared to the

iperf cross traffic. The difference for DenseNet is also significantly larger in this case,

suggesting this model is unable to respond efficiently to update starvation, a logical

consequence of computational intensity, compared to the other model types.

49

Table 3.5: Comparison of the theoretical and experimental bandwidths required by
DL training in the most congested test case from Figure 3-3 using consistent web-
search cross traffic.

Model Theoretical Experimental Difference (%)
BERT-large 1.06 Gbps 3.18 Gbps 2.12 Gbps (67%)
VGG-16 1.13 Gbps 3.19 Gbps 2.06 Gbps (65%)
DenseNet-161 0.98 Gbps 2.97 Gbps 1.99 Gbps (67%)
ResNet-50 3.85 Gbps 5.83 Gbps 1.98 Gbps (34%)

I then compare the ideal and experimental bandwidths in Table 3.5. Compared

to the iperf cross traffic case, both experimental and ideal values are lower, as higher

cross traffic loads were reachable using consistent web-search traffic, leading to a

lower available bandwidth at the most bottlenecked test case. However, the difference

between the ideal and observed bandwidths was larger for each model than in the iperf

traffic case, with, for example, BERT-large utilizing 3.18 Gbps when it theoretically

required 1.06 Gbps, a difference of 2.12 Gbps (67%). This supports the analysis that

the DL task is unable to make the most efficient possible use of the network resources

it has available when competing against consistent web-search cross traffic.

Takeaways: The key takeaways from my analysis of consistent web-search traffic

are that: (i) DL training is less efficient in its use of network bandwidth when com-

peting with consistent web-search cross traffic in comparison to iperf cross traffic. (ii)

The bandwidth difference between theoretical utilization and experimental observa-

tion for the most bottlenecked test case under consistent web-search cross traffic is

larger than the equivalent case under iperf cross traffic, with an average difference

of 2.03 Gbps (58%) between ideal and experimental results. (iii) Empirical functions

for the iteration time under cross traffic load are able to predict the iteration time

behavior of DL tasks.

3.3.2 Burst Web-Search Cross Traffic

As in the previous case, I verify that the TCP flow generation script is able to achieve

a minimum of at least 22 Gbps on the link and that all links are in 25 Gbps mode

using iperf. I generate burst loads using Algorithm 2, which allows the width, height,

50

and repeating pattern of bursts to be controlled. The mechanics of the algorithm are

covered in detail in Appendix A.1. For the burst web-search traffic experiments, I

select a width of 1 ms, a period of 10 ms, and a height of 3× the consistent mean

level. This equates to, for a target average load of 6 Gbps as an example, a 1 ms

period of 300% of nominal traffic (averaging 2.3 MB - 18 Gbps) followed by a 9 ms

period of 78% of nominal traffic (averaging 5.3 MB - 4.7 Gbps). Figure B.3 presents

another example of this traffic for a 9 Gbps average load. Traffic from the TCP

flow generation script is graphed to verify it met the required network specifications.

I select this scale of burst behavior to ensure a clear difference is evident between

burst and consistent web-search traffic, and to be in a reasonable range to represent

the considerable magnitude of burst flows in data center networks [87]. The burst

segments of the traffic impede the DL tasks if they both occur at the same time, even

if the overall average bandwidth is insufficient for this to happen otherwise. I set the

burst period to be significantly shorter than the shortest iteration time recorded, here

ResNet-50 at 0.16 s, to ensure that multiple bursts occur within an iteration and thus

the predicted impedance occurs.

After validation, I sweep each DL job with stepped growth in burst cross traffic for

a minimum of 180 s, with additional runs captured to ensure the minimum number

of valid iterations is at least 50. There are two exceptions to this, the 25 Gbps runs

of VGG and BERT, which contain fewer runs due to the length of the observed single

iteration times. The average number of iterations captured across all models and runs

is 1216, weighted towards low level cross traffic cases.

Expected impacts of burst traffic: As per both previous scenarios, my hy-

pothesis is that we expect to observe a minimal change in the iteration time from zero

cross traffic, up to a point at which there is insufficient bandwidth to transport the

parameters required. The difference in this scenario is that I expect the congestion

point to occur sooner in the computation light models than in previous cases, as their

iteration times are more sensitive to the communication efficiency, as there is less

computation available to mask delays due to events such as bursts on the network.

Further, I expect that burst traffic should be more difficult to manage than consistent

51

a)

b)

0.1

1

10

100

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Cross Traffic Load (Burst Web-Search) (Gbps)

BERT-large (24) VGG-16 DenseNet-161 ResNet-50

0.1

1

10

100

1 3 5 7 9 11

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Reciprocal of Bandwidth Available Scaled to 1 at 0 Gbps Cross Traffic

Figure 3-4: Mean behavior of DL tasks in the presence of burst dominated web-search
cross traffic. The maximum link capacity is 25 Gbps. The vertical bars on each data
point represent the measured 99% tail iteration time of that experiment. Graph (a)
plots the degradation of iteration performance against the quantity of burst web-
search cross traffic, while graph (b) re-scales the x-axis using a hyperbola to produce
a more linear relationship between degradation and the reduction in available DL
bandwidth.

52

web-search traffic for congestion control, as bursts are both large and short.

Figure 3-4 plots the mean recorded iteration times against the level of burst web-

search cross traffic applied to the network. The 99th percentile tail of each iteration

time data point, calculated from all of the measured iteration times in that exper-

iment, is shown for each series in Figure 3-4 as a vertical bar extending above the

mean value. Figure 3-4(a) demonstrates the hypothesized relationship showing two

distinct regions, separated by the congestion point, for all series. I observe the ex-

pected minimal change in iteration times for low traffic levels is true for large models

as well as small models in this scenario as the DL traffic is carried over TCP rather

than RDMA. This is in contrast to the previous scenarios, where a distinction could

be made between the larger VGG and BERT models and the smaller DenseNet and

ResNet models. This network difference is discussed in detail in Section 3.4.2.

As in the previous traffic scenarios, the DenseNet and ResNet model series in

Figure 3-4(a) remained flat with minimal effect on iteration time up to the congestion

point, with a super exponential increase in the second region. Across the three load

types, I observe the distance between the congestion points of the smaller models,

DenseNet-161 at 19.9 Gbps, and ResNet-50 at 18.4 Gbps, to be the lowest in this case.

Therefore the computational difference between these models has the least effect on

bandwidth requirements when cross traffic is periodically bursty.

The BERT and VGG model series in Figure 3-4(a) show a flat characteristic before

they reach their congestion points at 14.6 Gbps and 16.6 Gbps respectively. At high

cross traffic levels, significantly steeper curves are observed in Figure 3-4(a) for both

series in comparison to the previous scenarios.

In Figure 3-4(b), I re-scale the cross traffic axis to understand the underlying

mathematical function in operation. I apply a hyperbola transformation, described

in equation 3.2, as in the previous scenarios. As expected from the consistent form

of all series in Figure 3-4(a), the transformed series in Figure 3-4(b) all appear to

have the same non-linear functional form. A close visual inspection of Figure 3-4(b)

suggests that the iteration time decay is faster than in the iperf cross traffic case.

After the hyperbola transform has been applied, the BERT and VGG model series

53

Table 3.6: Comparison of the data required for a single DL iteration derived from
theory and calculated from the discontinuity observed in Figure 3-4 when competing
with burst web-search cross traffic. The observed discontinuity is then compared to
the equivalent consistent web-search cross traffic result.

Model Theoretical Experimental Value % DifferenceDemand of Congestion Point
BERT-large 1787.6 MB 2343.5 MB 31%
VGG-16 737.9 MB 925.3 MB 25%
DenseNet-161 153.0 MB 284.9 MB 86%
ResNet-50 136.3 MB 203.2 MB 49%

iteration times increase at an increasing rate along the re-scaled x-axis. This implies

that the remaining function is highly likely to be of the form 𝑥𝑘 where 𝑘 < 1. Testing

the simplest choice, 𝑘 = 2, gives a good fit, as shown in Figure B.2(c) in Appendix B.2,

with an average 𝑅2 = 0.83 across all series, and an 𝑅2 = 0.91 for BERT-large. The fit

is excellent for values below 17 Gbps, but is less suited above this level of cross traffic,

as discussed further in Section 3.4.2. The general form of the square fit equation, with

constants 𝐴 and 𝐵, is given in equation 3.6.

𝑡 = 𝐴𝑒
𝐵

(25−𝐵𝑊)2 (3.6)

To analyze the performance of DL training against burst web-search traffic, I reuse

the calculated the volume of data required by each model per iteration in configuration

B, and find the congestion point of each model under burst web-search cross traffic,

for example, it occurs for VGG-16 at (16.60,0.88) in Figure 3-4(a). These values

are presented in Table 3.6. I observe similar congestion points in the burst case as

in the consistent web-search case, with congestion point values within 100 MB of

the consistent web-search scenario. As expected, the differences between theory and

measured congestion points followed the trends established for the previous traffic

scenarios, with a relatively modest 28% difference for the large models, similar to the

consistent web-search results, and a much larger difference for the smaller models,

especially for DenseNet-161, although it is smaller for this load compared to consistent

web-search.

54

Table 3.7: Comparison of the theoretical and experimental bandwidths required by
DL training in the most congested test case from Figure 3-4 using burst web-search
cross traffic. Note BERT and ResNet were both tested up to 24.7 Gbps of cross
traffic, while VGG and DenseNet were only tested up to approximately 21.5 Gbps.

Model Theoretical Experimental Difference (%)
BERT-large 0.078 Gbps 0.347 Gbps 0.27 Gbps (78%)
VGG-16 0.232 Gbps 3.601 Gbps 3.38 Gbps (94%)
DenseNet-161 0.131 Gbps 3.306 Gbps 3.18 Gbps (98%)
ResNet-50 0.095 Gbps 0.347 Gbps 0.25 Gbps (73%)

I next compare the ideal and experimental bandwidths in Table 3.7. Compared

to both previous cases, the experimental values are higher and ideal values are signif-

icantly lower, demonstrating a larger difference between average available and theo-

retically utilized bandwidth. This is expected as burst traffic, especially at high cross

traffic volumes, should prevent DL training tasks from utilizing available bandwidth

more effectively than other forms of cross traffic, as bursty traffic is by definition not

at a consistent level. This result also demonstrates that in settings where burst traffic

is dominant, there is significantly more room to improve utilization, with a range of

73 to 98% available headroom on a 25 Gbps link, even at very heavy cross traffic

(24.7 Gbps) levels, compared to around 34-67% available headroom for consistent

web-search traffic.

Takeaways: The key takeaways from my analysis of burst web-search traffic are

that: (i) DL training competing with burst web-search cross traffic is least effective at

utilizing the available network capacity, compared to the previous scenarios. This is

especially notable, as these results are closest to real-world traffic. (ii) The bandwidth

difference between theoretical utilization and experimental observation under heavy

cross traffic loads is largest in this scenario, and represents an opportunity to increase

the efficiency of DL tasks through networking improvements. (iii) As noted previously,

empirical functions for the iteration time under cross traffic load are able to predict

the iteration time the behavior of DL tasks.

55

Table 3.8: Mean under-performance by DL tasks (spare capacity) over bottleneck
for the range of test cases where the link is saturated. Values are calculated as
the difference (delta) between the bandwidth required to theoretically sustain the
measured iteration time, and observed available bandwidth. Note: Very heavy cross
traffic points in the BERT and ResNet series are excluded.

Model iperf Consistent Burst
Web-Search Web-Search

BERT-large 1.24 Gbps 2.63 Gbps 2.62 Gbps
VGG-16 1.12 Gbps 2.39 Gbps 2.51 Gbps
DenseNet-161 1.64 Gbps 2.84 Gbps 2.75 Gbps
ResNet-50 1.21 Gbps 2.25 Gbps 2.52 Gbps

3.4 Analysis of Cross Traffic Types

I now seek to compare the impact each cross traffic type has on the DL task it is in

competition with. We know the amount of bandwidth available to the DL task for

each experiment. We can calculate the ideal bandwidth required from the iteration

time recorded for the same experiment, which we can then compare with the recorded

available bandwidth to determine the size of the difference. Calculating this difference,

or delta, for the test cases where the link is saturated is therefore a good criterion for

comparison between the types of cross traffic, as it measures how far from the ideal

full utilization of the link the DL training is operating (how much more bandwidth

is being consumed to produce the same level of performance), and thus how well the

congestion control algorithm is performing.

The bandwidth deltas for each model and cross traffic type are listed in Table 3.8.

We observe a consistent step size of between 1 to 1.4 Gbps between the iperf and

consistent web-search cross traffic types, and no significant change between the two

types of web-search traffic. This implies that all models are uniformly affected by

the more dynamic congestion environment provided by either variety of web-search

cross traffic compared to iperf cross traffic, while the effects of burst traffic are not

significant to the mean bandwidth requirements for the saturated region, quoted in

Table 3.8, despite having a pronounced effect on the most congested test cases.

As seen in the previous sections, the most heavily bottlenecked cases have spare

56

capacities above, in percentage terms, those in Table 3.8. Working from the most

bottlenecked examples, the spare capacity on offer, if able to be utilized, would provide

gains of between 34-67% per model series for consistent web-search, and up to 73-

98% per model series for burst web-search cross traffic, demonstrating the effects this

traffic type has at the highest congestion levels. To give an example, BERT-large at

its most congested (24.7 Gbps) against burst cross traffic could run approximately

5× faster (at 37 s compared with 184 s per iteration) if it utilizes all of the bandwidth

theoretically available. At a more moderate point of 19.8 Gbps of cross traffic, BERT-

large could achieve a speed-up of approximately 2× times (from 5.2 s to 2.6 s per

iteration) in the same manner.

Takeaway: The key takeaway from this analysis is that the bandwidth differences

listed in Table 3.8 represent the space for potential improvement in congestion control

algorithms to better utilize the network for these traffic types.

3.4.1 Variance of Cross Traffic Effects by Loading

While I have so far looked at the behavior of the mean iteration times observed by

DL training, this is potentially insufficient to develop a full picture of the behavior

of a single data point, as the shape of the cumulative density function (CDF) must

also be considered to understand the variance, dominance or lack of a tail, and any

other features of note of the distribution. Therefore, I consider three representative

models, ResNet-50, VGG-16, and BERT, as the most network dependent choices, in

two network settings, with low levels of cross traffic (around 8 Gbps or 30%) and

with high levels of cross traffic (around 20 Gbps or 80%). These are displayed in

Figure 3-5(a) and (b) respectively. The values for 8 and 20 Gbps were drawn from

the true measured bandwidths calculated from data from the tcpdump tool, rather

than the requested input values. I made this choice as while the difference between

these points is typically small, at high levels of cross traffic it can be on the order of

1-2 Gbps, and as the iteration times form a super exponential characteristic, selecting

the wrong pair of series for comparison would produce misleading results.

Each model series is presented for consistent and burst web-search cross traffic, to

57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.5 1.0 1.5 2.0

CD
F

Iteration Time (s)

BERT (Consistent) VGG (Consistent) ResNet (Consistent)
BERT (Burst) VGG (Burst) ResNet (Burst)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1.0 10.0

CD
F

Iteration Time (s)

a)

b)

30% Load

80% Load

Figure 3-5: CDF of DL iteration times for three models, BERT, VGG and ResNet,
comparing burst and consistent web-search cross traffic. Figure (a) shows a light
(30%) cross traffic load, while (b) shows a heavy (80%) load. Note the time axis in
graph (a) is considerably shorter than the logarithmic axis in graph (b).

58

visualize the effects of burst traffic on the distribution of training iteration completion

times. All of the series in both graphs of Figure 3-5 use TCP for DL traffic, to remove

this as a possible cause of difference between the series. I have included a CDF of DL

performance for consistent web-search under Remote Direct Memory Access (RDMA)

and TCP performance by way of comparison in Appendix B.1 as Figure B-1.

First I discuss Figure 3-5(a) in detail. At this comparatively low level of cross

traffic, there is a negligible gap between the profiles of VGG-16 or ResNet-50 for burst

and consistent traffic. Further, the distributions are almost vertical, indicating a very

small variance and a minimal to non-existent tail. This is the expected result, as there

is room on the link for both tasks to proceed without mutual interference, leading to

consistent iteration times for the DL tasks under consideration. The BERT burst task

is slightly faster than the consistent task, which is unexpected. When compared with

the results obtained in Section 3.4.2 and Figure 3-6, both the burst and consistent

series jitter throughout the low load regime, despite recording a minimum of 250

points per average in this range and having similar averages over all data points in

this region. This instability may be due to the data handling and loading process

required by the TCP communication pathway, as it is not visible in the RDMA sample

in Figure 3-6, although the RDMA/TCP CDF, Figure B-1, does show a significant

tail. This is discussed in depth in Section 3.4.2. The variance of the BERT curves is

also significantly larger than the other two models considered.

Now, we consider the highly loaded case, Figure 3-5(b), in detail. Here, as ex-

pected, all of the series utilizing burst web-search cross traffic perform worse than

the consistent web-search cross traffic series. Further, the burst loads also have sig-

nificantly stronger tail behaviors than the consistent loads. All models, as one would

expect from a more bottlenecked environment, experience a greater range of iteration

times, and thus have a higher variance, and thus lower slope, than the low load case.

Note that this plot uses a logarithmic scale to demonstrate the scale of difference,

as the BERT burst web-search traffic series, in particular, is considerably above its

consistent equivalent.

Takeaways: The key takeaways from this analysis are that: (i) At 30% load, there

59

is minimal difference in impact on a DL task’s iteration time between consistent web-

search and burst web-search cross traffic. (ii) At 80% load, burst web-search cross

traffic has a considerably higher impact on the iteration time of DL tasks. (iii) the tails

of the recorded iteration time distributions are considerably worse and less consistent

under heavy cross traffic loads.

3.4.2 Effect of Cross Traffic Type on Model Performance

I now consider the impacts of each cross traffic type used in this thesis on ResNet-50,

as an example of a small model, and BERT-large, as an example of a large model,

in order to understand the differences in how the models respond to the different

load types in a direct comparison. I present this comparison in Figure 3-6, with

iperf (DL on RDMA), consistent web-search (DL on RDMA), consistent web-search

(DL on TCP) and burst web-search (DL on TCP) as cross traffic series. Remote

Direct Memory Access (RDMA) traffic refers to the protocol that Horovod uses to

aggregate parameters during the communication phase of an iteration. As opposed to

traditional TCP, RDMA uses the UDP transport layer, and allows for direct copying

between system memory and the NIC buffers, bypassing the CPU. In the context of

DL training, this represents the removal of a significant performance bottleneck, as

aggregation results are not dependent on the CPU and may proceed directly to GPU

memory [94, 95].

RDMA and TCP

Firstly, I consider the difference between RDMA and TCP DL traffic on iteration

time when competing against consistent web-search cross traffic. In Figure 3-6(a),

the BERT model is clearly able to iterate more quickly at low cross traffic levels when

running in RDMA mode, as one would expect, as it is a large model dependent on

significant data transport per iteration. The initial recorded means for RDMA and

TCP DL are 0.84 s and 1.45 s respectively, supporting this. However, we can see

that the RDMA case is immediately network limited, with the recorded speeds of

60

0.1

1

10

100

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Cross Traffic (Gbps)

0.8

8

80

800

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Cross Traffic (Gbps)
Burst Web-Search (TCP) Consistent Web-Search (RDMA)
iperf (RDMA) Consistent Web-Search (TCP)

a)

b)

BERT

ResNet

Figure 3-6: Mean iteration times of (a) BERT-large and (b) ResNet-50 DL tasks in
the presence of iperf, consistent web-search (DL on RDMA), consistent web-search
(DL on TCP) and burst web-search (DL on TCP) cross traffic. The maximum link
capacity is 25 Gbps. The vertical bars on each data point represent the measured
99% tail iteration time of that experiment.

61

Table 3.9: Numeric fits for the functions modeling the degradation of BERT-large and
ResNet-50 iteration times for DL tasks running RDMA and TCP communications in
the presence of consistent web-search cross traffic. The corresponding graphs are
presented in Figure B-3.

Model RDMA TCP

BERT-large 𝑡 = 0.200 exp
(︁

7.281√
25−𝐵𝑊

)︁
𝑡 = 0.564 exp

(︁
3.667√
25−𝐵𝑊

)︁
ResNet-50 𝑡 = 0.140 exp

(︁
22.793

(25−𝐵𝑊)2

)︁
𝑡 = 0.0645 exp

(︁
3.311√
25−𝐵𝑊

)︁

iterations decaying from the first presence of cross traffic on the bottleneck link. In

contrast, the TCP case does not respond to increasing network demand until after

the RDMA case’s iteration time advantage has been lost. This is because the CPU is

performing processing in the TCP case, which delays traffic but also provides a buffer

to absorb the initial network slowdown before it impacts performance. At medium

and high levels of cross traffic, while the points of the two series are statistically

distinct from each other, they trace almost identical super exponential curves, and

thus have a similar effect on network behavior.

In Figure 3-6(b), the ResNet model, which is considerably smaller, has a flat

characteristic under both RDMA and TCP DL until the congestion point is reached.

This is expected as any gains to the system provided by RDMA would be significantly

smaller, as the CPU load required by TCP would also be much smaller. Small degra-

dation is not expected in this case as the base requirement for network bandwidth

by the DL task is small compared to the total available bandwidth, so degradation

is only expected (and observed) at high to very high cross traffic levels. At these

high settings, the behavior of the RDMA and TCP-backed DL task again follow very

similar curves across the range of analysis, as the network environment becomes the

controlling factor. This behavior matches that observed by the Horovod development

team comparing the performance of RDMA and TCP [91].

In order to quantify these observations, I perform numerical fits to the RDMA and

TCP consistent web-search data-sets, using the models derived in Section 3.3.1 and

Section 3.3.2. I fit the consistent web-search model to each curve, using least-squares

error and the Microsoft Excel solver add-in [96], and list the result in Table 3.9. The

62

graphical fits are provided in Figure B-3 in Appendix B.2. The ResNet-50 RDMA

series contains a short enough cross traffic range that the burst web-search model

provides a better fit, so I utilize this model for this series. Overall, I achieve an average

𝑅2 = 0.97 for the RDMA fits and an average 𝑅2 = 0.96 for the TCP fits. The TCP

fits have a lower coefficient of determination as they extend closer to the asymptote

at the link capacity. This analysis supports the previous qualitative observations,

showing small differences across the full experimental range.

Takeaways: The key takeaways from this analysis are that: (i) While individual

points do not agree, small DL models are effectively indistinguishable regardless of

load. (ii) At heavy loads, the key point of interest to my thesis, all DL models behave

similarly with each type of protocol with this configuration. (iii) The numerical

fits support these observations, confirming that there is little difference between DL

models carried by RDMA and TCP from the point of view of their network responses.

iperf Traffic, Consistent and Burst Web-Search Traffic

Secondly, I consider the impacts of the different load types on the iteration perfor-

mance. From the analysis on individual traffic types performed to this point, we

would expect the order of traffic types, ranked by their efficacy in slowing DL tasks,

to be: iperf, consistent web-search, burst web-search. The iperf traffic, denoted by

the light blue line series in Figure 3-6, performs equivalently to slightly behind the

purple consistent web-search series across the full range of bandwidth values. The

lack of separation at low loads is not surprising, and is mirrored by the burst traffic

results, as at low demand, bottlenecks do not occur. The DL task for iperf cross

traffic, carried by RDMA, approximates the consistent cross traffic RDMA task for

Figure 3-6(a) as expected. While the level of iperf traffic performance is worse than

initially expected, by following the curve outlined by the existing points, we observe

that at high loads iperf traffic allows the DL task to perform better than consistent

web-search traffic. Using an alternative iperf traffic generator above the level of cross

traffic achieved would show this separation more clearly.

In both graphs of Figure 3-6, the dark blue burst curve is somewhat above the

63

0

1

10

100

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Competing Traffic (Gbps)

1

10

100

1000

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Competing Traffic (Gbps)
Burst Web-Search (TCP) Burst Fit
Consistent Web-Search (TCP) Consistent Fit

a)

b)

R2=0.971

R2=0.970

R2=0.829

R2=0.956

BERT

ResNet

Figure 3-7: Mean iteration times of (a) BERT-large and (b) ResNet-50 DL tasks in the
presence of consistent web-search and burst web-search cross traffic. The maximum
link capacity is 25 Gbps. Fits based on equation 3.5 are included for all series in both
graphs (a) and (b). Coefficients of determination are presented for each fit, and the
vertical bars on each data point represent the measured 99% tail iteration time of
that experiment.

64

Table 3.10: Numeric fits for the functions modeling the degradation of BERT-large
and ResNet-50 iteration times in the presence of consistent and burst web-search cross
traffic.

Model Consistent Web-Search Burst Web-Search

BERT-large 𝑡 = 0.564 exp
(︁

3.667√
25−𝐵𝑊

)︁
𝑡 = 0.268 exp

(︁
7.310√
25−𝐵𝑊

)︁
ResNet-50 𝑡 = 0.0645 exp

(︁
3.311√
25−𝐵𝑊

)︁
𝑡 = 0.0862 exp

(︁
4.174√
25−𝐵𝑊

)︁
other traffic classes, and therefore more effective at disrupting DL tasks. In Figure 3-7

I have performed a least-squares error fit of the empirical equation 3.5, derived for

the consistent web-search traffic case in Section 3.3.1, to the curves for consistent and

burst traffic. This produces the functions listed in Table 3.10. I made this choice as

the burst traffic model derived in the previous section, while more accurate to around

17 Gbps, is unable to handle the discontinuity due to the maximum possible traffic

load of 25 Gbps. The high level of uncertainty in the high bandwidth test cases limits

the quality of the fits obtained, and also the level of precise analysis possible.

Takeaways: The key takeaways from this analysis are that: (i) The empirical

models demonstrate that the iteration time performance is more severely degraded

by the burst load than the consistent load. (ii) The general form of empirical model,

equation 3.7, established by this work is broadly applicable to DL tasks competing

with different cross traffic types at different load levels.

𝑡(𝐵𝑊) = 𝐴 exp

(︂
𝐵

(𝐶 −𝐵𝑊)𝑛

)︂
(3.7)

where 𝑡 is the iteration time, 𝐵𝑊 is the bandwidth, 𝐴,𝐵 are fit coefficients, 𝑛 specifies

the functional family and 𝐶 is the bottleneck capacity.

Cross Traffic Variance

In order to understand the reasoning behind the large standard deviations observed

in the measurements of bandwidths at high cross traffic levels in Figure 3-6, I consider

the histogram presented in Figure 3-8. The two distributions, taken from burst and

consistent web-search traffic at a 24 Gbps cross traffic level, have considerably different

65

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

ize
d

Hi
st

og
ra

m
 C

ou
nt

Instantaneous Packet Injection Rate (Gbps)

Burst Traffic Histogram Consistent Traffic Histogram
Burst Traffic Mean Consistent Traffic Mean

Figure 3-8: Histogram of 60,000 instantaneous measurements of the packet injection
rate for burst web-search traffic and consistent web-search traffic, both for the re-
quested load of 24 Gbps. A significant tail is present in the burst traffic histogram
that is not present in the symmetric consistent traffic. The height of both distribu-
tions is normalized to the highest peak, and the mean of each distribution is shown
with the dotted vertical line.

profiles, with the burst histogram exhibiting a lower peak, but a considerable tail and

skew, as we would expect from a periodic bursty flow. In comparison, the consistent

histogram is symmetric about its mean. Both histograms display a relatively high

peak width, due to the stochastic sampling of the flow sizes and times leading to

varying demand over time.

These relatively high variances increase the complexity of analysis, but the con-

sistency of the means between traffic types means comparisons are still practical.

The histogram widths are logical consequences of the way the selected load genera-

tion algorithm operates. Real-world traffic, which is not designed to have a specific

mean, would likely have at least this width, if not larger, hence this behavior is not

detrimental to building an understanding of the behavior of DL in response to cross

traffic.

66

Takeaway: The key takeaways from this analysis are that: (i) precise values at

high load points are difficult to achieve due to the width and skew of the sample

peaks, limiting the maximum confidence in fits obtained in this region. (ii) The

histogram behavior indicates that over the experimental times under consideration,

the profiles of the two traffic types are distinctly different, stochastic, and adhere to

the key characteristics expected of each traffic type.

3.5 Iteration Scale Network Interactions

To complete the picture developed in this thesis of network interaction with DL

training, I consider the way a single iteration is affected by low (30%) and high

(80%) cross traffic settings in detail. These results were captured from packet traffic

on network configuration B in three key locations: a node only participating in DL

(referred to as DL only), the node generating the cross traffic (referred to as cross

traffic only), and the node receiving both the cross traffic and DL traffic (referred to

as DL shared). I filter for outbound traffic with non-zero payload length to clarify

flow directions and to prevent double counting. From this filtering, I separate three

key flows, which are shown in Figure 3-9. Flow 1 captures the behavior of the DL

ring when the link is not locally congested, but the ring is congested elsewhere.

Flow 2 shows the effect of local congestion, as server 𝑆0 is unable to advance its

calculations until it has received all relevant updates through the congested inbound

path. Flow 3 tracks the cross traffic incoming to server 𝑆0. I made this choice to

ensure any difference between DL load behaviors in the two tested load scenarios is

visible. I utilize consistent web-search cross traffic to provide a reasonable level of

traffic complexity without needing to account for the added complications of burst

traffic in an iteration by iteration analysis. My hypothesis is that under heavy cross

traffic loads, a large variation in profile should exist between flows 1 and 2, as flow

2 should experience a significantly different congestion environment, despite both

carrying the same data per time.

67

S0

S1

S2

S3

B

Switch
Inbound Path to S0

Flow 1 – DL Only
Flow 2 – Shared Node
DL Outbound

Flow 3 – TCP Cross Traffic

Figure 3-9: IP logical view of Configuration B from Figure 3-1. Flows 1, 2 and 3
are monitored using tcpdump and are reported in Figure 3-10 and Figure 3-11. The
Horovod training ring consists of servers 𝑆0, 𝑆1 and 𝑆3, with switch 𝑆2 feeding cross
traffic into 𝑆0. Although all servers use the switch, only the inbound path to switch
𝑆0, the location of the bottleneck link, is shown.

ResNet Analysis: Figure 3-10 demonstrates the behavior of ResNet-50 in each

cross traffic setting. Figure 3-10(a) graphs two complete iterations, showing the peaks

and troughs expected from an average 8 Gbps consistent web-search load, with the

DL traffic point density adapting around the peaks. The DL traffic is sampled uti-

lizing up to the full bandwidth available, with the density of samples spread across

the full range of available bandwidths. I use short moving average filters to process

the large quantity of raw data to provide better estimates of the instantaneous band-

width without losing too much of the fine-grained time information represented by the

individual samples. This does mean some estimated bandwidth points occur above

the 25 Gbps link capacity, which is not physically possible. Uncertainty in the inter-

arrival reporting time of packets over short time frames leads to this overestimate,

which can be reduced with longer windows at the expense of event-time accuracy.

Visually, both the DL unique and DL shared nodes have their samples spread

across the full range of bandwidths at approximately the same densities. This is in

contrast to Figure 3-10(b), in which the DL only node is skewed higher than the DL

68

0

5

10

15

20

25

30

12.7 12.8 12.9 13 13.1 13.2In
st

an
ta

ne
ou

s P
ac

ke
t I

nj
ec

tio
n

Ra
te

 (G
bp

s)

Elapsed Time (s)

Flow 1 - DL Only Flow 2 - Shared Node Flow 3 - TCP Traffic

0

5

10

15

20

25

30

16.5 16.6 16.7 16.8 16.9 17In
st

an
ta

ne
ou

s P
ac

ke
t I

nj
ec

tio
n

Ra
te

 (G
bp

s)

Elapsed Time (s)

a)

b)

RN - 80% Load

RN - 30% Load

Figure 3-10: Instantaneous synchronized packet injection rate readings for several
iterations of ResNet-50 with (a) 8 Gbps and (b) 20 Gbps of consistent web-search
cross traffic. The distance between two subsequent iterations is clearly visible at
several times in each graph. The three flows shown correspond to the flows labeled in
Figure 3-9. Each graph uses a moving average filter of width (a):30/(b):50 to increase
clarity.

69

Table 3.11: Average estimated bandwidths for the iterations graphed in Figure 3-10
and Figure 3-11 from the point of view of a DL only node and a DL shared node.

Model Load DL Only (Flow 1) DL Shared (Flow 2)
BERT-large 30% 9.82 Gbps 9.46 Gbps
BERT-large 80% 3.62 Gbps 3.27 Gbps
ResNet-50 30% 8.42 Gbps 8.40 Gbps
ResNet-50 80% 7.24 Gbps 4.13 Gbps

shared node. This is confirmed by the average figures listed in Table 3.11, with the

DL only node recording higher bandwidths than the DL shared node in both load

cases, and significantly more in the high load case.

Takeaways: The key takeaways from this analysis of ResNet-50 iterations are

that: (i) if one node experiences high levels of cross traffic, the other participating

nodes do not back off their transmissions to the bandwidth sufficient to meet the new

relaxed iteration timing requirements. (ii) Therefore, a more efficient training plat-

form could release this bandwidth to productive use of other cluster tenants without

degrading the effect of DL, as the performance of DL iteration times is tied to the

worst bottleneck experienced.

BERT Analysis: Individual iterations of BERT are considerably longer than

ResNet. In order to view fine details clearly and the transition between iterations, I

plot the junction between two iterations and a neighboring region in Figure 3-11. As

expected, the two DL traffic samples at each load level ((a) and (b)) have a similar

profile, but higher bandwidths are recorded for the DL only node, again aligning with

the average values for this time window recorded in Table 3.11.

I observe a smaller difference in performance between the DL only and DL shared

observations in Figure 3-11(b), compared to the high load scenario for ResNet-50

explored in Figure 3-10(b). The difference between the two observations remained

roughly constant, at approximately 0.4 Gbps from the averages in Table 3.11, de-

spite the overall observed bandwidth available decreasing by a factor of 3 due to the

increased competition from cross traffic. This difference is most likely due to the dif-

ference in the underlying ML model details. Both BERT and ResNet iteration times

are observed to decrease by a factor of two between the low and high cross traffic

70

a)

b)

0

5

10

15

20

25

30

23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 24In
st

an
ta

ne
ou

s P
ac

ke
t I

nj
ec

tio
n

Ra
te

 (G
bp

s)

Elasped Time (s)

Flow 1 - DL Only Flow 2 - Shared Node Flow 3 - TCP Traffic

0

5

10

15

20

25

30

18.7 18.8 18.9 19 19.1 19.2 19.3 19.4In
st

an
ta

ne
ou

s P
ac

ke
t I

nj
ec

tio
n

Ra
te

 (G
bp

s)

Elapsed Time (s)BERT - 80% Load

BERT - 30% Load

Figure 3-11: Instantaneous synchronized packet injection rate readings for the tran-
sition between two iterations of BERT-large (24) with (a) 8 Gbps and (b) 20 Gbps
of consistent web-search cross traffic. The transition between the two subsequent
iterations is clearly visible at 23.5 and 18.9 s respectively. The three flows shown
correspond to the flows labeled in Figure 3-9. Each graph uses a moving average
filter of width (a):30/(b):50 to increase clarity.

71

scenarios tested, but the amount of traffic required by BERT is still over 14× larger,

implying a considerably higher network utilization and demand in both scenarios that

must be managed.

Takeaways: The key takeaways from this analysis of BERT iterations are that:

(i) Both flows 1 and 2 decreased their bandwidth usage by a factor of 3 between

the low and high test cases, without observing the significant difference noted in the

ResNet experiment. (ii) Therefore, Horovod running an NLP such as BERT appears

to send the model parameters piece-wise, leading to a network demand with lower

peaks but a longer duration per iteration.

72

Chapter 4

Conclusion

In this thesis, I characterize the network impacts to and from training Distributed

Machine Learning (DL) models utilizing the Horovod framework. In order to accom-

plish this, I co-develop a custom-designed multi-threaded TCP flow generation script

and use it to test the iteration time of DL models against competing similar, consis-

tent web-search and burst-based web-search traffic. This analysis forms an important

step towards understanding the impact of network congestion on distributed training

workloads. My key results are that:

∙ The variance and burst behavior of cross traffic plays a significant part in de-

termining the efficiency of distributed ML training in congested network envi-

ronments. As expected, when congestion is below a theoretically determined

threshold, the effects are minor.

∙ Network bursts have a significant impact on DL training when compared to con-

sistent loads when run at highly congested settings. The presence of competing

burst traffic reduces the maximum effective bottleneck utilization to around

90% of the theoretical bandwidth.

∙ At low loads, minimal variance occurs in recorded iteration times in each series

tested, with an average variance of 0.05% compared to mean values, and with

no significant tails present with the exception of the BERT model. At high

loads, the variance is significant, at an average of 7.8% for consistent and 39.3%

73

for burst mean values. 99% tails on average 60% larger than the mean value

are also observed.

∙ Considering individual iterations, nodes that communicate via bottlenecked

links use less bandwidth for DL training than nodes that are able to communi-

cate without experiencing a bottleneck. This effect is especially pronounced in

ResNet-50 and in highly congested settings.

∙ I develop a model to predict the increase in iteration times due to network

congesting and verify its accuracy for the test cases in this thesis.

Building on this thesis, I identify two interesting possibilities for future work: (i)

improve and optimize the effective throughput of DL traffic when sharing links with

cross traffic at high utilization through customized congestion control, as this would

allow either more DL traffic to pass in the same traffic conditions, or would allow the

same iteration time to be achieved with less bandwidth required, and (ii) reduce the

oversupply of bandwidth to nodes that are unable to progress due to a network delay

in another node in the ring. Reassigning this bandwidth would allow additional work

to occur on these nodes without affecting the job completion time of the DL task.

Taken as a whole, these observations point at the opportunities for improvement a

DL aware congestion control protocol would enjoy.

74

Appendix A

Additional Methodology and Set up

Instructions

A.1 Web-Search Load Generation Algorithms

To create the range of cross traffic types required to compete with the distributed

ML task I study in this thesis, I utilize a known size distribution drawn from existing

work [85, 88] in order to generate web-search profile traffic with arbitrary parameters.

The basic version, Algorithm 1, generates a consistent level of randomized traffic by

drawing flow sizes from the known weighted distribution, and flow inter-arrival times

from a Poisson distribution. The parameter of the Poisson distribution is set such

that the expected inter-arrival time multiplied by the expected data per flow gives

the requested target data rate.

Algorithm 1 Consistent Web-Search Traffic Generation
Require: target_load, total_time, WS_dist
𝑑𝑎𝑡𝑎_𝑟𝑒𝑞 ← 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑜𝑎𝑑× 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒

𝑠𝑎𝑚𝑝𝑙𝑒𝑠← floor
(︁

𝑑𝑎𝑡𝑎_𝑟𝑒𝑞

𝑎𝑣𝑒_𝑑𝑎𝑡𝑎_𝑝𝑒𝑟_𝑠𝑎𝑚𝑝𝑙𝑒

)︁
𝜆← 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒

𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑓𝑙𝑜𝑤_𝑖𝑛𝑡𝑒𝑟_𝑡← Poisson (𝜆, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
𝑓𝑙𝑜𝑤_𝑡← CumSum(𝑓𝑙𝑜𝑤_𝑖𝑛𝑡𝑒𝑟_𝑡)
𝑠𝑖𝑧𝑒𝑠← RandChoice(𝑊𝑆_𝑑𝑖𝑠𝑡,𝑊𝑆_𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
return flow_t, sizes

75

The procedure used to generate burst web-search traffic, outlined in Algorithm 2,

follows a similar logic, except using a repeating pattern formed of two elements. These

are a burst element and a consistent element, which are then repeated to generate the

full traffic file. As the target burst duration for this thesis of 1000 𝜇s only required

a burst element with one or two flows for most target loads in the experimental

range (0-25 Gbps), I set up Algorithm 2 to force the burst phase to have 2 flows,

with a total data size proportionate to 3/10 of the total data to be transmitted in

each repeating period. The data split between the two burst flows, and their arrival

time, are then randomly sampled from a normal distribution and an exponential

distribution respectively.

The consistent element is generated as per Algorithm 1, however, to ensure a suffi-

ciently representative number of flows occur during the consistent phase, a minimum

of 8 flows are generated. In order to ensure that the correct total volume of data is

generated (7/10 of the pattern’s total in 9/10 of the time), I scale down the flow size

distribution accordingly before applying Algorithm 1.

Algorithm 2 Burst Web-Search Traffic Generation
Require: target_load, brst_t, total_time, WS_dist
𝑠𝑐𝑎𝑙𝑒← 1
𝑏𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑← 10× 𝑏𝑟𝑠𝑡_𝑡
𝑛𝑢𝑚_𝑏𝑟𝑠𝑡← 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒

𝑏𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑

𝑏𝑟𝑠𝑡_𝑙𝑖𝑠𝑡← randomize_burst(𝑏𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑, 𝑛𝑢𝑚_𝑏𝑟𝑠𝑡)

𝑛𝑜_𝑏𝑢𝑟𝑠𝑡_𝑑𝑎𝑡𝑎← 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑜𝑎𝑑× 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒

𝑛𝑢𝑚_𝑏𝑟𝑠𝑡

(︀
1− 3

10

)︀
𝑛𝑜_𝑏𝑟𝑠𝑡_𝑠𝑝← floor

(︁
𝑛𝑜_𝑏𝑢𝑟𝑠𝑡_𝑑𝑎𝑡𝑎

𝑎𝑣𝑒_𝑑𝑎𝑡𝑎_𝑝𝑒𝑟_𝑠𝑎𝑚𝑝𝑙𝑒

)︁
◁ ave_data is a known constant

if 𝑛𝑜_𝑏𝑟𝑠𝑡_𝑠𝑝 is less than 8 then
𝑛𝑜_𝑏𝑟𝑠𝑡_𝑠𝑝← 8
𝑎𝑣𝑒_𝑑𝑎𝑡𝑎_𝑟𝑒𝑞 ← 𝑛𝑜_𝑏𝑢𝑟𝑠𝑡_𝑑𝑎𝑡𝑎

8

𝑠𝑐𝑎𝑙𝑒← 𝑎𝑣𝑒_𝑑𝑎𝑡𝑎_𝑟𝑒𝑞

𝑎𝑣𝑒_𝑑𝑎𝑡𝑎_𝑝𝑒𝑟_𝑠𝑎𝑚𝑝𝑙𝑒

end if

for 𝑖 in 𝑛𝑢𝑚_𝑏𝑟𝑠𝑡 do
𝑓𝑙𝑜𝑤_𝑡, 𝑠𝑖𝑧𝑒𝑠 append 𝑏𝑟𝑠𝑡_𝑙𝑖𝑠𝑡[𝑖]
𝑓𝑙𝑜𝑤_𝑡, 𝑠𝑖𝑧𝑒𝑠 append draw_Poisson(𝑛𝑜_𝑏𝑟𝑠𝑡_𝑠𝑝, 𝑏𝑟𝑠𝑡_𝑡, 𝑠𝑐𝑎𝑙𝑒,𝑊𝑆_𝑑𝑖𝑠𝑡)

end for
return flow_t, sizes

76

A.2 Congestion Point Identification

To obtain this measurement, I first construct a line along the linear portion of the

graph. Second, I construct a tangent to the curved portion of the graph, as close to

the interception with the linear portion as possible. Both these lines are shown as

dotted for the two series in consideration in Figure A-1. Once this is done, I find the

closest data point to this measurement, and take this iteration time and bandwidth as

the experimental values for the congestion point. This is shown in Figure A-1 using

thin solid lines.

12.10, 1.42

17.90, 0.42

0.2

2

20

0 5 10 15 20 25

M
ea

n
It

er
at

io
n

Ti
m

e
(s

)

Competing Traffic (Gbps)

BERT-large (24) DenseNet-161

Figure A-1: Method for calculating the congestion point on an iteration time against
bandwidth graph (sample graph taken is web-search traffic).

77

78

Appendix B

Additional Results and Details

B.1 DL Performance utilizing RDMA and TCP for

Transport

To provide an alternate view of the analysis in Section 3.4.2, Figure B-1 compares the

distributions of samples taken from DL tasks utilizing RDMA and TCP for commu-

nication with (a) light and (b) heavy loads provided by consistent web-search cross

traffic. As expected, in the case of light loading, the large models (VGG, BERT)

perform better using RDMA, as they are able to take greater advantage of the di-

rect memory access. In contrast, the RDMA ResNet series is slower throughout its

distribution than the TCP version in light loading.

In Figure B-1 (b) I observed the same trend as discussed in Section 3.4.2, as the

differences between each protocol are significantly reduced for all models compared

to the low load case. At this level, the distributions of the two protocols are closely

comparable, which aligns with the key takeaway reached in the main body of this

thesis. As a subtlety, the tail behavior of the RDMA mode is measurably worse,

which would affect the 99th percentile and tail measurements, but the gap is not so

dramatic as to invalidate the comparison.

79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

CD
F

Iteration Time (s)

a)

b)

30% Load

80% Load

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.5 1.0 1.5 2.0

CD
F

Iteration Time (s)

BERT (RDMA) VGG (RDMA) ResNet (RDMA)
BERT (TCP) VGG (TCP) ResNet (TCP)

Figure B-1: CDF of DL iteration times for three different size models, BERT, VGG
and ResNet, under (a) light (30%) and (b) heavy (80%) cross traffic. The two series
show the performance of DL training utilizing either the RDMA protocol or TCP
for its communication phase. Note the time axis in graph (a) is considerably shorter
than in graph (b).

80

B.2 Empirical Models from Traffic Graphs

I utilize re-scaled hyperbola versus iteration time graphs to estimate an appropriate

empirical mathematical model to apply to each traffic type, as discussed in Section 3.2,

Section 3.3.1, and Section 3.3.2. I produce a new series of plots, shown in Figure B-2,

and fit least-square error trends to each data series and obtain coefficients of deter-

mination (𝑅2) values for each model. After examination and testing, I found that

the large models in Figure B-2(a) follow the re-scaled hyperbola characteristic, the

large models in Figure B-2(b) follow the square root of the re-scaled hyperbola, and

all models in Figure B-2(c) follow the square of the scaled reciprocal below 17 Gbps.

The fits for the high ranges of burst web-search traffic (c) are improved by using the

square root model, as discussed in Section 3.4.2, where considerably higher 𝑅2 values

are obtained.

To compare the overall behavior of RDMA and TCP-backed training, I fit the

empirical models found in Figure B-2 to a dataset captured from each type of DL

task with the same consistent web-search cross traffic. I utilized the square root

hyperbola model across all data types in this figure, with the exception of the RDMA

ResNet-50 series, as this is a smaller model with low figures only, so the squared

hyperbola model is more appropriate. The fits from this process and their coefficients

of determination are provided in Figure B-3, and show that the difference between

these protocols is minimal in practice, aligning with the other results.

B.3 Web-Search Traffic Samples

In order to verify that the generated web-search traffic has the expected profile, I cap-

ture tcpdump traces for burst and consistent web-search samples to compare against

my expectations and the generated configuration file. A sample load (configuration)

file is shown in Figure B-4, demonstrating the burst and trough pattern expected in

a configuration file. Sample traces for (a) burst and (b) consistent web-search cross

traffic are shown in Figure B-5 for 10 and 6 Gbps loads. As these points are re-

81

R² = 0.9081
R² = 0.741

R² = 0.8499

R² = 0.8843

0.1

1

10

1.0 11.0 21.0 31.0 41.0

Av
er

ag
e

ite
rt

im
e

(s
ec

)

Normalized Reciprocal of the Square of Bandwidth Available

BERT-large (24) VGG-16 DenseNet-161 ResNet-50
BERT-Trend VGG-Trend DN-Trend RN-Trend

R² = 0.979

R² = 0.9964

0.3

3

1.0 1.5 2.0 2.5 3.0Av
er

ag
e

ite
rt

im
e

(s
ec

)

Normalized Reciprocal of the Square Root of Bandwidth Available

BERT-large (24) VGG-16 BERT-Trend VGG-Trend

R² = 0.9965

R² = 0.991

0.3

3

1.00 2.00 3.00 4.00 5.00 6.00 7.00

Av
er

ag
e

ite
rt

im
e

(s
ec

)

Normalized Reciprocal of Bandwidth Available

a)

b)

c)

iperf

Consistent

Burst

Figure B-2: Exponential trend-lines for the similar, consistent web-search and burst
web-search cross traffic scenarios, listing coefficients of determination for each fit case.
These 𝑅2 values are reported in the main body of this thesis.

82

0

1

10

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Competing Traffic (Gbps)

1

8

80

0 5 10 15 20 25

M
ea

n
Ite

ra
tio

n
Ti

m
e

(s
)

Competing Traffic Load (Gbps)
Consistent Web-Search (RDMA) RDMA Fit
Consistent Web-Search (TCP) Consistent Fit

a)

b)

R2=0.962

R2=0.970

R2=0.979

R2=0.956

BERT

ResNet

Figure B-3: Model fits for the iteration time behavior of (a) BERT-large, (b) ResNet
DL training running over RDMA and TCP while competing against consistent web-
search cross traffic. The maximum link capacity is 25 Gbps. The coefficients of
determination for each case is labeled next to the fit, with the corresponding equation
provided in Table 3.9.

83

0%

100%

0

5

10

15

20

25

1.5 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.6

Bu
rs

t D
et

ec
te

d
by

 T
im

in
g

In
te

rv
al

 (%
)

Ba
nd

w
id

th
 R

eq
ue

st
ed

 (G
bp

s)

Time Elapsed (s)
Short Term Average Burst Detected

Figure B-4: Example of a load (configuration) file generated by Algorithm 2. Burst
locations are automatically identified in orange, with the requested flows marked with
blue dots, ordered by the yellow line. This case creates bursts of 1000 𝜇s length with
10 ms spacing and an average load of 7.3 Gbps.

ceived from a tcpdump trace rather than a deterministic list of flows, the data points

in this figure correspond to several averaged packets, rather than to discrete flows

as in Figure B-4. A moving average filter is applied to visualize the traffic pattern

at an appropriate level of depth, as looking at individual packet arrivals would be

overwhelming and the estimated bandwidths observed would be less accurate, but

an overly large filter window would blur out the random oscillation details I wish to

verify, so a compromise width of 18 samples is selected.

84

0

2

4

6

8

10

12

14

16

0.
50

0.
51

0.
52

0.
53

0.
54

0.
55

0.
56

0.
57

0.
58

0.
59

0.
60

0.
61

0.
62

0.
63

0.
64

0.
65

0.
66

0.
67

0.
68

0.
69

0.
70

Es
t.

Ba
nd

w
id

th
 (G

bp
s)

Time Elapsed (s)

0

5

10

15

20
4.

30

4.
31

4.
32

4.
33

4.
34

4.
35

4.
36

4.
37

4.
38

4.
39

4.
40

4.
41

4.
42

4.
43

4.
44

4.
45

4.
46

4.
47

4.
48

4.
49

4.
50

Es
t B

an
dw

id
th

 (G
bp

s)

Time Elapsed (s)

Short Term Average Long Term Average

a)

b)

Figure B-5: Examples of (a) burst web-search traffic and (b) consistent web-search
traces from tcpdump. The gray line corresponds to the long term average measured
across the sample trace, the short term average is obtained from a moving average
filter of width 18.

85

86

Bibliography

[1] Jaime Sevilla. Parameter counts in Machine Learning, 2021. [Online]. Avail-
able: https://towardsdatascience.com/parameter-counts-in-machine-
learning-a312dc4753d0 [Accessed: 2021-08-15].

[2] Karl Rupp. Data repository for my blog series on microprocessor trend data.,
2021. [Online]. Available: https://github.com/karlrupp/microprocessor-
trend-data [Accessed: 2021-08-15].

[3] NVIDIA Corporation. Nvidia Corporation Website, 2020. [Online]. Available:
https://www.nvidia.com [Accessed: 2020-07-22].

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI ’04), pages 137–150, San Francisco, CA, 12
2004. USENIX Association.

[5] Matei Zaharia, Andy Konwinski, Anthony D Joseph, and Randy Katz. Improv-
ing MapReduce Performance in Heterogeneous Environments. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation
(OSDI ’08), pages 29–42, Berkeley, CA, 12 2008. USENIX Association.

[6] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv preprint, arXiv:1802.05799, 2 2018.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
4171–4186, Minneapolis, MN, 6 2019. Association for Computational Linguistics.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In H. Larochelle,

87

https://towardsdatascience.com/parameter-counts-in-machine-learning-a312dc4753d0
https://towardsdatascience.com/parameter-counts-in-machine-learning-a312dc4753d0
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
https://www.nvidia.com

M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Proceedings of Ad-
vances in Neural Information Processing Systems 33 (NeurIPS ’20), volume 33,
pages 1877–1901, Virtual Event, 12 2020. Curran Associates, Inc.

[9] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter. BlueConnect: De-
composing all-reduce for deep learning on heterogeneous network hierarchy. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine Learn-
ing and Systems 1 (MLSys ’19), pages 241–251, Palo Alto, CA, 4 2019.

[10] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream:
Generalized pipeline parallelism for DNN training. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP ’19), pages 1–15,
Huntsville, Ontario, Canada, 10 2019. Association for Computing Machinery.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint, arXiv:1706.02677,
6 2017.

[12] NVIDIA Corporation. Nvidia Ampere Architecture in Depth, 2020. [On-
line]. Available: https://developer.nvidia.com/blog/nvidia-ampere-
architecture-in-depth/ [Accessed: 2021-08-16].

[13] Microsoft. Project Catapult - Microsoft Research, 2018. [Online].
Available: https://www.microsoft.com/en-us/research/project/project-
catapult [Accessed: 2021-08-16].

[14] Google. Cloud TPU Tools, 2021. [Online]. Available: https://cloud.google.
com/tpu/docs/cloud-tpu-tools [Accessed: 2021-08-15].

[15] Mehrdad Khani, Manya Ghobadi, Mohammad Alizadeh, Ziyi Zhu, Madeleine
Glick, Keren Bergman, Amin Vahdat, Benjamin Klenk, and Eiman Ebrahimi.
SiP-ML: High-Bandwidth Optical Network Interconnects for Machine Learning
Training. In Proceedings of the 2021 ACM SIGCOMM Conference (SIGCOMM
’21), pages 657–675, Virtual Event, 8 2021. Association for Computing Machin-
ery.

[16] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
Revisiting Distributed Synchronous SGD. arXiv preprint, arXiv:1604.00981, 4
2016.

[17] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen,
Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and
Zhifeng Chen. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett, editors, Proceedings of Advances in Neural Information

88

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://www.microsoft.com/en-us/research/project/project-catapult
https://www.microsoft.com/en-us/research/project/project-catapult
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://cloud.google.com/tpu/docs/cloud-tpu-tools

Processing Systems 32 (NeurIPS ’19), Vancouver, BC, Canada, 12 2019. Curran
Associates, Inc.

[18] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi
Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods,
Sitaram Lanka, Steve Reinhardt, Adrian Caulfield, Eric Chung, and Doug
Burger. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In Pro-
ceedings of the 45th Annual International Symposium on Computer Architecture
(ISCA ’18), pages 1–14, Los Angeles, CA, 6 2018. Association for Computing
Machinery.

[19] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data and Model Parallelism
for Deep Neural Networks. In A. Talwalkar, V. Smith, and M. Zaharia, editors,
Proceedings of Machine Learning and Systems 1 (MLSys ’19), pages 1–13, Palo
Alto, CA, 4 2019.

[20] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, and Kurt Keutzer.
FireCaffe: Near-Linear Acceleration of Deep Neural Network Training on Com-
pute Clusters. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR ’16), pages 2592–2600, Las
Vegas, NV, 6 2016. IEEE Computer Society.

[21] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO:
Memory Optimizations Toward Training Trillion Parameter Models. In Proceed-
ings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC ’20), Atlanta, GA, 11 2020. IEEE Press.

[22] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin,
Nikhil Devanur, and Ion Stoica. Blink: Fast and Generic Collectives for Dis-
tributed ML. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings
of Machine Learning and Systems 2 (MLSys ’20), pages 172–186, Austin, TX, 3
2020.

[23] Dan Alistarh, Demjan Grubic, Jerry Z Li, Ryota Tomioka, and Milan Vojnovic.
QSGD: Communication-Efficient SGD via Gradient Quantization and Encod-
ing. In I. Guyon, U. V. Luxburg, S. S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30 (NIPS ’17), pages 1710–1721, Long Beach, CA, 12 2017. Curran
Associates, Inc.

[24] Leslie Kaelbling, Tomás Lozano-Pérez, Isaac Chuang, and Duane Boning. 6.036
Introduction to Machine Learning Course Notes. Massachusetts Institute of Tech-
nology, Cambridge, MA, 2019.

[25] Tanya Kolosova and Samuel Berestizhevsky. Supervised Machine Learning. CRC
Press, Boca Raton, FL, 1st edition, 2021.

89

[26] Taeho Jo. Machine Learning Foundations. Springer International Publishing,
Cham, Switzerland, 1st edition, 2021.

[27] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar,
and Brendan McMahan. cpSGD: Communication-efficient and differentially-
private distributed SGD. In S Bengio, H Wallach, H Larochelle, K Grauman,
N Cesa-Bianchi, and R Garnett, editors, Proceedings of Advances in Neural In-
formation Processing Systems 31 (NeurIPS ’18), pages 7564–7575, Montréal,
Québec, Canada, 12 2018. Curran Associates, Inc.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR ’16), pages 770–778,
Las Vegas, NV, 6 2016. IEEE Computer Society.

[29] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Densely Connected Convolutional Networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR ’17), pages 2261–
2269, Honolulu, HI, 7 2017. IEEE Computer Society.

[30] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. ArXiv preprint, ArXiv:1409.1556v6, 4 2015.

[31] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR ’09), pages 248–255, Miami, FL, 6 2009.
IEEE Computer Society.

[32] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language Models are Unsupervised Multitask Learners. Open AI
preprint, 2019.

[33] Tal Ben-Nun and Torsten Hoefler. Demystifying Parallel and Distributed Deep
Learning: An In-Depth Concurrency Analysis. ACM Computing Surveys, 52(4-
65):1–43, 8 2019.

[34] Jin Kyu Kim, Abutalib Aghayev, Garth A Gibson, and Eric P Xing. STRADS-
AP: Simplifying Distributed Machine Learning Programming without Introduc-
ing a New Programming Model. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC ’19), pages 207–222, Renton, WA, 7 2019. USENIX
Association.

[35] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. In-network Aggregation for
Shared Machine Learning Clusters. In A. Smola, A. Dimakis, and I. Stoica,
editors, Proceedings of Machine Learning and Systems 3 (MLSys ’21), pages
829–844, Virtual Event, 3 2021.

90

[36] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian
Brabete, and Peter Pietzuch. KungFu: Making Training in Distributed Ma-
chine Learning Adaptive. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’20), pages 937–954, Virtual Event, 11 2020.
USENIX Association.

[37] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie Wang, Eric Liang, Robert
Nishihara, Philipp Moritz, and Ion Stoica. Hoplite: Efficient and Fault-Tolerant
Collective Communication for Task-Based Distributed Systems. In Proceedings of
the 2021 ACM SIGCOMM Conference (SIGCOMM ’21), pages 641–656, Virtual
Event, 8 2021. Association for Computing Machinery.

[38] Jiawei Fei, Chen-Yu Ho, Atal N. Sahu, Marco Canini, and Amedeo Sapio. Ef-
ficient Sparse Collective Communication and Its Application to Accelerate Dis-
tributed Deep Learning. In Proceedings of the 2021 ACM SIGCOMM Conference
(SIGCOMM ’21), pages 676–691, Virtual Event, 8 2021. Association for Com-
puting Machinery.

[39] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling Distributed Machine Learning with In-Network Aggregation.
In Proceedings of the 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’21), pages 785–808, Virtual Event, 4 2021. USENIX
Association.

[40] Andrew Gibiansky and Joel Hestness. Baidu all-reduce, 2017. [Online]. Avail-
able: https://github.com/baidu-research/tensorflow-allreduce [Ac-
cessed: 2021-09-02].

[41] NVIDIA Corporation. NVIDIA Collective Communications Library (NCCL),
2021. [Online]. Available: https://docs.nvidia.com/deeplearning/nccl/
index.html [Accessed: 2021-08-26].

[42] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms
for clusters of workstations. Journal of Parallel and Distributed Computing,
69(2):117–124, 2009.

[43] NVIDIA Corporation. System Specifications DGX-2, 2019. [Online]. Available:
www.nvidia.com/DGX-2 [Accessed: 2021-08-16].

[44] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein,
Roy Frostig, and George E Dahl. Measuring the Effects of Data Parallelism on
Neural Network Training. Journal of Machine Learning Research, 20(112):1–49,
2019.

[45] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

91

https://github.com/baidu-research/tensorflow-allreduce
https://docs.nvidia.com/deeplearning/nccl/index.html
https://docs.nvidia.com/deeplearning/nccl/index.html
www.nvidia.com/DGX-2

Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-Scale Machine
Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16), pages 265–283, Savannah, GA, 11 2016.
USENIX Association.

[46] Constantinos Daskalakis, Nishanth Dikkala, and Siddhartha Jayanti.
HOGWILD!-Gibbs can be PanAccurate. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Proceedings of Advances
in Neural Information Processing Systems 31 (NeurIPS ’18), Montréal, Québec,
Canada, 12 2018. Curran Associates, Inc.

[47] Julaiti Alafate and Yoav Freund. Tell Me Something New: A New Framework
for Asynchronous Parallel Learning. arXiv preprint, arXiv:1805.07483, 5 2018.

[48] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee, Phillip B
Gibbons, Garth A Gibson, Gregory R Ganger, and Eric P Xing. More Effective
Distributed ML via a Stale Synchronous Parallel Parameter Server. In C.J.C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors,
Proceedings of Advances in Neural Information Processing Systems 26 (NIPS
’13), pages 1225–1233, Lake Tahoe, NV, 12 2013. Curran Associates, Inc.

[49] Hang Shi, Yue Zhao, Bofeng Zhang, Kenji Yoshigoe, and Athanasios V Vasilakos.
A Free Stale Synchronous Parallel Strategy for Distributed Machine Learning. In
Proceedings of the 2019 International Conference on Big Data Engineering (BDE
’19), pages 23–29, Hong Kong, 6 2019. Association for Computing Machinery.

[50] Kaan Kara, Dan Alistarh, Gustavo Alonso, Onur Mutlu, and Ce Zhang. FPGA-
accelerated dense linear machine learning: A precision-convergence trade-off.
In IEEE 25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM ’17), pages 160–167, Napa, CA, 6 2017. IEEE.

[51] Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron Elmore, and Michael
Franklin. Band-limited Training and Inference for Convolutional Neural Net-
works. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning (ICML ’19), pages
1745–1754, Long Beach, CA, 6 2019. PMLR.

[52] Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg, Martin
Takáč, and Marten van Dijk. New Convergence Aspects of Stochastic Gradient
Algorithms. Journal of Machine Learning Research, 20(176):1–49, 11 2019.

[53] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi Wei Lin, and Varugis
Kurien. Pingmesh: A Large-Scale System for Data Center Network Latency
Measurement and Analysis. In Proceedings of the 2015 ACM Conference on

92

Special Interest Group on Data Communication (SIGCOMM ’15), pages 139–
152, London, United Kingdom, 8 2015. Association for Computing Machinery.

[54] Siyu Wang, Yi Rong, Shiqing Fan, Zhen Zheng, Lansong Diao, Guoping Long,
Jun Yang, Xiaoyong Liu, and Wei Lin. Auto-MAP: A DQN Framework for
Exploring Distributed Execution Plans for DNN Workloads. arXiv preprint,
arXiv:2007.04069, 7 2020.

[55] Peng Jiang and Gagan Agrawal. A Linear Speedup Analysis of Distributed Deep
Learning with Sparse and Quantized Communication. In S Bengio, H Wallach,
H Larochelle, K Grauman, N Cesa-Bianchi, and R Garnett, editors, Proceedings
of Advances in Neural Information Processing Systems 31 (NeurIPS ’18), pages
2525–2536, Montréal, Québec, Canada, 12 2018. Curran Associates, Inc.

[56] Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang Chen, Qirong Ho, Garth A
Gibson, and Eric P Xing. Litz: Elastic Framework for High-Performance Dis-
tributed Machine Learning. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC ’18), pages 631–644, Boston, MA, 7 2018. USENIX
Association.

[57] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan,
Chuan Wu, and Chuanxiong Guo. A Generic Communication Scheduler for Dis-
tributed DNN Training Acceleration. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP ’19), pages 16–29, Huntsville, Ontario,
Canada, 10 2019. Association for Computing Machinery.

[58] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. PipeSwitch: Fast Pipelined
Context Switching for Deep Learning Applications. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
’20), pages 499–514, Virtual Event, 11 2020. USENIX Association.

[59] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell. TicTac:
Accelerating Distributed Deep Learning with Communication Scheduling. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine Learn-
ing and Systems 1 (MLSys ’19), pages 418–430, Palo Alto, CA, 4 2019.

[60] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-
Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. Ansor: Generating High-Performance Tensor Programs for Deep
Learning. In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’20), pages 863–879, Virtual Event, 11 2020.
USENIX Association.

[61] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and KyoungSoo
Park. Elastic Resource Sharing for Distributed Deep Learning. In Proceedings of
the 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’21), pages 721–739, Virtual Event, 4 2021. USENIX Association.

93

[62] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling
Distributed Machine Learning with the Parameter Server. In Proceedings of
the 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’14), pages 583–598, Broomfield, CO, 10 2014. USENIX Association.

[63] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,
Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P. Xing. Pollux: Co-
adaptive Cluster Scheduling for Goodput-Optimized Deep Learning. In Proceed-
ings of the 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’21), pages 1–18, Virtual Event, 7 2021. USENIX Association.

[64] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phan-
ishayee, and Matei Zaharia. Heterogeneity-Aware Cluster Scheduling Policies
for Deep Learning Workloads. In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’20), pages 481–498,
Virtual Event, 11 2020. USENIX Association.

[65] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui
Feng, Wei Lin, and Yangqing Jia. AntMan: Dynamic Scaling on GPU Clusters
for Deep Learning. In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’20), pages 533–548, Virtual Event,
11 2020. USENIX Association.

[66] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-
man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. Themis: Fair and
Efficient GPU Cluster Scheduling. In Proceedings of the 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI ’20), pages
289–304, Santa Clara, CA, 2 2020. USENIX Association.

[67] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias: A GPU Cluster
Manager for Distributed Deep Learning. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’19), pages
485–500, Boston, MA, 2 2019. USENIX Association.

[68] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. TASO: Optimizing Deep Learning Computation with Automatic
Generation of Graph Substitutions. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP ’19), pages 47–62, Huntsville, Ontario,
Canada, 10 2019. Association for Computing Machinery.

[69] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. Exploring Hidden Di-
mensions in Accelerating Convolutional Neural Networks. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning (ICML ’18), pages 2274–2283, Stockholm, Sweden, 7 2018.
PMLR.

94

[70] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng,
Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. PET: Optimiz-
ing Tensor Programs with Partially Equivalent Transformations and Automated
Corrections. In Proceedings of the 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’21), pages 37–54, Virtual Event, 7
2021. USENIX Association.

[71] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. Daydream: Accu-
rately Estimating the Efficacy of Optimizations for DNN Training. In Proceed-
ings of the USENIX Annual Technical Conference (USENIX ATC ’20), pages
337–352, Virtual Event, 6 2020. USENIX Association.

[72] Eli Cortez, Mark Russinovich, Anand Bonde, Marcus Fontoura, Alexandre
Muzio, and Ricardo Bianchini. Resource Central: Understanding and Predict-
ing Workloads for Improved Resource Management in Large Cloud Platforms.
In Proceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP ’17), pages 153–167, Shanghai, China, 10 2017. Association for Comput-
ing Machinery.

[73] Brian Lebiednik, Aman Mangal, and Niharika Tiwari. A Survey and Evaluation
of Data Center Network Topologies. arXiv preprint, arXiv:1605.01701, 5 2016.

[74] Muhammad Tirmazi, Adam Barker, Nan Deng Google, Md E Haque Google,
Zhijing Gene Qin Google, Steven Hand Google, Mor Harchol-Balter CMU, John
Wilkes Google, Nan Deng, Md E Haque, Zhi-jing Gene Qin, Steven Hand, Mor
Harchol-Balter, and John Wilkes. Borg: The Next Generation. In Proceedings
of the Fifteenth European Conference on Computer Systems (EuroSys ’20), Her-
aklion, Greece, 4 2020. Association for Computing Machinery.

[75] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. ATP: In-network Aggregation for Multi-tenant Learn-
ing. In Proceedings of the 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI ’21), pages 741–761, Virtual Event, 4 2021.
USENIX Association.

[76] Liang Luo, Peter West, Jacob Nelson, Arvind Krishnamurthy, and Luis Ceze.
PLink: Discovering and Exploiting Locality for Accelerated Distributed Training
on the Public Cloud. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Pro-
ceedings of Machine Learning and Systems 2 (MLSys ’20), pages 82–97, Austin,
TX, 3 2020.

[77] NVIDIA Corporation. Developer Tools Overview | NVIDIA Developer, 2021.
[Online]. Available: https://developer.nvidia.com/tools-overview [Ac-
cessed: 2021-08-15].

[78] NVIDIA Corporation. Profiler User’s Guide, 2021. [Online]. Available: https:
//docs.nvidia.com/cuda/profiler-users-guide [Accessed: 2021-09-02].

95

https://developer.nvidia.com/tools-overview
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide

[79] Intel Corporation. Intel VTune Profiler, 2021. [Online]. Available: https://
software.intel.com/content/www/us/en/develop/documentation/vtune-
help/top.html [Accessed: 2021-08-15].

[80] Mellanox. Understanding mlx5 ethtool Counters, 2021. [Online]. Avail-
able: https://community.mellanox.com/s/article/understanding-mlx5-
ethtool-counters [Accessed: 2021-08-16].

[81] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Ef-
ficient Machine Learning Library for Heterogeneous Distributed Systems. arXiv
preprint, arXiv:1512.01274, 12 2015.

[82] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury Google, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf Xamla, Edward Yang, Zach De-
vito, Martin Raison Nabla, Alykhan Tejani, Sasank Chilamkurthy, Qure Ai,
Benoit Steiner, Lu Fang Facebook, Junjie Bai Facebook, and Soumith Chintala.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
nett, editors, Proceedings of Advances in Neural Information Processing Systems
32 (NeurIPS ’19), Vancouver, BC, Canada, 12 2019. Curran Associates, Inc.

[83] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Heterogeneity and Dynamicity of Clouds at Scale: Google
Trace Analysis. In Proceedings of the Third ACM Symposium on Cloud Comput-
ing (SoCC ’12), pages 1–13, San Jose, CA, 10 2012. Association for Computing
Machinery.

[84] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Sno-
eren. Inside the Social Network’s (Datacenter) Network. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication (SIG-
COMM ’15), pages 123–137, London, United Kingdom, 8 2015. Association for
Computing Machinery.

[85] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Confer-
ence (SIGCOMM ’10), pages 63–74, New Delhi, India, 8 2010. Association for
Computing Machinery.

[86] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. VL2: A Scalable and Flexible Data Center Network. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM
’09), pages 51–62, Barcelona, Spain, 8 2009. Association for Computing Machin-
ery.

96

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters

[87] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Charac-
teristics of Data Centers in the Wild. In Proceedings of the 10th Annual Confer-
ence on Internet Measurement (IMC ’10), pages 267–280, Melbourne, Australia,
11 2010. Association for Computing Machinery.

[88] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McK-
eown, Balaji Prabhakar, and Scott Shenker. pFabric: Minimal near-Optimal
Datacenter Transport. In Proceedings of the ACM SIGCOMM 2013 Conference
(SIGCOMM ’13), pages 435–446, Hong Kong, 8 2013. Association for Computing
Machinery.

[89] Advanced Micro Devices, Inc. AMD EPYC 7002 Series - 7502P, 2020.
[Online]. Available: https://www.amd.com/en/support/cpu/amd-epyc/amd-
epyc-7002-series/amd-epyc-7502p [Accessed: 2021-08-26].

[90] Juniper Networks, Inc. MX480 Universal Routing Platform, 2021. [Online].
Available: https://www.juniper.net/us/en/products/routers/mx-series/
mx480-universal-routing-platform.html [Accessed: 2021-08-26].

[91] Linux Foundation AI & Data. Horovod Documentation, 2021. [Online]. Available:
https://horovod.readthedocs.io/en/stable [Accessed: 2021-08-26].

[92] Pytorch Authors. Pytorch Documentation, 2021. [Online]. Available: https:
//pytorch.org [Accessed: 2021-08-26].

[93] Tensorflow Authors. Tensorflow Documentation, 2021. [Online]. Available:
https://www.tensorflow.org [Accessed: 2021-08-26].

[94] NVIDIA Corporation. Developing a Linux Kernel Module using GPUDirect
RDMA. Technical report, NVIDIA, Santa Clara, CA, 9 2021.

[95] Hejer Shaiek, Stanimire Tomov, Alan Ayala, Azzam Haidar, and Jack J. Don-
garra. GPUDirect MPI Communications and Optimizations to Accelerate FFTs
on Exascale Systems. In Proceedings of the 26th European MPI Users’ Group
Meeting (EuroMPI ’19) Posters, Zurich, Switzerland, 9 2019.

[96] Frontline Systems, Inc. Excel Solver Help, 2021. [Online]. Available: https:
//www.solver.com/excel-solver-online-help [Accessed: 2021-10-10].

97

https://www.amd.com/en/support/cpu/amd-epyc/amd-epyc-7002-series/amd-epyc-7502p
https://www.amd.com/en/support/cpu/amd-epyc/amd-epyc-7002-series/amd-epyc-7502p
https://www.juniper.net/us/en/products/routers/mx-series/mx480-universal-routing-platform.html
https://www.juniper.net/us/en/products/routers/mx-series/mx480-universal-routing-platform.html
https://horovod.readthedocs.io/en/stable
https://pytorch.org
https://pytorch.org
https://www.tensorflow.org
https://www.solver.com/excel-solver-online-help
https://www.solver.com/excel-solver-online-help

	Introduction
	Background and Related Work
	Machine Learning
	Introduction to Key Techniques
	Popular DNN Models

	Distributed ML Training
	Networking Limitations
	Parameter Synchronization Strategies
	Parallelization Strategies

	ML Training Frameworks
	Horovod

	Profiling Tools
	Data Center Workload

	Experimentation and Analysis
	Configuration and Methodology
	Performance Against iperf Cross Traffic
	Performance Against Web-Search Cross Traffic
	Consistent Web-Search Cross Traffic
	Burst Web-Search Cross Traffic

	Analysis of Cross Traffic Types
	Variance of Cross Traffic Effects by Loading
	Effect of Cross Traffic Type on Model Performance

	Iteration Scale Network Interactions

	Conclusion
	Additional Methodology and Set up Instructions
	Web-Search Load Generation Algorithms
	Congestion Point Identification

	Additional Results and Details
	DL Performance utilizing RDMA and TCP for Transport
	Empirical Models from Traffic Graphs
	Web-Search Traffic Samples

