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Abstract— This paper addresses two key limitations of the
unscented Kalman filter (UKF) when applied to the simulta-
neous localization and mapping (SLAM) problem: the cubic,
in the number of states, computational complexity, and the
inconsistency of the state estimates. In particular, we imbduce
a new sampling strategy that minimizes the linearization eror
and whose computational complexity is constant (i.e., ingeen-
dent of the size of the state vector). As a result, the overall
computational complexity of UKF-based SLAM becomes of the
same order as that of the extended Kalman filter (EKF) when
applied to SLAM. Furthermore, we investigate the observality
properties of the linear-regression-based model employelly the
UKF, and propose a new algorithm, termed the Observability-
Constrained (OC)-UKF, that improves the consistency of the
state estimates. The superior performance of the OC-UKF
compared to the standard UKF and its robustness to large
linearization errors are validated by extensive simulatims.

|. INTRODUCTION

For autonomous vehicles exploring unknown environ-
ments, the ability to perform simultaneous localizatior an
mapping (SLAM) is essential. Among the algorithms de-
veloped thus far to solve the SLAM problem, the extended
Kalman filter (EKF) arguably remains a popular choice and
has been used in many SLAM applications. However, the
EKF is also known to be vulnerable to linearization errors,
which can cause poor performance or even divergence. A
well-known problem with EKF-based SLAM is that the
state estimates are typicaligconsistentwhich renders the
estimator unreliable. In order to address the problemsathus
by linearization, the use of the unscented Kalman filter
(UKF) [1], appears to be an appealing option. The UKF
has been shown to generally perform better than the EKF in
nonlinear estimation problems, and one would expect simila
gains in the case of SLAM.

Our objective is to address the aforementioned limitations
In particular, the main contributions of this work are the
following:

o We propose a new sampling strategy for UKF-based

SLAM that hasconstantcomputational cost, regardless
of the number of landmarks included in the state vector.
This sampling strategy is provably optimal, in the sense
that it minimizes the squared error between the nonlin-
ear function and its linear approximation employed by
the UKF. Using this strategy, the computational cost of
UKF-based SLAM becomeknear during propagation
andquadraticduring update, which is in the same order
as the EKF.

We analytically examine the consistency of UKF-based
SLAM, by studying the observability properties of the
statistically-linearized system model, which is employed
by the UKF. This analysis identifies a mismatch be-
tween the observability properties of this model and
those of the underlying nonlinear system, which is a
fundamental cause of inconsistency. Based on this the-
oretical analysis, we propose a novel UKF-based SLAM
algorithm, termed Observability-Constrained UKF (OC-
UKF). By imposing the appropriate observability con-
straints on the linear regression carried out by the
UKF, the proposed OC-UKF ensures that its system
model has observability properties similar to those of
the actual, nonlinear, SLAM system. As a result, the
OC-UKF outperforms the EKF and the standard UKF
both in terms of accuracy, and in terms of consistency,
as verified by simulation tests.

II. RELATED WORK

A number of previous approaches have applied the stan-

However, one of the main limitations of the original UKFdard UKE algorithm to SLAM [2], [4], [5]. However, this

algorithm [1] is its computational complexity, whichésibic . L ]

. . algorithm, which involves computing the square root of the

in the size of the state vector. In the case of SLAM, where . . . .
State covariance matrix at each time step, has computétiona

hundreds of landmarks are typically included in the state . . )
L ) omplexity cubic in the number of landmarks, and thus is
vector, this increased computational burden can preclu&e

. . . not suitable for real-time operation in large environments
real-time operation. Moreover, when applied to SLAM, th o address this problem, Holme al. [3] recently pro-

: . o xosed a square-root UKF (SRUKF) for monocular visual

not overwhelming (e.g., [2], [3]). Most importantly, emigil . : :

. T . S%AM that has computational complexityuadratic both

evidence suggests that the UKF also results in inconsisten . . .

. . ) : in the propagation and in the update phases. This approach

estimates in SLAM, even though its performance is better o : . )
L offers a significant improvement in terms of computational

than the EKF in this respect. ; S i

complexity, at the cost of a significantly more complicated

implementation. Additionally, as shown in [3], the algbrit

is an order of magnitude slower than the standard EKF, due

to the need to carry out expensive numerical computations.

Andrade-Cettcet al. [6] presented a “hybrid” EKF/UKF

algorithm, where the EKF is employed in the update phase,
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while the UKF is used during propagation for computing{ X;, w; }/_, are selected, so that their sample mean and
only the robot state and its covariance. The cross-correlati@movariance equals the mean and covariance of the pd#, i.e.,

terms during propagation are handled in a fashion identiical .

the EKF. Even though this algorithm achieves computational % — Zwﬂi = E{x}
complexity linear during propagation and quadratic during =0

updates, the positive definiteness of the state covariamee m_ r

trix cannot be guaranteed during propagation. Moreover, thPxx = Zwi (X —%) (X -%)" = B{(x-%)(x-%)T}
use of the EKF for updates makes the approach vulnerable to i=0
large linearization errors. In contrast to the aforemend ] o r
approaches, the algorithm described in Section IV employ$Sing the approximatiop(x) ~ Z:wié(x — &), (1) be-
the unscented transformatidioth in the propagation and comes: =0
update phases, is simple to implement, and attains computa- r
tional complexitylinear during propagation, anduadratic min Zwi[yi — (AX; +b)]"[V; — (AX; +b)]  (2)
during updates. =0

The issue of theconsistencyof UKF-based SLAM has
not received considerable attention in the literature.2h [
[3] the consistency of the UKF was empirically examine
but, to the best of our knowledge, no theoretical resultstexi
to date. On the other hand, the consistency of EKF-based A =P, P} b=7— A% ©)
SLAM has been studied in a number of publications [7]-
[10]. In our recent work [11], [12], we have presented anvhere
analytical study of the issue, by focusing on the obseritgbil r -
properties of the EKF’s linearized system model. In this S’:Zwi% ; Pyx = Zwi V-39 (X -x" @)
work, we extend this analysis to the case of UKF-based i=0 i=0
SLAM, and we analytically show that the implicit statisfica puring recursive estimation, the LRKF employs the above
linearization, performed by the UKF, results in a systentatistical linearization procedure to approximate theline
model with “incorrect” observability properties, which & ear process and measurement models. It is important to note

€; €;

where{Y; = g(&X;)};_,. This cost function is identical to
dthat presented in [13], and the optimal solution forandb
is given by

fundamental cause of inconsistency. that, in this case, the regression matricesand b serve as
inferred Jacobiarmatrices, in a fashion similar to the EKF.
1. LRKF AND UKF The details are explained next.

In this section, we present the UKF in the context of th .
Linear-Regression Kalman Filter (LRKF). As shown in [13],%' Propagation
the UKF is a special case of the LRKF, and therefore, it can During propagation, the LRKF approximates the nonlinear
be viewed as performing an implicitatistical linearization Process model by a linear function:
of the nonlinear propagation and update models. We here

/ L o . ; = f(xy, 5
present the details of this linearization mechanism, which Kkt u(xk Ok)v ®)
will be instrumental in the development of the quadratic- = ®ixp, + Grop + by + e (6)
complexity UKF in Section IV. o y

plexity I I = [@k Gk] BZ] + bi + ex @)

A. Linear Regression . .
wherex, is the system state vector at tindel¢ = k, k+1,

‘The LRKF approximates a nonlinear functign= g(x) o, = o,,, — w;, is the control input (e.g., odometry,,,,
with a linear modely = Ax + b + e, where A andb s the corresponding measurement, anglis the odometry
are a regression matrix and a regression vector, respgetiveypise vector, assumed to be zero-mean, white, and Gaussian,
ande denotes the additional error term due to linearizationyith covariance matrixQy. The matricesp; andG,. can be

Once this linear approximation is computed, the LRKRjewed as inferred Jacobians, in an analogy to the linedrize
proceeds by applying the regular Kalman filter equationgpproximation of the EKF.

In computing the linear approximation gf(x), our goalis |y the LRKF propagation stepy + 1 sample points
to minimize the average squared error of the approximatiotp,yi(k)}rio are selected based on thigmentedvector
which is defined as: that comprises the filter state and the control input. The

—+oo
min / [y — (Ax +b)]" [y — (Ax + b)]p(x)dx (1) Throughout this paper@ and Pao denote the sample mean and
Ab — 0 covariance of regression pointd;, drawn from the pdf of the variable
] ) a. P,g denotes the sample cross-correlation between sets of asmpl
where p(x) is the prior pdf of the state. Clearly, due to and B;, drawn from the pdf of the variables: and 3, respectively.z: is
the nonlinear nature af(x), computing the solution of this used to denote the estimate of a random variablandz = = —  is the

e bl in cl df . ™ deb error in this estimate. Finally, the subscrifjyj refers to the estimate of a
minimization problem in closed form Is generally intradea quantity at time-steg, after all measurements up to time-stgpave been

Therefore, in the LRKFy + 1 regression points and weights processed.



sample mean and sample covariance, respectively, of the setlV. QUADRATIC-COMPLEXITY UKF-BASED SLAM
In this section, we show how the computational cost of the
Py O UKF, when applied to the SLAM problem, can be optimized.
In particular, in this paper we focus on 2-D SLAM, in

{Xi(k)}i—o is:
} ’ { 0 QJ , .
. . which case the state vectgy, comprises the robot pose and
Then the LRKF produces the regression poid;(k) landmark positions, i.e.

X;(k+1)}i_,, by passing the sample points through the non-
linear process function (5). The sample mean and covariance [ p7,,]
&erexﬂk = [pk, ¢r.] denotes the robot pose (position

XEk|k
o

(8)

Pxxk‘k =

Xk = [
M

T

X = T

XRk

Pr, (18)
of the )); points is used as the mean and covariance matrix
of the propagated state estimates. Moreover, the inferrt . . ) I
Jacobian matrice®; and G, can be computed from the and orientation), angz,, 7 =1... M, are the positions of

: ) the M landmarks.
expression (cf. [}3]’ [14]): In the UKF algorithm presented in the preceding section,

(@), G| = f’yxm the main bottleneck is the computation of the square root
C. Updat matrix of the covariance, which has complexiy(1/3).

' p awe S ~_ Clearly, in a scenario where hundreds of landmarks are
~ During update, the LRKF employs statistical linearizationnciuded in the state vector, carrying out this operation
in order to approximate the nonlinear measurement funm'oﬂuring each propagation and update step would incur an
(10) unacceptable computational burden. To address this pmpble

we here propose a new sampling scheme for the UKF, which
(11) has computational cogf(1), during both propagation and
wherez, 1 is the measurement ang , ; is the measurement update. The derivation of this sampling scheme is based
noise vector, assumed to be zero-mean, white, and Gaussi@n,the observation that, during SLAM, onlysmall subset
with covariance matrixR,;,. A set of r + 1 points with  of the filter states appear in the nonlinear propagation and
sample mean and covariance equalkfo, ;;, and Py, measurement models. In particular, during propagatiog onl
respectively, are selected, and then passed through the ndte robot state changes, while each measurement involves
linear measurement function (10), to obtais- 1 regression only the robot pose and one landmark. To take advantage of
points:{ Z;(k+1) = h(Xi(k+1))}/_,. The regression matrix this important property, we employ the following lemma:
(i.e., the inferred JacobiarﬁIkH can then be obtained as

13—1

xxk‘k

9)

Zpy1 = h(Xpp1) + Vg

) / I
= Hk+1xk+1 + bk+1 + Vi1 + €L

Lemma 4.1:Let the vectorx be partitioned ax” =

(cf. (3)): [xI" x17, and letg(x) = g(x1) (i.e., only the state entries
Hy = pzkarl\kPl;—ﬁ]:l\k (12) of xi appear ing(x)). Moreover, let the linear regression

matrix A be partitioned aA = [A;

AQ], i.e.,
Subsequently, the state and covariance are updated using th

filter update equations: y=Ax+b+e=A1x; +Axxs+b+e (19)
Ski1 = Pzzkmk + Ry (13)  Then the optimal solution to (2) is:
K1 =P HE S (14) A =Py P, Ay=0, b=y—Ax (20)
X = X + K —Z 15 . . . . .
kLl = et 1k b (2 TZkH) (15) Proof: The linearization error is written as
Priijp+1 = Proe — Ker1 Sk K4 (16)

D. UKF e(x) =y — (Ax+b)=y—A;x; —Asxz — b

As argued in [13], the UKF is a special case of the LRKFSubstituting in the expression for the expected value of the
It deterministically chooses + 1 = 2n + 1 so-called sigma 9uadratic linearization error, we have:

points X; in the n-dimensional state space, with weights Fo0 r too T
i=1,...,n, according to the equations: c= / e(x)” e(x)p(x)dx Z/ e"(x1)” e"(x1)p(x)dx
~ 2K +o0 +00
Xo(llk) = Xy, wo = 2(n + k) (17) +/ x5 A3 Aoxop(x)dx — 2/ e*(x1)" Agxop(x)dx
k) = % / L h - (21)
Xi (k) = X + ( (n + “)Pz\k)i , Wi = 3+ ) it
1
Xitn(Llk) = Xg1 — P y Wign = 57—~
+n(fk) = X (\/(n—kn) l\k)i Win = S e*(x1) = y — Ayx1 — b (22)
where(/(n + r)Py;,) , is theith column of\/(n + k)P, p(x) = N(%,P) (23)
and? = k or k+1.  is a degree of freedom in the choice of
. . -~ “'where
the sigma pointsY;, usually chosen so that+ « = 3. This .
set of sigma points captures the moments of the underlying % = [Xl} , P= [me qu«z] (24)
distribution up to the third-order for the Gaussian case. X2 Pooxi Prox;



Using the identityp(x) = p(x2|x1)p(x1) and the approx- In order to compute the cross-correlation between the prop-
imation p(x1) ~ >, w;0(x1 — X1,), the cost function (21) agated robot state and the landmarks, we note that:

becomes [14]: - -
PRL,CJFWc =F {XRk+1\kX€k\k}

~ (Vi — A X, — b)YV — A X, —Db . .
¢ ;w(y R ) (y R )+ :E{(@RkiRk\k—i_GRka}—’—ek}) i%k\k}

tr [AQ(PX2X2 + fc?f(g)Ag} - = éRkPRLk\k (28)
Ta <
22%(% — A&, —b)" Axdy, (25)  Thus the propagated SLAM covariance matrix is given by:
. Pyy, @, PR
whereXs, 1= %2 + Pa,x, Px i, (X1, — %1), X1, are sample Piyir = | pr yyk(‘ik,:r ];);LL e (29)
points drawn from the distributiop(x1) = N (%1, Px,x, ), RLkpe ™ R lk
and); = g(Xy,). Clearly, the computational cost of propagationlirgar in

Setting the derivatives of the cost function (25) withthe size of the state vector.
respect tob, A;, and A, to zero, we obtain (20). B. Update

This result means that, in order to minimize the expecteiq)g‘cny prgggsg;eémtehné %%es?tig?]r gfp?ﬁgngb?ggggslggé%gﬁﬁ.
error of the statistical linearization (cf. (2)), it suffcéo  Therefore, we can apply the unscented transformation only
draw sample points from the pdf aof;. In SLAM, the to this subset of the states, to reduce the computational cos

number of states participating in the nonlinear propagatidn particular, assume thgth landmark is observed at time
and measurement models is constant, and thus we can redﬁ@%’k + L. Then, the set of sigma poinfst; },Z, is drawn

. . with mean and covariance:
the cost of UKF sampling t®(1), by applying the unscented .
transformation only to the pertinent state entries, irdtea Koot = I:AXRkJrl\k:| P _ |:PRRk+1\k PrL; i1
sampling over the full state. Compared to EKF-SLAM, the XL k+1]k R PR Pt
proposed UKF-SLAM only incurs a small computationa
overhead (for computing the square roots of constant-si
matrices), and has the same complexity. The details of t
new sampling strategy are presented in the following.

g, k+1|k

I%\éote that this process involves a matrix witbnstantsize,
gardless of the number of landmarks in the state vector.
nce the set of sigma points is generated, the procedure of

the LRKF update (cf. Section 11I-C) is applied, to obtain the

inferred measurement Jacobian:

Pl = [Hg,,, Hi,

ZX g1k ™ XXft 1|k ka“Fl}

A. Propagation

A=P (31)

During propagation, only the robot pose and the control
input (odometry) participate in the process model. Theeefo where the submatrif{RHl corresponds to the robot pose,

we are able to reduce the comp_utatlonal complexity bé(/hile fIL,.k , corresponds to thgth landmark. To construct
applying the unscented transformation only to the part ef th Ik

L . . the inferred measurement Jacobian for the entire stateyect
state comprising the robot pose and the control input, akte M

o . .~ we note that all terms corresponding to the landmarks
of the full state vector. Specifically, we draw the sigma p®in .
. . ] not currently observed are zero. Thus, the eniirierred
based on the vector with mean and covariance:

measurement Jacobian is obtained as:
X _ P 0 9 . 9
Xk\k - |:XRkk} ' Pxxk\k - |: o :| (26) Hk+1 - [HR"+1 o - 0 HLj,k+1 o - 0} (32)

Om,, 0 Qk
. . . . Once this matrix is available, equations (13)-(16) are iegdpl
where Prp,, is the covariance matrix corresponding 0y, \nqate the state and covariance in the UKF. It is important
the robot pose, obtained by partitioning the state covarj point out that the computational complexity of these
ance matrix aPy ), = Prry. PrLy, . Note that the equations is determined by the covariance update equation,

T
. . .PRLkUv PLL_W and is quadratic in the number of landmarks, similarly to the
vector x,;, is of dimension 5 (assuming that the odometr

measuremend,,, is 2-dimensional), and thus the compu-
tational cost of computing the sigma points is very small. V. SLAM OBSERVABILITY ANALYSIS

Subsequently, we transform each of the sigma points usingas discussed in Section IlI, the UKF (as a special case of
the process model (5), to obtain samples of the propagatg | RKF) relies on a linear approximation of the nonlinear
robot pose); = X, (k +1|k), i = 0,...,10. This enables system, in order to carry out the recursive estimation. The
us to compute the mean and covariance of the propagat§gstem model employed by the UKF is given by equa-
robot state, in the same way as in the standard LRKF/UKfigns (7) and (11). Thus, the properties of this system
(cf. Section I1I-B). Moreover, we can evaluate thiderred  model are important for determining the performance of

propagation Jacobian: the estimator. As shown in [11] for the case of the EKF,
= S 1 s y when a linearized system model is employed for estimation,
A= Pyxk‘kPxxk‘k - [CI’Rk GRJ (27) the observability propertiesof this model are crucial in



determining filter consistency. The observability projsrt properties similar to those of the nonlinear system, and
of the UKF’s linear-regression-based model can be studiemnsequently, identical to those of the ideal EKF. A neagssa
by examining the observability matrix for the time intervaland sufficient condition for this to occur is that the vectors
between time-stepk, andk, + k, defined as: n;, i = 1,2, 3, lie within the nullspace oéachof the block
rows of the observability matrix, i.e.,

Hy,
Hp,11®r, e N(H e N(H, .. ® )
M = (33) n; (S ( ko) N 1 ] S ( kotkPko+k—1 ko)
H, +k<i>k b1 b, fori =1, 2,3. However, this is generallyotthe case. In fact,

_ ) _ ) when numerically computing the dimension of the nullspace
We see thaM is a function of the regression matrices usey the observability matrix, we find that it iessthan three.

in the UKF, and thus the structure of these matrices Wilhis implies that the UKF obtains “spurious” information,
in turn determine the observability properties of the syste iy girections of the state space where no information is

model. Ideally, we would require these properties to matchysjjaple. This, in turn will lead to an unjustified reductio

those of the underlyingonlinearSLAM system, whichhas 3 ¢ the covariance matrix of the estimates, thus causing
unobservable degrees of freedom corresponding to thelglolgeonsistency. This fact, which has been generally over-
position and orientation of the state vector. In [11], it Wa§yoked in the literature, can cause a significant degradatio

shown that this would be the case, if we could create aj fijier performance, as shown in the simulation results of
“oracle” or “ideal” EKF, where linearization is carried out gection VII.

using Jacobians evaluated at ttree values of the state.
Specifically, if instead of the regression matricHs, and

&, we employ the “ideal” Jacobians: VI. OBSERVABILITY-CONSTRAINED UKF SLAM
H, =V h , P = Vg, I (34) In this section, we propose a novel UKF that employs
Fhtrue Fhtrue a system model with observability properties similar to

then the observability matrix, in the case wheresiagle those of the actual nonlinear SLAM system. In our previous
landmark is included in the state vector, is equal to [11]: work [11], we proposed the conjecture that the observabil-
I, -J(pr—pn ) I ity properties of the linearized _error—statg_model i|j EKF-
1, —J(ps - kao) L SLA_M play a fu_ndamgntal role in de_termmlng ponastgncy.
Migeas = D x _2 _ ko _ (35) Motivated by this conjecture, we derived the First-Estienat
: : : Jacobian (FEJ)-EKF, which always employs the first state
-I, —J(pr—Pr,) b estimates in computing the Jacobians, thus achieving the
desired observability properties. This filter outperforthe

whereD is a block-diagonal matrix with full row-ranly is standard EKF in SLAM, even though it uses “older” (and

. . . 0 -1 . . . .
the 2 x 2 identity matrix, andJ = Rk The rank of this  thus less accurate) state estimates for Jacobian evaluatio
observability matrix is two, which implies that the system We here propose an analogous approach, within the UKF

model of the ideal EKF has three unobservable direction§amework. Specifically, we construct the “inferred” Jaco-
A basis for the unobservable subspace (i.e., a basis for thi@ns of the UKF in such a way that the resulting system

right nullspace 0fM;qea1) is: model has an unobservable subspace of dimension three.
Even though these regression matrices ru generally
I, Jpr, minimize the expected squared error of linearization @}), (
N (Migeal) = span |0 1 éspan[n n n} ifi i i i i i
ideal ba 1x2 e 1 2 I3)  we have verified in simulation that the resulting filter,
’ I JprL ) termed Observability Constrained (OC)-UKF, outperforms

(36)  the standard UKF in terms of both accuracy and consistency

We observe that the vectons; and n, correspond to a (cf. Section VII). This further supports our conjecture abo
“shifting” of the z—y plane, while the vectan; corresponds the importance of the observability properties of the fiter
to a rotation of ther — y plane. These are precisely theSystem model in determining consistency.
unobservable directions of the underlying, nonlinear SLAM To maintain clarity, we here present the OC-UKF for the
system, which shows that the ideal EKF offers a goodase where a single landmark is included in the SLAM state
approximation to the nonlinear system (from the perspectiwector. The more general case is handled in the same way,
of observability). We point out that even though the abovend the interested reader is referred to [14] for details.
analysis only addresses the case of a single landmark,The propagation phase of the OC-UKF is identical to
analogous results are obtained for the general case whéhat of the standard UKF. The difference arises in the
M > 1 landmarks are included in the state vector [14].  update phase, where, instead of employing the unconstraine
Since the UKF employs the linearization of (7) and (11)minimization of (2) for computing the regression matrix
to approximate the nonlinear SLAM system, we would reA, we employconstrainedoptimization, by enforcing the
quire that the corresponding system model has obseryabilitiesired observability properties. In particular, if a laratk



was first observed at time-stdp, we require that where we have defined;, = LX;, i =0,...,10. This is an
unconstrained minimization problem with design variables

y y Iv{koN =0 (37) B and b, and has exactly the same structure as that in (2).
Hi, 1P -1 P, N=0, k>0 (38) By analogy, we thus see that the optimal solution Bis
In this expressionN is a5 x 3 matrix, whose columns span B =P,P,/ (45)

the desired nullspace. These constraints ensure thateall th
block rows of the observability matritM (cf. (33)) have where
the samenullspace, which coincides with thenobservable
subspacef the filter's system model. It is interesting to note
that, in this formulation, this subspace is a design choice,
since we can freely choo®€. For instance, we can choose a
matrix whose columns span the nullspace offthst inferred
JacobianH}, (which can be computed via the SVDH,,), o _
or we can explicitly require the nullspace to be of the samBY combining these two results with those of (45) and (42),

10
P =) wi(Z —2)(LX; - Ly)" = P, L"
i=0

10
Py =y wi(LX; — Lx)(LA; — Lx)" = LP o L”
=0

structure as that of the ideal EKF, by choosing: we obtain the optimal value oA as:
- . _ _ —1
I JISRko\ko A= [HRko+k HLko+k] = PZXLT (LPXXLT) L (46)
N = |01x2 1 (39)

L, Jpy After constructing the inferred m_easurement Jacobianimatr
kolko Hj, 1 from the regression matriA (cf. (32)), we are able
Note that, since the true value of the state is unknown in, (390 update the state and its covariance (cf. (13)-(16)). We
we employ the state estimates at time-stgp point out that in the general case, where multiple landmarks
The regression matriA at each update step (cf. (31)) isare observed, the above process is repeated for each of the

obtained by solving the constrained optimization problem:landmarks observed at the current time step. The maximal
dimension of all the matrices involved is 5 (cf. (30)), andgh

10
. T computing the regression matri incurs only aconstant
rf;l,ll? Zwiei € (40) computational overhead, regardless of the number of land-
= v marks in the state. As a result, the overall computationst co
st A®pppo1- P, N=0 (41 of the update step remains quadratic, and is dominated by
o &r 0 i _ the cost of updating the covariance (cf. (16)). The proposed
where &, = |~ " I denotes the regression matrix oc.UkF SLAM is summarized in Algorithm 1.

obtained from propagation (cf. (27)), corresponding to the
system whose state vector comprises the robot pose and #gorithm 1 Observability-Constrained (OC)-UKF SLAM
landmark position. The sigma points used in the above mifRequire: Initial state estimate and covariance

imization problem are computed by the procedure described: loop

in Section IV-B. 2:  Propagation:

We now derive a solution to the constrained optimiza- 3: Determine sigma points by (17) with mean and
tion problem (40) inclosed form First, we defineU £ covariance (26).
<i>ko+k,1~--¢3koN, and using this notation, we write the 4: Produce regression points by passing the sigma
equality constraint omA as AU = 0. This equation states points through (5) and compute the propagated state
that the rows ofA lie in the left nullspace of thé x 3 matrix estimate by sample mean.
U. Therefore, ifL is a2 x 5 matrix whose rows span this 5: Compute regression matrices via (27).
nullspace, we can writé as: 6: Compute propagated covariance via (29).

A =BL (42) 7. Update:
8: Determine sigma points by (17) with mean and

whereB is the unknow2 x 2 matrix that we seek to compute.
We note that there are several possible ways of computing
an appropriate matri¥.,, whose rows lie in the nullspace of

U. For instance, such a matrix is given, in closed form, by
the expression: 10:

covariance (30).

Produce regression points by passing the sigma
points through (10).

Compute regression matrix via (46) and (32).
11: Update state and covariance via (13)-(16).

L=[I, 0] (I, - UU"U)'UT) (43) 12: end loop

Substituting (42) in the original problem formulation
(cf. (2), (40)), we obtain: VIl. SIMULATION RESULTS

10 A series of Monte-Carlo comparison studies were con-
. T
B E)wl (2i = (BL; +b))" (2i = (BLi +b)) (44) ducted under various conditions, in order to demonstrate



the capability of the OC-UKF to improve the consistency Ideal EKF  Std EKF  FEJ-EKF  Std UKF  OC-UKF
of UKF-based SLAM. The metrics used to evaluate filter
performance are: (i) the RMS error, and (ii) the average

Robot Position Err. RMS (m)

normalized (state) estimation error squared (NEES) [15]. 0-4386 0.6320 0.4712 0.6009 0.4491
Specifically, for the landmarks we compute the average RMS Robot Heading Err. RMS (rad)
errors and average NEES by averaging the squared errors 0.0415 0.0546 0.0445 0.0523 0.0424

and the NEES, respectively, over all Monte Carlo runs, all

. Robot Pose NEES
landmarks, and all time steps. On the other hand, for the

robot pose we compute these error metrics by averaging over 3.0922 6.4944 4.1061 6.0324 3.4063
all Monte Carlo runs for each time step (cf. [14] for a more Landmark Position Err. RMS (m)
detailed description). By studying both the RMS errors and 0.4506 0.6743 0.4842 0.6373 0.4627
NEES, we obtain a comprehensive picture of the estimators’ L andmark Position NEES
performance.

In the simulation tests presented in this section, a robot 1.9922 54125 3.3575 4.9038 2.3611
with a simple 3-wheel (2 active and 1 caster) kinematic TABLE |

model moves on a planar surface, at a constant veloCitigosoT Pose AND LANDMARK POSITION ESTIMATION PERFORMANCE

of v = 0.25 m/sec. The two active wheels are equipped

with encoders, which measure their revolutions and provide

measurements of velocity with standard deviation equal to

o = 2%v for each wheel. These measurements are us#ite OC-UKF isvery closeto that of the ideal EKF, and

to obtain linear velocity measurements for the robot, witilsubstantially better than both the standard EKF and the
standard deviation equal to, = -%, and rotational ve- standard UKF, in terms of RMS errors, as well as in terms

locity measurements with standard deviation = 2v/20. of NEES. The observed performance gains indicate that
The robot records distance and bearing measurementstfi¢ observability properties of the linear-regressionea
landmarks that lie within its sensing range of 5 m. ThéyStem model employed in the UKF play a key role in
standard deviation of the distance measurement noise d§términing the filter consistency. If these propertieedif
equal to 10% of the robot-to-landmark distance, while thom those of the underlying nonlinear system, consistency
standard deviation of the bearing measurement noise is §&NnOt be guaranteed. Moreover, the results shown here agre
to 10 deg. It should be pointed out that the sensor-noise levefdth those obtained in the case of the EKF in [11]. This
selected for the simulations are larger than what is tylyical fUrther validates the claim that the observability projsit
encountered in practice. This was done on purpose, S0 asoba filter's system model significantly impact the filter’s
make the effects of inconsistency more apparent (largesenoiP€rformance. o o _
levels lead to larger estimation errors, and thus less ateur A second observation is that, in this large sensor-noise set
linearization). We note that the initialization of the lanarks ~ting, the OC-UKF also outperforms the FEJ-EKF [11], both
is performed by use of the unscented transformation, 4 terms of accuracy and in terms of consistency. On the other
detailed in [14]. hand, in tests where relatively small sensor-noise levads a
For the results shown here, a SLAM scenario with multipl§€lected, the two filters’ performance is very similar (g1es
loop closures was considered, where during each run, tf@sults cannotbe included due to limited space). One plessib
robot executes 8 loops on a circular trajectory, and observgXPlaination for this is the fact that, when the sensor noise
20 landmarks in total. The reported results are averagisSmall, the linearization errors remain relatively snfali
over 50 Monte Carlo simulations. During the test, five filter®0th filters, and, since both filters maintain the appropriat
process the same data, to ensure a fair compaiddirese observability properties, their performance is compaabl
are: (i) the ideal EKF, (i) the standard EKF, (iii) the peJ-However, when the noise is large, the linearization errors
EKF [11], (iv) the standard UKF, and (v) the OC-UKF. become significant. In this case, the statistical linetiora
The comparative results for all filters are presented ifMployed by the UKF is capable of better capturing the
Fig. 1 and Table I. Specifically, Fig. 1(a) and Fig. 1(b)h|gher—order effect; in the npnhnear propagation and tepda
show the average NEES and RMS errors for the robot pod80dels, thus yielding superior performance. Hence, we see
respectively. On the other hand, Table | presents the agerafjat the OC-UKF combines the benefits of the FEJ-EKF (i.e.,
values of all relevant performance metrics for the landmarkoPservability properties) with those of the UKF (i.e., bett
and robot. linearization), to form an estimator whose performance is
Several interesting conclusions can be drawn from the§@mparable to that of the ideal EKF.
results. First, it becomes clear that the performance of AS a final remark, we note that even though the OC-UKF
NEES performance is significantly better compared to that
2In [11], the FEJ-EKF was shown to perform better, in termsasusacy ~ Of the FEJ-EKF, the difference in the RMS errors of the two
and consistency, than the robocentric mapping algorithh [ghich aims at  fijlters is less pronounced. This indicates that the effetts o
improving the consistency of SLAM by expressing the landtsan a robot- . . . iV aff h . henthze
relative frame. Therefore, in this paper we omit the conguaribetween the |nconS|st§ncy primarily affect the covariance, rathent
proposed OC-UKF and robocentric mapping. state estimates.
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Monte Carlo results for a SLAM scenario with multipt®p closures. (a) Average NEES of the robot pose errors [$ Rrrors for the robot

pose (position and orientation). In these plots, the satiesl correspond to the ideal EKF, the solid lines with cgdie the standard EKF, the dash-dotted
lines to the FEJ-EKF, the solid lines with crosses to thedstesh UKF, and the dashed lines to the OC-UKF. Note that the RKM&s of the ideal EKF,
the FEJ-EKF, and the OC-UKF are almost identical, which reake corresponding lines difficult to distinguish.

VIII. CONCLUSIONS

(4]

This paper focuses on the UKF-based SLAM, and in
particular on the issues of computational complexity and5]

filter inconsistency. The first contribution of this work is

a formulation of UKF-based SLAM that has computational
complexity of the same order as that of EKF-SLAM. This [6]
formulation requires computing the square root of matrices

of (small) constantsize, which leads to computational com-

plexity linear in the propagation phase, agdadraticduring

(7]

updates. Moreover, we have shown that a mismatch between

the observability properties of the linear-regressioseoa

system model employed in the UKF, and those of the actudpl
nonlinear SLAM system, causes inconsistency. To address
this problem, we have introduced a new Observability-
Constrained (OC)-UKF, which ensures that the filter's gyste [9]
model has an unobservable subspace of appropriate dimen-
sions. This filter is shown to outperform both the EKF and

the UKF, in terms of consistency and accuracy.
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