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Abstract

In this work, we study the inconsistency problem of extended Kalman
filter (EKF)-based simultaneous localization and mapping (SLAM)
from the perspective of observability. We analytically prove that when
the Jacobians of the process and measurement models are evaluated
at the latest state estimates during every time step, the linearized
error-state system employed in the EKF has an observable subspace
of dimension higher than that of the actual, non-linear, SLAM system.
As a result, the covariance estimates of the EKF undergo reduction in
directions of the state space where no information is available, which
is a primary cause of the inconsistency. Based on these theoretical re-
sults, we propose a general framework for improving the consistency
of EKF-based SLAM. In this framework, the EKF linearization points
are selected in a way that ensures that the resulting linearized system
model has an observable subspace of appropriate dimension. We de-
scribe two algorithms that are instances of this paradigm. In the first,
termed observability constrained (OC)-EKF; the linearization points
are selected so as to minimize their expected errors (i.e. the differ-
ence between the linearization point and the true state) under the
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observability constraints. In the second, the filter Jacobians are cal-
culated using the first-ever available estimates for all state variables.
This latter approach is termed first-estimates Jacobian (FEJ)-EKF.
The proposed algorithms have been tested both in simulation and ex-
perimentally, and are shown to significantly outperform the standard
EKF both in terms of accuracy and consistency.
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1. Introduction

Simultaneous localization and mapping (SLAM) is the process
of building a map of an environment and concurrently gen-
erating an estimate of the robot pose (position and orienta-
tion) from the sensor readings. For autonomous vehicles ex-
ploring unknown environments, the ability to perform SLAM
is essential. Since Smith and Cheeseman (1987) first intro-
duced a stochastic-mapping solution to the SLAM problem,
rapid and exciting progress has been made, resulting in several
competing solutions. Recent interest in SLAM has focused on
the design of estimation algorithms (Paskin 2002; Montemerlo
2003), data association techniques (Neira and Tardos 2001),
and sensor data processing (Se et al. 2002). Among the numer-
ous algorithms developed thus far for the SLAM problem, the
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extended Kalman filter (EKF) remains one of the most popu-
lar, and has been used in several applications (see, e.g., New-
man 1999; Williams et al. 2000; Kim and Sukkarieh 2003).
However, in spite of its widespread adoption, the fundamental
issue of the consistency of the EKF-SLAM algorithm has not
yet been investigated sufficiently.

As defined in Bar-Shalom et al. (2001), a state estimator
is consistent if the estimation errors are zero mean and have
covariance matrix smaller than or equal to that calculated by
the filter. Consistency is one of the primary criteria for evalu-
ating the performance of any estimator; if an estimator is in-
consistent, then the accuracy of the produced state estimates is
unknown, which in turn makes the estimator unreliable. Since
SLAM is a non-linear estimation problem, no provably con-
sistent estimator can be constructed for it. The consistency of
every estimator has to be evaluated experimentally. In partic-
ular, for the standard EKF-SLAM algorithm, there exists sig-
nificant empirical evidence showing that the computed state
estimates tend to be inconsistent (cf. Section 2).

In this paper, we investigate in depth the fundamental cause
of the inconsistency of the standard EKF-SLAM algorithm. In
particular, we revisit this problem from a new perspective, i.e.
by analyzing the observability properties of the filter’s system
model. Our key conjecture in this paper is that the observabil-
ity properties of the EKF linearized system model profoundly
affect the performance of the filter, and are a significant factor
in determining its consistency. Specifically, the major contri-
butions of this work are as follows:

e Through an observability analysis, we prove that the
standard EKF-SLAM employs an error-state system
model that has an unobservable subspace of dimen-
sion two, even though the underlying non-linear system
model has three unobservable degrees of freedom (cor-
responding to the position and orientation of the global
reference frame). As a result, the filter gains spurious
information along directions of the state space where no
information is actually available. This leads to an un-
justified reduction of the covariance estimates, and is a
primary cause of filter inconsistency.

e Motivated by this analysis, we propose a new method-
ology for improving the consistency of EKF-based
SLAM. Specifically, we propose selecting the lineariza-
tion points of the EKF in a way that ensures that the un-
observable subspace of the EKF system model is of ap-
propriate dimension. In our previous work (Huang et al.
2008a,b), we proved that this can be achieved by com-
puting the EKF Jacobians using the first-ever available
estimates for each of the state variables. The resulting
algorithm is termed first estimates Jacobian (FEJ)-EKF.
In this work, we propose an alternative approach, named
observability constrained (OC)-EKF, which falls under
the same general framework. In this novel filter, the
EKF linearization points are selected so as not only to

guarantee the desired observability properties but also to
minimize the expected errors of the linearization points
(i.e. the difference between the linearization point and
the true state). This can be formulated as a constrained
minimization problem, whose solution provides the lin-
earization points used for computing the filter Jaco-
bians.

e Through extensive simulations and real-world experi-
ments, we verify that both the FEJ-EKF and the OC-
EKF outperform the standard EKF, even though they use
less-accurate linearization points in computing the filter
Jacobians (since the linearization points used in the FEJ-
EKF and OC-EKF are, in general, different from the
latest, and thus best, state estimates). This result sup-
ports our conjecture that the observability properties of
the EKF system model play a fundamental role in deter-
mining consistency.

The remainder of the paper is organized as follows. After
an overview of related work in the next section, the standard
EKF-SLAM formulation with generalized process and mea-
surement models is described in Section 3. In Section 4, the
observability analysis of SLAM is presented and is employed
to prove that the standard EKF-SLAM always has incorrect
observability properties. Section 5 describes the proposed ap-
proaches for improving the consistency of EKF-SLAM, and
in Sections 6 and 7 the performance of the FEJ-EKF and OC-
EKEF is demonstrated through Monte Carlo simulations and ex-
periments. Finally, Section 8 outlines the main conclusions of
this work.

2. Related Work

The inconsistency problem of the standard EKF-SLAM algo-
rithm has recently attracted considerable interest (Julier and
Uhlmann 2001; Castellanos et al. 2004; Bailey et al. 2006;
Huang and Dissanayake 2006; Castellanos et al. 2007; Huang
and Dissanayake 2007; Huang et al. 2008a,b). The first work
to draw attention to this issue was that of Julier and Uhlmann
(2001), who observed that when a stationary robot measures
the relative position of a new landmark multiple times, the es-
timated variance of the robot’s orientation becomes smaller.
Since the observation of a previously unseen feature does not
provide any information about the robot’s state, this reduction
is artificial, and leads to inconsistency. In addition, a condi-
tion that the filter Jacobians need to satisfy in order to permit
consistent estimation, was described. We show that this con-
dition, derived by Julier and Uhlmann (2001) for the case of
a stationary robot, is a special case of an observability-based
condition derived in our work for the general case of a moving
robot (cf. Lemma 5.1).

More recently, the work of Huang and Dissanayake (2007)
extended the analysis of Julier and Uhlmann (2001) to the case
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of a robot that observes a landmark from two positions (i.e. the
robot observes a landmark, moves and then re-observes the
landmark). A constraint was proposed that the filter Jacobians
need to fulfill in this case so as to allow for consistent estima-
tion. In Huang and Dissanayake (2007), it was shown that this
condition is generally violated, due to the fact that the filter Ja-
cobians at different time instants are evaluated using different
estimates for the same state variables. Interestingly, in Sec-
tion 5.3 it is shown that this condition can also be derived as a
special case of our generalized analysis.

Bailey et al. (2006) examined several symptoms of the in-
consistency of the standard EKF-SLAM algorithm, and ar-
gued, based on Monte Carlo simulation results, that the uncer-
tainty in the robot orientation is the main cause of the incon-
sistency of EKF-SLAM. However, no theoretical results were
provided. The work of Huang and Dissanayake (2006) further
confirmed the empirical findings in Bailey et al. (2006), and
argued by example that in EKF-SLAM the inconsistency is al-
ways in the form of overconfident estimates (i.e. the computed
covariances are smaller than the actual covariances).

The aforementioned works have described several symp-
toms of inconsistency that appear in the standard EKF-SLAM,
and have analytically studied only a few special cases, such
as that of a stationary robot (Julier and Uhlmann 2001), and
that of one-step motion (Huang and Dissanayake 2007). How-
ever, no theoretical analysis into the cause of inconsistency for
the general case of a moving robot was conducted. To the best
of the authors’ knowledge, the first such analysis appeared in
our previous publications (Huang et al. 2008a,b). Therein, the
mismatch in the dimensions of the observable subspaces be-
tween the standard EKF and the underlying non-linear SLAM
system was identified as a fundamental cause of inconsistency,
and the FEJ-EKF was proposed as a means of improving the
consistency of the estimates.

In this paper, we present the theoretical analysis of Huang et
al. (2008a,b) in more detail, and propose a general framework
for improving the consistency of EKF-SLAM. It is shown that
the FEJ-EKF is one of several possible estimators, which rely
on the observability analysis for the selection of EKF lin-
earization points. Moreover, we propose an alternative EKF
estimator, the OC-EKF, whose performance is an improve-
ment over the FEJ-EKF. The OC-EKEF selects the linearization
points in a way that minimizes the linearization errors, while
ensuring that the observable subspace of the EKF linearized
system model has a correct dimension. The following sec-
tions describe the theoretical development of the algorithms in
detail.

3. Standard EKF-SLAM Formulation

In this section, we present the equations of the standard EKF-
SLAM formulation with generalized process and measure-
ment models. To preserve the clarity of the presentation, we

first focus on the case where a single landmark is included in
the state vector, while the case of multiple landmarks is ad-
dressed later on. In the standard formulation of SLAM, the
state vector comprises the robot pose and the landmark posi-
tion in the global frame of reference. Thus, at time-step k the
state vector is given by:

T T
x= ok o o] =[xk W] . O

yvhere X, = [p%k. .qﬁ )" denotes the robqt pose, and PL
is the landmark position. EKF-SLAM recursively evolves in
two steps, propagation and update, based on the discrete-time
process and measurement models, respectively.

3.1. EKF Propagation

In the propagation step, the robot’s odometry measurements
are processed to obtain an estimate of the pose change between
two consecutive time steps, and then employed in the EKF to
propagate the robot state estimate. On the other hand, since
the landmark is static, its state estimate does not change with
the incorporation of a new odometry measurement. The EKF
propagation equations are given by'

f)RkJrl\k = f)Rklk + C($Rk|k)RkﬁRk+l’ (2)
$Rk+l\k = (’?)Rk|k + Rk(sz-H > )
ﬁLkJrl\k = f)Lk‘ka (4)

where C(-) denotes the 2 x 2 rotation matrix, and RkﬁRk =
%Pk, Reb e 1" is the odometry-based estimate of the
robot’s motion between time-steps k and k + 1. This esti-
mate is corrupted by zero-mean, white Gaussian noise w, =
Rixpge,, — ®Xg,,,, with covariance matrix Q. This process
model is non-linear, and can be described by the following
generic non-linear function:

Xp41 = f(Xky RkﬁRk_H + Wk)' (5)

In addition to the state propagation equations, the linearized
error-state propagation equation is necessary for the EKF. This
is given by

~ (DRk 03><2 SiRk|k GRk
Xk+1k = ~ Wi
03 I PLiy 022
£ O X + Gewy, (6)

1. Throughout this paper the subscript £|j refers to the estimate of a quantity
at time-step ¢, after all measurements up to time-step j have been processed.
We use X to denote the estimate of a random variable x, while X = x — X is
the error in this estimate. We use 0,,«, and 1,,x, denote m x n matrices of
zeros and ones, respectively, while I, is the n x n identity matrix. Finally, we
use the concatenated forms s¢ and c¢ to denote the sin ¢ and cos ¢ functions,
respectively.



4 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / Xxxxxxxx 2009

where ®¢, and Gg, are obtained from the state propagation
equations (2) and (3):

(L JC(Pg,) Dk
(DRk _ klk k+1 @

1012 1

12 J (ﬁR;H_”k - f’Rk\k)

, ®
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[CHry) 02
Gg, = ) ©
02 1

0
It is important to point out that the form of the propagation
equations presented above is general, and holds for any robot
kinematic model (e.g. unicycle, bicycle, or Ackerman model).
In Appendix A, we derive the expressions for (2)—(4), as well
as the state and noise Jacobians, for the common case where
the unicycle model is used.

with J 2 [(1) _11.

3.2. EKF Update

During SLAM, the measurement used for updates in the EKF
is a function of the relative position of the landmark with re-
spect to the robot:

zx =h(x;) + vi =h (®p.) + v, (10
where ®p; = C'(¢g,)(pL — Pr,) is the position of the land-
mark with respect to the robot at time step k, and vy is zero-
mean Gaussian measurement noise with covariance R;. In this
work, we allow h to be any measurement function. For in-
stance, z; can be a direct measurement of relative position,
a pair of range and bearing measurements, bearing-only mea-
surements from monocular cameras, etc. In general, the mea-
surement function is non-linear, and hence it is linearized for
use in the EKF. The linearized measurement-error equation is
given by

} XRpe—1

7y =~ [HRk HLk + Vi

f)Lklk—l
(11)

A ~
= HiXpp—1 + Vi,

where Hg, and H;, are the Jacobians of h with respect to the
robot pose and the landmark position, respectively, evaluated

at the state estimate Xy ¢—1. Using the chain rule of differentia-
tion, these are computed as

Hg, = (Vh)C' (P, )

X {_IZ _J(f)LkUc—l _f)Rk\k—l) > (12)

Hy, = (Vh)Cl(¢g,, ) (13)
where Vh; denotes the Jacobian of h with respect to the
robot-relative landmark position (i.e. with respect to the vector
Rep;), evaluated at the state estimate Xielk—1-

4. SLAM Observability Analysis

In this section, we perform an observability analysis for the
generalized EKF-SLLAM formulation derived in the previous
section, and compare its properties with those of the underly-
ing non-linear system. Based on this analysis, we draw conclu-
sions about the consistency of the filter. We note that, to keep
the presentation clear, some intermediate steps of the deriva-
tions have been omitted. The interested reader is referred to
Huang et al. (2008c) for details.

It should be pointed out that the observability properties of
SLAM have been studied in only a few cases in the literature.
In particular, Andrade-Cetto and Sanfeliu (2004, 2005) investi-
gated the observability of a simple linear time-invariant (LTT)
SLAM system, and showed that it is unobservable. The work
of Vidal-Calleja et al. (2007) approximated the SLAM sys-
tem by a piecewise constant linear (PWCL) system, and ap-
plied the technique of Goshen-Meskin and Bar-Itzhack (1992)
to study the observability properties of bearing-only SLAM.
On the other hand, Lee et al. (2006) and Huang et al. (2008a)
studied the observability properties of the non-linear SLAM
system using the non-linear observability rank condition intro-
duced by Hermann and Krener (1977). These works proved
that the non-linear SLAM system is unobservable, with three
unobservable degrees of freedom.

All of the aforementioned approaches examine the observ-
ability properties of the non-linear SLAM system, or of lin-
ear approximations to it. However, to the best of the authors’
knowledge, an analysis of the observability properties of the
EKEF linearized error-state system model had not been carried
out prior to our work (Huang et al. 2008a,b). Since this model
is that used in any actual EKF implementation, a lack of un-
derstanding of its observability properties appears to be a sig-
nificant limitation. In fact, as shown in this paper, these prop-
erties play a significant role in determining the consistency of
the filter, and form the basis of our approach for improving the
performance of the estimator.
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4.1. Non-linear Observability Analysis for SLAM

We start by carrying out the observability analysis for the
continuous-time non-linear SLAM system. This analysis is
based on the observability rank condition introduced by Her-
mann and Krener (1977). Specifically, Theorem 3.11 therein
states that “if a nonlinear system is locally weakly observable,
the observability rank condition is satisfied generically”. We
here show that the SLAM system does not satisfy the observ-
ability rank condition, and thus it is neither locally weakly
observable nor locally observable. In particular, we conduct
the analysis for a general measurement model, instead of
only relative-position or distance-bearing measurements as in
Huang et al. (2008a) and Lee et al. (2006).

For the continuous-time analysis, we employ a unicycle
kinematic model, although similar conclusions can be drawn if
different models are used (Lee et al. 2006). The process model
in continuous-time form is given by

ir@)]  [epr®] 0
)| |shr@®) 0
g =1 0 [v@+|1] w0
xp (1) 0 0
X0 0]

= X(l) = fﬂ)(l‘) + fza)(t), (14)

T

where u £ [v a)} is the control input, consisting of linear

and rotational velocity. Since any type of measurement during
SLAM is a function of the relative position of the landmark
with respect to the robot, we can write the measurement model
in the following generic form:

z2(t) = h(p, v), (15)
p =IlpL —Pprll, (16)
w = atan2(y, — Yr, XL — XR) — ¢, (17

where p and y are the robot-to-landmark relative distance and
bearing angle, respectively. Note that parameterizing the mea-
surement with respect to p and y is equivalent to parameteriz-
ing it with respect to the relative landmark position expressed
in the robot frame, ® p..- The relation between these quantities

is®p, =p v . The analysis will be based on the following
sy

lemma.

Lemma 4.1. All of the Lie derivatives of the non-linear

SLAM system (cf. (14) and (15)) are functions of p and y
only.

Proof. See Appendix B. ]

We now employ this result for the non-linear observabil-
ity analysis. In particular, assume that a number of different
measurements are available, z; = h;(p, v),i = 1,2,...,n.
Then, since all of the Lie derivatives for all measurements are
functions of p and v only, we can prove the following lemma.

Lemma 4.2. The space spanned by all of the kth-order Lie
derivatives Llf‘jh,- VkeN, j=12i=12,...,n)is
denoted by G, and the space dG spanned by the gradients of
the elements of G is given by

_ Spr  —CPr  —CPROX —sPRdy —Spp  cop
dG = span ,
row |chr  SPg SPrOX —chrdy  —cop  —sdg
where 0x £ x; — xg and 0y = y, — yg.
Proof. See Appendix C. O

The matrix shown above is the “observability matrix” for
the non-linear SLAM system under consideration. Clearly, this
is not a full-rank matrix, and the system is unobservable. In-
tuitively, this is a consequence of the fact that we cannot gain
absolute, but rather only relative state information from the
available measurements. Even though the notion of an “unob-
servable subspace” cannot be strictly defined for this system,
the physical interpretation of the basis of dG* will give us use-
ful information for our analysis in Section 4.2. By inspection,
we see that one possible basis for the space dG* is given by

1 0 —yg
0 1 XR
dGt = span [0 0 1 | £ span {nl n; n3]. (18)
column
1 0 -y
0 1 XL

From the structure of the vectors n; and n, we see that a
change in the state by Ax = an; + fmy, a, € R corre-
sponds to a “shifting” of the x—y plane by « units along x, and
by £ units along y. Thus, if the robot and landmark positions
are shifted equally, the states x and x + Ax will be indistin-
guishable given the measurements. To understand the physical
meaning of n3, we consider the case where the x—y plane is
rotated by a small angle d¢. Rotating the coordinate system
transforms any point p = [x y]T to a point p’ = [x’ y']7,
given by

x’ X 1 —d¢| |x X —y
=cop) | | = =" 4o | |,
y y op 1 | |y y x
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where we have employed the small angle approximations
c(0¢) =~ 1 and s(0¢) =~ d¢. Using this result, we see that
if the plane containing the robot and landmark is rotated by
J¢, the SLAM state vector will change to

-x}g_ 3 B
Yk YR XR
X = |¢h| = |pr| +06| 1 | =x+dpms, (19
Xy XL =YL
_y’L_ | YL | | XL ]

which indicates that the vector n3 corresponds to a rotation
of the x—y plane. Since n3 € dG*, this result shows that any
such rotation is unobservable, and will cause no change to the
measurements. The preceding analysis for the meaning of the
basis vectors of dG+ agrees with intuition, which dictates that
the global coordinates of the state vector in SLAM (rotation
and translation) are unobservable.

4.2. EKF-SLAM Observability Analysis

In the previous section, it was shown that the underlying phys-
ical system in SLAM has three unobservable degrees of free-
dom. Thus, when the EKF is used for state estimation in
SLAM, we would expect that the system model employed by
the EKF also shares this property. However, in this section we
show that this is not the case, since the unobservable subspace
of the linearized error-state model of the standard EKF is gen-
erally of dimension only two.

First recall that in general the Jacobian matrices @y, Gy,
and H; used in the EKF-SLAM linearized error-state model
(cf. (6) and (11)), are defined as

O = kaf‘{"i\ka"huk”} ’ (20)
Gi = Vyf] {0} @21)
H, = Vy.h| ) (22)

In these expressions, xj,,_; and X;;, (£ = k, k + 1) denote the
linearization points for the state x,, used for evaluating the Ja-
cobians before and after the EKF update at time step ¢, respec-
tively. A linearization point equal to the zero vector is chosen
for the noise. The EKF employs the above linearized system
model for propagating and updating the estimates of the state
vector and covariance matrix, and thus the observability prop-
erties of this model affect the performance of the estimator. To
the best of the authors’ knowledge, a study of these properties
has not been carried out in the past, and is one of the main
contributions of this work.

Since the linearized error-state model for EKF-SLAM is
time-varying, we employ the local observability matrix (Chen
et al. 1990) to perform the observability analysis. Specifically,
the local observability matrix for the time interval between
time-steps k, and k, + m is defined as

H;,
Hy, +1®x,
M= (23)
| Hiytm @y am—1 - - - P, |
Hng HLko
HRko-H(DRk HLko+1
= (24)
_HRk0+m®Rko+m—1 e d)R/\'o HLk0+m_
_ * * * *
= M(Xk0|ka—1» Xiolkoo - -+ Xk tmlko-tm—1° Xkgtmpotm)s  (23)

where (24) is obtained by substituting the matrices ®; and
H; (cf. (6) and (11), respectively) into (23). The last expres-
sion, (25), makes explicit the fact that the observability matrix
is a function of the linearization points used in computing all of
the Jacobians within the time interval [k,, k, +m]. In turn, this
implies that the choice of linearization points affects the ob-
servability properties of the linearized error-state system of the
EKEF. This key fact is the basis of our analysis. In the following,
we discuss different possible choices for linearization, and the
observability properties of the corresponding linearized sys-
tems.

4.2.1. Ideal EKF-SLAM

Before considering the rank of the matrix M, which is con-
structed using the estimated values of the state in the filter Ja-
cobians, it is interesting to study the observability properties of
the “oracle”, or “ideal” EKF (i.e. the filter whose Jacobians are
evaluated using the true values of the state variables, in other
words, Xj_; = Xg; = X, for all k). In the following, all ma-
trices evaluated using the true state values are denoted by the
symbol “ .
We start by noting that (cf. (8)):

12 J (kau+2 - kao)
012 1

(I)Rk,;-H (I)Rko =

(26)

Based on this property, it is easy to show by induction that

L J(Pr,. —Pr,)
0l><2 1

(DRku+{’—l(Dng+[—2 T q)Rko =
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which holds for all £ > 0. Using this result, and substituting for
the measurement Jacobians from (12) and (13), we can prove
the following useful identity:

HRk0+f(I)Rka+€—l o '(I)Rko

= (V by s)CT (P, ) [T ~Jpr —pr,)]

=Hy,., [-L —Jor—pr,)]- @7

which holds for all ¢ > 0. The observability matrix M can now
be written as

M = Diag (ﬁLk0> ﬁLk0+| s ﬁLk0+m)

D
-L —J(pL—-pr,) b
-L —=J(pL-pr,) b
x| . . e (28)

-L —-Jpr-pr,) L

N

Lemma 4.3. The rank of the observability matrix, M, of the
ideal EKF is two.

Proof. The rank of the product of the matrices D and N is
given by (cf. (4.5.1) in Meyer (2001)):

rank(DN) = rank(N) — dim(\ (D) N R(N)). (29)

Since N comprises m + 1 repetitions of the same 2 x 5 block
row, it is clear that rank(N) = 2, and the range of N, R(N), is
spanned by the vectors u; and u,, defined as follows:

I
[ w| = (30)
I
We now observe that in general I3u,~ # 0, fori = 1,2.

Moreover, note that any vector y € R(N) \ 0 can be writ-
ten as 'y = aju; + auy for some ai,a, € R, where a;
and a, are not simultaneously equal to zero. Thus, we see
that in general ﬁy = alf)m + (Xzf)llg # 0, which implies
that y does not belong to the nullspace N (]3) of D. There-
fore, dim(N\ D) N R(N)) = 0, and, finally, rank(M) =
rank(N) — dim(N (D) N R(N)) = rank(N) = 2. O

Most importantly, it can be easily verified that a basis for
the right nullspace of N (and thus for the right nullspace of M)

is given by the vectors shown in (18). Thus, the unobservable
subspace of the ideal EKF system model is identical to the
space dG*, which contains the unobservable directions of the
non-linear SLAM system. We therefore see that if it was possi-
ble to evaluate the Jacobians using the true state values, the lin-
earized error-state model employed in the EKF would have ob-
servability properties similar to those of the actual, non-linear
SLAM system.

The preceding analysis was carried out for the case where
a single landmark is included in the state vector. We now ex-
amine the more general case where M > 1 landmarks are in-
cluded in the state. Suppose that the M landmarks are observed
at time step k,+¢ (¢ > 0), then the measurement matrix Hy, 4,
is given by?

(D (D
HRkoJrf HLka+( e 0
Heo=| oo ], 6D
(M) (M)
HRko+i 0 Liy+e
where H(l) , and ng i = , M), are obtained

by (12) and+(13) using the true values of the states, respec-
tively. The observability matrix M now becomes

[ () o 1
HRko HLko 0
ry (M) (M)
HRko 0 HLk()
ORI () o
HRk,,+1 (I)Rko HLk,,+1 0
M= 32
H" ¢ 0 (M) (32)
Rk0+l Rkn Lk0+1
(0 .. g &
Hng+m Regtm—1 (DRko HLko+m 0
s (WP & (M)
_I-IRk0+m (I)Rkoer—l (DRko 0 Lio+m

Using the identity (27), substitution of the Jacobian matrices
in (32) yields

2. We assume here that all M landmarks are observed at every time step in the
time interval [k,, k, + m]. This is done only to simplify the notation, and is
not a necessary assumption in the analysis.
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o

M = Diag (I:I(LIZ L., HM )

T Lko+m
D

[-L, —J(r, —pr,) D 025 |

-L —=JPL, —Pr,) 02 - L

-L =JpL, —pr,) DL 0252

E : : - -

-L —=JPL, —Pr,) 02 -+ L

-L =JpL, —pr,) L - 02

|-L  —=J(PLy, —Pr,) 02 -+ L |

N

Clearly, the matrix N now consists of m + 1 repetitions of the
M block rows:
Ozle

fori =1,2,..., M. Therefore, rank(M) =2M. Furtherm9re,
by inspection, a possible basis for the right nullspace of M is
given by

=L =J(PL, —Pr,) Oz - I,
N

ith landmark

[ IZ JkaO_
012 1
NM) = span | L Jps, (34)
column
L L JpLM-

Note the similarity of this result with that of (18). Clearly, the
physical interpretation of this result is analogous to that of the
single-landmark case: the global translation and orientation of
the state vector are unobservable.

4.2.2. Standard EKF-SLAM

We now study the observability properties of the standard
EKF-SLAM, in which the Jacobians are evaluated at the lat-
est state estimates (i.e. Xy _; = Xip—1 and X}, = Xy, for all

k). Once again, we begin by examining the single-landmark
case. By deriving an expression analogous to that of (26), we
obtain (cf. Section 4.2.1):

L J (f)Rk0+2|k0+l - IA’Rk,,\k(, - Aka(,+1)
(DRko+1q)Rkn = 4
012 1

where Apg, ., = PR, 11,41 — PRe, 4114, 1S the correction in the
robot position due to the EKF update at time step k, + 1. Using
induction, we can show that

(DRko+[—1(Dng+f—2 o '(DRko

. . ko+e—1
L J(kag+I|ko+f—l Priyik, = 20Tkt ApRj)

= , (35)
01><2 1
where ¢ > 0. Therefore (cf. (11), (12), and (13))
HRk0+£q)ng+f—l o '(I)Rk(, (36)

_ ~ ~ ko+t—1
=Hr,,, [_12 -J (kao+f\ku+f—1 = Pry, 2k ApRJ‘)]'

Using this result, we can write M (cf. (24)) as

M = Diag (HLk(, SHpg s HLko+m) 37)
D
[—I, -J (f’Lk0|k0_| - f’Rk0|k0—1> L]
-1 -J (ﬁLk0+1\ku - IA’Rkollw) L
x |- -J (ﬁLk0+2|ko+l _f’RkoMo - Akao+1) L.

A A~ ko+m—1
-k -J (ka0+m\k0+mfl = PRiyk, ~ 2Tkt ApRj) L |

N

Lemma 4.4. The rank of the observability matrix, M, of the
system model of the standard EKF is equal to three.

Proof. First, we note that the estimates of any given state
variable at different time instants are generally different.
Hence, in contrast to the case of the ideal EKF-SLAM, the fol-
lowing inequalities generally hold: Pr, . i1 7 PRe, iy
and Py iyorict 7 Pliysepyse—1» fOr i # €. Therefore, the third
column of N will be, in general, a vector with unequal ele-
ments, and thus rank(N) = 3. Proceeding similarly to the proof
of Lemma 4.3, we first find one possible basis for the range
space of N, R(N). By inspection, we see that such a basis is
given simply by the first three columns of N, which we denote
by u; (i = 1,2,3). Moreover, it can be verified that gener-
ally Du; # 0. Therefore, dim(N (D) N'R(N)) = 0, and finally
rank(M) = rank(N) — dim(N (D) N R(N)) = rank(N) = 3.0
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We thus see that the linearized error-state model employed
in the standard EKF-SLAM has different observability proper-
ties than that of the ideal EKF-SLAM (cf. Lemma 4.3) and that
of the underlying non-linear system (cf. Lemma 4.2). In partic-
ular, by processing the measurements collected in the interval
[k,, k,+m], the filter acquires information in three dimensions
of the state space (along the directions corresponding to the
observable subspace of the EKF). However, the measurements
actually provide information in only two directions of the state
space (i.e. the robot-to-landmark relative position). As a result,
the EKF gains “spurious information” along the unobservable
directions of the underlying non-linear SLAM system, which
leads to inconsistency.

To probe further, we note that the basis of the right
nullspace of M is given by

I,

NM) = span |0,

column

= span {nl nz} . (38)

L

Note that these two vectors correspond to a shifting of the x—y
plane, which implies that such a shifting is unobservable. On
the other hand, the direction corresponding to the global ori-
entation is “missing” from the unobservable subspace of the
EKEF system model (cf. (18) and (19)). Therefore, we see that
the filter will gain “non-existent” information about the robot’s
global orientation. This will lead to an unjustified reduction in
the orientation uncertainty, which will, in turn, further reduce
the uncertainty in all of the state variables. This agrees in some
respects with Bailey et al. (2006) and Huang and Dissanayake
(2007), where it was argued that the orientation uncertainty is
the main cause of the filter’s inconsistency in SLAM. How-
ever, we point out that the root cause of the problem is that the
linearization points used for computing the Jacobians in the
standard EKF-SLAM (i.e. the latest state estimates) change the
dimension of the observable subspace, and thus fundamentally
alter the properties of the estimation process.

Identical conclusions can be drawn when M > 1 landmarks
are included in the state vector (cf. Huang et al. (2008c)). For
this general case, the nullspace of the observability matrix can
be shown to be equal to

NM) = span | I

column

(39)

I, |

We thus see that the global orientation is erroneously observ-
able in this case as well, which leads to inconsistent estimates.

An interesting remark is that the covariance matrices of the
process and measurement noise do not appear in the observ-
ability analysis of the filter’s system model. Therefore, even if
these covariance matrices are artificially inflated, the filter will
retain the same observability properties (i.e. the same observ-
able and unobservable subspaces). This shows that no amount
of covariance inflation can result in correct observability prop-
erties. Similarly, even if the iterated EKF (Bar-Shalom et al.
2001) is employed for state estimation, the same, erroneous,
observability properties will arise, since the landmark position
estimates will generally differ at different time steps.

5. Observability-Constrained Filter Design

In the preceding section, it was shown that when the EKF Ja-
cobians are evaluated using the latest state estimates, the EKF
error-state model has an observable subspace of dimension
higher than the actual non-linear SLAM system. This will al-
ways lead to unjustified reduction of the covariance estimates,
and thus inconsistency. We now describe a framework for ad-
dressing this problem.

Our key conjecture is that, by ensuring an unobservable
subspace of appropriate dimension, we can avoid the influx
of spurious information in the erroneously observable direc-
tion of the state space, and thus improve the consistency of
the estimates. Therefore, we propose selecting the lineariza-
tion points of the EKF in a way that guarantees an unobserv-
able subspace of dimension three for the linearized error-state
model. This corresponds to satisfying conditions (40) and (41)
of the following lemma.

Lemma 5.1. If the linearization points X}y and Xp ., at
which the EKF Jacobians ®; = @y, (X;,Hllk, X}k‘k) andHyyq =
H; (X}k+ e p2k+ " ) are evaluated, are selected so as to fulfill
the conditions:

H,U=0, fort{=0, (40)

Hk0+((bk0+g_1 te (DkaU = 0, V> 0, (41)

where U is a 5 x 3 full-rank matrix, then the corresponding
observability matrix is of rank two.

Proof. When (40) and (41) hold, then all of the block rows of
the observability matrix (cf. (23)) will have the same nullspace,
spanned by the columns of U. ]

Essentially, the selection of U is a design choice, which al-
lows us to control the unobservable subspace of the EKF sys-
tem model. Ideally we would like the column vectors of U to
be identical to those in (18), which define the unobservable di-
rections of the actual, non-linear SLAM system. However, this
cannot be achieved in practice, since these directions depend
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on the frue values of the state, which are unavailable during
any real-world implementation.

A natural selection, which is realizable in practice, is to
define the unobservable subspace of the observability matrix
based on the state estimates at the first time instant a landmark
was detected, i.e. for the single-landmark case to choose?

L Jf’Rku|ko—1

U= 0152 1 P (42)

12 Jf)Lk0|ku

which satisfies condition (40).

We stress that this is just one of several approaches for
selecting the matrix U. For instance, one limitation with this
approach is that, in cases where the initial estimates of the
landmarks are not of sufficient accuracy, the subspace defined
in this manner might not be close to the actual unobservable
subspace. To address this problem one can employ advanced
techniques for landmark initialization (e.g. delayed-state ini-
tialization (Leonard et al. 2002)), to obtain more precise initial
estimates, and use these to define a matrix U. This approach,
which could lead to improved accuracy in certain situations,
is one of several interesting options to explore within the pro-
posed design methodology.

Once U has been selected, the next design decision to be
made is the choice of the linearization points at each time step.
For the particular selection of U in (42), this amounts to choos-
ing the linearization points for all k& > k, to ensure that (41)
holds (note that (40) is satisfied by construction in this case).
Clearly, several options exist, each of which leads to a differ-
ent algorithm within the general framework described here. In
what follows, we present two approaches to achieve this goal.

5.1. First Estimates Jacobian (FEJ)-EKF

We first describe the FEJ-EKF estimator that was originally
proposed in our previous work (Huang et al. 2008a,b). The
key idea of this approach is to choose the first-ever available
estimates for all the state variables as the linearization points.
In particular, compared to the standard EKF, the following two
changes are required in the way that the Jacobians are evalu-
ated:

1. Instead of computing the state-propagation Jacobian
matrix @, as in (8), we employ the expression:

I, J (f’RkH\k - f)Rk|k—l)
01><2 1

@) = (43)

3. When multiple landmarks are included in the state vector, U can be chosen
analogously, augmented by a new block row, [Iz IDL; ko |k0] , corresponding
to each landmark, L; (i =1, 2, ..., M) (Huang et al. 2008c).

The difference compared to (8) is that the prior robot po-
sition estimate, p Rt is used in place of the posterior
estimate, p Rige-

2. In the evaluation of the measurement Jacobian matrix
H;; (cf. (11), (12), and (13)), we always utilize the
landmark estimate from the first time the landmark was
detected and initialized. Thus, if a landmark was first
seen at time-step k,, we compute the measurement Ja-
cobian as:

H;c+l = [H

4 /
Riq1 HLk+1]

= (Vi )C (B, )
X |:_I2 _J(ﬁLko\ka _ﬁRkJr”k) 12 . (44)

As a result of the above modifications, only the first esti-
mates of all landmark positions and all robot poses appear in
the filter Jacobians. It is easy to verify that the above Jaco-
bians satisfy (40) and (41) for the choice of U in (42). Thus,
the FEJ-EKF is based on an error-state system model whose
unobservable subspace is of dimension three.

5.2. Observability Constrained (OC)-EKF

Even though the FEJ-EKF typically performs substantially
better than the standard EKF (cf. Sections 6 and 7), it relies
heavily on the initial state estimates, since it uses them at all
time steps for computing the filter Jacobians. If these estimates
are far from the true state, the linearization errors incurred may
be large, and could degrade the performance of the estimator.
As a motivating example, consider the linearization of a gen-
eral, scalar non-linear function f (x) around a point x*. By em-
ploying Taylor expansion, we obtain

70 = 1)+ 7 =)+ L e )
In this expression, f’ and f” are the first- and second-order
derivatives of f, and & € (x, x*) or (x*, x). The last term in
the above expression, (f”(&)/2)(x — x*)2, describes the lin-
earization error, which should be kept as small as possible to
maintain the validity of the linear approximation. Since we do
not have control over the term f”(¢), to keep the linearization
error small, we see that the term (x — x*)? should be kept as
small as possible.

An interesting observation is that if x in the above example
is a Gaussian random variable with mean x, then the expected
value of (x — x*)? is minimized by choosing x* = . This
is precisely what the standard EKF does: at each time step,
it employs the mean of the state for computing the lineariza-
tion Jacobians. This leads to small linearization error for each
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time step, but as explained in Section 4.2.2, it also changes
the observability properties of the SLAM system model, and
adversely affects performance.

The above discussion shows that, in the context of SLAM,
there are two competing goals that should be reconciled: re-
duced linearization errors at each time step and correct ob-
servability properties of the linearized system model. There-
fore, we propose selecting the linearization points of the EKF
so as to minimize the expected squared error of the lineariza-
tion points while satisfying the observability conditions (40)
and (41). This can be formulated as a constrained minimiza-
tion problem, where the constraints express the observability
requirements. Thus, we term the resulting filter observability-
constrained (OC)-EKF.

Specifically, at time-step k + 1, we aim at minimizing the
linearization error of the points X and X, which appear
in the Jacobians ®; and H; |, subject to the observability con-
straint (41). Mathematically, this is expressed as

: 2
min ( / %R, = Xy, 7P (K 120:x) dX gy

* *
XRk‘k ’ Xk+1|k

+/||Xk+1 —XZ+1|k||2P(Xk+1IZo:k)ka+1>, (46)

subject to Hk+1d)k cee d)k(,U =0, Vk>k, 47

where zg denotes all the measurements available during the
time interval [0, k]. Note that only the robot pose appears in
the Jacobians of the propagation model (cf. (6)), while both
the robot pose and the landmark positions appear in the Jaco-
bians of the measurement equations (cf. (11)). This justifies
the choice of the above cost function.

In general, the constrained minimization problem (46) and
(47) is intractable. However, when the two pdfs, p(Xg,|Zox)
and p(X¢+11Zo:x), are Gaussian distributions (which is the as-
sumption employed in the EKF), we can solve the problem
analytically and find a closed-form solution. In the following,
we show how the closed-form solution can be computed for the
simple case where only one landmark is included in the state
vector. The case of multiple landmarks is presented in Huang
et al. (2008c).

We note that the following lemma will be helpful for the
ensuing derivations.

Lemma 5.2. The constrained optimization problem (46) and
(47) is equivalent to the following:

. o 2 o 2

. 1’1’1]12 ||XRk|k - X;}k|k” + ”Xk-Hlk - X;((+]|k|| 5 (48)

XRejk > Xk+11k

subject to

k—1

* * o * *

PLie = Prye = Pligity ~ PRy T+ Z ApRj’ 49)
J=ko

A % *
where Apy. = ph.. —Ph... .-
pRJ pR/I/ pRJ\/—l

Proof. See Appendix D. |

Using the technique of Lagrangian multipliers, the optimal
solution to the problem (48) and (49) can be obtained as

* A Ak * 2
Proe = Prue + 57> Phy = Py
=R P =P £ 50
XRk+l|k = XRk-H\k’ ka-Hlk - ka+1|k - 79 ( )
with
k—1
A = (f)LIH—Ilk - ﬁLko\ka) | PRye — Pryy + Z Apk
J=ko

Note that in the case where multiple landmarks are included
in the state vector, each landmark imposes a constraint analo-
gous to (49), and thus the analytical solution of the optimal
linearization points can be obtained similarly (Huang et al.
2008c).

Using the linearization points in (50), the filter Jacobians in
the OC-EKF are now computed as follows:

1. The state-propagation Jacobian matrix is calculated as

A A l
p L J (ka+l|k — PRy — Tk)
(I)Rk = (G2))]

012 1
2. The measurement Jacobian matrix is calculated as
H,, = Wy, |
= (Vhiy)C By,

X [_12 —-J (f)Lk+||k - ﬁRk+l|k - %k) IZ] - (52

It is important to note that, compared with the FEJ-EKEF, the
OC-EKF not only guarantees the correct observability prop-
erties of the EKF linearized system model (so does the FEJ-
EKF), but also minimizes the linearization errors under the
given observability requirements. The simulation and exper-
imental results presented in Sections 6 and 7 show the OC-
EKF attains slightly better performance than the FEJ-EKF. We
also point out that, compared with the standard EKF, the only
change in the OC-EKEF is the way in which the Jacobians are
computed. The state estimates in the OC-EKF are propagated
and updated in the same way as in the standard EKF, as out-
lined in Algorithm 1. In addition, we stress that both the FEJ-
EKF and OC-EKF estimators are also causal and realizable
“in the real world,” since they do not utilize any knowledge of
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Algorithm 1 Observability-Constrained (OC)-EKF SLAM

Propagation: When an odometry measurement is received:
e propagate the robot pose estimate, via (2) and (3)
e compute the robot pose propagation Jacobian (cf. (51))

e propagate the state covariance matrix:
T T
Pk = O P ®, + G QG
where
" . " T T T
@/ = Diag (CDRk, IzM) and Gy = [GRk 0(2M)x2]
Update: When a robot-to-landmark measurement is received:
e compute the measurement residual:
Tl = Zip1 — WXepipe)
e compute the measurement Jacobian matrix (cf. (52))
e compute the Kalman gain:
K —P H//T —1
k1 = P 184

with :
Ska1 = B PrypipH,  + Rig

e update the state estimate:
Xirik+1 = X1k + K1 T
e update the state covariance matrix:

T
Pritert = Prop — K1 Ser 1 Ky

the true state. Interestingly, although both the FEJ-EKF and
the OC-EKF do not use the latest available state estimates
(and thus utilize Jacobians that are less accurate than those of
the standard EKF), both simulation tests and real-world ex-
periments demonstrate that they perform significantly better
than the standard EKF in terms of consistency and accuracy
(cf. Sections 6 and 7).

5.3. Relation to Prior Work

At this point, it is interesting to examine the relation of our
analysis, which addresses the general case of a moving ro-
bot, to the previous work that has focused on special cases
(Julier and Uhlmann 2001; Huang and Dissanayake 2007).
We first note that the “correct” observability properties of the

FEJ-EKF and OC-EKF are attributed to the fact that condi-
tions (40) and (41) hold, which is not the case for the standard
EKEF. Thus, (40) and (41) can be seen as sufficient conditions
that, when satisfied by the filter Jacobians, ensure that the ob-
servability matrix has a nullspace of appropriate dimensions.
Note also that, due to the identity (27), the conditions (40) and
(41) are trivially satisfied by the ideal EKF with null space

n3] (cf. (18)). In what follows, we show that

the conditions (40) and (41) encompass those derived in Julier
and Uhlmann (2001) and Huang and Dissanayake (2007) as
special cases.

U = |:n1 np

5.3.1. Stationary Robot

We first examine the special case studied in Julier and
Uhlmann (2001), where the robot remains stationary, while
observing the relative position of a single landmark. Julier and
Uhlmann (2001) derived the following Jacobian constraint for
consistent estimation (cf. Theorem 1 therein):

Vh* — VhPVg* = 0
P4 HRk + HLk Vgx =0

I
(=1 |:HRk HLk:| =0
Vg*

< HU, =0, (53)

where, using our notation, Vh* = Hg, and —Vh? = H;, are
the measurement Jacobian matrices with respect to the robot
pose and landmark position, respectively, and Vg~ is the land-
mark initialization Jacobian with respect to the robot pose at
time step k,. Note that the condition (53) is identical to that
in (40) for the special case of a stationary robot.

Remarkably, the space spanned by the columns of the ma-
trix Uy, for this special case, is same as that spanned by the
columns of U in (42). To see that, we first need to derive an
expression for Vg*. In Julier and Uhlmann (2001), a relative-
position measurement model is employed (by combining a dis-
tance and a bearing measurement), and thus the initialization
function g(-) is given by

Pr, = 8(Xry, > 2> Vi,) = Cleg, ) (2, = Vi,) +Pr,,» (54)

where z;, is the first measurement of the landmark’s relative
position and v, denotes the noise in this measurement. Eval-
uating the derivative of this function with respect to the robot
pose at the current state estimate we have

Ve'= [ ICGy,,, ]

= |:Iz J (f)Lkolko - f)Rko\ka—l):I ? (55)
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where this last equation results from taking conditional expec-
tations on both sides of (54) and solving for z, .
Substituting (55) in the expression for U; (cf. (53)), yields

I 0251

U, = 012 1

12 J (ﬁLk<>|ko - I’\)Rku|k071)

One can easily verify that U; and U span the same column

L IPr, -

space by noting that Uy =U.

1x2 1

5.3.2. Moving Robot with One-step Motion

We now consider the special case studied in Huang and Dis-
sanayake (2007), where a robot observes a landmark, moves
once, and then re-observes the landmark. In Huang and Dis-
sanayake (2007), the key Jacobian relationship that needs to
be satisfied in order to obtain consistent estimation in this case
(cf. Theorem 4.2 therein) is given by

A, =BV [y . (56)

Using our notation, the above matrices are written as
A
\’ X, — (I)Rk,;

_ 7!
Ac=—H; Hg,

—1
B, = _HLk(,HHRkUH
Substituting in (56) and rearranging terms yields

—1 —1 .
HLk0+1HRk0+1q)Rko - HLkO HRko =0

O, 032 I
& [He,,, Hy,, ] " =0
0;r><2 I _HLk(, HRko

< Hy, 119, U =0,

which is the same as the condition in (41) for the special case
of £ = 1 (i.e. the robot moves only once). In addition, it is
easy to verify that H;, U; = 0, which corresponds to condi-
tion (40). Moreover, it is fairly straightforward to show that for
the case of distance and bearing measurements considered in
Huang and Dissanayake (2007), the matrix U; spans the same
column space as U in (42). This analysis demonstrates that the
Jacobian constraints (40) and (41) derived based on the ob-
servability criterion are general, and encompass the condition
of Huang and Dissanayake (2007) as a special case.

6. Simulation Results

A series of Monte Carlo comparison studies were conducted
under various conditions, in order to validate the preceding
theoretical analysis and to demonstrate the capability of the
FEJ-EKF and OC-EKF estimators to improve the consistency
of EKF-SLAM. The metrics used to evaluate filter perfor-
mance are: (i) the root mean square (RMS) error; and (ii) the
average normalized (state) estimation error squared (NEES)
(Bar-Shalom et al. 2001). Specifically, for the landmarks we
compute the average RMS errors and average NEES over all
Monte Carlo runs, all landmarks, and all time steps. On the
other hand, for the robot pose we compute these error metrics
by averaging over all Monte Carlo runs for each time step (cf.
Huang et al. (2008c) for a more detailed description).

The RMS of the estimation errors provides us with a con-
cise metric of the accuracy of a given estimator. On the other
hand, the NEES is a metric for evaluating filter consistency.
Specifically, it is known that the NEES of an N-dimensional
Gaussian random variable follows a y 2 distribution with N de-
grees of freedom. Therefore, if a certain filter is consistent, we
expect that the average NEES for the robot pose will be close
to three for all k, and that the average landmark NEES will be
close to two. The larger the deviations of the NEES from these
values, the worse the inconsistency of the filter. By studying
both the RMS errors and NEES of the filters considered here,
we obtain a comprehensive picture of the estimators’ perfor-
mance.

In the simulation tests presented in this section, two SLAM
scenarios with loop closure were considered. In the first case, a
robot moves on a circular trajectory and continuously observes
two landmarks, while in the second case the robot sequentially
observes 20 landmarks in total.

6.1. First Simulation: Always Observing Two Landmarks

To validate the preceding observability analysis, we first ran a
SLAM simulation where a robot executes 80 loops on a cir-
cular trajectory, and continuously observes two landmarks at
every time step. Note that this simulation was run sufficiently
long to ensure that the filters (approximately) reach their
steady states and thus exhibit divergence (if any) more clearly.
In this simulation, all filters process the same data, to ensure
a fair comparison. The five EKF estimators compared are: (1)
the ideal EKF, (2) the standard EKF, (3) the FEJ-EKEF, (4) the
OC-EKE, and (5) the robocentric mapping filter presented in
Castellanos et al. (2004), which aims at improving the consis-
tency of SLAM by expressing the landmarks in a robot-relative
frame.

For the results presented in this section, a robot with a sim-
ple differential drive model moves on a planar surface, at a
constant linear velocity of v = 0.25 m/s. The two drive wheels
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Fig. 1. Orientation estimation errors versus 3¢ bounds obtained from one typical realization of the Monte Carlo simulations. The
o values are computed as the square-root of the corresponding diagonal element of the estimated covariance matrix. Note that the
estimation errors and the 3¢ bounds of the ideal EKF, the FEJ-EKF, the OC-EKF and the robocentric mapping filter are almost
identical, which makes the corresponding lines difficult to distinguish.

are equipped with encoders that measure revolutions and pro-
vide measurements of velocity (i.e. right and left wheel veloc-
ities, v, and vy, respectively) with standard deviation equal to
o = 5%pv for each wheel. These measurements are used to ob-
tain linear and rotational velocity measurements for the robot,
which are given by v = (v, + v;)/2 and ® = (v, — v;)/a,
where a = 0.5 m is the distance between the drive wheels.
Thus, the standard deviations of the linear and rotational ve-
locity measurements are o, = (v/2/2)o and 0, = (v/2/a)o,
respectively. The robot continuously records measurements of
the relative positions of the landmarks with standard devia-
tion equal to 2% of the robot-to-landmark distance along each
axis.

Figure 1 shows the results for the robot orientation estima-
tion errors in a typical realization. As evident, the errors of the
standard EKF grow significantly faster than those of all other
filters, which indicates that the standard EKF tends to diverge.
Note also that although the orientation errors of the ideal EKF,
FEJ-EKF, OC-EKF as well as the robocentric mapping filter
remain well within their corresponding 3¢ bounds (computed
from the square-root of the corresponding diagonal element of
the estimated covariance matrix), those of the standard EKF
exceed them. Most importantly, the 3¢ bounds of the standard
EKF continuously decrease over time, as if the robot orienta-

tion was observable. However, the robot has no access to any
new absolute orientation information (beyond what is available
by re-observing the same two landmarks), and thus its orien-
tation covariance should not continuously decrease at steady
state. The results of Figure 1 further strengthen our claim that
in contrast to the ideal EKF, FEJ-EKF, OC-EKF, and robocen-
tric mapping filter (cf. Sections 4.2.1, 5.1, 5.2, and 6.3), the
incorrect observability properties of the standard EKF cause
an unjustified reduction in the orientation uncertainty.

6.2. Second Simulation: Loop Closure

To further test the performance of the five estimators, we
conducted 50 Monte Carlo simulations in a SLAM scenario
with loop closure. In this scenario, a robot executes 10 loops
on a circular trajectory and observes 20 landmarks in total.
For the results presented in the following, identical robot and
sensor models to the preceding simulation (cf. Section 6.1)
are used, while different sensor noise characteristics are em-
ployed. Specifically, the standard deviation for each wheel of
the robot is equal to ¢ = 2%w, while the standard deviation
of the relative-position measurements is equal to 12% of the
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Table 1. Robot Pose and Landmark Position Estimation Performance

Ideal-EKF Standard EKF FEJ-EKF OC-EKF Robocentric
Robot position error RMS (m) 0.6932 1.1406 0.7093 0.6977 0.8111
Robot heading error RMS (rad) 0.0634 0.0956 0.0671 0.0641 0.0716
Robot pose NEES 3.4643 18.5585 4.4979 3.8850 7.9436
Landmark position error RMS (m) 0.7377 1.2554 0.7558 0.7387 0.8726
Landmark position NEES 2.2647 18.4959 3.4480 2.9949 7.0308

robot-to-landmark distance along each axis. Moreover, the ro-
bot now only observes the landmarks that lie within its sens-
ing range of 5 m. It should be pointed out that the sensor-
noise levels selected for this simulation are larger than what
is typically encountered in practice. This was done purpose-
fully, since higher noise levels lead to larger estimation errors,
which make the effects of inconsistency more apparent.

The comparative results for all filters are presented in Fig-
ure 2 and Table 1. Specifically, Figure 2(a) and (b) show the
average NEES and RMS errors for the robot pose, respectively,
versus time. On the other hand, Table 1 presents the average
values of all relevant performance metrics for both the land-
marks and the robot. As evident, the performance of the FEJ-
EKF and the OC-EKEF is very close to that of the ideal EKF,
and substantially better than that of the standard EKF, both in
terms of RMS errors and NEES. This occurs even though the
Jacobians used in the FEJ-EKF and OC-EKF are less accurate
than those used in the standard EKF, as explained in the pre-
ceding section. This fact indicates that the errors introduced by
the use of inaccurate Jacobians have a less detrimental effect
on consistency and accuracy than the use of an error-state sys-
tem model with incorrect observability properties. Moreover,
it is important to note that the performance of the OC-EKF
is superior to that of the FEJ-EKF by a small margin. This
is attributed to the fact that the FEJ-EKF has larger lineariza-
tion errors than the OC-EKF, since the OC-EKF is optimal by
construction, in terms of linearization errors, under the observ-
ability constraints.

6.3. Comparison with the Robocentric Mapping Filter

From the plots of Figure 2, we clearly see that both the FEJ-
EKF and the OC-EKEF also perform better than the robocentric
mapping filter (Castellanos et al. 2004, 2007), both in terms of
accuracy and consistency. This result cannot be justified based
on the observability properties of the filters: in Castellanos et
al. (2004, 2007), the landmarks are represented in the robot
frame, which can be shown to result in a system model with
three unobservable degrees of freedom (Huang et al. 2008c).
However, in the robocentric mapping filter, during each propa-
gation step all landmark position estimates need to be changed,
since they are expressed with respect to the moving robot

frame. As a result, during each propagation step (termed com-
position in Castellanos et al. (2004, 2007)), all landmark es-
timates and their covariance are affected by the linearization
errors of the process model. This problem does not exist in
the world-centric formulation of SLAM, and it could offer an
explanation for the observed behavior.

To test this argument, we first examine the Kullback—
Leibler divergence (KLD), between the probability distribu-
tion function (pdf) estimated by each filter, and the pdf esti-
mated by its “ideal” counterpart. Specifically, we compute the
KLD (i) between the pdf computed by the FEJ-EKF and that
of the ideal EKEF, (ii) between the pdf computed by the OC-
EKEF and that of the ideal EKF, and (iii) between the pdf com-
puted by the robocentric mapping filter and that produced by
an “ideal” robocentric mapping filter, which employs the true
states in computing all of the Jacobian matrices. The KLD is a
standard measure for the difference between probability distri-
butions. It is non-negative, and equals zero only if the two dis-
tributions are identical (Cover and Thomas 1991). By comput-
ing the KLD between the estimated pdf and that of the “ideal”
filter in each case, we can evaluate how close each filter is to
its respective “golden standard”. These results pertain to the
same simulation setup presented in Section 6.2.

Since the five filters considered here (i.e. the OC-EKEF, the
FEJ-EKEF, the ideal EKF, the robocentric mapping filter, and
the ideal robocentric mapping filter) employ a Gaussian ap-
proximation of the pdf, we can compute the KLD in closed
form. Specifically, the KLD from an approximation distribu-
tion, p,(X) = N(u.,P,), to the ideal distribution, p,(x) =
N(u,,P,), is given by

1 det(P,) »
dxs = 5 (m (det(Pa)> +tr(P;'P,)

+ (1o — /‘a)TP;l(.uo — fa) — dim(x)) . (57

Figure 3 presents the KLLD over time, between the Gaussian
distributions computed by the robocentric mapping filter, the
FEJ-EKF and the OC-EKF, and those computed by their re-
spective ideal filters (note that the y-axis scale is logarithmic).
It is evident that the KD in the case of the robocentric map-
ping filter is orders of magnitude larger than in the cases of the
FEJ-EKF and the OC-EKF. This indicates that the lineariza-
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Fig. 2. Monte Carlo results for a SLAM scenario with multiple loop closures. (a) Average NEES of the robot pose errors. (b) RMS
errors for the robot pose (position and orientation). In these plots, the solid lines correspond to the ideal EKF, the dashed lines
to the FEJ-EKEF, the dotted lines to the OC-EKEF, the solid lines with circles to the standard EKF, and the dash-dotted lines to the
robocentric mapping filter of Castellanos et al. (2004, 2007). Note that the RMS errors of the ideal EKF, FEJ-EKF, and OC-EKF
are almost identical, which makes the corresponding lines difficult to distinguish.
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Fig. 3. Comparison results of the KLLD in the SLAM scenario with multiple loop closures. In this plot, the solid line with circles
corresponds to the FEJ-EKEF, the solid line with crosses to the OC-EKF, and the solid line with squares to the robocentric mapping
filter (Castellanos et al. 2004). Note that the y-axis scale is logarithmic. Note that the KLD of the FEJ-EKF and OC-EKF are
almost identical, which makes the corresponding lines difficult to distinguish.

tion errors in the robocentric mapping filter result in a worse
approximation of the ideal pdf.

We attribute this fact to the structure of the filter Jacobians.
During the update step, the structure of the Jacobians in both
the robocentric and the world-centric formulations is quite
similar (Huang et al. 2008c). In both cases, the terms appearing
in the measurement Jacobians are either rotation matrices, or
the robot-to-landmark position vector. However, the Jacobians
employed during the composition step in the robocentric map-
ping filter are substantially more complex than those appearing
in the world-centric EKF propagation (cf. (6)). Specifically, in
the robocentric mapping filter, the state vector is given by (as-
suming a single landmark for simplicity):

T
o= [Mpl Mg B (58)

The composition step is described by the following equations:

Bepg = CT("1gp ) (1P — B1pr),  (59)
Repo = F1pg =Rt g (60)
Bepy = CT (Rt )(B1py — B1pr),  (61)

where R¢p; is the estimate of the landmark position with
respect to the robot frame at time step £ (¢ = k — 1,k),
{Re-1pp,, K16 &} is the estimate for the robot pose change
between time steps k — 1 and k, expressed with respect to the
robot frame at time step k— 1, and {Rpg, ¢ $} is the estimate
for the transformation between the robot frame and the global
frame at time step ¢. The linearized error propagation equation
is given by

Ry
Pc
Ri—1p Re-1p
~ ~ PG Pr
Reg | = I P+ ~] JR[ ~ L (62)
K1 Ri1gpp
k
Repy
where
CT(R-1dp)  Onyg
03,2
JL: 5 JG: 01x2 1 P

CT (Rk_l $Rk)

0252 02,1
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_CT(Rk—la)Rk) —JRpg

Ir = 0152 -1 (63)

—CT("1gg)  —I%py

We note that the state estimates appear in the Jacobian matri-
ces J. and Js only through the rotation matrix C(Rk—lgfﬁ R
As a result, ttle difference tzetween the ideal and actual Jaco-
bians, J; — J; and J5 — Js will only contain terms of the
form c(®-1dp ) — c(Fe-1gpg ), and s(Be-1p ) — s(Fi-1h ).
The magnitude of these terms is in the same order as Rk-1 5 Re>
which is typically a very small quantity. Thus, the discrepancy
between the actual and ideal Jacobians is expected to be very
small for J; and J;.

On the other hand, in J the estimates for the landmark po-
sition and for the origin of the global frame with respect to the
robot appear as well. As a result, the difference Jg — Jg will
also contain the terms ®¢p¢ and ®¢p; , whose magnitude can be
significantly larger, e.g., of the order of meters (cf. Figure 2).
Thus, the Jacobian Jx can be very inaccurate. In contrast, the
propagation Jacobians in the world-centric formulation con-
tain terms depending on (i) the robot’s displacement between
consecutive time steps, and (ii) the rotation matrix of the ro-
bot’s orientation (cf. (8) and (9)). Since both of these quantities
can be estimated with small errors, the world-centric EKF Ja-
cobians are significantly more accurate than those of the robo-
centric formulation.

To further test this argument, we ran a simulation of a
“mini-SLAM” scenario, where both the robot trajectory and
the landmarks are confined within a small area of 1 m x 1 m
(while all other settings are identical to the preceding simula-
tion). In this setup, the estimation errors ®pg and ®p; remain
small, and thus the Jacobians of the robocentric mapping filter
become more accurate. The plots of Figure 4 show the aver-
age NEES and RMS errors for the robot pose in this scenario.
Interestingly, we observe that in this case the performance of
the FEJ-EKF, the OC-EKF, and the robocentric mapping filter
are almost identical. This validates the preceding discussion,
and indicates that the representation used in the robocentric
mapping filter results in performance loss in the case of large
environments. This may justify the fact that the FEJ-EKF and
OC-EKEF outperform the algorithm of Castellanos et al. (2004),
even though all three filters employ a system model with three
unobservable degrees of freedom.

As a final remark, we note that, in comparison to the
FEJ-EKF and OC-EKEF, the computational cost of the robo-
centric mapping filter is significantly higher. Specifically,
both the FEJ-EKF and the OC-EKF have computational cost
identical to the standard world-centric SLAM algorithm: /in-
ear in the number of landmarks during propagation, and
quadratic during updates. On the other hand, both the update
and the composition steps in the robocentric mapping filter
have computational cost guadratic in the number of features,

which results in approximately double overall computational
burden.

7. Experimental Results

Two sets of real-world experiments were performed to further
test the proposed FEJ-EKF and OC-EKF algorithms. The re-
sults are presented next.

7.1. First Experiment: Indoors

The first experiment was conducted in an indoor office en-
vironment. The robot was commanded to perform 10 loops
around a square with sides approximately equal to 20 m
(cf. Figure 5). This special trajectory was selected since re-
peated re-observation of the same landmarks tends to make
the effects of inconsistency more apparent, and facilitates dis-
cerning the performance of the various filters. A Pioneer robot
equipped with a SICK LMS200 laser range-finder and wheel
encoders was used in this experiment. From the laser range
data, corner features were extracted and used as landmarks,
while the wheel encoders provided the linear and rotational
velocity measurements. Propagation was carried out using the
kinematic model described in Appendix A.

As the ground truth of the robot pose could not be obtained
using external sensors (e.g. overhead cameras), in this experi-
ment we obtained a reference trajectory by utilizing the known
map of the area where the experiment took place. Specifically,
the exact location of 20 corners was known from the blueprints
of the building. Measurements to these corners, as well as all
other measurements obtained by the robot (including to cor-
ners whose location was not known a priori), were processed
using a batch maximum a posteriori (MAP) estimator, to ob-
tain an accurate estimate of the entire trajectory. This estimate,
as well as the locations of the known corners, are shown in Fig-
ure 5. This constitutes the ground truth against which the per-
formance of the following filters was compared: (1) the stan-
dard EKF, (2) the FEJ-EKEF, (3) the OC-EKEF, and (4) the robo-
centric mapping filter. Clearly, owing to the way the ground
truth is computed, the filter errors are expected to have some
correlation to the errors in the ground truth. However, since
these correlations are the same for all four filters, we can still
have a fair comparison of their relative performance.

The results of the NEES and RMS errors for all filters are
presented in Figures 6(a) and 6(b) and Table 2. We point out
that during the experiment the robot detected a number of fea-
tures that were not included in the set of 20 known corners
(e.g. movable objects such as furniture). Since no ground truth
is available for the position of these objects, we only used the
20 known corners for computing the landmarks’ error statis-
tics. From the experimental results it becomes clear that in this
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Fig. 4. Monte Carlo results for a “mini-SLAM” scenario with multiple loop closures where the robot trajectory and all landmarks
are confined within a very small area of 1 m x 1 m. (a) Average NEES of the robot pose errors. (b) RMS errors for the robot
pose (position and orientation). In these plots, the solid lines correspond to the ideal EKF, the dashed lines to the FEJ-EKEF, the
dotted lines to the OC-EKE, the solid lines with circles to the standard EKF, and the dash-dotted lines to the robocentric mapping
filter of Castellanos et al. (2004). Note that in this case both the NEES and the RMS errors of the ideal EKF, FEJ-EKF, OC-EKF,
and the robocentric mapping filter are almost identical, which makes the corresponding lines difficult to distinguish.
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Table 2. Robot Pose and Landmark Position Estimation Performance

Standard EKF FEJ-EKF OC-EKF Robocentric
Robot position error RMS (m) 0.8209 0.5748 0.5754 0.7160
Robot heading error RMS (rad) 0.0604 0.0397 0.0397 0.0391
Robot pose NEES 11.0706 3.5681 3.5282 7.2949
Landmark position error RMS (m) 1.1041 0.8675 0.8680 1.0957
Landmark position NEES 8.5033 5.9821 5.9836 9.6691
_ sensor, and wheel encoders. The kinematic GPS system was
— a b =0 I used to provide ground truth for the robot position with 5 cm
= accuracy. Since the GPS has a different frequency (up to 2 Hz)

Estimated Trajectory
Corner Features .

Fig. 5. The MAP estimate of the robot trajectory in the indoor
experiment (solid line), overlaid on the blueprint of the build-
ing. The boxes ([J) denote the corners whose exact location is
known from the building’s blueprint.

particular experiment both the FEJ-EKF and OC-EKF outper-
form the standard EKF and the robocentric mapping filter, and
perform almost identically to each other. This agrees with the
simulation results presented in the preceding section.

7.2. Second Experiment: Outdoors

In the second experiment, the performance of the FEJ-EKF
and OC-EKF was tested on the Sydney Car Park data set col-
lected by Guivant and Nebot*. The experimental platform is
a four-wheeled vehicle equipped with a GPS receiver, a laser

4. The data set is available at http://www-personal.acfr.usyd.edu.au/nebot/
dataset.

to the other sensors, we interpolated the GPS data to obtain the
ground truth at each time step. Wheel encoders were used to
provide odometric measurements, and propagation was carried
out using the Ackerman model. In this particular application,
60 mm steel poles covered with reflective tape were used as
artificial landmarks. With this approach, it is easy to extract
the features and the measurement model becomes very accu-
rate. Since the true position of the landmarks was also obtained
with GPS, a true map was available for comparison purposes.

In this test, because the ground truth for the robot orienta-
tion was still unavailable, the ideal EKF could not be tested,
and therefore the same filters as in the first experiment were
compared: (1) the standard EKF, (2) the FEJ-EKF, (3) the OC-
EKEF, and (4) the robocentric mapping filter. The comparison
results are shown in Table 3, and Figures 7 and 8. Specifically,
Table 3 presents the average values of all relevant performance
metrics for the robot and the landmarks. On the other hand,
Figure 7 shows the trajectory and landmark estimates pro-
duced by the four filters, while Figure 8 shows the NEES and
RMS errors of the robot position over time. We point out that
the NEES in this case pertains only to the robot position, and
therefore the “optimal” value for it is two.

Similarly to the results presented in the first experiment,
this test also demonstrates that both the FEJ-EKF and OC-
EKF outperform the standard EKF and the robocentric map-
ping filter, and perform very close to each other. In particular,
the average RMS errors and the average NEES for the FEJ-
EKF and OC-EKF are smaller than the corresponding values
for the two competing filters. These results, along with those of
the simulations presented in the previous section, support our
conjecture, which states that the mismatch in the dimension
of the unobservable subspace between the linearized SLAM
system and the underlying non-linear system is a fundamental
cause of filter inconsistency.

8. Summary

In this paper, we have presented an observability-based study
of the inconsistency problem in EKF-based SLAM. By com-
paring the observability properties of the non-linear SLAM
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Fig. 6. (a) NEES of the robot pose errors. (b) RMS errors for the robot pose (position and orientation). In these plots, the solid
lines correspond to the standard EKF, the dashed lines to the FEJ-EKF, and the dotted lines to the OC-EKEF, the dash-dotted lines
to the robocentric mapping filter of Castellanos et al. (2004). Note that both the NEES and the RMS errors of the FEJ-EKF and
OC-EKF are almost identical, which makes the corresponding lines difficult to distinguish.
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Table 3. Robot and Landmark Position Estimation Performance

Standard EKF FEJ-EKF OC-EKF Robocentric
Robot position error RMS (m) 0.1002 0.0523 0.0522 0.0838
Robot position NEES 2.8900 2.5197 2.4705 2.8265
Landmark position error RMS (m) 0.3812 0.1858 0.1860 0.2755
Landmark position NEES 2.5196 2.0197 1.9818 2.4800
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Fig. 7. The robot trajectory and landmark estimates. In this plot, the solid line depicts the ground truth obtained from GPS,
while the boxes ([J) are the known beacon positions. The dashed line with crosses and the crosses (4) denote the estimated
trajectory and landmarks, respectively, corresponding to the standard EKF, the dashed line and stars (x) correspond to the FEJ-
EKEF, the dotted line and circles (o) to the OC-EKEF, and the dash-dotted line and x-crosses (x) to the robocentric mapping filter

of Castellanos et al. (2004).

system model with those of the linearized error-state model
employed in the EKF, we proved that the observable subspace
of the standard EKF is always of higher dimension than the
observable subspace of the underlying non-linear system. As
a result, the covariance estimates of the EKF undergo reduc-
tion in directions of the state space where no information is
available, which is a primary cause of inconsistency. Based on
the above analysis, we have proposed a new methodology for
the design of EKF-based estimators for SLAM. Our approach
dictates selecting the linearization points of the EKF so as to
ensure that the resulting linearized system model has three un-
observable directions.

We propose two filters, the first estimates Jacobian (FEJ)-
EKF and the observability-constrained (OC)-EKF, which ad-
here to the above design methodology. Specifically, in the FEJ-
EKF all Jacobians are calculated using the first available es-
timate for each state variable, while in the OC-EKF the lin-
earization points are obtained in closed form by solving an
observability-constrained minimization problem (i.e. minimiz-
ing the expected linearization errors subject to the observabil-
ity constraints). As a result, the linearized system models em-
ployed in these two filters have the desirable observability
properties. Extensive simulation and experimental tests ver-
ify that the FEJ-EKF and the OC-EKF perform significantly
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Fig. 8. (a) NEES of the robot position errors. (b) RMS errors for the robot position. In these plots, the solid lines correspond to
the standard EKF, the dashed lines to the FEJ-EKEF, the dotted lines to the OC-EKF, and the dash-dotted lines to the robocentric
mapping filter of Castellanos et al. (2004). Note that both the NEES and the RMS errors of the FEJ-EKF and OC-EKF are almost
identical, which makes the corresponding lines difficult to distinguish.
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better, in terms of both accuracy and consistency, than the
standard EKF and the robocentric mapping filter. This occurs
despite the fact that the Jacobians used in the FEJ-EKF and
OC-EKEF are evaluated using less accurate linearization points.
These results indicate that ensuring the correct observability
properties of the linearized system model is a crucial require-
ment.
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Appendix A: Unicycle Model

If the unicycle model is used, and we employ the approxi-
mation that the velocity and heading are constant during each
propagation interval, we obtain ®Xg, = [0, 01 0 @, 6t]",
where u,, = [v,, cumk]T are the linear and rotational veloc-
ity measurements, respectively, and J¢ is the sampling period.
Substitution in (2) and (3) yields the familiar robot pose prop-
agation equations:

A . vmkétc((;SRklk)

Preji = PRy + R (64)
Dmkéts(gbRk‘k)

$Rk+1|k = $Rk|k + O Ot (65)

Similarly, the commonly used expressions for the Jacobian
matrices @k, and Gg, can be derived from (6), (7) and (9).
Specifically, by substituting the robot displacement % pp, =

T
[vmk(St 0] into (7), we have:

1 0 _Dmkéts(gz\st”()
q)Rk =10 1 Dmkétc(é\sRHk)

00 1

(66)

To derive the Jacobian matrix G% with respect to the odom-

etry vector uy, instead of ®¢Xp, +1» We apply the chain rule of
differentiation as follows:

G(;e _ a(XRk+l) % a(RkXRkH)
&

0 (Rexpy,,) ouy
+1 RkﬁRk X Wy,
+

67

The first term is the Jacobian with respect to the robot pose
change (displacement and orientation change), evaluated at the

estimate ®Xp,, , and is given in (9). The second term is the
Jacobian of the robot pose change with respect to u. Since

T
Rixpe,, = [ oot 0 ot } , this Jacobian is simply given
by:
or 0
M =10 o (68)
6llk
llmk
0 ot

Therefore, substitution of (68) and (9) into (67) yields:
Stc(dr,) O

515 (Pry) O

0 ot

Gy = (69)

We thus showed how the commonly used expressions for (2)-
(4), as well as the state and noise Jacobians can be derived.

Appendix B: Proof of Lemma 4.1

The proof is based on mathematical induction, by verifying the
structure of the kth-order Lie derivatives. We define the Lie
derivative of a C* function / on an open subset S ¢ R%"®
along an analytic vector field f on S, as

L¢h = (dh)f, (70)

where dh is the gradient of 4 with respect to the state vector
x. We start by noting the following identities, which will be
useful in the ensuing derivations:

wols w0t 4]

=[—c0 —s0 0 cb sﬁ} (71)
wols s o ]

:%[se 0 —p —s0 o],

where dx £ x; — xz, 0y £ y, — yg,and 0 £ y + ¢p.

We first prove that if # has the special structure shown
in (15), then the zeroth- and first-order Lie derivatives are
functions of p and y only.

By applying the chain rule of differentiation, the zeroth-
order (i.e. k = 0) Lie derivative is computed as follows:

dp
dh 1,
Loh & 2 = EXAIN (73)
X P oy dy
dx

Ao
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It is important to note that since 4 is a function of p and y
only, the terms 6k /0p and 6h /0y are also functions of p and
w only. As a result, the matrix Ay is a function of p and v,
whose exact structure depends on the particular measurement
function 4.

The first-order (i.e. k = 1) Lie derivatives are calculated ac-
cording to the definition (70), and employing the results of (71)
and (72), as

dp
1y [on on] |9
dx
—cOcpp — sOsdg —cy
= Ao = A . (14
%(S@CgbR —cOsdg) s—p”‘i
g 0
1y _ |oh ok X _
Lg,h = [5 W} iy £, =A¢ » (75)

dx
We thus see that both the zeroth- and the first-order Lie deriv-
atives are functions of p and y only. This is the base case for
the proof by induction.
Now assume that the kth-order Lie derivatives L'f", h,i =
1, 2, are functions of p and y only’. Then their gradients can
be computed by

d
d(L{h) e

d
— |2 k il k
il G DRI O1E B D
dx
Ay

i

where Ay, is a function of p and  only. Thus, the (k + 1)th-
order Lie derivatives are computed as follows:

dp
k41 dx
Lith = [%(Lgh) 2Lk ML
dx
—cOcpp — s0spp —cy
— A =Ay| |, D
%(S@C¢R —clOsdg) A—/?
dp
k+1 Pl dx
LEh = [E(L’;zh) GOl I
dx
0
=Ay (78)
—1

Clearly, the (k + 1)th-order Lie derivatives are also functions
of p and y only, and the proof by induction is complete.

5. Extension of this analysis to the case of mixed kth-order Lie derivatives is
straightforward, although more involved in terms of notation; thus, it is omit-
ted to preserve presentation clarity.

Appendix C: Proof of Lemma 4.2

Employing the expressions for the Lie derivatives derived in
Appendix B, we have

d(Lh)) d(LO%y)
dx 0o dx °
d(Ly h) d(Lg )
x> x>
dG = span
row
b b b
d(Lé‘jhl) d(Lé‘jhw
dx > > dx
& =
X X
Al s . AR ,
d dy
dx dx
[dp] [dp
dx dx
A} s . Alf . s
_ I dy I dy
= span ax ax ’
TOW - - - -
b b b
Fap Fdp ]
dx dx
Al o Al
I dw T lde
L dx | L dx |
where the index j = 1,2 corresponds to the vectors f; and
f,, and the superscript i in A’ to the measurement function #;
(ie.i =1,2,...,n). Clearly, the row-span of all of the above

vectors is identical to the row-span of dp /dx and dy /dx, i.e.,

—cf —s68 0 cd s6
dG = span
ow | 0 _c0 _ 1 _s0 b
p p PP
. 1 T
= span< JDiag ( —, 1 | C'(y)
row P
Spr  —CPr  —chrox —sPpRdy —s¢p  chp
X
chpr  SPg SPRrOX — cdy —chpp  —SPg
Spr  —CPr —CPROx —sPpdy —sPr Py
= span .
Y lepr  sop SPRroOX —cPrdy  —chp —sdp

Appendix D: Proof of Lemma 5.2

Under the Gaussianity assumption, it is p(Xg,|Zox) =
N (XRe» PRRyyi)> Where Prp, is the covariance matrix cor-
responding to the robot pose, obtained by partitioning the
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. . PRRk|k
State covariance matrix as Pklk =

Pz
- kk | and
PRLk|k PLLk|k

P Xir1120x) = N i1, Prgiii)-
The first term of the cost function (46) is computed as

2
/ Xk, — X, 170 (51 |20 ),

— T _ T * *T
- / (XRkXRk ZXRkXRk‘k + XRk|kXRk|k) p(XRkle:k)dXRk

T T * «T x
E (kaka> 2E (ka) XRe T XRepe XRye

A AT aT * *T o*
. (PRRka + XRkaXRka) X R X T XRge ¥R

_ oT & _ 0T * o B
=u (PRRk\k) + X Ry X Rik 2XRk\kXRk|k + XRew X Regi
J— < _ *
= {r (PRRk\k) —+ ||XRk|k XRk|k

1%, (79)

where E(-) denotes expectation and tr(-) the matrix trace. Pro-
ceeding similarly, the second term of the cost function (46) can
be derived as

2
/||Xk+l = Xg 1 pell7 P Ri1120:6) dXpe1

= tr (Pesipe) + R — XZ+1|;(||2. (80)

Using (79) and (80), as well as the fact that the true Pg Ry and
Py« are independent of the linearization points, the follow-
ing equivalence is immediate:

min { (Prn) + 15 (Prsry) + }

o 2 I 2
quklk, X4 1k ”XRk\k - X’kklk I* + IXkr1x — X2+1|k”

. ~ 2 ~ 2
& min Reg — X, P+ IRerie = X0l
X X
Ry\k> k+1]k

‘We now derive the following identities for the observability
constraint (47) (cf. (36) and (42)):

Hk+1(Dk s ‘Dk,,U =0

k
j=ko+1 7

< Hp, [_IZ -J <p2k+lk _p}kolko

=0
k-1

o 5 N ot 5o
S Privip — Prox = Pligite ~ PRy + Z ApRj'
Jj=ko

This completes the proof.
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