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Increasingly, real-time systems must handle the self-suspension of tasks (that is, lower-bound wait times between

subtasks) in a timely and predictable manner. A fast schedulability test that does not significantly overestimate the

temporal resources needed to execute self-suspending task sets would be of benefit to these modern computing

systems. In this paper, a polynomial-time test is presented that is known to be the first to handle nonpreemptive self-

suspending task sets with hard deadlines, where each task has any number of self-suspensions. To construct the test, a

novel priority scheduling policy is leveraged, the jth subtask first, which restricts the behavior of the self-suspending

model to provide an analytical basis for an informative schedulability test. In general, the problem of sequencing

according to both upper-bound and lower-bound temporal constraints requires an idling scheduling policy and is

known to be nondeterministic polynomial-time hard. However, the tightness of the schedulability test and scheduling

algorithm are empirically validated, and it is shown that the processor is able to effectively use up to 95% of the self-

suspension time to execute tasks.

I. Introduction

R EAL-TIME scheduling systems are a vital component of many aerospace, medical, nuclear, manufacturing, and transportation systems. In
general, real-time systems must be able to interact with their environment in a timely and predictable manner, and designers must engineer

analyzable systems for which the timing properties can be predicted and mathematically proven correct [1,2]. An analysis is typically performed
using schedulability tests, which are fastmethods for determiningwhether a system can process a set of taskswithin specified temporal constraints
[1,3–5].

Increasingly real-time systems must handle the self-suspension of tasks, and new methods are required for testing the feasibility of these self-
suspending task sets [6–9]. In processor scheduling, self-suspensions (i.e., lower-bound “wait times” between subtasks) can result, both due to
hardware and software architectures. At the hardware level, the addition of multicore processors, dedicated cards (e.g., graphics processing units,
physics processing units, etc.), and various input/output devices, such as external memory drives, can necessitate task self-suspensions.
Furthermore, the software that uses these hardware systems can employ synchronization points and other algorithmic techniques that also result in
self-suspensions [10]. Schedulability tests that do not significantly overestimate the temporal resources needed to execute self-suspending task
sets would be of benefit to these modern computing systems.

The sequencing and scheduling of tasks according to upper-bound and lower-bound (self-suspension) temporal constraints are challenging
problems with important applications outside of processor scheduling as well. Other examples include autonomous tasking of unmanned aerial
and underwater vehicles [11,12], scheduling of factory operations [13,14], and scheduling of aircraft and flight crews [15]. New uses of robotics
for flexiblemanufacturing are pushing the limits of current state-of-the-art methods in artificial intelligence (AI) and operations research (OR) and
are spurring industrial interest in fast methods for sequencing and scheduling [13]. Solutions to these applications typically draw frommethods in
AI and OR [14–17], which provide complete search algorithms that require exponential time to compute a solution in the worst case. These
methods cannot provide fast recomputation of the schedule in response to dynamic disturbances for large real-world task sets. Fast, sufficient
schedulability tests, while widely used in processor scheduling, are underused in these applications.

In this paper, we present a uniprocessor schedulability test and complementary scheduling algorithm that handle periodic nonpreemptive self-
suspending task sets. To our knowledge, our approach is the first polynomial-time test for nonpreemptive self-suspending task sets with any
number of self-suspensions in each task. We also generalize our uniprocessor schedulability test and algorithm to handle deadline constraints not
found in the traditional self-suspending task model but commonly found in artificial intelligence and operations research models.

Our schedulability test and scheduling algorithm use a novel scheduling policy to create a problem structure in self-suspending task networks.
Restricting the behavior of the scheduler sacrifices completeness for this nondeterministic polynomial-time (NP) hard problem [9,18], in general.
However, we show that this restriction enables the design of an informative schedulability test and scheduling algorithm, both of which produce
near-optimal results for many real-world task systems.

We begin in Sec. II with the definition of a self-suspending task model. Section III reviews prior art in real-time scheduling of self-suspending
task sets, and Sec. IVintroduces terminology to describe our schedulability test and scheduling algorithm. SectionV discusses howwe restrict the
behavior of the scheduler so as to enable the design of an informative schedulability test and scheduling algorithm.

In Sec. VI, we present our schedulability test with proof of correctness. Section VII describes our complementary scheduling algorithm, which
successfully executes task sets that pass the schedulability test. In Sec. VIII, we empirically validate the performance of our schedulability test and
scheduling algorithm. We show that our schedulability test is tight, meaning that it does not significantly overestimate the temporal resources
needed to execute the task set.We also show that a processor operating under our scheduling algorithm incurs little processor idle time. Lastly, we
demonstrate empirically that our schedulability test is fast, and we derive the computational complexity of our test and scheduling algorithm.
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II. Self-Suspending Task Model

The basic model for the periodic self-suspending task set [6] is shown in Eq. (1):

τi: �ϕi; �C1
i ; E

1
i ; C

2
i ; E

2
i ; : : : ; E

mi−1
i ; Cmii �; Ti; Di� (1)

In this model, there is a task set τ where all tasks, τi ∈ τ, must be executed by a uniprocessor. For each task, there aremi subtasks withmi − 1 self-
suspension intervals. Subtasks within a task are executed in order, meaning that a subtask τj�1i must execute after subtask τji and before subtask
τj�2i . Subtasks across tasks may be interleaved in any order that meets the temporal constraints of the model. Each self-suspension is a lower-
bound temporal constraint, or wait time, between the finish and start of the consecutive subtasks and may result in processor idle time. Cji is the
worst-case duration (i.e., called “cost”) of the jth subtask of τi, and E

j
i is the worst-case cost of the jth self-suspension interval of τi.

A new instance of τi is released (meaning it becomes available for execution) each periodTi, and all subtasks in task τimust be completedwithin
the deadlineDi from the release time of that task instance. The kth instance of subtask τji is denoted τ

j
i;k. A phase offset delays the release of the first

instance of a task τi by the durationϕi. The hyperperiod of a set of tasks is the least commonmultiple of the set of deadlinesDi. This is the time after
which the pattern of the set of tasks repeats. The hyperperiod H bounds the time horizon necessary for schedulability analysis.

The self-suspending task model shown in Eq. (1) provides a solid basis for describing many real-world processor scheduling problems of
interest. In this work, we augment the traditional model to provide additional expressiveness by incorporating deadline constraints that upper
bound the temporal difference between the start and finish of two subtasks within a task. We call these deadline constraints subtask-to-subtask
deadlines. We define a subtask-to-subtask deadline as shown in Eq. (2):

Ds2shτai ;τbi i
: �fbi − sai ≤ ds2shτai ;τbi i� (2)

where fbi is the finish time of subtask τbi , s
a
i is the start time of subtask τai , and

ds2shτai ;τbi i

is the upper-bound temporal constraint between the start and finish times of these two subtasks, such that b > a.
Subtask-to-subtask constraints are commonly included in AI and operations research scheduling models (e.g., [19–21]) and are vital in

modeling many real-world problems. We augment the self-suspending task model in this way to illustrate the relevance of our techniques to
important applications other than processor scheduling. Consider the sequencing and scheduling of assembly manufacturing processes. In this
case, each manufactured piece is represented by a uniprocessor and thework performed on the piece is represented by the subtasks. The goal is to
sequence thework to assemble the piece subject to temporal and precedence constraints among subtasks. Self-suspensions (i.e., lower-boundwait
times between subtasks) may arise due to, for example, “cure times” involved in the assembly process. Upper-bound temporal constraints also
arise naturally; the build schedule may require that a sequence of tasks be grouped together and executed in a specified time window.

The problem of sequencing arriving and departing aircraft on a runway is also analogous to processor scheduling. Here, the runway represents
the uniprocessor, and the constraints that landing aircraft be spaced by a minimum separation time are represented as self-suspensions. Upper-
bound subtask-to-subtask deadlines encode the amount of time an aircraft can remain in a holding pattern based on fuel considerations. Although
each domain has its own nuances in problem formulation, there is sufficient underlying commonality in the problem structure to investigate the
application of real-time scheduling techniques to these problems.

Figure 1 and Table 1 present an illustrative augmented self-suspending task set. The set includes four tasks. For example, the first task τ1 has a
phase offset ϕ1 � 0, a deadline D1 � 22, a period T1 � 24, and a subtask-to-subtask deadline

Ds2shτ2
1
;τ3
1
i

requiring τ31 to finish no later than six units of time after the start of τ21. In Fig. 1, upward arrows indicate the releases of a task, and downward arrows
indicate a task’s deadlinesDi. Self-suspensions are represented by horizontal barswith corresponding labels. The execution cost of each subtask is
shown as a block with a number corresponding to its subtask index. For example, in the figure, the block labeled “2” on the row labeled “τ1“
corresponds to τ21. The subtask-to-subtask deadline is depicted with a brace and its corresponding label, e.g.,

Ds2shτ2
1
;τ3
1
i

One hyperperiod H for this task set is the interval from t � �0; 24�.
In the remainder of this paper, we present a schedulability test and complementary scheduling algorithm that handle periodic self-suspending

task sets. We develop the test for nonpreemptible subtasks, meaning the interruption of a subtask significantly degrades its quality. To our
knowledge, this is the first polynomial-time test and algorithm that handles nonpreemptive self-suspending task sets with hard deadlines.We also
generalize our schedulability test and algorithm to handle subtask-to-subtask deadlines, to increase the applicability of our techniques to real-time
scheduling problems found in various application domains.

Fig. 1 Illustration of a schedule for the task set described in Table 1. The self-suspending task model is augmented with a subtask-to-subtask deadline
Ds2s
hτ21;τ

3
1i
.
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III. Background

In this section, we briefly review the challenges for real-time scheduling of self-suspending tasks sets, including prior work in analytical
schedulability tests and scheduling algorithms.

A. Challenge Posed by Task Self-Suspension

Scheduling a self-suspending task set is NP hard can be shown through an analysis of the interaction of self-suspensions and task deadlines
[8,21,22].Many uniprocessor priority-based scheduling algorithms, such as the earliest-deadline-first (EDF) or rate-monotonic (RM) algorithms,
introduce scheduling anomalies, since they do not account for this interaction [6,18].

A scheduling anomaly arises when a scheduler can produce a feasible schedule for a task set τ but not for a relaxation of the task set τ 0.
Relaxations include reducing task costs or decreasing phase offsets. These anomalies are present for both preemptive and nonpreemptive task sets.
Lakshmanan et al. [6] reported that finding an anomaly-free scheduling priority for self-suspending task sets remains an open problem. The
challenges posed by these anomaliesmotivate prior art in testing and scheduling the self-suspending taskmodel, wherein scheduling priorities and
structure restrictions are applied to support analysis and predictability [10,23].

We provide illustrations to exemplify different types of scheduling anomalies in Figs. 2 and 3. Each figure depicts a feasible schedule (top) and
an infeasible schedule resulting from a scheduling anomaly (bottom).

1. Scheduling Anomalies Produced by Reducing Task Cost

The first type of scheduling anomaly occurs when a reduction in the cost of a subtask causes the processor to violate a deadline constraint. This
type of scheduling anomaly was first described by Ridouard and Richard [18]. Figure 2 shows a scenariowhere the execution of three tasks under
the earliest-deadline-first algorithm produces this type of scheduling anomaly.

In the top graph, we see a feasible schedule, with τ12 interleaved during self-suspension E
1
1 and τ

2
1 interleaved during E

1
2. However, when the

execution cost of τ11 is decreased, τ
1
2 starts earlier. In turn, τ

2
2 and τ

1
3 are released at the same time. BecauseD2 < D3, τ

2
2 is prioritized over τ

1
3. The

result is that the processor idles during E1
3 and is unable to satisfy deadline D3.

2. Scheduling Anomalies Produced by Decreasing Phase Offsets

Phase offsets also can cause scheduling anomalies. This type of anomaly occurs when the reduction of a phase offset duration allows a task to
release earlier, and thus prevents the processor from satisfying all deadline constraints. Figure 3 shows a scenariowhere the execution of two tasks
under the earliest-deadline-first algorithm produces this scheduling anomaly.

In the top graph, we see a feasible schedule with τ13 interleaved during self-suspension E1
2 and τ22 interleaved during E1

3. However, when the
duration of phase offset ϕ2 decreases to zero, the start time of τ2 remains unchanged, despite the earlier deadline. Even though the subtasks are
efficiently interleaved, the processor cannot satisfy the deadline for τ2.

Table 1 Parameters for an illustrative self-
suspending task modela

τi ϕi C1
i E1

i C2
i E2

i C3
i E3

i C4
i Di Ti

i � 1 0 1 3 2 1 2 3 3 22 24
i � 2 2 2 3 3 0 0 0 0 12 12
i � 3 3 1 0 0 0 0 0 0 6 6

aA schedule for this task set is depicted in Fig. 1. A “0” entry in the i

row signifies that τi does not include the model feature. For

example, τ3 has only one subtask, so C2
3; E

2
3; : : : ; C

4
3 are

denoted 0.

Fig. 2 Decreasing task cost makes this task set infeasible under EDF.
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B. Schedulability Testing

Given sufficient time, the schedulability of a self-suspending task set may be computed offline using complete methods [24–26]. However,
these approaches are not suitable for determining schedulability online in real time, as is necessary when the task set changes. To reduce
computation time, many real-time systems use sufficient analytical schedulability tests that compute the feasibility of a given task set in
polynomial time. These tests assume that the scheduler is using a specific scheduling priority, such as RM or EDF algorithms. The naive method
for testing the schedulability of these task sets is to treat self-suspensions as a task cost; however, this can result in significant underutilization of
the processor if the duration of the self-suspensions is large relative to task cost [7].

Fast polynomial-time schedulability tests have been studied for restrictions of the preemptive self-suspending task model. Kim et al. [4]
presented two methods for testing task sets where each task has exactly one self-suspension. Their first method builds on work by Audsley et al.
[27] to transform each task τi with two subtasks, τ1i and τ2i , into two independent tasks. Both of the new tasks are released at time ri, but τ

2
i

experiences release jitter to implicitly enforce the temporal dependency between τ1i and τ
2
i . An iterative formula is developed [27] to calculate the

worst-case response time for τ1i and τ2i , and thereby the schedulability of the task set. The second method builds on this approach [28] to more
tightly upper bound the amount of self-suspension time that must be considered as a task cost by analyzing which tasks can be interleaved during
self-suspension time. Both these methods require a restriction be made on the specific time a task will self-suspend.

Next, Liu [1] andDevi [29] developed analyses for another restricted form of the preemptive task set, namely, where one self-suspension exists
in the entire task set. Their approaches do not make an assumption on when a task will self-suspend. Liu’s method [1] analyzes the schedulability
of the task set when it is executed under the fixed-priority RMscheduling policy, and it treats delays of the tasks due to self-suspensions as external
blocking events. This approach accounts for the situationwhere a higher-priority task self-suspends and the self-suspension terminates at the same
time a lower-priority task is released, thus causing the lower-priority task to be delayed until the completion of the higher-priority task. Devi [29]
developed a similar method for testing the schedulability of preemptive self-suspending task sets operating under the EDF dynamic-priority
scheduling algorithm.

Recently, Abdeddaïm and Masson introduced an approach for testing preemptive self-suspending task sets using model checking with
computational tree logic [24]. Although their method is easily extended to handle tasks withmultiple self-suspensions, the runtime is exponential
in the number of tasks. Thus, it does not currently scale to moderately sized task sets of interest for real-world applications. Lakshmanan and
Rajkumar [10] also increased generality by developing a pseudo-polynomial-time test for the preemptive model to determine the worst-case
interference imposed on a lower-priority self-suspending tasks by higher-priority nonsuspending tasks. However, Lakshmanan and Rajkumar
reported that an exact-case test for multiple self-suspensions per task remains an open problem.

Finally, recent works by Liu and Anderson [7,30–32] analyzed preemptive task sets with multiple self-suspensions per task for soft real-time
requirements. Liu andAnderson also considerrd nonpreemptive sections but for soft real-time systems [33].We have not yet seen a schedulability
test for hard, nonpreemptive task sets with multiple self-suspensions per task. Our approach seeks to fill this gap by providing the first such
analytical schedulability test.

C. Scheduling Algorithms

Designing scheduling policies for self-suspending task sets also remains a challenge. Although not anomaly free, various priority-based
scheduling policies have been shown to improve the online execution behavior in practice.

Rajkumar [23] presented an algorithm called the period enforcer for preemptive self-suspending task sets scheduled with the RM scheduling
algorithm. Period enforcer works by adding preconditions to tasks in the processor queue that force the tasks to behave as ideal, periodic tasks.
Period enforcer handles tasks that self-suspend during execution (i.e., creating discrete subtasks) by transforming the task τi intomultiple tasks τi 0 ,
τi 0 0 , and τi 0 0 0 , each with the same deadline as τi. However, their approach does not handle nonpreemptive task sets, nor is there a complementary,
analytical schedulability test.

Lakshmanan and Rajkumar [10] built on previous approaches to develop a static slack enforcement algorithm that delays the release times of
subtasks to improve the schedulability of preemptive task sets. The static slack enforcement algorithm is optimal, in that it does not affect the
worst-case response time of a self-suspending task and it prevents additional processing delays of lower-priority tasks due to higher-priority tasks.

Although these scheduling algorithms byRajkumar [23] and Lakshmanan andRajkumar [10] can handle preemptive self-suspending tasks sets
with multiple suspensions per task, we have not yet seen a such an algorithm that is accompanied by a polynomial-time schedulability test. In this
paper, we present a complementary schedulability test and scheduling algorithm. Furthermore, we extend our methods to handle subtask-to-
subtask temporal constraints that are important in many scheduling problems outside of the processor scheduling domain.

IV. Terminology

In this section, we introduce new terminology to help describe our schedulability test and the execution behavior of self-suspending tasks,
which in turn will help us intuitively describe the various components of our schedulability test.

Fig. 3 Removing a phase offset makes this task set infeasible under EDF.
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Definition 1: A subtask is a free subtask, τji ∈ τfree, if there does not exist any deadline

Ds2shτai ;τbi i

such that a < j ≤ b. In the example from Fig. 1, τfree � fτ11; τ21; τ12; τ22; τ13g.
Definition 2: A subtask is an embedded subtask, τji ∈ τembedded, if there exists a deadline

Ds2shτai ;τbi i

such that a < j ≤ b. In the example from Fig. 1, τembedded � fτ31; τ41g.
The intuitive difference between a free and an embedded subtask is as follows: a scheduler has the flexibility to sequence a free subtask relative

to the other free subtasks without consideration of subtask-to-subtask deadlines. On the other hand, the scheduler must take extra consideration to
satisfy subtask-to-subtask deadlines when sequencing an embedded subtask relative to other subtasks.

Definition 3: A self-suspension is a free self-suspension, Eji ∈ Efree, if there does not exist any deadline

Ds2shτai ;τbi i

such that a ≤ j < b. In the example from Fig. 1, Efree � fE1
1; E

1
2g.

Definition 4: A self-suspension is an embedded self-suspension, Eji ∈ Eembedded, if there exists a deadline

Ds2shτai ;τbi i

such that a ≤ j < b. In the example from Fig. 1, Eembedded � fE2
1; E

3
1g.

In Sec. VI, we describe howwe can use τfree to reduce processor idle time due toEfree and, in turn, analytically upper bound the duration of the
self-suspensions that needs to be treated as a task cost. We will also derive an upper bound on the processor idle time due to Eembedded.

V. Motivating our jth-Subtask-First Priority Scheduling Policy

Scheduling of self-suspending task sets is challenging because polynomial-time priority-based approaches such as EDF can result in
scheduling anomalies. To construct a tight schedulability test, we desire a priority method of restricting the execution behavior of the task set in a
way that allows us to analytically bound the contributions of self-suspensions to the processor idle time, without unnecessarily sacrificing
processor efficiency.

We restrict behavior using a novel scheduling priority, whichwe call the jth subtask first (JSF).We formally define the jth-subtask-first priority
scheduling policy in Definition 5.

Definition 5: For the jth subtask first, we use j to correspond to the subtask index in τji . A processor executing a set of self-suspending tasks
under the JSFmust execute the jth subtask (free or embedded) of every task (i.e., τji ,∀ i) before any (j� 1)th free subtask (i.e., τj�1a ). Furthermore,
a processor does not idle if there is an available free subtask unless executing that free task results in temporal infeasibility due to a subtask-to-
subtask deadline constraint.

Enforcing that all jth subtasks are completed before any (j� 1)th-free subtasks allows the processor to execute any embedded kth subtasks
where k > j as necessary to ensure that subtask-to-subtask deadlines are satisfied. In other words, an embedded subtask τj�1i may execute before
all jth subtasks are executed, contingent on a temporal consistency check for subtask-to-subtask deadlines. The implication is that we cannot
guarantee that embedded tasks (e.g., τji or τ

j�1
i ) will be interleaved during their associated self-suspensions (e.g., Ejx, x ∈ N \ i). The JSF priority

scheduling policy offers a choice among consistency-checking algorithms. One simple algorithm that ensures deadlines are satisfied is as follows:
when a free subtask that triggers a deadline constraint is executed (i.e., τji ∈ τfree, τ

j�1
i ∈ τembedded), the subsequent embedded tasks for the

associated deadline constraint are then scheduled as early as possible without the processor executing any other subtasks during this duration.
Other consistency-check algorithms that use processor time more efficiently and operate on this structured task model exist [34–36].

VI. Uniprocessor Schedulability Test for Self-Suspending Task Sets

We build the schedulability test and prove its correctness in six steps, starting with a simplified task model and generalizing to the full model.
Section VI.G then summarizes our test for the full task model. The six steps are as follows:

1)We restrict τ such that each task only has two subtasks (i.e.,mi � 2, ∀ i), there are no subtask-to-subtask deadlines, and all tasks are released
at t � 0 (i.e., ϕ � 0, ∀ i). Additionally, we say that all tasks have the same period and deadline (i.e., H � Ti � Di � Tj � Dj, ∀ i,
j ∈ f1; 2; : : : ; ng). Thus, the hyperperiod H of the task set, or the least common multiple of the set of task periods, is equal to the period of
each task.

2) Next, we allow for general task release times (i.e., ϕi ≥ 0, ∀ i). In this step, we upper bound the processor idle time due to phase offsets.
3) Third, we relax the restriction that each task has two subtasks and say that each task can have any number of subtasks.
4) Fourth, we incorporate subtask-to-subtask deadlines. In this step, we will describe how we calculate an upper bound on the processor idle

time due to embedded self-suspensions.
5) Fifth, we relax the uniform task deadline restriction and allow for general task deadlines where Di ≤ Ti, ∀ i ∈ f1; 2; : : : ; ng.
6) Lastly, we relax the uniform periodicity restriction and allow for general task periods where Ti ≠ Tj, ∀ i, j ∈ f1; 2; : : : ; ng.

A. Step 1: Two Subtasks Per Task, No Deadlines, and Zero Phase Offsets

In step 1,we consider a task set τ with two subtasks per each of the n tasks, no subtask-to-subtask deadlines, and zero phase offsets (i.e.,ϕi � 0,
∀ i ∈ n). Furthermore, task deadlines are equal to task periods, and all tasks have equal periods (i.e., H � Ti � Di � Tj � Dj, ∀ i,
j ∈ f1; 2; : : : ; ng). We analyze the conditions under which a processor experiences idle times due to the set of self-suspensions fE1

i ji ∈ Ng in the
restricted task set.We lay out a set of theorems and proofs that build to establishing an analytical upper bound on the idle time due to the set of self-
suspensions fE1

i ji ∈ Ng.Without loss of generality,we assume that the task index i in τji indicates the order of execution for first subtasks (i.e., τ
1
1 is

processed first, τ12 processed second, etc.).
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Theorem VI.1: For a processor to experience idle time at

t � �argmaxτ1a f
1
a; argmaxE1

j
f1j � E1

j �

then at least one self-suspensionE1
i has at leastn − 1 subtasks to execute during its duration �f1i ; f1i � E1

i � and it subsumes idle time due to all other
self-suspensions. We say that self-suspension Emn subsumes the idle time due to self-suspension Erq if the processor idle time during Erq is
contained in the Emn interval �fmn ; fmn � Emn �.

Proof 1 (proof by deduction for TheoremVI.1):Alln first subtasks τ1i ji ∈ N are released at t � 0, and the processorwill not experience idle time
at

t � �0; argmaxτ1af
1
a�

assuming ϕi � 0, ∀ i ∈ n. When the processor finishes τ1i at t � f1i , there are at least n − i released subtasks, fτ1i�1; τ1i�2; : : : τ1ng, that may be
processed immediately. For the processor to experience idle time in the interval �f1i ; f1i � E1

i � that is not subsumed by anyE1
a where a < i, then the

finish time ofE1
i must necessarily be greater than t � f1a � E1

a for all a < i. Since τ2a by definition becomes available for processing immediately
afterE1

a, it follows that all τ
2
a will become available for processing before t � f1i � E1

i .E
1
i must then necessarily be greater than the sumof the cost

of the next n − 1 subtasks to execute, fτ1i�1; : : : τ1n; τ21; : : : ; τ2i−1g, if E1
i produces idle time not subsumed by another E1

a where a < i. Thus, it is
necessary (but not sufficient) that the least n − 1 subtasks execute during �f1i ; f1i � E1

i � for the processor to experience idle time during E1
i that is

not subsumed by someE1
a. Trivially, when i � 1 and i � n, then − 1 subtasks include fτ1i�1; : : : τ1ng and fτ21; : : : ; τ2i−1g, respectively. Of the set of

self-suspensions that have at least n − 1 subtasks to execute during their duration, at least one self-suspension finishes last and subsumes the idle
time due to all other self-suspensions in the set. □

Corollary VI.2 (processor idle time due to E1
i ): All processor idle time due to E1

i , if E
1
i is not subsumed by another self-suspension, is upper

bounded by

IdleE1
i
� max

�
E1
i −

�� Xn
a�i�1

C1
a

�
�
�Xi−1
a�1

C2
a

��
; 0

�

Corollary VI.3 (upper-bound processor idle time due to E1
i ): IdleE1

i
is upper bounded by

W1
i � E1

i −
Xn−1
k�1

B1
i �k�

whereB1
i is the set of of all subtasks that may execute duringE1

i , including fτ1i�1; : : : τ1n; τ21; : : : ; τ2i−1g; andB1
i �k� is the kth smallest-cost subtask

in B1
i .

Theorem VI.4: The processor idle time due to the set of self-suspensions fE1
i ji ∈ Ng is upper bounded by the maximum over fW1

i ji ∈ Ng.
Proof 2: By Theorem VI.1, for a processor to experience idle time at

t � �argmaxτ1a f
1
a; argmaxE1

j
f1j � E1

j �

then at least one self-suspension E1
i has at least n − 1 subtasks to execute during its duration �f1i ; f1i � E1

i �, and it subsumes idle time due to all
other self-suspensions. ByCorollary VI.3,W1

i upper bounds the processor idle time for eachE1
i ifE

1
i is not subsumed by another self-suspension.

Therefore, the maximum over fW1
i ji ∈ Ng provides the maximum idle time contributed by a self-suspension that subsumes all other self-

suspensions. □

We mathematically represent Theorem VI.4 in Eqs. (3–6). We have only proved that these equations hold for the conditions in step 1 (i.e.,
mi � 2, ∀ i,ϕi � 0, ∀ i, Ti � Di � H, ∀ i, andwith no subtask-to-subtask deadlines).We build to show that these equations holdmore broadly
in steps 2–6.Bji is the set of subtasks that could execute duringE

j
i for it to createmore idle time than any other self-suspension, andBji �k� is the kth-

smallest-cost subtask inB1
i . Then, η

1
i is equal to our lower bound on the number of subtasks that would have to execute duringE1

i forE
1
i to create

more idle time than any other self-suspension. Since there are no subtask-to-subtask deadlines and mi � 2, ∀ i, jBji j � 2�n − 1�. Thus,
jBji j∕2 � n − 1. Wj

i is the upper bound on the processor idle time due to Eji , and W
j is the upper bound on the processor idle time due to

fEji ji ∈ Ng:

Bji � fC
j
a; C

j�1
a ja ∈ N; a ≠ i; j� 1 ≤ ma; τ

j
a ∈ τfree; τ

j�1
a ∈ τfreeg (3)

η1i �
jBji j
2

(4)

Wj
i � max

��
Eni −

Xηji
k�1

Bji �k�
�
; 0

�
(5)

Wj
free � max

i∈N;Eji∈Efree

�Wj
i � (6)

For an example for upper-bounding idle time due to fE1
i ji ∈ Ng, we now consider three example task sets with three tasks: one where E1

1 creates
the most idle time, one where E1

2 creates the most idle time, and one where E1
3 creates the most idle time. We provide task set definitions in
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Tables 2–4, illustrations in Figs. 4–6, and calculations in Eqs. (7–9), respectively. In all three examples, we can see that Eq. (6) correctly upper
bounds the processor idle time due to the set of first self-suspensions fE1

i j1 ≤ i ≤ ng. Specifically, 4 ≤ W1 � 10 (Table 2, Fig. 4), 3 ≤ W1 � 5
(Table 3, Fig. 5), and 5 ≤ W1 � 8 (Table 4, Fig. 6). Processor idle time is shown as a block without a number.

Example 1 in Fig. 4:

W1
free � max

ijEji∈Efree

�W1
i � � max�W1

1;W
1
2;W

1
3� � max�10; 2; 0� � 10 (7)

Example 2 in Fig. 5:

W1
free � max

ijEji∈Efree

�W1
i � � max�W1

1;W
1
2;W

1
3� � max�3; 5; 1� � 5 (8)

Example 3 in Fig. 6:

W1
free � max

ijEji∈Efree

�W1
i � � max�W1

1;W
1
2;W

1
3� � max�3; 5; 8� � 8 (9)

B. Step 2: General Phase Offsets

Next, we allow for general task release times (i.e.,ϕi ≥ 0, ∀ i). Phase offsets may result in additional processor idle time. For example, if every
task has a phase offset greater than zero, the processor is forced to idle at least until the first task is released. We also observe that, at the initial
release of a task set, the largest phase offset of a task set will subsume the other phase offsets.We recall that the index i of the task τi corresponds to
the ordering with which its first subtask is executed (i.e., s1i ≤ s1i�1). We can therefore conservatively upper bound the idle time during t � �0; f1n�
due to the first instance of phase offsets by taking the maximum over all phase offsets, as shown in Eq. (10).

Table 2 Example task set whereE1
1 creates

more idle time thanany other self-suspension, as
shown in Fig. 4

τi ϕi C1
i E1

i C2
i B1

i η1i
i � 1 0 1 12 2 fC1

3; C
2
3; C

1
2; C

2
2g 2

i � 2 0 2 4 4 fC1
3; C

2
3; C

1
1; C

2
1g 2

i � 3 0 1 1 1 fC1
1; C

2
1; C

1
2; C

2
2g 2

Table 3 Example task set whereE1
2 creates

more idle time thanany other self-suspension, as
shown in Fig. 5

τi ϕi C1
i E1

i C2
i B1

i η1i
i � 1 0 1 5 2 fC1

3; C
2
3; C

1
2; C

2
2g 2

i � 2 0 2 7 4 fC1
3; C

2
3; C

1
1; C

2
1g 2

i � 3 0 1 4 1 fC1
1; C

2
1; C

1
2; C

2
2g 2

Table 4 Example task set whereE1
3 creates

more idle time thanany other self-suspension, as
shown in Fig. 6

τi ϕi C1
i E1

i C2
i B1

i η1i
i � 1 0 1 5 2 fC1

3; C
2
3; C

1
2; C

2
2g 2

i � 2 0 2 7 4 fC1
3; C

2
3; C

1
1; C

2
1g 2

i � 3 0 1 11 1 fC1
1; C

2
1; C

1
2; C

2
2g 2

Fig. 4 Processor idle time due to E1
1 is shown at the bottom.
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The quantityWτ
ϕ computed in step 2 is summedwithW1 [e.g., Eq. (8)], computed in step 1 to conservatively bound the contributions of the first

self-suspensions and the first phase offsets to the processor idle time. This summation allows us to relax the assumption in step 1 that there is no
processor idle time during the interval t � �0; f1n�:

Wτ
ϕ � max

i
ϕi (10)

For an example for Eq. (10), we extend example 2 from Fig. 5 to consider nonzero phase offsets. The new task set parameters are shown in
Table 5, Fig. 7:

The upper bound on the processor idle time due to phase offsets isWϕ � 3, as shown in Eq. (11):

Wτ
ϕ � max

i
ϕi � maxf0; 2; 3g � 3 (11)

C. Step 3: General Number of Subtasks Per Task

The next step in formulating our schedulability test is incorporating general numbers of subtasks in each task. As in step 1, our goal is to
determine an upper bound on the processor idle time that results from theworst-case interleaving of the jth and (j� 1)th subtask costs during the
jth self-suspensions. Again,we recall that our formulation for upper-bounding idle time due to the first self-suspensions, in actuality,was an upper
bound for the idle time during the interval t � �f1n;maxi�f2i ��.

In step 2, we upper bounded the idle time resulting from phase offsets. To do this, we determined an upper bound on the idle time between the
release of the first instance of each task at t � 0 and the finish of τ1n. Equivalently, this duration is t � �0;maxi�f1i ��.

It follows then that, for each of the jth self-suspensions, we can apply Eq. (6) to determine an upper bound on the processor idle time during the
interval t � �maxi�fji �;maxi�fj�1i ��. The upper bound on the total processor idle time for all free self-suspensions in the task set is computed by
summing over the contribution of each of the jth self-suspensions, as shown in Eq. (12):

Wτ
free �

X
j

Wj �
X
j

max
ijEji∈Efree

�Wj
i � �

X
j

max
ijEji∈Efree

�
max

��
Eji −

Xηji
k�1

Bji �k�
�
; 0

��
(12)

However, we need to be careful in the application of this equation for general task setswith unequal numbers of subtasks per task. Let us consider a
scenariowhere one task, τi, hasmi subtasks, and τx has onlymx � mi − 1 subtasks.Whenwe upper bound the idle time due to the (mi − 1)th self-
suspensions, there is no corresponding subtask τmix that could execute duringEmi−1i .We note that τmi−1x does exist andmight execute duringEmi−1i ,
but we cannot guarantee that it does. Thus, when computing the set of subtasks, Bji , that may execute during a given self-suspension Eji , we only
add a pair of subtasks τjx, τ

j�1
x if both τjx, τ

j�1
x exist, as described by Eq. (3). We note that, by inspection, if τjx were to execute during E

j
i , it would

only reduce processor idle time.

Fig. 5 Processor idle time due to E1
2 is shown at the bottom.

Fig. 6 Processor idle time due to E1
3 is shown at the bottom.

Table 5 Task set with three tasks and phase
offsets

τi ϕi C1
i E1

i C2
i B1

i η1i
i � 1 0 1 5 2 fC1

3; C
2
3; C

1
2; C

2
2g 2

i � 2 2 2 7 4 fC1
3; C

2
3; C

1
1; C

2
1g 2

i � 3 3 1 4 1 fC1
1; C

2
1; C

1
2; C

2
2g 2
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For an example for Eq. (6), we extend our example from Fig. 7 to include multiple self-suspensions in each task. The new task set is shown in
Table 6, Fig. 8.

To upper bound the processor idle time due to all self-suspensions, we first upper bound the processor idle time Wj for each of the jth self-
suspensions fEji j1 ≤ i ≤ ng using Eq. (6), as shown in Eqs. (13) and (14). Second, we apply Eq. (12) to the set ofWj terms to compute the total
upper boundWτ

free. For this example,Wτ
free � 7 [Eq. (15)]:

W1 � max
ijEji∈Efree

�W1
i � � max�W1

1;W
1
2;W

1
3� � max�3; 5; 1� � 5 (13)

W2 � max
ijEji∈Efree

�W1
i � � max�W2

1;W
2
2;W

2
3� � max�2; 2; 0� � 2 (14)

Wτ
free �

X
j

Wj � W1 �W2 � 5� 2 � 7 (15)

D. Step 4: Subtask-to-Subtask Deadline Constraints

In steps 1 and 3, we provided a lower bound for the number of free subtasks that will execute during a free self-suspension, if that self-
suspension produces processor idle time. We then upper bounded the processor idle time due to the set of free self-suspensions by computing the
least amount of free task costs that will execute during a given self-suspension. However, our proof assumed no subtask-to-subtask deadline
constraints. Now, we relax this assumption and calculate an upper bound on the processor idle time due to embedded self-suspensionsWτ

embedded.
Recall that, under the JSF priority scheduling policy, an embedded subtask τj�1i may execute before all jth subtasks are executed, contingent on

a temporal consistency check for subtask-to-subtask deadlines. The implication is that we cannot guarantee that embedded tasks (e.g., τji or τ
j�1
i )

will be interleaved during their associated self-suspensions (e.g., Ejx, x ∈ N \ i).
To account for this lack of certainty, we conservatively treat embedded self-suspensions as task costs, as shown in Eqs. (16) and (17).

Equation (16) requires that, if a self-suspension Eji is free, then E
j
i �1 − x

j�1
i � � 0. The formula (1 − xj�1i ) is used to restrict our sum to only

include embedded self-suspensions. Recall that a self-suspension Eji is embedded if τj�1i is an embedded subtask.
Second,we restrictBji such that the jth and (j� 1)th subtasksmust be free subtasks if either is to be added.We specified this constraint in step 1,

but this restriction did not have an effect because we were considering task sets without subtask-to-subtask deadlines.
Third, we now must consider cases where ηji < n − 1, as described in Eq. (4). We recall that ηji � n − 1 if there are no subtask-to-subtask

deadlines; however, with the introduction of these deadline constraints, we can only guarantee that at least ηji � jB
j
i j∕2 subtasks will execute

during a given Eji if E
j
i results in processor idle time:

Wτ
embedded �

Xn
i�1

�Xmi−1
j�1

Eji �1 − x
j�1
i �

�
(16)

xji �
�
1; if τji ∈ τfree
0; if τji ∈ τembedded

(17)

Having bounded the amount of processor idle time due to free and embedded self-suspensions and phase offsets, we now provide an upper bound
on the timeHτ

UB the processor will take to complete all instances of each task in the hyperperiod [Eq. (18)].H denotes the hyperperiod of the task
set, andHτ

LB is defined as the sum over all task costs released during the hyperperiod. Recall that we are still assuming that Ti � Di � Tj � Dj,

Fig. 7 Example schedule for three tasks with phase offsets.

Table 6 Task set with phase offsets and
multiple self-suspensions per task

τi ϕi C1
i E1

i C2
i E2

i C3
i E3

i C4
i

i � 1 0 1 5 2 5 2 1 1
i � 2 2 2 7 4 5 2 0 0
i � 3 3 1 4 1 2 2 0 0

GOMBOLAYAND SHAH 829

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

O
ct

ob
er

 2
1,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
02

02
 



∀ i, j ∈ N; thus, there is only one instance of each task in the hyperperiod. Under this assumption, the task set is schedulable under JSF if
Hτ

UB∕H ≤ 1:

Hτ
UB � Hτ

LB �Wτ
phase �Wτ

free �Wτ
embedded (18)

Hτ
LB �

Xn
i�1

H

Ti

Xmi
j�1

Cji (19)

For an example for subtask-to-subtask deadline constraints, consider our example from Fig. 8, which is now augmented to include a subtask-to-
subtask deadline

Ds2shτ2
1
;τ3
1
i � 9

as shown in Table 7, Fig. 9.
We apply Eq. (16) to our example to upper bound the processor idle time due to all embedded self-suspensions. In this case, there is only one

embedded self-suspension, E2
1; thus, the upper bound on processor idle time due to embedded self-suspensions isWτ

embedded � 5 [Eq. (20)]:

Wτ
embedded �

Xn
i�1

�Xmi−1
j�1

Eji �1 − x
j�1
i �

�
� E2

1 � 5 (20)

Because of the addition of this subtask-to-subtask deadline

Ds2shτ2
1
;τ3
1
i

the upper bound forWτ
free must be recomputed. The deadline

Ds2shτ2
1
;τ3
1
i

embeds just one of the second self-suspensions fE2
i j1 ≤ i ≤ ng, so we only need to recomputeW2;W1 is unchanged.

Recall that Wj is the maximum over all fWj
i j1 ≤ i ≤ ng, where each associated self-suspension Eji is a free self-suspension. Because E

2
1 is

embedded, we only need to calculateW2
2 [Eq. (21)] andW

2
3 [Eq. (22)]:

W2
2 � max

��
E2
2 −

Xη22
k�1

B2
2�k�

�
; 0

�
� max��5 − �1���; 0� � 4 (21)

W2
3 � max

��
E2
3 −

Xη23
k�1

B2
3�k�

�
; 0

�
� max��2 − �1���; 0� � 1 (22)

The new upper bound for the idle time due to free self-suspensions is now calculated as shown in Eqs. (23) and (24):

W2 � max
ijEji∈Efree

�W1
i � � max�W2

2;W
2
3� � max�4; 1� � 4 (23)

Wτ
free �

X
j

Wj � W1 �W2 � 5� 4 � 9 (24)

Finally, the upper boundHτ
UB on the time required to process τ can be computed via Eq. (18). For our example,Hτ

UB � 35 [Eq. (25)]. This upper
bound guarantees that this task set can be processed if the hyperperiod H � Ti � Tj of the task set is greater than or equal to Hτ

UB � 35:

Fig. 8 Example schedule for three tasks with phase offsets and multiple self-suspensions.
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Hτ
UB � Hτ

LB �Wτ
phase �Wτ

free �Wτ
embedded � 18� 3� 9� 5 � 35 (25)

E. Step 5: Deadlines Less Than or Equal to Periods

Next, we allow for tasks to have deadlines less than or equal to the period. We recall that we still restrict the periods such that Ti � Ta, ∀ i,
a ∈ N for this step.Whenwe formulated our schedulability test of a self-suspending task set in Eq. (18), we calculated an upper bound on the time
the processor needs to execute the task set Hτ

UB. Now, we seek to upper bound the amount of time required to execute the final subtask τmii for
task τi, andwe can use themethods already developed to upper bound this time.We consider the largest subset of subtasks τjj ⊂ τ for j � mi that
might execute before the deadline for τi. If we find thatH

τjj
UB ≤ d, whered � ϕi �Di and j � mi, thenwe know that a processor scheduling under

JSF will satisfy the task deadline for τi.
We present an algorithm named testDeadline�τ; d; j� to perform this test. The pseudocode for testDeadline�τ; d; j� is shown in Fig. 10. This

algorithm requires as input a task set τ, a deadline d � Di � ϕ for τi, and the subtask index j � mi corresponding to the final subtask in τi. The
algorithm returns true if a guarantee can be provided that the processor will satisfy Di under the JSF, and it returns false otherwise.

In lines 1–14, the algorithm computes τjj, which is the set of subtasks that may execute before d. In the absence of subtask-to-subtask deadline
constraints, τjj includes all subtasks τyx where x ∈ N and y ∈ f1; 2; : : : ; mig. In the case where a subtask-to-subtask deadline

Ds2shτax ;τbx i

spans subtask τmix , where a ≤ mi < b, the processor may be required to execute all embedded subtasks τyxja < y ≤ b associated with the deadline
before executing the final subtask for task τi. Therefore, the embedded subtasks τyxja < y ≤ b of

Ds2shτax ;τbx i

are also added to the set τjj. In line 15, the algorithm tests the schedulability of τjj using Eq. (18).
Next, we walk through the pseudocode for testDeadline�τ; d; j� in detail. Line 1 initializes τjj. Line 2 iterates over each task τx in τ. Line 3

initializes the index of the last subtask from τx that may need to execute before τji as z←j, assuming no subtask-to-subtask constraints.
Lines 5–11 search for additional subtasks that may need to execute before τji due to subtask-to-subtask deadlines. If the next subtask, τ

z�1
x , does

not exist, then τzx is the last subtask that may need to execute before τji (lines 5–6). The same is true if τz�1x ∈ τfree, because τz�1x will not execute
before τmii under JSF if z� 1 > j (lines 7–8). If τz�1x is an embedded subtask, then itmay be executed before τji , sowe increment z, the index of the
last subtask, by one (lines 9–10). Finally, line 13 adds the subtasks collected for τx, denoted τxjj, to the task subset τjj.

After constructing our subset τjj, we compute an upper bound on the fraction of time required by the processor to satisfy the deadlined (line 15).
If this fraction is less than or equal to one, then we can guarantee that the deadline will be satisfied by a processor scheduling under JSF (line 16).
Otherwise, we cannot guarantee the deadline will be satisfied and return false (line 18). To determine if all task deadlines are satisfied, we call
testDeadline�τ; d; j� once for each task deadline.

F. Step 6: General Periods

Thus far, we have established a mechanism for testing the schedulability of a self-suspending task set with general task deadlines less than or
equal to the period, general numbers of subtasks in each task, nonzero phase offsets, and subtask-to-subtask deadlines. We now relax the
restriction that Ti � Tj, ∀ i; j. The principle challenge of relaxing this restriction is there will be any number of task instances in a hyperperiod,
whereas before, each task only had one instance.

To determine the schedulability of the task set,we first start by defining a task superset τ�, where τ�τ. This superset has the samenumber of tasks
as τ (i.e.,n), but each task τ�i ∈ τ� is composed ofH∕Ti instances of τi ∈ τ. A formal definition is shown in Eq. (26), whereCji;k andE

j
i;k are the kth

instance of the jth subtask cost and self-suspension of τ�i :

τ�i : �ϕi; �C1
i;1; E

1
i;1; : : : ; C

mi
i;1; C

1
i;2; E

1
i;2; : : : ; C

mi
i;2; : : : ; C

1
i;k; E

1
i;k; : : : ; C

mi
i;k�; D�i � H; T�i � H� (26)

We aim to devise a test where τ�i is schedulable ifH
τ�
UB∕D�i ≤ 1 and if the task deadlineDi of each instance of τi is satisfied. This requires three

steps. First, wemust perform amapping of subtasks from τ to τ� that guarantees that τj�1�i will be released by the completion time of the set of all

Fig. 9 Example schedule for three tasks with a subtask-to-subtask deadline constraint Ds2s
hτ21;τ

3
1i
.

Table 7 Task set with phase offsets,
multiple self-suspension per task, and a

subtask-to-subtask deadline

τi ϕi C1
i E1

i C2
i E2

i C3
i E3

i C4
i

i � 1 0 1 5 2 5 2 1 1
i � 2 2 2 7 4 5 2 0 0
i � 3 3 1 4 1 2 2 0 0
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other jth subtasks fτj�a ja ∈ N; τj�a ∈ τ�g. JSF requires that all jth subtasks be executed before starting any (j� 1)th free subtask. Consider the
case where a jth subtask in τ� corresponds to the final subtask of a task instance. The processor may have to idle until the release of the next
instance of that task before it can begin any (j� 1)th subtask in τ�. Thus, wewould like to shift the index of each subtask in subsequent instances
to some j 0 ≥ j such that we can guarantee the subtask τj�1�i will be released by the completion time of all τj�i , ∀ i subtasks.

Second, we need to check that each task deadline Di for each instance k of each task τi released during the hyperperiod will be satisfied. To
perform this check, we compose a paired listD�i��k� to keep track of the subtasks in τ� that correspond to the last subtasks of each instance k of a
task τi. D�i��k� returns the subtask index j in τ� of instance k of τi. Finally, we must determine an upper bound Hτ�

UB on the temporal resources
required to execute τ� using Eq. (18). If Hτ�

UB∕H ≤ 1, where H is the hyperperiod of τ, then the task set is schedulable under JSF.
We use an algorithm called constructTaskSuperSet�τ�, presented in Fig. 11, to construct our task superset τ�. The function

constructTaskSuperSet�τ� takes as input a self-suspending task set τ and returns either the superset τ� if we can construct the superset or null if we
cannot guarantee that the deadlines for all task instances released during the hyperperiod will be satisfied.

In line 1, we initialize our task superset τ� to include the subtask costs, self-suspensions, phase offsets, and subtask-to-subtask deadlines of the
first instance of each task τi in τ. In line 2, we initialize a vector I, where I�i� corresponds to the instance number of the last instance of τi that we
have added to τ�. Note that, after initialization, I�i� � 1 for all i. In line 3, we initialize a vector J, where J�i� corresponds to the j subtask index of
τj�i : for instance I�i�, the last task instance added to τ�i . Themapping to new subtask indices is constructed in J to ensure that the (j� 1)th subtasks
in τ� will be released by the time the processor finishes executing the set of jth subtasks. In line 4, D�i��k� is initialized to the subtask indices
associated with the first instance of each task.

In line 5, we initialize counter, whichwe use to iterate through each j subtask index in τ�. In line 6we initializeHLB to zero.HLB will be used to
determine whether we can guarantee that a task instance in τ has been released by the time the processor finishes executing the set of
j � counter − 1 subtasks in τ�.

Next, we compute the mapping of subtask indices for each of the remaining task instances released during the hyperperiod (lines 7–29). In line
11, we incrementHLB by the sum of the costs of the set of the j � counter − 1 subtasks. In line 12, we iterate over each task τ�i . First, we check if
there is a remaining instance of τi to add to τ�i (line 13). If so, we then check whether counter > J�i� (i.e., the current jth subtask index, where
j � counter, is greater than the index of the last subtask we added to τ�i ) (line 14).

If the two conditions in lines 13 and 14 are satisfied, we test whether we can guarantee the first subtask of the next instance of τi will be released
by the completion of the set of the j � counter − 1 subtasks in τ� (line 15). We recall that, under JSF, the processor executes all j − 1 subtasks
before executing a jth free subtask and, by definition, the first subtask in any task instance is always free. The release time of the next instance of τi
is given by Ti � �i� � ϕi. Therefore, if the sum of the costs of all subtasks with index j ∈ f1; 2; : : : ; counter − 1g is greater than the release time of
the next task instance, then we can guarantee the next task instance will be released by the time the processor finishes executing the set of
j � counter − 1 subtasks in τ�.

We can therefore map the indices of the subtasks of the next instance of τi to subtask indices in τ
�
i with j � counter� y − 1, where y is the

subtask index of τyi in τi. Thus, we increment I�i� to indicate that we are considering the next instance of τi (line 16) and add the next instance of τi,
including subtask costs, self-suspensions, and subtask-to-subtask deadlines, to τ�i (line 17). Next, we set J�i� andD�i��k� to the j subtask index of
the subtask we last added to τ�i (lines 18–19). We will use D�i��k� later to test the task deadlines of the task instances we add to τ�i .

In the casewhere all subtasks of all task instances up to instance I�i�,∀ i are guaranteed to complete before the next scheduled release of any task
in τ (i.e., there are no subtasks to execute at j � counter), then counter is not incremented andHLB is set to the earliest next release time of any task
instance (lines 24 and 25). Otherwise, the counter used to iterate through each j subtask index in τ� is incremented. Themapping of subtasks from
τ to τ� continues until all remaining task instances released during the hyperperiod are processed. Finally, lines 31–39 ensure that the superset
exists if each task deadline Di;k for each instance k of each task τi released during the hyperperiod is guaranteed to be satisfied.

G. Schedulability Test Summary

To determine the schedulability of task set τ we call constructTaskSuperSet�τ� on τ. This function tests the schedulability of τ by computing an
upper bound Hτ

UB on the time required to process the task (or subtask) using Eq. (18).
Hτ

UB comprises four terms. The first term Hτ
LB is simply the sum over the cost of the tasks [Eq. (19)]. The next three terms upper bound the

amount of the processor idle time due to phase offsets, as well as free and embedded self-suspensions.Wτ
ϕ [Eq. (10)] accounts for processor idle

Fig. 10 Pseudocode for testDeadline�τ;d;j�, which tests whether a processor scheduling under JSF is guaranteed to satisfy a task deadlineDi.
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time due to phase offsets and equals themaximumover all phase offsets.Wτ
free upper bounds the processor idle time due to free self-suspensions by

considering theworst-case interleaving of subtasks during free self-suspensions [Eq. (12)]. Lastly,Wτ
embedded upper bounds the processor idle time

due to self-suspensions that are constrained by subtask-to-subtask deadlines [Eq. (16)].
If the schedulability test determines that the processor can schedule τ under JSF, thenwe process τ. In addition to testing the schedulability of τ,

constructTaskSuperSet�τ� returns a super task set τ consisting of all instances of tasks in τ released during the hyperperiod. Then,
constructTaskSuperSet�τ� constructs τ� in a careful way, such that the processor will schedule τ according to JSF using jth indices of subtasks, as
specified in τ�.

VII. Uniprocessor Scheduling Algorithm for Self-Suspending Task Sets

In Sec.VI, we developed a uniprocessor schedulability test for hard nonpreemptive self-suspending task sets. This schedulability test relies on a
processor operating using the jth-subtask-first scheduling priority. JSF requires that all jth subtasks are processed before any (j� 1)th free
subtasks, where a subtask τj�1i is free if it does not share a deadline constraint with subtask τji . In computing the analytical schedulability test, we
assume that the processor idles during the embedded self-suspensions. We now describe our JSF scheduling algorithm, which uses an online
schedulability test to execute subtasks during embedded self-suspensions, and thus better uses the processor.

A. Scheduling Algorithm Pseudocode

The JSF scheduling algorithm takes as input a self-suspending task set τ and the super set τ� generated by constructTaskSuperSet�τ�. The
algorithm processes instances of τ until terminated by the system. Recall that τ� is a special task set that containsH∕Ti instances of each task τi,
where H is the hyperperiod of task set τ. JSF prioritizes subtask τji according to its j index in τ�.

The pseudocode for the JSF scheduling algorithm is shown in Fig. 12. In line 1, we initialize our clock. Line 2 sets the algorithm up to
indefinitely process released subtasks. In line 3, we increment our clock. In line 4, we check if the processor is busy processing a subtask. If so, we
wait until the next clock step (line 5). If our processor is available to process a new subtask, we first collect all released subtasks (line 7).

Next, the scheduling algorithm prunes this list of subtasks according to JSF. As an example, consider two released subtasks, τji;a and τ
y
x;b, for

instances a and b of τi and τx, respectively, at time t. There are corresponding subtasks τk�i and τz�x in τ� such that j ≤ k and y ≤ z. Recall that, if
j < y and τyx is a free subtask, then τyx is not considered for execution at time t according to JSF prioritization. Line 8 prunes all such released
subtasks τyx;b.

Fig. 11 Pseudocode for constructTaskSuperSet�τ�, which constructs a task superset τ� for τ.
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Line 9 prioritizes the remaining, released subtasks according to an application-specific priority. Because JSF sets the same priority for subtasks

τj�i;a and τγ�α;β if j � γ, then there is room to further prioritize within JSF. For now, we assume that such subtasks are prioritized according to the

earliest deadline first algorithm.
Line 10 iterates over all the released, prioritized subtasks allowed by JSF to be processed at time t. In line 11, the algorithm stores the next

subtask to consider processing τji;k. In line 12, a novel online consistency test, called the Russian dolls test, determines whether scheduling τji;k at

time tmay result in a subtaskmissing a deadline.We describe this test in Sec. VII.B. If our online consistency test guarantees that processing τji;k at

time t will not result in a subtask missing its deadline, then the algorithm schedules τji;k on the processor.

B. Online Schedulability Test

The uniprocessor Russian dolls test is a schedulability test for ensuring feasibility while scheduling tasks against subtask-to-subtask deadline
constraints. The test is a variant of the resource edge-finding algorithm [35,36], the purpose ofwhich is to determinewhether an eventmust ormay
execute before or after a set of activities [37]. Our analytical polynomial-time approach determines whether a subtask τji can feasibly execute
before a set of other subtasks given the set of subtask-to-subtask deadline constraints. To our knowledge, our approach is the first to leverage the
structure of the self-suspending task model to perform fast edge checking.

To describe our test, we first define an active subtask-to-subtask deadline (Definition 6) and an active subtask (Definition 7).
Definition 6 (active subtask-to-subtask deadline): A subtask-to-subtask deadline

Ds2shτji ;τbi i

is considered active at sji ≤ t ≤ fbi .
Definition 7 (active subtask): A subtask is active at time t if it has been released, is yet unprocessed at time t, and is directly constrained by an

active subtask-to-subtask deadline.

1. Walkthrough of Pseudocode

The pseudocode describing the uniprocessor Russian dolls test is shown in Fig. 13. TheRussian dolls test takes as input a subtask τji , the task set
τ, and the current time t. The Russian dolls test returns whether we can guarantee that processing τji at time t will not result in another subtask
violating its subtask-to-subtask deadline constraint.

To determine the feasibility of scheduling τji;k at time t, we must consider two scenarios. First, if processing τji;k does not activate a subtask-to-
subtask deadline, then we merely need to guarantee that processing τji;k leaves enough time for the processor to finish executing the set of active
subtasks. Second, if processing τji;k does activate a subtask-to-subtask deadline

Fig. 12 Pseudocode for JSFSchedulingAlgorithm(τ, τ�). This algorithm schedules self-suspending task sets on a uniprocessor.

Fig. 13 Pseudocode describing the uniprocessor Russian dolls test.
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Ds2shτji ;τbi i

then we must also consider whether the processor will have enough time to attend to subtasks fτqi;kjj < q ≤ bg in addition to the other active
subtasks.

In line 1, the test iterates over all active subtasks τyx;z (Definition 7), not including τji;k. In lines 2–4, the test considers the direct effect of
processing τji;k at time t. Line 2 tests whether the processor can nest the execution of τji;k within the laxity of the τ

y
x;z implicit deadline dyx;z. The

implicit deadline dyx;z is the latest-allowable finish time for τyx;z, assuming that τji;k will be executed at time t. The laxity of τyx;z is the difference
between dyx;z and C

y
x;z as defined by Dertouzos and Mok [38]. If no such nesting is possible, then the test returns false, thus prohibiting the

processing of τji;k at time t (line 3).
If scheduling τji;k at time t would activate a subtask-to-subtask deadline

Ds2shτji ;τbai

(Definition 6), then we must consider the indirect effects of this activation on the other subtasks constrained by this deadline constraint. If this
activation would occur, the test iterates over all subtasks τqi;kjj < q ≤ b constrained by any

Ds2shτji ;τbi i

(line 5), except for τji;k, which is accounted for in line 2.
We then determine whether the processor can nest the execution of τqi;k within the laxity of the τ

y
x;z implicit deadline or vice versa (line 6). Here

again, the implicit deadline is computed as the latest-allowable finish time for τyx;z, assuming that τji;k will be executed at time t. If the nesting is not
feasible, then the test returns false, indicating that there is no guarantee that the processor will satisfy all subtask-to-subtask deadline constraints if
τji;k is processed at time t (line 7). If this nesting can be performed for all such pairs of subtasks, then the test returns true, indicating that τji;k can
safely be processed at time t (line 10).

2. Proof of Correctness of the Uniprocessor Russian Dolls Test

The problem of sequencing a self-suspending task set with upper- and lower-bound temporal constraints is known to beNP hard [8,21,22]. The
uniprocessor Russian dolls test is polynomial in time complexity, since it only performs pairwise comparisons between active subtasks and the
subtasks that share a subtask-to-subtask deadline with τji;k, and it is therefore not a complete schedulability test. In this section, we prove that the
algorithm is nonetheless correct, in that only pairwise comparisons of subtasks are necessary to ensure schedule feasibility.

The test leverages the problem structure inherent in the augmented self-suspending taskmodel to perform efficient computation. Recall that the
self-suspending taskmodel requires that subtaskswithin a task are executed in order,meaning that a subtask τj�1i must execute after subtask τji and
before subtask τj�2i . This problem structure restricts the interaction of deadlines in the task set.

Theorem VII.1: The Russian dolls test is correct, in that it requires only a pairwise comparison between active subtasks τactive and subtasks that
share a subtask-to-subtask deadline with τji (i.e., fτbi j∃Ds2shτji ;τzi i

; j ≤ b ≤ zg) when testing the schedulability of τji;k.

Proof 3 (proof by deduction for Theorem VII.1): The Russian dolls test works by determining whether the implicit deadline (i.e., latest-
allowable finish time) of a subtask can be nested within the laxity of another subtask’s implicit deadline or vice versa. When τji is scheduled, the
implicit deadlines for active subtasks and

τqi j∃Ds2shτji ;τbi i; j < q ≤ b

may be tightened. If the problem is correctly structured as an augmented self-suspending task model, then the execution of τji only affects the
implicit deadline of another subtask τyx if there exists a subtask-to-subtask deadline

Ds2shτji ;τ
z
i i

such that x � i and j ≤ y ≤ z. If it is feasible to nest an active subtask τyx within the slack of every other

τqi j∃Ds2shτji ;τbi i
; j < q ≤ b

or vice versa; then, this schedule commitment will reduce the schedule slack available for future scheduling commitments but will not invalidate
previous commitments. In other words, for a new scheduling commitment to satisfy the Russian dolls test, there must be no cascading effects on
implicit deadlines for scheduled subtasks. As such, a pairwise comparison between these sets of subtasks is sufficient to guarantee the production
of a feasible schedule.

VIII. Results and Discussion

In this section, we empirically evaluate the tightness and computational complexity of our schedulability test and scheduling algorithm. We
perform our empirical analysis using randomly generated task sets. The number of subtasksmi of a task τi is drawn from a uniform distribution in
the range �1; 2n�,mi ∼U�1; 2n�, with n being the number of tasks. Ifmi � 1, then that task does not have a self-suspension. Subtask costs, self-
suspension durations, and phase offsets are drawn from uniform distributionsCji ∼ U�1; 10�,E

j
i ∼U�1; 10�, andϕ ∼U�1; 10�, respectively. Task

periods are drawn from a uniform distribution such that

Ti ∼ U
�X

i;j

Cji ; 2
X
i;j

Cji

�

Task deadlines are drawn from a uniform distribution such that
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Di ∼ U
�X

i;j

Cji ; Ti

�

The durations of subtask-to-subtask deadlines

Ds2shτai ;τbi i

are drawn from a uniform distribution:

∼U
��
Cbi �

Xb−1
j�a

Cba � Eba
�
; 2

�
Cbi �

Xb−1
j�a

Cba � Eba
��

The number of subtasksmi within each task τi is drawn from a uniform distribution such thatmi ∼U�1; 2n�, where n is the number of tasks. For
example, a task set with 10 tasks may have anywhere from 1 to 20 subtasks per task. All parameters are integers.

We evaluate the performance of ourmethods as a function of problem size, andwe consider task sets with 2 to 23 tasks.We note that the average
number of subtasks in the task set is equal to the square of the number of tasks; for 23 tasks, there are, on average, 529 subtasks in the task set. Each
data point and associated error bar represent, respectively, the median and quartiles for 50 randomly generated task sets.

We benchmark our method against the naive approach that treats all self-suspensions as task costs. To our knowledge, our method is the first
polynomial-time test for hard, periodic, nonpreemptive, self-suspending task systems with any number of self-suspensions per task.

A. Metrics for Tightness of the Schedulability Test and Scheduling Algorithm

We use three metrics to evaluate the tightness of our schedulability test. First, we consider the percentage of self-suspension time our method
treats as a task cost, as calculated in Eq. (27):

Ê � W
τ
free �Wτ

embeddedP
i;jE

j
i

� 100% (27)

This metric provides a comparison between ourmethod and the naiveworst-case analysis that treats all self-suspensions as idle time.We similarly
evaluate the tightness of our scheduling algorithm using the percentage of self-suspension time that the processor is idle. Second, we evaluate the
proportion of randomly generated problems for which the schedulability test does guarantee feasibility when the scheduling algorithm also
produces a feasible schedule. Third, we report the deadline miss ratio for problems where the test does not guarantee schedulability. This is the
proportion of the deadlines that the schedulability test cannot guarantee will be satisfied. This ratio is a commonly used metric to evaluate the
tightness of schedulability tests and scheduling algorithms [39,40].

B. Evaluation of Test and Scheduling Algorithm

First, we evaluate tightness of the JSF schedulability test and scheduling algorithm for the traditional self-suspending taskmodel and themodel
augmentedwith subtask-to-subtask deadline constraints.We use ametric D̂ to classify the degree towhich subtask-to-subtask deadlines constrain
the task set. The quantity D̂ is computed as the number of subtasks constrained by subtask-to-subtask deadlines, normalized by the total number of
subtasks released during the hyperperiod.We show the empirical tightness of our schedulability test and scheduling algorithm for task sets where
zero (Fig. 14), one-quarter (Fig. 15), and one-half (Fig. 16) of the subtasks released during the hyperperiod are constrained by subtask-to-subtask
deadlines. The case where no subtasks are constrained by subtask-to-subtask deadlines corresponds to the traditional self-suspending model
presented in Eq. (1).

For small problem sizes, the schedulability test largely overestimates the amount of time the processor will idle due to self-suspensions.
However, the schedulability test and scheduling algorithm quickly converge for the traditional self-suspending task model as the task size
increases. The amount of idle time the processor experiences due to self-suspensions approaches approximately 10% for both the schedulability

Fig. 14 This plot shows the amount of self-suspension time treated as task cost.
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test and scheduling algorithm as task size grows (Fig. 14). We do not see that same behavior for task sets with subtask-to-subtask deadlines
(Figs. 15 and 16). Recall that our schedulability test treats all self-suspensions constrained by subtask-to-subtask deadlines (embedded self-
suspensions) as a task cost (or processor idle time). Online, our scheduling algorithm uses the Russian dolls test to correctly interleave subtasks
during these embedded self-suspensions to reduce the processor idle time.

Figure 17 shows the proportion of problems for which the schedulability test does guarantee feasibility when the scheduling algorithm also
produces a feasible schedule. The test success on schedulable problems remains high, between 70 and 100% as a function of problem size, for the
traditional model without subtask-to-subtask deadlines. Test success is approximately 50% for D̂ � 1

4
and drops off to 10% for D̂ � 1

2
as problem

size grows. Nonetheless, our methods are tight for task sets that have a relatively low number of subtasks constrained by subtask-to-subtask
deadlines. Lastly, the deadline miss ratio remains low, under 10% for all large problems tested, as shown in Fig. 18. To our knowledge, this is the
first polynomial-time schedulability test and scheduling algorithm that handles self-suspending task models with subtask-to-subtask deadlines.

Figure 19 shows the proportion of problems forwhich our JSF schedulability test guarantees feasibilitywhen the JSF scheduling algorithm also
produces a feasible schedule, versus the proportion of problems forwhich the naive approach,which treats self-suspension durations as a task cost,
guarantees feasibility. We show this comparison for the traditional task model where there are no subtask-to-subtask deadlines. The naive
approach is unable to guarantee the feasibility of many task sets, whereas our technique provides guarantees for nearly all randomly generated
problems.

C. Computational Complexity

1. JSF Schedulability Test

The JSF schedulability test is computed in polynomial time.We bound the time complexity as follows, noting thatmmax is the largest number of
subtasks in any task in τ and Tmin is the shortest period of any task in τ.

The complexity of evaluating Eq. (18) for τ� is upper bounded by

O

�
n2mmax

H

Tmin

�

where

Fig. 15 This plot shows the amount of self-suspension time treated as task cost.

Fig. 16 This plot shows the amount of self-suspension time treated as task cost.
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O

�
nmmax

H

Tmin

�

bounds the number of self-suspensions in τ�. The complexity of testDeadline�τ; d; j� is dominated by evaluating Eq. (18). In turn,
constructTaskSuperset�τ� is dominated by

O

�
n
H

Tmin

�

calls to testDeadline�τ; d; j�. Thus, for the algorithm we have presented in Figs. 10 and 11, the computational complexity is

O

�
n3mmax

�
H

Tmin

�
2
�

However, we note our implementation of the algorithm is more efficient. We reduce the complexity to

Fig. 17 Percentage of problems for which the schedulability test guarantees feasibility when the scheduling algorithm also produces a feasible schedule.

Fig. 18 Deadline miss ratio, which is the percentage of deadlines that the schedulability test could not guarantee to satisfy.

Fig. 19 Percentage of problems passing our schedulability test versus the naive approach.
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O

�
n2mmax

H

Tmin

�

by caching the result of the intermediate steps in evaluating Eq. (18). In constructTaskSuperset�τ�, we make

O

�
n
H

Tmin

�

calls to testDeadline�τ; d; j�. We arrange the calls to testDeadline�τ; d; j� such that the subtask index (e.g., j 0) is always greater than or equal to
that of the previous call (e.g., j), and then we simply build on the upper bound H

τjj
UB through consideration of the contribution of the additional

subtasks (e.g., τbajj < b ≤ j 0, i ∈ N). Thus, constructTaskSuperset�τ� only evaluates Eq. (18) once for the entire super task set τ�.
We provide empirical validation of the computational time of the JSF schedulability test in Fig. 20with thismore efficient implementation. This

figure shows the computation time of the JSF schedulability test as a function of problem size and the proportion of subtasks constrained by
subtask-to-subtask deadline constraints D̂. These results were generated using aMATLAB implementation of the schedulability test and run on a
commercial off-the-shelf laptop with an Intel Core i7-2820QMCPUwith 2.30GHz and 8GB of RAM.With amore efficient implementation, we
expect the computation time to significantly decrease.

2. JSF Scheduling Algorithm

Our scheduling algorithm is also computed in polynomial time. We bound the time complexity for each time step of the algorithm. The largest
number of released subtasks at any point in time is n. The algorithm attempts to schedule, at worst, all n of the released subtasks. For each attempt
to schedule a subtask, the algorithm calls the Russian dolls test to determine temporal feasibility. The Russian dolls test must perform a pairwise
comparison of all active subtasks. In the worst case, there are

O

�
n
X
i

mi

�

active subtasks. Thus, the complexity of our scheduling algorithm is

O�n2mmax�

per time step.

IX. Future Work

The extension of our schedulability test to preemptive task sets is not trivial and remains an active research topic. There are cases where a
nonpreemptive JSF scheduler can successfully produce a feasible schedule, whereas a preemptive scheduler cannot. Figure 21 shows one such
example. The processor interleaves subtasks within self-suspension durations to reduce idle time. However, if a subtask is preempted, the ensuing

Fig. 20 Schedulability test computation time for task sets with and without subtask-to-subtask deadlines.

Fig. 21 Example task set that is made infeasible under EDF by allowing preemption.
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self-suspension is delayed until the subtask finishes. Such a preemption can result in less efficient use of the self-suspension duration and longer
completion time for the task set, thereby producing a schedule that does not meet deadlines.

Generalization of the schedulability test and algorithm to multiprocessor systems also poses challenges. One approach is to decompose task
allocation and sequencing. Once tasks are allocated to processors, the schedulability test may be applied to each processor. However,
environments with shared memory resources preclude this approach. Recent work proposes scheduling these task sets through simulation [13],
but generalization of an analytical schedulability test for self-suspending task sets with shared resources remains an open problem.

X. Conclusions

In this paper, a polynomial-time solution to the open problem of determining the feasibility of hard, periodic, nonpreemptive, self-suspending
task sets with any number of self-suspensions in each task, phase offsets, and deadlines less than or equal to periods was presented. The self-
suspending task model and schedulability test to handle task sets with subtask-to-subtask deadlines was also generalized, which constrained the
upper-bound temporal difference between the start and finish of two subtaskswithin the same task. These constraints are commonly included inAI
and operations research scheduling models.

The current schedulability test worked by leveraging a novel priority scheduling policy for self-suspending task sets, called the jth subtask first,
that restricted the behavior of a self-suspending task set so as to provide an analytical basis for an informative schedulability test. The correctness
of the schedulability test was proved.

Furthermore, an online consistency testwas also introduced, called theRussian dolls test, that ensured temporal feasibility during runtimewhen
scheduling against subtask-to-subtask deadlines. The tightness and computational complexity of the current methodswere empirically evaluated.
For the standard self-suspending task model, the current method enabled the processor to effectively use 95% of the self-suspension time to
process tasks. The current test provides a substantial improvement compared to the approach that treats all self-suspension time as a task cost,
which is unable to guarantee feasibility as the size of the task set increases.
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