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Abstract— This paper addresses two key limitations of the
unscented Kalman filter (UKF) when applied to the simulta-
neous localization and mapping (SLAM) problem: the cubic,
in the number of states, computational complexity, and the
inconsistency of the state estimates. In particular, we introduce
a new sampling strategy that minimizes the linearization error
and whose computational complexity is constant (i.e., indepen-
dent of the size of the state vector). As a result, the overall
computational complexity of UKF-based SLAM becomes of the
same order as that of the extended Kalman filter (EKF) when
applied to SLAM. Furthermore, we investigate the observability
properties of the linear-regression-based model employedby the
UKF, and propose a new algorithm, termed the Observability-
Constrained (OC)-UKF, that improves the consistency of the
state estimates. The superior performance of the OC-UKF
compared to the standard UKF and its robustness to large
linearization errors are validated by extensive simulations.

I. I NTRODUCTION

For autonomous vehicles exploring unknown environ-
ments, the ability to perform simultaneous localization and
mapping (SLAM) is essential. Among the algorithms de-
veloped thus far to solve the SLAM problem, the extended
Kalman filter (EKF) arguably remains a popular choice and
has been used in many SLAM applications. However, the
EKF is also known to be vulnerable to linearization errors,
which can cause poor performance or even divergence. A
well-known problem with EKF-based SLAM is that the
state estimates are typicallyinconsistent, which renders the
estimator unreliable. In order to address the problems caused
by linearization, the use of the unscented Kalman filter
(UKF) [1], appears to be an appealing option. The UKF
has been shown to generally perform better than the EKF in
nonlinear estimation problems, and one would expect similar
gains in the case of SLAM.

However, one of the main limitations of the original UKF
algorithm [1] is its computational complexity, which iscubic
in the size of the state vector. In the case of SLAM, where
hundreds of landmarks are typically included in the state
vector, this increased computational burden can preclude
real-time operation. Moreover, when applied to SLAM, the
performance gains of the UKF over the EKF are generally
not overwhelming (e.g., [2], [3]). Most importantly, empirical
evidence suggests that the UKF also results in inconsistent
estimates in SLAM, even though its performance is better
than the EKF in this respect.
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Our objective is to address the aforementioned limitations.
In particular, the main contributions of this work are the
following:

• We propose a new sampling strategy for UKF-based
SLAM that hasconstantcomputational cost, regardless
of the number of landmarks included in the state vector.
This sampling strategy is provably optimal, in the sense
that it minimizes the squared error between the nonlin-
ear function and its linear approximation employed by
the UKF. Using this strategy, the computational cost of
UKF-based SLAM becomeslinear during propagation
andquadraticduring update, which is in the same order
as the EKF.

• We analytically examine the consistency of UKF-based
SLAM, by studying the observability properties of the
statistically-linearized system model, which is employed
by the UKF. This analysis identifies a mismatch be-
tween the observability properties of this model and
those of the underlying nonlinear system, which is a
fundamental cause of inconsistency. Based on this the-
oretical analysis, we propose a novel UKF-based SLAM
algorithm, termed Observability-Constrained UKF (OC-
UKF). By imposing the appropriate observability con-
straints on the linear regression carried out by the
UKF, the proposed OC-UKF ensures that its system
model has observability properties similar to those of
the actual, nonlinear, SLAM system. As a result, the
OC-UKF outperforms the EKF and the standard UKF
both in terms of accuracy, and in terms of consistency,
as verified by simulation tests.

II. RELATED WORK

A number of previous approaches have applied the stan-
dard UKF algorithm to SLAM [2], [4], [5]. However, this
algorithm, which involves computing the square root of the
state covariance matrix at each time step, has computational
complexity cubic in the number of landmarks, and thus is
not suitable for real-time operation in large environments.
To address this problem, Holmeset al. [3] recently pro-
posed a square-root UKF (SRUKF) for monocular visual
SLAM that has computational complexityquadratic both
in the propagation and in the update phases. This approach
offers a significant improvement in terms of computational
complexity, at the cost of a significantly more complicated
implementation. Additionally, as shown in [3], the algorithm
is an order of magnitude slower than the standard EKF, due
to the need to carry out expensive numerical computations.

Andrade-Cettoet al. [6] presented a “hybrid” EKF/UKF
algorithm, where the EKF is employed in the update phase,



while the UKF is used during propagation for computing
only the robot state and its covariance. The cross-correlation
terms during propagation are handled in a fashion identicalto
the EKF. Even though this algorithm achieves computational
complexity linear during propagation and quadratic during
updates, the positive definiteness of the state covariance ma-
trix cannot be guaranteed during propagation. Moreover, the
use of the EKF for updates makes the approach vulnerable to
large linearization errors. In contrast to the aforementioned
approaches, the algorithm described in Section IV employs
the unscented transformationboth in the propagation and
update phases, is simple to implement, and attains computa-
tional complexitylinear during propagation, andquadratic
during updates.

The issue of theconsistencyof UKF-based SLAM has
not received considerable attention in the literature. In [2],
[3] the consistency of the UKF was empirically examined,
but, to the best of our knowledge, no theoretical results exist
to date. On the other hand, the consistency of EKF-based
SLAM has been studied in a number of publications [7]–
[10]. In our recent work [11], [12], we have presented an
analytical study of the issue, by focusing on the observability
properties of the EKF’s linearized system model. In this
work, we extend this analysis to the case of UKF-based
SLAM, and we analytically show that the implicit statistical
linearization, performed by the UKF, results in a system
model with “incorrect” observability properties, which isa
fundamental cause of inconsistency.

III. LRKF AND UKF

In this section, we present the UKF in the context of the
Linear-Regression Kalman Filter (LRKF). As shown in [13],
the UKF is a special case of the LRKF, and therefore, it can
be viewed as performing an implicitstatistical linearization
of the nonlinear propagation and update models. We here
present the details of this linearization mechanism, which
will be instrumental in the development of the quadratic-
complexity UKF in Section IV.

A. Linear Regression

The LRKF approximates a nonlinear functiony = g(x)
with a linear modely = Ax + b + e, where A and b

are a regression matrix and a regression vector, respectively,
ande denotes the additional error term due to linearization.
Once this linear approximation is computed, the LRKF
proceeds by applying the regular Kalman filter equations.
In computing the linear approximation ofg(x), our goal is
to minimize the average squared error of the approximation,
which is defined as:

min
A,b

∫ +∞

−∞
[y − (Ax + b)]T [y − (Ax + b)]p(x)dx (1)

wherep(x) is the prior pdf of the statex. Clearly, due to
the nonlinear nature ofg(x), computing the solution of this
minimization problem in closed form is generally intractable.
Therefore, in the LRKF,r +1 regression points and weights

{Xi, wi}r
i=0 are selected, so that their sample mean and

covariance equals the mean and covariance of the pdf, i.e.,1

x̄ =
r∑

i=0

wiXi = E{x}

P̄xx =

r∑

i=0

wi (Xi − x̄) (Xi − x̄)
T

= E{(x− x̄)(x − x̄)T }

Using the approximationp(x) ≃
r∑

i=0

wiδ(x − Xi), (1) be-

comes:

min
A,b

r∑

i=0

wi[Yi − (AXi + b)
︸ ︷︷ ︸

ei

]T [Yi − (AXi + b)
︸ ︷︷ ︸

ei

] (2)

where{Yi = g(Xi)}r
i=0. This cost function is identical to

that presented in [13], and the optimal solution forA andb

is given by

A = P̄yxP̄
−1
xx , b = ȳ − Ax̄ (3)

where

ȳ =

r∑

i=0

wiYi , P̄yx =

r∑

i=0

wi (Yi − ȳ) (Xi − x̄)
T (4)

During recursive estimation, the LRKF employs the above
statistical linearization procedure to approximate the nonlin-
ear process and measurement models. It is important to note
that, in this case, the regression matricesA andb serve as
inferred Jacobianmatrices, in a fashion similar to the EKF.
The details are explained next.

B. Propagation

During propagation, the LRKF approximates the nonlinear
process model by a linear function:

xk+1 = f(xk, ok) (5)

= Φ̆kxk + Ğkok + bk + ek (6)

=
[

Φ̆k Ğk

]
[
xk

ok

]

+ bk + ek (7)

wherexℓ is the system state vector at timeℓ, ℓ = k, k+1,
ok = omk

− wk is the control input (e.g., odometry),omk

is the corresponding measurement, andwk is the odometry
noise vector, assumed to be zero-mean, white, and Gaussian,
with covariance matrixQk. The matrices̆Φk andĞk can be
viewed as inferred Jacobians, in an analogy to the linearized
approximation of the EKF.

In the LRKF propagation step,r + 1 sample points
{Xi(k)}r

i=0 are selected based on theaugmentedvector
that comprises the filter state and the control input. The

1Throughout this paper,̄α and P̄αα denote the sample mean and
covariance of regression pointsAi, drawn from the pdf of the variable
α. P̄αβ denotes the sample cross-correlation between sets of samplesAi

and Bi, drawn from the pdf of the variablesα and β, respectively.x̂ is
used to denote the estimate of a random variablex, and x̃ = x − x̂ is the
error in this estimate. Finally, the subscriptℓ|j refers to the estimate of a
quantity at time-stepℓ, after all measurements up to time-stepj have been
processed.



sample mean and sample covariance, respectively, of the set
{Xi(k)}r

i=0 is:

x̄k|k =

[
x̂k|k
omk

]

, P̄xxk|k
=

[
Pk|k 0

0 Qk

]

(8)

Then the LRKF produces the regression points,{Yi(k) =
Xi(k+1)}r

i=0, by passing the sample points through the non-
linear process function (5). The sample mean and covariance
of theYi points is used as the mean and covariance matrix
of the propagated state estimates. Moreover, the inferred
Jacobian matrices̆Φk and Ğk can be computed from the
expression (cf. [13], [14]):

[

Φ̆k Ğk

]
= P̄yxk|k

P̄−1
xxk|k

(9)

C. Update

During update, the LRKF employs statistical linearization
in order to approximate the nonlinear measurement function:

zk+1 = h(xk+1) + vk+1 (10)

= H̆k+1xk+1 + b′
k+1 + vk+1 + e′k+1 (11)

wherezk+1 is the measurement andvk+1 is the measurement
noise vector, assumed to be zero-mean, white, and Gaussian,
with covariance matrixRk+1. A set of r + 1 points with
sample mean and covariance equal tox̂k+1|k and Pk+1|k,
respectively, are selected, and then passed through the non-
linear measurement function (10), to obtainr + 1 regression
points:{Zi(k+1) = h(Xi(k+1))}r

i=0. The regression matrix
(i.e., the inferred Jacobian)̆Hk+1 can then be obtained as
(cf. (3)):

H̆k+1 = P̄zxk+1|k
P−1

k+1|k (12)

Subsequently, the state and covariance are updated using the
filter update equations:

Sk+1 = P̄zzk+1|k
+ Rk+1 (13)

Kk+1 = Pk+1|kH̆
T
k+1S

−1

k+1
(14)

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − z̄k+1) (15)

Pk+1|k+1 = Pk+1|k − Kk+1Sk+1K
T
k+1 (16)

D. UKF

As argued in [13], the UKF is a special case of the LRKF.
It deterministically choosesr + 1 = 2n + 1 so-called sigma
pointsXi in then-dimensional state space, with weightswi,
i = 1, . . . , n, according to the equations:

X0(ℓ|k) = x̂ℓ|k , w0 =
2κ

2(n + κ)
(17)

Xi(ℓ|k) = x̂ℓ|k +
(√

(n + κ)Pℓ|k
)

i
, wi =

1

2(n + κ)

Xi+n(ℓ|k) = x̂ℓ|k −
(√

(n + κ)Pℓ|k
)

i
, wi+n =

1

2(n + κ)

where
(√

(n + κ)Pℓ|k
)

i
is theith column of

√
(n + κ)Pℓ|k,

andℓ = k or k+1. κ is a degree of freedom in the choice of
the sigma pointsXi, usually chosen so thatn + κ = 3. This
set of sigma points captures the moments of the underlying
distribution up to the third-order for the Gaussian case.

IV. QUADRATIC-COMPLEXITY UKF-BASED SLAM

In this section, we show how the computational cost of the
UKF, when applied to the SLAM problem, can be optimized.
In particular, in this paper we focus on 2-D SLAM, in
which case the state vectorxk comprises the robot pose and
landmark positions, i.e.,

xT
k =

[
xT

Rk
pT

L1
· · · pT

LM

]
(18)

wherexT
Rk

= [pT
Rk

φRk
] denotes the robot pose (position

and orientation), andpLi
, i = 1 . . .M , are the positions of

the M landmarks.
In the UKF algorithm presented in the preceding section,

the main bottleneck is the computation of the square root
matrix of the covariance, which has complexityO(M3).
Clearly, in a scenario where hundreds of landmarks are
included in the state vector, carrying out this operation
during each propagation and update step would incur an
unacceptable computational burden. To address this problem,
we here propose a new sampling scheme for the UKF, which
has computational costO(1), during both propagation and
update. The derivation of this sampling scheme is based
on the observation that, during SLAM, only asmall subset
of the filter states appear in the nonlinear propagation and
measurement models. In particular, during propagation only
the robot state changes, while each measurement involves
only the robot pose and one landmark. To take advantage of
this important property, we employ the following lemma:

Lemma 4.1:Let the vectorx be partitioned asxT =
[
xT

1 xT
2

]
, and letg(x) = g(x1) (i.e., only the state entries

of x1 appear ing(x)). Moreover, let the linear regression
matrix A be partitioned asA = [A1 A2], i.e.,

y = Ax + b + e = A1x1 + A2x2 + b + e (19)

Then the optimal solution to (2) is:

A1 = P̄yx1
P−1

x1x1
, A2 = 0, b = ȳ − A1x̂1 (20)

Proof: The linearization error is written as

e(x) = y − (Ax + b) = y − A1x1 − A2x2 − b

Substituting in the expression for the expected value of the
quadratic linearization error, we have:

c =

∫ +∞

−∞
e(x)

T
e(x)p(x)dx =

∫ +∞

−∞
e∗(x1)

T
e∗(x1)p(x)dx

+

∫ +∞

−∞
xT

2 AT
2 A2x2p(x)dx − 2

∫ +∞

−∞
e∗(x1)

T
A2x2p(x)dx

(21)

with

e∗(x1) = y − A1x1 − b (22)

p(x) = N (x̂,P) (23)

where

x̂ =

[
x̂1

x̂2

]

, P =

[
Px1x1

Px1x2

Px2x1
Px2x2

]

(24)



Using the identityp(x) = p(x2|x1)p(x1) and the approx-
imation p(x1) ≃ ∑

i wiδ(x1 − X1i
), the cost function (21)

becomes [14]:

c ≃
∑

i

wi(Yi − A1X1i
− b)T (Yi − A1X1i

− b) +

tr
[
A2(Px2x2

+ x̂2x̂
T
2 )AT

2

]
−

2
∑

i

wi(Yi − A1X1i
− b)T A2X̂2i

(25)

whereX̂2i
:= x̂2 + Px2x1

P−1
x1x1

(X1i
− x̂1), X1i

are sample
points drawn from the distributionp(x1) = N (x̂1,Px1x1

),
andYi = g(X1i

).
Setting the derivatives of the cost function (25) with

respect tob, A1, andA2 to zero, we obtain (20).

This result means that, in order to minimize the expected
error of the statistical linearization (cf. (2)), it suffices to
draw sample points from the pdf ofx1. In SLAM, the
number of states participating in the nonlinear propagation
and measurement models is constant, and thus we can reduce
the cost of UKF sampling toO(1), by applying the unscented
transformation only to the pertinent state entries, instead of
sampling over the full state. Compared to EKF-SLAM, the
proposed UKF-SLAM only incurs a small computational
overhead (for computing the square roots of constant-size
matrices), and has the same complexity. The details of the
new sampling strategy are presented in the following.

A. Propagation

During propagation, only the robot pose and the control
input (odometry) participate in the process model. Therefore,
we are able to reduce the computational complexity by
applying the unscented transformation only to the part of the
state comprising the robot pose and the control input, instead
of the full state vector. Specifically, we draw the sigma points
based on the vector with mean and covariance:

x̄k|k =

[
x̂Rk|k

omk

]

, P̄xxk|k
=

[
PRRk|k

0

0 Qk

]

(26)

where PRRk|k
is the covariance matrix corresponding to

the robot pose, obtained by partitioning the state covari-

ance matrix asPk|k =

[
PRRk|k

PRLk|k

PT
RLk|k

PLLk|k

]

. Note that the

vector x̄k|k is of dimension 5 (assuming that the odometry
measurementomk

is 2-dimensional), and thus the compu-
tational cost of computing the sigma points is very small.
Subsequently, we transform each of the sigma points using
the process model (5), to obtain samples of the propagated
robot pose,Yi = XRi

(k + 1|k), i = 0, . . . , 10. This enables
us to compute the mean and covariance of the propagated
robot state, in the same way as in the standard LRKF/UKF
(cf. Section III-B). Moreover, we can evaluate theinferred
propagation Jacobian:

A = P̄yxk|k
P̄−1

xxk|k
=

[

Φ̆Rk
ĞRk

]
(27)

In order to compute the cross-correlation between the prop-
agated robot state and the landmarks, we note that:

PRLk+1|k
= E

{

x̃Rk+1|k
x̃T

Lk|k

}

= E
{(

Φ̆Rk
x̃Rk|k

+ ĞRk
wk + ek

)

x̃T
Lk|k

}

= Φ̆Rk
PRLk|k

(28)

Thus the propagated SLAM covariance matrix is given by:

Pk+1|k =

[

P̄yyk|k
Φ̆Rk

PRLk|k

PT
RLk|k

Φ̆T
Rk

PLLk|k

]

(29)

Clearly, the computational cost of propagation islinear in
the size of the state vector.

B. Update
Any measurement used for updating involves only the

robot pose and the position of the observed landmark.
Therefore, we can apply the unscented transformation only
to this subset of the states, to reduce the computational cost.
In particular, assume thejth landmark is observed at time
stepk + 1. Then, the set of sigma points{Xi}10

i=0 is drawn
with mean and covariance:

x̄k+1|k =

[
x̂Rk+1|k

x̂Lj,k+1|k

]

, P̄xxk+1|k
=

[
PRRk+1|k

PRLj,k+1|k

PLjR
k+1|k

PLjL
j,k+1|k

]

(30)
Note that this process involves a matrix withconstantsize,
regardless of the number of landmarks in the state vector.
Once the set of sigma points is generated, the procedure of
the LRKF update (cf. Section III-C) is applied, to obtain the
inferred measurement Jacobian:

A = P̄zxk+1|k
P̄−1

xxk+1|k
=

[

H̆Rk+1
H̆Lj,k+1

]
(31)

where the submatrix̆HRk+1
corresponds to the robot pose,

while H̆Lj,k+1
corresponds to thejth landmark. To construct

the inferred measurement Jacobian for the entire state vector,
we note that all terms corresponding to the landmarks
not currently observed are zero. Thus, the entireinferred
measurement Jacobian is obtained as:

H̆k+1 =
[
H̆Rk+1

0 · · · 0 H̆Lj,k+1
0 · · · 0

]
(32)

Once this matrix is available, equations (13)-(16) are applied
to update the state and covariance in the UKF. It is important
to point out that the computational complexity of these
equations is determined by the covariance update equation,
and is quadratic in the number of landmarks, similarly to the
EKF.

V. SLAM OBSERVABILITY ANALYSIS

As discussed in Section III, the UKF (as a special case of
the LRKF) relies on a linear approximation of the nonlinear
system, in order to carry out the recursive estimation. The
system model employed by the UKF is given by equa-
tions (7) and (11). Thus, the properties of this system
model are important for determining the performance of
the estimator. As shown in [11] for the case of the EKF,
when a linearized system model is employed for estimation,
the observability propertiesof this model are crucial in



determining filter consistency. The observability properties
of the UKF’s linear-regression-based model can be studied
by examining the observability matrix for the time interval
between time-stepsko andko + k, defined as:

M =








H̆ko

H̆ko+1Φ̆ko

...
H̆ko+kΦ̆ko+k−1 · · · Φ̆ko








(33)

We see thatM is a function of the regression matrices used
in the UKF, and thus the structure of these matrices will
in turn determine the observability properties of the system
model. Ideally, we would require these properties to match
those of the underlyingnonlinearSLAM system, which has 3
unobservable degrees of freedom corresponding to the global
position and orientation of the state vector. In [11], it was
shown that this would be the case, if we could create an
“oracle” or “ideal” EKF, where linearization is carried out
using Jacobians evaluated at thetrue values of the state.
Specifically, if instead of the regression matricesH̆k and
Φ̆k we employ the “ideal” Jacobians:

Hk = ∇xk
h

∣
∣
∣
xktrue

, Φk = ∇xk
f

∣
∣
∣
xktrue

(34)

then the observability matrix, in the case where asingle
landmark is included in the state vector, is equal to [11]:

Mideal = D ×








−I2 −J(pL − pRko
) I2

−I2 −J(pL − pRko
) I2

...
...

...
−I2 −J(pL − pRko

) I2








(35)

whereD is a block-diagonal matrix with full row-rank,I2 is

the2×2 identity matrix, andJ ,

[
0 −1
1 0

]

. The rank of this

observability matrix is two, which implies that the system
model of the ideal EKF has three unobservable directions.
A basis for the unobservable subspace (i.e., a basis for the
right nullspace ofMideal) is:

N (Mideal) = span
col.





I2 JpRko

01×2 1
I2 JpL



 , span
col.

[
n1 n2 n3

]

(36)

We observe that the vectorsn1 and n2 correspond to a
“shifting” of the x−y plane, while the vectorn3 corresponds
to a rotation of thex − y plane. These are precisely the
unobservable directions of the underlying, nonlinear SLAM
system, which shows that the ideal EKF offers a good
approximation to the nonlinear system (from the perspective
of observability). We point out that even though the above
analysis only addresses the case of a single landmark,
analogous results are obtained for the general case where
M > 1 landmarks are included in the state vector [14].

Since the UKF employs the linearization of (7) and (11)
to approximate the nonlinear SLAM system, we would re-
quire that the corresponding system model has observability

properties similar to those of the nonlinear system, and
consequently, identical to those of the ideal EKF. A necessary
and sufficient condition for this to occur is that the vectors
ni, i = 1, 2, 3, lie within the nullspace ofeachof the block
rows of the observability matrix, i.e.,

ni ∈ N (H̆ko
) , . . . , ni ∈ N (H̆ko+kΦ̆ko+k−1 · · · Φ̆ko

)

for i = 1, 2, 3. However, this is generallynot the case. In fact,
when numerically computing the dimension of the nullspace
of the observability matrix, we find that it islessthan three.
This implies that the UKF obtains “spurious” information,
in directions of the state space where no information is
available. This, in turn will lead to an unjustified reduction
of the covariance matrix of the estimates, thus causing
inconsistency. This fact, which has been generally over-
looked in the literature, can cause a significant degradation
in filter performance, as shown in the simulation results of
Section VII.

VI. OBSERVABILITY-CONSTRAINED UKF SLAM

In this section, we propose a novel UKF that employs
a system model with observability properties similar to
those of the actual nonlinear SLAM system. In our previous
work [11], we proposed the conjecture that the observabil-
ity properties of the linearized error-state model in EKF-
SLAM play a fundamental role in determining consistency.
Motivated by this conjecture, we derived the First-Estimate
Jacobian (FEJ)-EKF, which always employs the first state
estimates in computing the Jacobians, thus achieving the
desired observability properties. This filter outperformsthe
standard EKF in SLAM, even though it uses “older” (and
thus less accurate) state estimates for Jacobian evaluation.

We here propose an analogous approach, within the UKF
framework. Specifically, we construct the “inferred” Jaco-
bians of the UKF in such a way that the resulting system
model has an unobservable subspace of dimension three.
Even though these regression matrices donot generally
minimize the expected squared error of linearization (cf. (2)),
we have verified in simulation that the resulting filter,
termed Observability Constrained (OC)-UKF, outperforms
the standard UKF in terms of both accuracy and consistency
(cf. Section VII). This further supports our conjecture about
the importance of the observability properties of the filter’s
system model in determining consistency.

To maintain clarity, we here present the OC-UKF for the
case where a single landmark is included in the SLAM state
vector. The more general case is handled in the same way,
and the interested reader is referred to [14] for details.

The propagation phase of the OC-UKF is identical to
that of the standard UKF. The difference arises in the
update phase, where, instead of employing the unconstrained
minimization of (2) for computing the regression matrix
A, we employconstrainedoptimization, by enforcing the
desired observability properties. In particular, if a landmark



was first observed at time-stepko, we require that

H̆ko
N = 0 (37)

H̆ko+kΦ̆ko+k−1 · · · Φ̆ko
N = 0, k > 0 (38)

In this expression,N is a5×3 matrix, whose columns span
the desired nullspace. These constraints ensure that all the
block rows of the observability matrixM (cf. (33)) have
the samenullspace, which coincides with theunobservable
subspaceof the filter’s system model. It is interesting to note
that, in this formulation, this subspace is a design choice,
since we can freely chooseN. For instance, we can choose a
matrix whose columns span the nullspace of thefirst inferred
Jacobian,̆Hko

(which can be computed via the SVD ofH̆ko
),

or we can explicitly require the nullspace to be of the same
structure as that of the ideal EKF, by choosing:

N =





I2 Jp̂Rko|ko

01×2 1
I2 Jp̂Lko|ko



 (39)

Note that, since the true value of the state is unknown in (39),
we employ the state estimates at time-stepko.

The regression matrixA at each update step (cf. (31)) is
obtained by solving the constrained optimization problem:

min
A,b

10∑

i=0

wie
T
i ei (40)

s.t. AΦ̆ko+k−1 · · · Φ̆ko
N = 0 (41)

where Φ̆ℓ =

[

Φ̆Rℓ
0

0 I2

]

denotes the regression matrix

obtained from propagation (cf. (27)), corresponding to the
system whose state vector comprises the robot pose and the
landmark position. The sigma points used in the above min-
imization problem are computed by the procedure described
in Section IV-B.

We now derive a solution to the constrained optimiza-
tion problem (40) inclosed form. First, we defineU ,

Φ̆ko+k−1 · · · Φ̆ko
N, and using this notation, we write the

equality constraint onA as AU = 0. This equation states
that the rows ofA lie in the left nullspace of the5×3 matrix
U. Therefore, ifL is a 2 × 5 matrix whose rows span this
nullspace, we can writeA as:

A = BL (42)

whereB is the unknow2×2 matrix that we seek to compute.
We note that there are several possible ways of computing
an appropriate matrixL, whose rows lie in the nullspace of
U. For instance, such a matrix is given, in closed form, by
the expression:

L =
[
I2 02×3

] (
I5 − U(UT U)−1UT

)
(43)

Substituting (42) in the original problem formulation
(cf. (2), (40)), we obtain:

min
B,b

10∑

i=0

wi (Zi − (BLi + b))
T

(Zi − (BLi + b)) (44)

where we have definedLi = LXi, i = 0, . . . , 10. This is an
unconstrained minimization problem with design variables
B andb, and has exactly the same structure as that in (2).
By analogy, we thus see that the optimal solution forB is

B = P̄zℓP
−1

ℓℓ (45)

where

P̄zℓ =

10∑

i=0

wi(Zi − z̄)(LXi − Lx̄)T = P̄zxL
T

Pℓℓ =

10∑

i=0

wi(LXi − Lx̄)(LXi − Lx̄)T = LP̄xxL
T

By combining these two results with those of (45) and (42),
we obtain the optimal value ofA as:

A =
[

H̆Rko+k
H̆Lko+k

]
= P̄zxL

T
(
LP̄xxL

T
)−1

L (46)

After constructing the inferred measurement Jacobian matrix
H̆ko+k from the regression matrixA (cf. (32)), we are able
to update the state and its covariance (cf. (13)-(16)). We
point out that in the general case, where multiple landmarks
are observed, the above process is repeated for each of the
landmarks observed at the current time step. The maximal
dimension of all the matrices involved is 5 (cf. (30)), and thus
computing the regression matrixA incurs only aconstant
computational overhead, regardless of the number of land-
marks in the state. As a result, the overall computational cost
of the update step remains quadratic, and is dominated by
the cost of updating the covariance (cf. (16)). The proposed
OC-UKF SLAM is summarized in Algorithm 1.

Algorithm 1 Observability-Constrained (OC)-UKF SLAM
Require: Initial state estimate and covariance

1: loop
2: Propagation:
3: Determine sigma points by (17) with mean and

covariance (26).
4: Produce regression points by passing the sigma

points through (5) and compute the propagated state
estimate by sample mean.

5: Compute regression matrices via (27).
6: Compute propagated covariance via (29).

7: Update:
8: Determine sigma points by (17) with mean and

covariance (30).
9: Produce regression points by passing the sigma

points through (10).
10: Compute regression matrix via (46) and (32).
11: Update state and covariance via (13)-(16).
12: end loop

VII. S IMULATION RESULTS

A series of Monte-Carlo comparison studies were con-
ducted under various conditions, in order to demonstrate



the capability of the OC-UKF to improve the consistency
of UKF-based SLAM. The metrics used to evaluate filter
performance are: (i) the RMS error, and (ii) the average
normalized (state) estimation error squared (NEES) [15].
Specifically, for the landmarks we compute the average RMS
errors and average NEES by averaging the squared errors
and the NEES, respectively, over all Monte Carlo runs, all
landmarks, and all time steps. On the other hand, for the
robot pose we compute these error metrics by averaging over
all Monte Carlo runs for each time step (cf. [14] for a more
detailed description). By studying both the RMS errors and
NEES, we obtain a comprehensive picture of the estimators’
performance.

In the simulation tests presented in this section, a robot
with a simple 3-wheel (2 active and 1 caster) kinematic
model moves on a planar surface, at a constant velocity
of v = 0.25 m/sec. The two active wheels are equipped
with encoders, which measure their revolutions and provide
measurements of velocity with standard deviation equal to
σ = 2%v for each wheel. These measurements are used
to obtain linear velocity measurements for the robot, with
standard deviation equal toσv = σ√

2
, and rotational ve-

locity measurements with standard deviationσω = 2
√

2σ.
The robot records distance and bearing measurements to
landmarks that lie within its sensing range of 5 m. The
standard deviation of the distance measurement noise is
equal to 10% of the robot-to-landmark distance, while the
standard deviation of the bearing measurement noise is set
to 10 deg. It should be pointed out that the sensor-noise levels
selected for the simulations are larger than what is typically
encountered in practice. This was done on purpose, so as to
make the effects of inconsistency more apparent (larger noise
levels lead to larger estimation errors, and thus less accurate
linearization). We note that the initialization of the landmarks
is performed by use of the unscented transformation, as
detailed in [14].

For the results shown here, a SLAM scenario with multiple
loop closures was considered, where during each run, the
robot executes 8 loops on a circular trajectory, and observes
20 landmarks in total. The reported results are averages
over 50 Monte Carlo simulations. During the test, five filters
process the same data, to ensure a fair comparison2. These
are: (i) the ideal EKF, (ii) the standard EKF, (iii) the FEJ-
EKF [11], (iv) the standard UKF, and (v) the OC-UKF.

The comparative results for all filters are presented in
Fig. 1 and Table I. Specifically, Fig. 1(a) and Fig. 1(b)
show the average NEES and RMS errors for the robot pose,
respectively. On the other hand, Table I presents the average
values of all relevant performance metrics for the landmarks
and robot.

Several interesting conclusions can be drawn from these
results. First, it becomes clear that the performance of

2In [11], the FEJ-EKF was shown to perform better, in terms of accuracy
and consistency, than the robocentric mapping algorithm [16], which aims at
improving the consistency of SLAM by expressing the landmarks in a robot-
relative frame. Therefore, in this paper we omit the comparison between the
proposed OC-UKF and robocentric mapping.

Ideal EKF Std EKF FEJ-EKF Std UKF OC-UKF

Robot Position Err. RMS (m)

0.4386 0.6320 0.4712 0.6009 0.4491

Robot Heading Err. RMS (rad)

0.0415 0.0546 0.0445 0.0523 0.0424

Robot Pose NEES

3.0922 6.4944 4.1061 6.0324 3.4663

Landmark Position Err. RMS (m)

0.4506 0.6743 0.4842 0.6373 0.4627

Landmark Position NEES

1.9922 5.4125 3.3575 4.9038 2.3611

TABLE I

ROBOT POSE AND LANDMARK POSITION ESTIMATION PERFORMANCE

the OC-UKF is very closeto that of the ideal EKF, and
substantially better than both the standard EKF and the
standard UKF, in terms of RMS errors, as well as in terms
of NEES. The observed performance gains indicate that
the observability properties of the linear-regression-based
system model employed in the UKF play a key role in
determining the filter consistency. If these properties differ
from those of the underlying nonlinear system, consistency
cannot be guaranteed. Moreover, the results shown here agree
with those obtained in the case of the EKF in [11]. This
further validates the claim that the observability properties
of a filter’s system model significantly impact the filter’s
performance.

A second observation is that, in this large sensor-noise set-
ting, the OC-UKF also outperforms the FEJ-EKF [11], both
in terms of accuracy and in terms of consistency. On the other
hand, in tests where relatively small sensor-noise levels are
selected, the two filters’ performance is very similar (these
results cannot be included due to limited space). One possible
explaination for this is the fact that, when the sensor noise
is small, the linearization errors remain relatively smallfor
both filters, and, since both filters maintain the appropriate
observability properties, their performance is comparable.
However, when the noise is large, the linearization errors
become significant. In this case, the statistical linearization
employed by the UKF is capable of better capturing the
higher-order effects in the nonlinear propagation and update
models, thus yielding superior performance. Hence, we see
that the OC-UKF combines the benefits of the FEJ-EKF (i.e.,
observability properties) with those of the UKF (i.e., better
linearization), to form an estimator whose performance is
comparable to that of the ideal EKF.

As a final remark, we note that even though the OC-UKF
NEES performance is significantly better compared to that
of the FEJ-EKF, the difference in the RMS errors of the two
filters is less pronounced. This indicates that the effects of
inconsistency primarily affect the covariance, rather than the
state estimates.
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Fig. 1. Monte Carlo results for a SLAM scenario with multipleloop closures. (a) Average NEES of the robot pose errors (b) RMS errors for the robot
pose (position and orientation). In these plots, the solid lines correspond to the ideal EKF, the solid lines with circles to the standard EKF, the dash-dotted
lines to the FEJ-EKF, the solid lines with crosses to the standard UKF, and the dashed lines to the OC-UKF. Note that the RMSerrors of the ideal EKF,
the FEJ-EKF, and the OC-UKF are almost identical, which makes the corresponding lines difficult to distinguish.

VIII. C ONCLUSIONS

This paper focuses on the UKF-based SLAM, and in
particular on the issues of computational complexity and
filter inconsistency. The first contribution of this work is
a formulation of UKF-based SLAM that has computational
complexity of the same order as that of EKF-SLAM. This
formulation requires computing the square root of matrices
of (small) constantsize, which leads to computational com-
plexity linear in the propagation phase, andquadraticduring
updates. Moreover, we have shown that a mismatch between
the observability properties of the linear-regression-based
system model employed in the UKF, and those of the actual
nonlinear SLAM system, causes inconsistency. To address
this problem, we have introduced a new Observability-
Constrained (OC)-UKF, which ensures that the filter’s system
model has an unobservable subspace of appropriate dimen-
sions. This filter is shown to outperform both the EKF and
the UKF, in terms of consistency and accuracy.
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