
Optimizing Query Rewrites for Keyword-Based Advertising

Azarakhsh Malekian∗

Department of Computer Science
University of Maryland

College Park, MD 20742.
malekian@cs.umd.edu

Chi-Chao Chang Ravi Kumar Grant Wang
Yahoo!

701 First Ave
Sunnyvale, CA 94089.

{chichao,ravikumar,gjw}@yahoo-inc.com

ABSTRACT
We consider the problem of query rewrites in the context of
pay-per-click search advertising. Given a three-layer graph
consisting of queries, query rewrites, and the corresponding
ads that can be served for the rewrites, we formulate a fam-
ily of graph covering problems whose goals are to suggest
a subset of ads with the maximum benefit by suggesting
rewrites for a given query. We obtain constant-factor ap-
proximation algorithms for these covering problems, under
two versions of constraints and a realistic notion of ad ben-
efit. We perform experiments on real data and show that
our algorithms are capable of outperforming a competitive
baseline algorithm in terms of the benefit of the rewrites.

Categories and Subject Descriptors
F.2.m [Theory of Computing]: Analysis of Algorithms
and Problem Complexity—Miscellaneous

General Terms
Algorithms, Economics, Experimentation, Theory

Keywords
Keyword-based advertising, Greedy algorithm, Submodular-
ity, Query rewriting

1. INTRODUCTION
Pay-per-click search advertising continues to power the

growth of online advertising. Yahoo! Sponsored Search,
Microsoft AdCenter, and Google Adwords are examples of
search advertising networks, commanding over seven billion
dollars in annual revenues in 2007. Such networks are com-
posed of affiliate search publishers and advertisers. At their
core, these search advertising networks match ads to user
queries. Advertisers bid on search keywords that are most

∗Part of this work was done when the author was visiting
Yahoo!

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’08, July 8–12, 2008, Chicago, Illinois, USA.
Copyright 2008 ACM 978-1-60558-169-9/08/07 ...$5.00.

likely to generate clicks and conversions for them. Publishers
want relevant ads for their search users to maximize revenue
on their sites; they are paid by the search network through
revenue share (a fraction of the payment advertisers make
for each click goes to them).

A major goal of search ad networks is to show relevant
ads for a given query. In the short term, users will click on
relevant ads and generate revenue for the search ad network.
In the long term, users will recall that ads were relevant to
them and thus continue to click on them. In both the long
and short term, this creates revenue for the publishers and
generates leads for the advertisers.

Although advertisers/ads bid on keywords, a relevant ad
for a given query may not necessarily exist among the set of
ads that have bid for that query. Indeed, that set may be
empty, even though a relevant ad exists. For instance, an ad
bidding on the keyword “wedding band”may be appropriate
for the query “engagement ring”. The traditional informa-
tion retrieval problems of polysemy and synonymy occur in
this setting.

Query rewriting. A common mechanism used to improve
the relevance in information retrieval is query rewriting. At
a high level, query rewriting outputs a list of queries (re-
ferred to as rewrites) that are related to a given query.

Query rewriting is a well studied problem (see Section
2). Most work on this topic, however, has primarily focused
on generating relevant rewrites with respect to the original
query using a variety of methods such as mining query logs
and user sessions. These lines of work do not directly provide
a framework to optimize for the relevance of the ads of the
rewrites1 subject to:

(1) constraints on the number of rewrites per query — typ-
ically the number of rewrites is a constant across all queries
subject to system considerations such as fitting the rewrite
hash table into the main memory of the ad servers, the max-
imum number of keys in the reverse index, indexing latency,
etc;

(2) constraints on the number of queries for which a query
rewrite can be used — if a rewrite is used too often, it can
lead to the same ads being shown to users, which is unde-
sirable;

(3) budget constraints of an ad — each advertiser has a
limited budget and an ad that cannot be shown due to a
consumed budget cannot provide relevance.

1This is mainly because query rewriting has been a widely-
used tool in web search but not so much so in keyword ad-
vertising.

Our contributions. In this paper we propose a combina-
torial framework for optimizing query rewrites, taking the
relevance and budget constraints of ads into account. We
assume the existence of a query rewrite generator that out-
puts a list of candidate rewrites for a given query along with
a score indicating the relevance of the rewrite with respect
to the query. The framework exposes the set of all ads that
can be served from the candidate rewrites, allowing for the
definition of general ad benefit functions over any subset of
these ads. We assume that the average traffic rate for each
query and average budget of each ad for a fixed period of
time is known.

At the heart of our formulation is a graph covering prob-
lem on a graph with three sets of vertices: queries, rewrites,
and ads. The goal is to select rewrites from the second vertex
set for each query in the first vertex set, so that the benefit
of the ads adjacent to the rewrites is maximized subject to
ad system and budget constraints; we will use a realistic no-
tion of ad benefit that captures display real-estate and user
experience constraints. All of the variants of this problem
are NP-hard and so we focus on designing efficient approxi-
mation algorithms.

We look at two variants of system and budget constraints.
In the first variant (called the cardinality version), the con-
straints specify upper bounds on both the number of rewrites
a query can have as well as the number of queries for which
a query rewrite can be used. These model the system con-
straints in an ad network: too many rewrites for a given
query will slow down the time needed to serve an ad and us-
ing the same rewrite for too many queries will make the ads
less diverse. For this variant, we give a greedy algorithm
with an approximation ratio of (e − 1)/(2e − 1) ≈ 0.387.
This ratio is an improvement over 1/3 that can be obtained
using existing results on greedy algorithms for matroid in-
tersections; we believe this may be of independent interest.
For the special case of a single query, we obtain a stronger
approximation ratio of 1− 1/e ≈ 0.632.

In the second variant (called the weighted version), we
model the constraints of an ad’s budget. We assume that
the traffic for a query for a fixed period of time is known.
The goal here is again to select a set of rewrites that have the
maximum benefit subject to the constraint that no query can
have too many rewrites. The key difference is that an ad can
only contribute benefit for traffic up to its budget. For this
problem we give a greedy algorithm with an approximation
ratio of 1/4.

We also conduct experiments to measure the performance
of some of our algorithms. For the case of determining
rewrites for a single query, we compare the ad benefit of
our greedy algorithm to the ad benefit of a baseline algo-
rithm that is a variant of the k-nearest neighbor algorithm.
Our experimental results show that while query rewrites
suggested by the greedy algorithm achieve similar relevance
compared to the baseline, they significantly outperform the
baseline in terms of the ad benefit of the rewrites.

1.1 Why rewrite queries for keyword adver-
tising?

If our main objective is to serve the most relevant set of
ads for a query, it is conceivable to estimate the relevance of
every ad with respect to all known keywords a priori (e.g.,
offline, say, with a machine-learned relevance ranking model)
and build a keyword-ad index mapping keywords to their

most relevant ads. Given this, why is query rewriting related
at all to keyword advertisement? We offer three motivating
points.

(1) The advertiser bidding landscape for a keyword is very
dynamic and fast changing. Advertisers manually or auto-
matically distribute their spend throughout the day by turn-
ing on and off their ads. Yahoo!, for example, offers a maxi-
mum of 15 min delay before ads effectively go on- or off-line.
With such tight system requirements, it is more practical to
add (or remove) a list from only one keyword (the one they
are bidding on) rather than hundreds or even thousands (as
it could potentially be the case if the indexing is based on
an a priori computation of keyword-ad relevance).

(2) Search ad networks need cost-effective experimenta-
tion capabilities. Experimenting with various query rewrite
algorithms using live A/B testing is far easier and cheaper
than having to set up a few clusters of ad indices.

(3) Search advertising networks evolve from simple enti-
ties offering hundreds or thousands of search keywords to be
purchased by advertisers to massive agencies and networks
offering millions of keywords as well as “packages” or “bags”
of keywords. Not surprisingly, proprietary ad serving sys-
tems go from in-memory hash tables and MySQL databases
to possibly full-fledged search engines with time. Along the
way, due to legacy reasons, query rewriting based on key-
word clustering, keyword graph mining, etc, are viable tech-
niques to improving ad relevance and coverage.

Organization. The rest of the paper is organized as fol-
lows. In Section 2, we discuss some related work. In Section
3, we state our combinatorial formulation and provide some
background material. Section 4 contains the results for the
cardinality version and Section 5 contains the results for the
weighted version. Section 6 contains the experimental re-
sults. Finally, Section 7 contains concluding remarks. The
Appendix discusses small variants of the two problem ver-
sions considered.

2. RELATED WORK

Query rewriting. There is a vast amount of literature on
clustering and mining of search logs to generate query sug-
gestions for improving web and paid search results. Jones
et al [13] used query reformulation sessions to pre-compute
similar queries and phrases with affinity scores. For an in-
coming query, these tables are consulted in order to gener-
ate candidate rewrites; ranking of the rewrites is achieved
using a machine-learned function. Recently, Zhang et al [21,
20] have improved its performance using click logs and ac-
tive learning techniques and with additional features such
as web search results page co-occurrence and advertiser co-
biddedness.

Other classes of work revolve around exploring the con-
text and structure of query and click logs to cluster related
queries. For example, Beeferman and Berger [2] applied ag-
glomerative clustering techniques to bipartite click graphs
using a simple set overlap distance function. Antonellis et al
[1] build upon Simrank [12], a measure of structural-context
similarity developed for personalized web graphs, to iden-
tify similar queries. Another method commonly employed
is latent semantic analysis based on SVD [5]. SVD allows
the rearrangement of the term–document space to reflect

the major associative patterns; typically, these methods are
computationally expensive.

The algorithms presented in this paper complement all
these techniques by optimizing the selection of the rewrites
by taking the ad benefit into account.

Submodularity and greedy algorithms. Submodular-
ity has been studied in more depth in recent years due to its
applications in combinatorial auctions, e.g., the submodu-
lar welfare problem [16], [14], generalized assignment prob-
lems [8], etc. The greedy approach is a natural tool to solve
maximization problems with a submodular objective func-
tion. Nemhauser and Wolsey [18] showed that greedy ap-
proach gives an e/(e − 1)-approximation for maximizing a
non-decreasing submodular function over a uniform matroid.
Nemhauser, Wolsey, and Fisher [19] considered this problem
over the independence system. They showed that if the in-
dependence system is the intersection of M matroids, the
greedy algorithm gives an M + 1 approximation. Recently,
Goundan and Schulz [9] generalized both these results and
showed that if an α-approximate incremental oracle is avail-
able, then the greedy solution is a e1/α/(e1/α−1) approxima-
tion for maximizing a non-decreasing submodular functions
over a uniform matroid and an αM+1 approximation for the
intersection of M matroids. Feige, Mirrokni, and Vondrak
[7] gave a general framework for solving the non-monotone
submodular problems.

3. FORMULATION
In this section we formalize the problem framework and

provide the necessary notation and technical background.
Consider a three-layer graph G with vertex set (Q, W, A)
and edge sets EQ ⊆ Q × W and EA ⊆ W × A. Here, Q
represents all the queries, W represents all possible rewrites
for the queries Q, and A represents the set of potential ads.
The edge (q, w) ∈ EQ means that w is a possible rewrite for
q and the edge (w, a) ∈ EA means that ad a can be shown
for rewrite w. The general goal is to suggest a subset A′ of
ads that maximizes certain“benefit,” subject to certain“con-
straints.” As we discussed before, this goal will be achieved
instead by suggesting query rewrites for each query, i.e., a
subset E′

Q ⊆ EQ of edges such that each query has at least
one rewrite, that will lead to the most beneficial subset A′

of ads.

Notation. We use the following notation.
Γ(Q′): For a subset Q′ ⊆ Q of queries, Γ(Q′) ⊆W denotes

the set of rewrites that are adjacent to some query in Q′.
Γ(W ′): For a subset W ′ ⊆ W of rewrites, Γ(W ′) ⊆ A

denotes the set of ads that adjacent to some rewrite in W ′.
βq(a): For each q ∈ Q and a ∈ A, βq(a) ≥ 0 captures the

benefit of showing ad a for query q.
βq,d(A′): For A′ ⊆ A, the benefit provided by the d most

beneficial ads in A′ (called max d-benefit) is defined as

βq,d(A′) = max
As⊆A′,|As|=d

βq(As).

Bq,d(A′): Given A′ ⊆ A, Bq,d(A′) is the set of d ads in A′

that provides the max d-benefit.
Similarly, βq,d(W ′) is the benefit obtained from the set

of top d ads belonging to Γ(W ′) according to the benefit
function βq(·), where W ′ ⊆ Γ({q}) and likewise, Bq,d(W ′)
is the set of ads that are contributing in βq,d(W ′). Finally,

βd(E′
Q) is the benefit due to the set of query, rewrite pairs:P

q|(q,·)∈E′
Q

βq,d({w | (q, w) ∈ E′
Q}).

Note that max d-benefit captures realistic constraints that
limit the number of ads shown, including screen real-estate,
user experience, etc. Given this framework, we now describe
the two flavors of benefit and constraints that will be used
in our study. A constraint that is common to both versions
is the following:

(a) given K > 0, there are no more than K rewrites for
each query, i.e., for each q ∈ Q, we have |{w | (q, w) ∈
E′

Q}| ≤ K.
Next, we describe the specific constraint of each variant

as well as the desired objective function.

Cardinality version. In the cardinality version of the
problem, we are given d > 0, and a function D : W → R≥0.
Our constraint is then:

(b) there are no more than D(w) queries for which w is a
rewrite, i.e., for all w ∈ W , we have |{q | (q, w) ∈ E′

Q}| ≤
D(w).

The objective is to find E′
Q, subject to constraints (a) and

(b), such that the d-benefit βd(E′
Q) is maximized.

Weighted version. In the weighted version of the problem,
we also consider the budget of each ad and the traffic that
each query receives. Again, the objective in this problem is
to select rewrites so that the benefit of the ads adjacent to
the rewrites is maximized. The added constraint here is that
each ad has a budget and can only contribute benefit up to
its budget — if a query has t units of traffic and has a budget
of `, with t > `, the benefit of an ad can only be obtained
` times. The exact setup we assume is the following. Given
a set of query rewrites, i.e., a subset of edges in EQ, an ad
allocator will optimally allocate (with respect to the traffic
of each query and the budget of each ad) d ads that are
covered by the rewrite set to each query. The goal is to
suggest the rewrites in a way that the total benefit that an
ad allocator can obtain will be maximized. Let the benefit
gained from showing an ad a for t units of traffic for a query
q be t · βq(a).

Formally, we are given two functions T : Q → R+ and
L : A→ R+. The constraint is then:

(c) each ad a can be shown for at most L(a) units of
traffic, i.e., assuming that queries q1, . . . , q` are shown ad a
for T1, . . . , T` units of traffic,

P`
i=1 Ti ≤ L(a).

Background. Now, we will introduce some general con-
cepts that will be useful in developing algorithms for the
max benefit problems.

Definition 1 (Non-decreasing submodularity). Let
U be a finite set. A function f : 2U → R is non-decreasing
and submodular if

1. f(0) = 0,

2. f(X) ≤ f(Y) when X ⊆ Y ⊆ U .

3. f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y), ∀X, Y ⊆ U ,

or equivalently,

3’. f(X∪{u})−f(X) ≥ f(Y ∪{u})−f(Y), ∀X ⊆ Y ⊆ U .

A natural way to optimize covering problems, where the
function is non-decreasing and submodular, is the greedy
approach. Start with an empty set and iteratively build
the solution. At each iteration, select the element with the
highest incremental benefit to the current solution and add
it to the current solution.

Theorem 2 ([19]). The greedy algorithm produces a (1−
1/e)-approximation to covering problems with non-decreasing
submodularity property.

4. ALGORITHMS FOR CARDINALITY VER-
SION

In this section we obtain approximation algorithms for the
cardinality version. First, we consider the case when there is
a single query and obtain a simple greedy algorithm. Next,
we focus on the general case of multiple queries where we
have to optimize simultaneously over all the queries.

4.1 Warmup: Single query case
Note that since there is a single query, constraint (b) is

vacuous. The query rewrites can therefore be simply rep-
resented as W ′ ⊆ W and constraint (a) becomes a single
constraint |W ′| ≤ K. Also, βd(E′

Q) = βq,d(Γ(W ′)). For the
remainder of the section, we will use these conventions.

The approximation algorithm we describe is a greedy al-
gorithm. At each step of the greedy algorithm, the query
rewrite that gives the maximum incremental d-benefit will
be selected. Let Q = {q}.

Algorithm Single-Query-Greedy

Set W ′ ← ∅.
While |W ′| ≤ K do,
Find w ∈W \W ′ that maximizes βq,d(Γ(W ′ ∪ {w})).
Set W ′ ←W ′ ∪ {w}.

Return W ′.

We show that Algorithm Single-Query-Greedy gives a
(1 − 1/e)-approximation to the cardinality version for the
single query case. We do this by showing that the objec-
tive function has the non-decreasing submodularity prop-
erty. The approximation guarantee then follows by appeal-
ing to Theorem 2.

Theorem 3. The max d-benefit function is non-decreasing
and submodular.

Proof. The non-decreasing property is immediate. We
use the characterization (3’) in Definition 1 to show sub-
modularity. In our case, we have f(W ′) = βq,d(Γ(W ′)) for
W ′ ⊆ W . We need to show that for a given w ∈ W and
W1, W2 ⊂W with W1 ⊆W2:

f(W1 ∪ {w})− f(W1) ≥ f(W2 ∪ {w})− f(W2).

First, we observe that if a ∈ Γ(w)\Γ(W2) and a ∈ Bq,d(W2∪
{w}), then a ∈ Bq,d(W1 ∪ {w}). Let X be the set of ads
covered by w that are added to Bq,d(W2 ∪ {w}), i.e.,

X = {a ∈ Bq,d(W2 ∪ {w}) \Bq,d(W2) : a ∈ Γ(w)}.

Let Y ⊆ Bq,d(W2) be the set of ads such that |Y | = |X| with
the lowest sum

P
a∈Y βq(a), i.e., the least |X| beneficial ads

in Bq,d(W2). Similarly, let Z ⊆ Bq,d(W1) be the set of ads
such that |Z| = |X| and with the lowest sum

P
a∈Z βq(a),

i.e., the least |X| beneficial ads in Bq,d(W1). We have

f(W2 ∪ {w})− f(W2) =
X
a∈X

βq(a)−
X
a∈Y

βq(a).

From the above mentioned fact, X ⊆ Bq,d(W1∪{w}). There-
fore,

f(W1 ∪ {w})− f(W1) ≥
X
a∈X

βq(a)−
X
a∈Z

βq(a).

Since W1 ⊆ W2, we have
P

a∈Z βq(a) ≤
P

a∈Y βq(a). This
shows that the increase in benefit caused by adding w to W1

is at least that of adding w to W2, establishing (3’).

It is easy to see that Algorithm Single-Query-Greedy
runs in time O((

P
w∈W |Γ(W)|) · K(log d)). In Appendix

A, we consider a slightly different constraint — given L > 0,
we need |A′| ≤ L, i.e., we require that query rewrites cover
at most L ads — and show a (1/2)(1− 1/e)-approximation
with this constraint.

4.2 The general case
We now consider the cardinality version with constraints

(a) and (b). To simplify notation, given a solution E′
Q, let

Rq be the set of rewrites for query q as given by E′
Q, i.e.,

Rq = {w | (q, w) ∈ E′
Q}. Thus, βd(E′

Q) =
P

q∈Q βq,d(Rq).
The approximation algorithm is once again greedy-based.

Algorithm General-Greedy

Set Eg ← ∅.
While ∃e ∈ EQ that is unmarked
Find an unmarked candidate edge e = (q∗, w) ∈ EQ

that maximizes the incremental d-benefit:P
q∈Q\{q∗} βq,d(Rq) + βq∗,d(Rq∗ ∪ {w}).

If (q∗, w) does not violate the constraints, i.e.,
if |Rq∗ | < K and |{q : (q, w) ∈ Eg}| < D(w),

add (q∗, w) to Eg.
Mark (q∗, w).

Return Eg.

It turns out that our problem can be formulated as max-
imizing a submodular function over the intersection of two
matroids. It is known that the greedy algorithm provides a
tight 1/(M + 1) approximation for maximizing a submod-
ular function over the intersection of M matroids [19]. For
our problem, this implies that the greedy algorithm provides
a 1/3 approximation. However, using the structure of our
objective function, which is a sum of submodular functions,
we improve the approximation ratio to (e−1)/(2e−1) using
a careful charging argument; this improvement might be of
independent interest.

Theorem 4. Algorithm General-Greedy provides an
(e − 1)/(2e − 1) ≈ 0.387 approximation for the cardinality
version.

Proof. Denote by Eg = {e1, . . . , em} ⊆ EQ the set of
edges chosen by Algorithm General-Greedy and by Eo =
{e′1, . . . , e′n} the set of edges in the optimal solution.

We first add all the edges in Eo \Eg to Eg. We will charge
the increase in benefit coming from these new edges to the
edges in Eg. Note that in Algorithm General-Greedy,
each edge in EQ is considered exactly once to be added to
Eg. We now describe the charging scheme.

Consider the iteration in which an edge e′i = (q, w) ∈ Eo \
Eg is selected as a candidate by the greedy algorithm, i.e., it

is the edge that maximizes the incremental d-benefit. Since
e′i was not added to the greedy solution, this means that
either we have already selected K rewrites for q (meaning
|Rq| = K) or w has been chosen as a rewrite D(w) times
(meaning |{q : (q, w) ∈ Eg}| = D(w)).

Partition the set of edges in Eo \ Eg into two groups, SQ

and SW . SQ consists of those edges that were not added
to the greedy solution because the endpoint in Q was tight
(|Rq| = K), and SW consists of those edges that were not
added because the endpoint in W was tight. If an edge was
tight for both sides, it is only in SW .

First consider an edge (q, w) ∈ SW . When (q, w) was
chosen as a candidate in Algorithm General-Greedy but
was not added to Eg, w had already been suggested as a
rewrite for D(w) other queries. Since the selection of the
edges is greedy, each of the previous D(w) edges adjacent to
w added more incremental d-benefit at the time they were
added to Eg. Since the d-benefit function is submodular, the
incremental benefit from adding (q, w) to Eg is less than the
incremental benefit from adding the previous D(w) edges ad-
jacent to w at the time they were added. Since the number
of edges in SW adjacent to w is at most D(w), we can cre-
ate a one-to-one mapping between the incremental benefit
coming from SW and the incremental benefit from the edges
adjacent to w chosen by Algorithm General-Greedy.

Next consider the edges in SQ. We charge the incremental
benefit for all the edges in SQ adjacent to a vertex q at the
same time. Consider a fixed vertex q. Let the edges in Eg

incident to q be EK = {e1, . . . , eK} (where e1, . . . , eK was
the order that the edges were added) and the edges in SQ

adjacent to q be EK′ = {e′1, . . . , e′K′}, with K′ ≤ K. We will
show that the benefit obtained from EK is at least 1−1/e of
the benefit obtained from EK′ . The key observation is that
when each edge (q, w) ∈ EK′ was a candidate to be added
to Eg, the edge was only tight on the Q side, i.e., there were
already K edges adjacent to q in Eg. Again, this implies that
each of the edges in EK added more incremental benefit than
EK′ . Let the total benefit obtained from EK′ be OPTq and
the incremental benefit from e1, . . . , eK be s1, . . . , sK . Since
e1, . . . , eK were chosen greedily we can conclude that:

s1 ≥
OPTq

K
, s2 ≥

OPTq − s1

K
, . . . , sK ≥

OPTq −
PK−1

i=1 si

K
.

The total benefit obtained by EK can be represented asPK
i=1 si. It is easy to see that

KX
i=1

si ≥

1−

„
1− 1

K

«K
!

OPTq ≥
„

1− 1

e

«
OPTq.

Since the benefit of the edges in SW can be charged bijec-
tively to edges in Eg, and the benefit of the edges in SQ is
no more than e/(e− 1) of the benefit of the edges in Eg, we
can conclude that βd(Eg) ≥ (e− 1)/(2e− 1)OPT.

5. ALGORITHMS FOR WEIGHTED VER-
SION

In this section we consider the weighted version. Again
our goal is to suggest K rewrites for each query to maximize
the total benefit. The benefit is computed based on the d
ads that are shown for each query. An ad can be shown
for a query if it is covered by one of the suggested rewrites
for that query. However in this scenario we have some new
constraints as well. The parameters that will come into play

are the traffic of a query and the budget of an ad. Let T (q)
represent the traffic for q ∈ Q for a fixed period of time and
let L(a) denote a limit on the amount of traffic that can be
allotted for an ad for the same period. We will refer to L(a)
as a budget constraint. Now, we discuss how to compute the
benefit in this scenario for each set of suggested rewrites. We
assume an optimal ad allocator, which takes the rewrites for
the queries and allocate at most d ads to each query (an ad
a can be allocated to a query q if there is some rewrite w for
q such that (w, a) ∈ EA).

The ad allocator allocates ads to queries so as to maximize
the total ad benefit, but subject to budget constraints. This
means that the total traffic of the queries for which an ad
has been allocated can be more than the budget constraint
of an ad. There are two sensible ways to make this precise:

(1) Integral ad allocator : If an ad a is allocated to a query
q, then either all of the traffic T (q) is assigned to that ad,
or none of it. This means that there could possibly be some
ε amount of budget L(a) left for an ad after allocation since
the traffic T (q) of each query q is bigger than ε.

(2) Fractional ad allocator : Here, if an ad a is allocated
to a query q, then a fractional amount of the traffic T (q)
can be assigned to that ad.

In the weighted version, the suggested rewrites will define
which ads can be shown for each query and then the ad
allocator will select which ads to show for each query. In this
section we consider the optimal integral ad allocator model.
In Appendix B, we consider a slightly stringent constraint on
the budget, which makes the problem extremely hard, and
hence less appealing. In Appendix C, we describe algorithms
where we assume an optimal fractional ad allocator.

Our method for selecting the rewrites in this scenario is
again based on the greedy approach.

Algorithm Greedy-Benefit

Let S be the set of rewrites.
Construct a bipartite graph G with vertex sets Q, A

and edge set E. Add an edge (q, a) ∈ E iff
∃e = (q, w) ∈ S so that a ∈ Γ(w).

Sort the edges in E by βq(a).
Add feasible edges in the sorted order above and

accumulate the total benefit of S.

Algorithm Greedy-Budget

Set Eg ← ∅.
For each e = (q, w) ∈ EQ, (approximately) compute the

benefit of Eg ∪{e} using Algorithm Greedy-Benefit.
Select e such that Eg ∪ {e} has the maximum benefit.
Mark e.
Add e to Eg if q has at most K − 1 rewrites in Eg.
Repeat the above steps until all the edges in EQ are marked.

It can be shown that selecting the edge e ∈ EQ that
maximizes the benefit in each stage of Algorithm Greedy-
Budget is NP-hard.

Theorem 5. Selecting the edge e ∈ EQ with maximum
incremental benefit is NP-hard.

Proof. We reduce 3-partition to this problem. Consider
an instance of 3-partition problem with n = 3m elements
in which the value of each element is between B/4 and B/2
and the total value of all the elements is mB. The goal is
to partition the set into triples with total valuation B each.

Now create an instance of the query-ad graph as follows.
There are n queries and m ads. An edge exists between
a query and an ad with benefit equal to the weight of the
element that the ad stands for. Now, let d = 3, i.e., we only
show 3 ads for each query and let the total allowed budget
for each ad be equal to B. It can be seen that there is an
optimal query-ad assignment iff there is a 3-partition of the
original set.

Finally, we show that Algorithm Greedy-Budget re-
turns a solution with benefit at least 1/4 of the optimal.
The argument has two parts. We first show that Algorithm
Greedy-Benefit computes a 1/2 approximation to the op-
timal benefit. Next we show that if we added the edge with
optimal benefit in each round, Algorithm Greedy-Budget
achieves a 1/2 approximation. Putting the two results to-
gether gives us a 1/4 approximation.

Lemma 6. Consider a set S of rewrites. The benefit of S
computed by Algorithm Greedy-Benefit is at least half of
the optimal benefit that can be obtained from S.

Proof. As before, construct the bipartite graph G′ with
vertices (Q, A) and edges E′. Add an edge (q, a) to E′ iff
∃(q, w) ∈ S for which a ∈ Γ(w). We show that if we compute
the benefit in this graph greedily, it is at least half of the
optimal benefit obtainable from that set. Consider an edge
(x, y) that is in S but not chosen in our solution. This means
that at the stage that it was considered (and marked) in
the greedy solution, at least one of the endpoints was tight.
In other words, either d ads are already allocated to x or
y received at least L(y) amount of traffic. In both cases,
the weight of the edges that are already assigned to the
endpoints are higher since we chose the edges greedily. If x
is tight, we charge the weight to any of the d edges. Note
that each of these edges share the same query, so they also
share the same amount of traffic. If the tight end point is
y, we will charge that edge to the same share of traffic that
is already assigned to y. Since for all the edges assigned to
y their weight for the unit traffic that covered is higher, the
benefit obtained from each unit of traffic of this edge can
be charged to the benefit of one unit of traffic of that edge.
Since we charge each unit traffic of each edge selected in the
greedy solution at most twice, the returned solution by the
greedy is at least half of the optimal benefit obtainable from
S.

Using the above result we can show that the following.

Theorem 7. Algorithm Greedy-Budget achieves a 1/4
approximation for the weighted version.

Proof. Let S be a set of rewrites. We will refer to the
approximate benefit of S computed by Algorithm Greedy-
Benefit as the greedy-benefit of S. The optimal benefit of
S will be referred to as optimal-benefit.

In this proof, we use the submodularity property to charge
the optimal solution for the greedy-benefit to the selected
greedy rewrite pairs. Consider the set of rewrites that are
suggested by algorithm Greedy-Budget (call it Eg) and
then add all the rewrites that are suggested by the opti-
mal solution (call it Eo). We will update the total ben-
efit obtained using the greedy-benefit. Consider an edge
e′ ∈ Eo \ Eg. Since e′ /∈ Eg, this means that it would
increase the greedy-benefit less than all the selected rewrites

in the greedy solution at the time they were chosen. This
means that we can charge the increase in greedy-benefit from
adding e′ to the current solution set to one of those edges.
Note that the only constraint that bans a rewrite from being
selected is the constraint on the number of rewrites K for
a query. Thus, we conclude that we can make a one-to-one
correspondence between the rewrites adjacent to q ∈ Q that
are in Eo \ Eg and the rewrites adjacent to q that are in
Eg \ Eo. This means that the greedy-benefit obtained from
Eg ∪Eo is at most twice the greedy-benefit of Eg. By using
Theorem 6 we know that the optimal benefit from Eg∪Eo is
at most twice its greedy-benefit. The optimal benefit from
Eg ∪Eo is at least OPT. That means that the optimal ben-
efit of Eg, which is larger than its greedy benefit, is at least
1/4 of the optimal solution.

6. EXPERIMENTAL RESULTS
We evaluated the performance of Algorithm Single-Query-

Greedy through two experiments. In the first, we compared
the relevance of the rewrites selected by Algorithm Single-
Query-Greedy with the rewrites selected by a baseline
algorithm (Algorithm Baseline). The relevance of these
rewrites was determined by a set of human editors. In the
second experiment, we compared the d-benefit of Algorithm
Single-Query-Greedy to the d-benefit of the Algorithm
Baseline.

Algorithm Baseline selects rewrites using the same graph
({q}, W, A) that is used by Algorithm Single-Query-Greedy.
To select the rewrites for a given query q, Algorithm Base-
line computes a similarity measure between between all
pairs (q, w), where w ∈ W . The similarity measure Base-
line uses is Pearson correlation, which has been used in
many other settings as a similarity measure (e.g. [3, 10, 1]).
Pearson correlation is defined on two random variables X, Y
with means µX , µY and standard deviations σX , σY as:

p(X, Y) =
E((X − µX)(Y − µy))

σXσY
.

To compute the Pearson correlation r(q1, q2) between two
queries, we identify a query q with a random variable Xq

defined as follows — with probability 1/|A|, Xq = β(a) if
(q, a) ∈ E, and 0 otherwise. Algorithm Baseline selects k
rewrites with the highest Pearson correlation with q. The
idea is that queries with high similarity to q are relevant.

Our results show that while the rewrites selected by Al-
gorithm Single-Query-Greedy are similar in relevance to
the rewrites found by Algorithm Baseline, the former sig-
nificantly outperforms the latter when comparing the d-
benefit of the selected rewrites. We describe our results in
detail in the next two sections.

6.1 Editorial relevance
In this experiment we selected rewrites for 1,170 queries.

The 1,170 queries were chosen randomly from a search log.
We compared the relevance of the top five rewrites selected
by Algorithm Single-Query-Greedy and the top five rewrites
of Algorithm Baseline. We ran Algorithm Single-Query-
Greedy with the constraint that |W ′| ≤ 5 while attempting
to maximize 10-benefit, i.e., the benefit of the top 10 ads.

The relevance of the rewrites was judged on a four point
scale identical to the scale used in [13, 1]:

(1) Precise match: A near-certain match — the rewrite
precisely matches the user’s intent.

Scale Baseline Single-Query-Greedy
1 24% 21%

1-2 72% 72%
1-3 91% 91%

Table 1: Relevance comparison: Algorithm Baseline
vs. Algorithm Single-Query Greedy

(2) Approximate match: A probable, but inexact match
with user intent.

(3) Marginal match: A distant, but plausible match to a
related topic.

(4) Clear mismatch: A clear mismatch.
The results of the experiment are summarized in Table 1.
Algorithm Baseline does place a larger fraction of the

rewrites it selects into category (1), i.e., precise match; oth-
erwise, the relevance of the two rewriting systems is equiv-
alent.

6.2 Ad benefit
In this experiment we compared the d-benefit of the rewrites

selected by Algorithm Single-Query-Greedy to the rewrites
selected by Algorithm Baseline. We computed rewrites for
a set of 89, 000 queries chosen randomly from a search log.

One choice of the benefit β(a) of an ad for a given query
q is the estimated click-through rate for the (q, a) pair. We
used this notion of benefit in this experiment and describe
briefly how it was computed. Recall the graph ({q}, W, A).
For each edge (w, a) ∈ EA, we have a historical estimate
of the click-through (CTR) rate for the query-ad pair. We
would like β(a) to be proportional to the CTR for the pair
(q, a), but the CTR of the pair (w, a) will not necessarily be
a good estimate. This is because some queries in W will be
more relevant to q than others. This motivates our definition
of β(a) in these experiments:

β(a) =

P
w∈Γ(a) r(q, w) · CTR(w, a)P

w∈Γ(a) r(q, w)
,

where r(q, w) is the Pearson correlation defined above. In
short, β(a) is the similarity-weighted average of its CTRs.

6.2.1 Comparing Single-Query-Greedy and Base-
line

We compared the d-benefit of Algorithm Single-Query-
Greedy and Algorithm Baseline for different values of K
(the constraint on the number of rewrites allowed for each
query) and d (which specifies the number of ads that con-
tribute to the benefit). To compare the performance of
Baseline and Single-Query-Greedy for a specific setting
of K and d, we ran Algorithm Single-Query-Greedy with
K and d to select a set WG of K rewrites, and computed
βd(Γ(WG)), i.e., the benefit of the top d ads adjacent to WG.
Recall that Algorithm Baseline is not parameterized on ei-
ther K or d. For Baseline, we chose the set WB of the top
K rewrites ranked by Baseline and computed βd(Γ(WB)).

The results of this experiment for different values of K
and d are displayed in Table 2. In each cell, we give the
percentage gain of Single-Query-Greedy over Baseline,
i.e., 100×(Single-Query-Greedy−Baseline)/Baseline.
For small K, the gain of Single-Query-Greedy over Base-
line is significant. As K increases, the gain lessens. This is

because the number of potential rewrites for many queries
is less than K (i.e., |W | ≤ K). For these queries, there
is no difference between the rewrites suggested by Single-
Query-Greedy or Baseline. This observation is verified
by Table 3. In this table, we break down the percentage gain
in Table 2 by |W |. The large percentage gains come when
|W | is large relative to K, the number of rewrites we select.
This occurs when the set of rewrites to choose from is quite
large. Many of the rewrites are likely to be relevant and
choosing the ones with the most beneficial ads gives large
gains.

We also noticed that for K > d, Single-Query-Greedy
computes the optimal solution. Indeed, for K > d, the opti-
mal solution is easy to characterize — it is just the queries
that are adjacent to the d ads with the greatest benefit. This
means that the percentage gain of Single-Query-Greedy
over Baseline for K > d is just an indicator of how well
Baseline performs compared to the optimal solution.

d
2 4 6 8 10

K = 1 197.2% 201.9% 208.6% 214.9% 220.5%
K = 2 147.3% 156.7% 164.3% 171.4% 177.6%
K = 4 83.5% 96.4% 104.2% 109.9% 115.1%
K = 8 45.4% 49.9% 54.2% 58.5% 62.1%

K = 16 22.3% 24.1% 25.5% 27.0% 28.4%
K = 32 10.2% 10.9% 11.3% 11.8% 12.2%
K = 64 3.4% 3.6% 3.8% 4.0% 4.2%

K = 128 0.9% 1.0% 1.1% 1.1% 1.2%

Table 2: d-benefit: Percentage gain of Algorithm
Single-Query-Greedy over Algorithm Baseline.

7. CONCLUSIONS
We have formulated the problem of selecting rewrites to

obtain the most beneficial set of ads. We give simple greedy
algorithms for two realistic versions of the problem and prove
that they obtain solutions whose score is within a constant-
factor of the optimal solution. Experimentally, we compare
the rewrites selected by the greedy algorithms to rewrites
selected by a baseline algorithm in two categories: relevance
and benefit. The results show that the rewrites selected by
the greedy algorithm are nearly as relevant as the rewrites
selected by the baseline but are much more beneficial, es-
pecially when the number of possible rewrites/ads is large
relative to the number we wish to display.

Acknowledgments
We thank Saeed Alaei, Samir Khuller, and Mohammad Mah-
dian for various discussions.

8. REFERENCES
[1] I. Antonellis, H. G. Molina, C-C. Chang. Simrank++:

Query rewriting through link analysis of the click
graph. Stanford Computer Science Department
Technical Report, 2007.

[2] D. Beeferman, A. Berger. Agglomerative clustering of
a search engine query log. In Proc. 6th KDD, pages
407–416, 2000.

range of |W |
K, d [1, 2] [3, 8] [9, 32] [33,∞]
1, 2 16.5% 130.0% 290.1% 486.1%
1, 4 17.3% 135.9% 299.1% 462.4%
1, 6 17.9% 140.5% 310.1% 460.1%
1, 8 18.3% 143.6% 320.1% 464.1%

1, 10 18.6% 146.0% 328.8% 469.9%
2, 2 0.0% 72.7% 212.0% 400.2%
2, 4 0.0% 81.5% 225.0% 390.8%
2, 6 0.0% 87.1% 237.1% 390.0%
2, 8 0.0% 91.1% 248.4% 394.5%

2, 10 0.0% 94.0% 258.6% 400.5%
4, 2 0.0% 17.2% 116.0% 262.3%
4, 4 0.0% 20.2% 130.4% 287.1%
4, 6 0.0% 22.9% 140.7% 294.1%
4, 8 0.0% 24.9% 149.1% 297.9%

4, 10 0.0% 26.5% 156.8% 302.4%
8, 2 0.0% 0.0% 49.2% 170.5%
8, 4 0.0% 0.0% 52.1% 178.9%
8, 6 0.0% 0.0% 55.4% 187.3%
8, 8 0.0% 0.0% 58.9% 196.5%

8, 10 0.0% 0.0% 62.3% 203.2%
16, 2 0.0% 0.0% 10.5% 101.8%
16, 4 0.0% 0.0% 10.9% 104.5%
16, 6 0.0% 0.0% 11.3% 106.5%
16, 8 0.0% 0.0% 11.8% 109.1%

16, 10 0.0% 0.0% 12.2% 112.0%
32, 2 0.0% 0.0% 0.0% 48.0%
32, 4 0.0% 0.0% 0.0% 48.3%
32, 6 0.0% 0.0% 0.0% 48.2%
32, 8 0.0% 0.0% 0.0% 48.5%

32, 10 0.0% 0.0% 0.0% 49.0%
64, 2 0.0% 0.0% 0.0% 13.2%
64, 4 0.0% 0.0% 0.0% 13.2%
64, 6 0.0% 0.0% 0.0% 13.5%
64, 8 0.0% 0.0% 0.0% 13.7%

64, 10 0.0% 0.0% 0.0% 14.0%
128, 2 0.0% 0.0% 0.0% 3.2%
128, 4 0.0% 0.0% 0.0% 3.3%
128, 6 0.0% 0.0% 0.0% 3.5%
128, 8 0.0% 0.0% 0.0% 3.6%

128, 10 0.0% 0.0% 0.0% 3.7%

Table 3: d-benefit: Percentage gain of Algorithm
Single-Query-Greedy over Algorithm Baseline bro-
ken down by |W |.

[3] J. Breese, D. Heckerman, C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In
Proc. 14th UAI, pages 43–52, 1998.

[4] S. Cucerzan, R. W. White. Query suggestion based on
user landing pages. In Proc. 30th SIGIR, pages
875–876, 2007.

[5] S. C. Deerwester, S. T. Dumais, T. K. Lancaster, G.
W. Furnas, R. A. Harshman. Indexing by latent
semantic analysis. In JASIS, 41(6):391–407, 1990.

[6] D. Fain, J. Pedersen. Sponsored search. In Bulletin of
the American Society for Information Science and
Technology, 2005.

[7] U. Feige, V. Mirrokni, J. Vondrak. Maximizing
non-monotone submodular functions. In Proc. 48th
FOCS, pages 461–471, 2007.

[8] L. K. Fleisher, M. X. Goemans, V. S. Mirrokni, M.
Sviridenko. Tight approximation algorithms for
maximum general assignment problems. In Proc. 17th
SODA, pages 611–620, 2006.

[9] P. Goundan, A. Schulz. Revisiting the greedy
approach to submodular set function maximization. In
Manuscript, 2007.

[10] J. Herlocker, J. Konstan, A. Borchers, J. Riedl. An
algorithmic framework for performing collaborative
filtering. In Proc. 22nd SIGIR, pages 230–237, 1999.

[11] D. S. Hochbaum, A. Pathria. Analysis of the greedy
approach in covering problems. Unpublished, 1994.

[12] G. Jeh, J. Widom. Simrank: A measure of
structural-context similarity. In Proc. 8th KDD, pages
538–543, 2002.

[13] R. Jones, B. Rey, O. Madani, W. Greiner. Generating
query substitutions. In Proc. 15th WWW, pages
387–396, 2006.

[14] S. Khot, R. Lipton, E. Markakis, A. Mehta.
Inapproximability results for combinatorial auctions
with submodular utility functions. In Proc. 1st WINE,
pages 92–101, 2005.

[15] S. Khuller, A. Moss, J. Naor. The budgeted maximum
coverage problem. IPL, 70(1):39–45, 1999.

[16] B. Lehmann, D. J. Lehmann, N. Nisan. Combinatorial
auctions with decreasing marginal utilities. In Proc.
3rd EC, pages 18–28, 2001.

[17] V. Mirrokni, M. Schapira, J. Vondrak. Tight
information-theoretic lower bounds for welfare
maximization in combinatorial auctions. This
proceedings.

[18] G. L. Nemhauser, L. A. Wolsey. Best algorithms for
approximating the maximum of a submodular set
function. In Math. OR, 3(3):177–188, 1978.

[19] G. L. Nemhauser, L. A. Wolsey, M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions. Math. Prog., 14:265–294, 1978.

[20] W. V. Zhang, X. H. Fei, B. Rey, R. Jones. Query
rewriting using active learning for sponsored search. In
Proc. 30th SIGIR, pages 853–854, 2007.

[21] W. Zhang, R. Jones. Comparing click logs and
editorial labels for training query rewriting. In
Workshop on Query Log Analysis, 16th WWW, 2007.

APPENDIX
A. SINGLE-QUERY, WITH CONSTRAINT

ON NUMBER OF ADS
In this section we consider the single-query version with

a different constraint:
(b’) select at most L ads by picking one rewrite at a time.
This case turns out to be interesting since we lose sub-

modularity. Despite this, it is possible to modify the greedy
algorithm slightly to yield a constant factor approximation.

Suppose we have L′ < L ads before the last rewrite. Then,
for the last rewrite, only L−L′ ads can contribute to the max
benefit objective. We assume that if q is the last rewrite,
then the L − L′ ads are chosen uniformly at random from
Γ(q). Since we treat the last chosen rewrite slightly differ-
ent than the others, we alter the notation. Instead of Q, we
will use (Q, q) as a parameter in all functions that shows the
value of that function considering q as the last added ele-
ment. We use E(βd(Γ(Q, q))) to define the expected value
for βd(Γ(Q, q)) for a given Q, q. Unlike the case of the con-
straint (b), we show that the non-decreasing and submodu-
larity property does not hold with constraint (b’).

Lemma 8. The single-query version with constraint (b’)
is neither submodular nor non-decreasing.

Proof. First, we consider the non-decreasing property.
Suppose Q = {q} and Γ(q) = {a1, . . . , aL} where d = L,
β(ai) = m and m is a large integer. It can be seen that
βd(Q) = Lm. Consider q′ where Γ(q′) = {a′1, . . . , a′L} and
β(a′i) = ε where ε ≈ 0. We have Γ(Q, q′) = {a1, . . . , aL, a′1, . . . , a

′
L}.

Since |Γ(Q, q′)| > L, by our assumption, L of the covered ads
would be chosen uniformly at random. Now E(βd(Q, q′)) =
Lm

2
< Lm, showing it can be decreasing.

To show that submodularity does not hold, consider Q1 =
{q1} and Q2 = {q1, q2}. Also assume that Γ(q1) = {a1, . . . , aL},
Γ(q2) = {a′1, . . . , a′L} and β(ai) = β(a′i) = m. It can be seen
E(βd(Γ(Q1))) = E(βd(Γ(Q2))) = Lm. Now,

E(βd(Γ(Q1, q
′))) = L

m

2
< L

2m

3
= E(βd(Γ(Q2, q

′))).

This shows that gain of adding q′ to Q2, −Nm
3

, is greater

than −Nm
2

, the gain of adding q′ to Q1. In other words,
submodularity does not hold.

Thus, the performance of the vanilla greedy algorithm is un-
bounded. However, we show how a slight modification to the
greedy algorithm can give a (1/2)(1 − 1/e)-approximation
for max d-benefit with constraint (b’). For a given Q, let
size(Q) =

P
q∈Q |Γ(q)|. The general framework of the algo-

rithm is as follows.

Algorithm Modified-Greedy

Set Q′
1 = ∅.

While Γ(Q′
1) ≤ L do,

Find q ∈ Q \Q′ that maximizes

E(βd(Γ(Q′), Γ(q)))− βd(Γ(Q′))

min(size(q), L− size(Q′))
,

breaking ties arbitrarily.
Set Q′

1 ← Q′
1 ∪ {q}.

Set Q′
2 ← arg maxq∈Q Bd(Γ(q)).

If βd(Γ(Q′
2)) > βd(Γ(Q′

1)), then return Q′
2.

Otherwise return Q′
1.

We show that the Modified-Greedy algorithm gives a
(1/2)(1−1/e)-approximation for the max d-benefit problem
with the constraint (b’).

Theorem 9. The Modified-Greedy algorithm is a (1/2)(1−
1/e)-approximation for the single-query version with the con-
straint (b’).

Proof. The proof consists of the following steps.

Lemma 10. For a given q ∈ Q and Q′ ⊆ Q, if we select
a subset Q` ⊆ Γ(q) of size ` uniformly at random, then

E(βd(Γ(Q′) ∪Q`})
`

≥ βd(Γ(Q′ ∪ {q}))
|Γ(q)| .

Proof. Consider an ad a ∈ Bd(Q′∪{q})\Bd(Q′). Then,

Pr[a ∈ Q`] =
`

|Γ(q)| .

This will show that E(βd(Q′ ∪ Q`)) − βd(Q′) is at least
`/|Γ(q)| of the expected increase when we add the whole set.
Therefore, (1/`) · E(βd(Γ(Q′) ∪Q`))) is at least (1/|Γ(q)|) ·
βd(Γ(Q′) ∪ {q}).

Assume that the vertices selected by the greedy solution
are q1, . . . , qn. Let Qi = {q1, . . . , qi}. Let ∆i be the expected
gain by adding qi to Qi−1. Also let Q∗ be the selected set
by the optimal solution, excluding the last choice. Now we
can show that.

Lemma 11.

∆i ≥
min(|Γ(qi)|, L− size(Qi−1))

L
(βd(Γ(Q∗))−βd(Γ(Qi−1)))

(1)

Proof. At the time qi is chosen, it has the highest ratio
of the (expected) gain over the size (expected) among all q ∈
Q\Qi−1. Also by adding all o′ ∈ Q∗\Qi−1, the total benefit
will increase to βd(Γ(Q∗)). Therefore, the increase is at least
βd(Γ(Q∗))−βd(Γ(Qi−1)). Let Q∗\Qi−1 = {r1, . . . , rm}. We
know that

mX
j=1

∆rj ≥ βd(Γ(Q∗))− βd(Γ(Qi−1)).

Also we know that
Pm

i=1 |Γ(ri)| ≤ L. The goal is to show
that, for qi, the ratio of the expected gain over the size is at
least

γ =
βd(Γ(Q∗))− βd(Γ(Qi−1))

L
.

By the choice of greedy algorithm, qi has the highest ratio. If
the inequality does not hold, it means that for all r1, . . . , rm

the gain ratio is also less than γ. Lemma 10 showed that
the expected partial gain ratio of a vertex is at least its
complete gain ratio. So we have for each ri, ∆(ri) ≤ γ ·
|Γ(ri)|. Summing this bound over all the ri’s, we have

mX
i=1

∆(ri) ≤ βd(Γ(Q∗))− βd(Γ(Qi−1)),

which is a contradiction.

By using Lemma 11 and an induction as in [15], we can
show the following (proof omitted).

Lemma 12. We have βd(Γ(Qi))

≥

1−

iY
j=1

„
1− min(|Γ(qi)|, L− size(Qi−1))

L

«!
βd(Γ(Q∗)).

We can now complete the proof of the theorem. We use
Lemma 12. Let qm be the last chosen query in the modified
greedy solution. We know that

m−1X
i=1

|Γ(qi)|+ L− size(Qm−1) = L.

Since
mY

j=1

„
1− min(|(Γ(qi)|, L− size(Qi−1)

L

«
would be maximized when all the multiplicands have the
same value, we have

1−
iY

j=1

„
1− min(|Γ(qi)|, L− size(Qi−1))

L

«
≥ (1− (1− 1/m)m) ≥ 1− 1/e.

This means that the expected gain from Modified-Greedy
is at least (1 − 1/e) of the expected gain from the optimal

solution, excluding the last set. If Q̃ is the last chosen set,
then the total maximum d-benefit in the optimal solution is
at most βd(Γ(Q∗)) + βd(Γ(Q̃)). In Modified-Greedy, we
compare the max d-benefit of the solution given by the pure
greedy step and the solution that contains only one query
(call it q′) with the highest max d-benefit and return the

one with the highest benefit. Since βd(Γ(q′)) ≥ βd(Γ(Q̃)),
in the worst case the Modified-Greedy solution is at least
(1/2)(1− 1/e) of the optimal solution.

Let NQ =
P

w∈W Γ(w). If we assume the number of selected
queries based on the greedy approach is K′, the running time
of this algorithm is O(NQK′ log d) which in the worst case is
O(NQL log d). Selecting q ∈ Q with the largest βd(q) is O(d·
NQ). Assuming d ≤ L, the Modified-Greedy algorithm
runs in time O(NQK log d).

B. HARD BUDGET CONSTRAINTS
In this variant a rewrite (q, w) can be suggested only if

none of the ads that can be covered by w is out of budget.
We show that this hard budget constraint makes the problem
as hard as independent set.

Theorem 13. The weighted version with hard budget con-
straint is as hard as independent set.

Proof. Consider an instance G = (V, E) of the indepen-
dent set problem. We can create an instance of our problem
by creating a query for each vertex and an ad for each edge.
Now, the query is connected to an ad if the correspond-
ing edge was adjacent to that vertex. Also the weight of
the (query, ad) pairs is set in a way that the total covered
weight for each query is exactly one. Now if we place the
restriction of 1 on the number of times each ad can be cov-
ered, the problem is equivalent to finding the maximum size
independent set in the original graph.

C. OPTIMAL FRACTIONAL AD ALLOCA-
TOR

In this model we assume that the optimal ad allocator can
break the traffic and suggest different d ads for each portion
of the traffic. The only difference with the old approach is in
the incremental oracle. The new algorithm works as follows.

Algorithm Soft-Budget

For each e = (q, q′) ∈ EQ, compute how much it would
increase the total benefit. Here, we call the current set of
suggested rewrites R ⊂ EQ. To compute the increase ob-
tained by adding e we use the following procedure:

R′ = R ∪ {e}. Solve the following linear program:

max
X
q∈Q

X
a∈A

T (q) · xa,q · βq(a)

subject to X
(a,q)∈R′

xa,q ≤ d, ∀q ∈ Q

X
(a,q)∈R′

xa,qT (q) ≤ L(a)

0 ≤ xa,q ≤ 1, ∀a ∈ A, q ∈ Q.

Find the unmarked pair e′ = (q, q′) ∈ EQ that will return
the maximum benefit in the above linear program.

Add e′ to R if the number of chosen rewrites in R for q is
less than K.

Mark e.
Repeat the above steps until each e ∈ EQ is marked.

Theorem 14. There exists an allocation of ads to query
traffic that obtains the same amount of benefit that is ob-
tained by the above LP solution.

Proof. For each q ∈ Q, choose d ads A′ = a1, . . . , ad ⊂
A with the highest xai,q values. Initialize α = 0. Start
increasing α gradually and decreasing xai,q at the same rate.
Allocate α fraction of T (q) to ads in A′. Increase α until
∃a′ ∈ A\A′ with xa′,q > mini(xai,q)−ε. Update A′. (Select
the ads with highest xa′,q.) For all the ads in a′ ∈ A \ A′

we can see that xa′,q ≤ mini(xai,q) − ε. This means that
xq,a ≤ 1−α, ∀q ∈ Q, a ∈ A. Also we know that

P
a∈A xa,q ≥

d(1 − α). This means we should still have d non-zero xq,a

variables.

Since the incremental oracle acts optimally, using the simi-
lar charging argument as before, we can show that the given
algorithm is 1/2-approximation for the fractional ad alloca-
tor.

	Introduction
	Why rewrite queries for keyword advertising?

	Related work
	Formulation
	Algorithms for cardinality version
	Warmup: Single query case
	The general case

	Algorithms for Weighted Version
	Experimental results
	Editorial relevance
	Ad benefit
	Comparing Single-Query-Greedy and Baseline

	Conclusions
	References
	Single-query, with constraint on number of ads
	Hard budget constraints
	Optimal fractional ad allocator

