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Abstract— In manufacturing, advanced robotic technology
has opened up the possibility of integrating highly autonomous
mobile robots into human teams. However, with this capability
comes the issue of how to maximize both team efficiency and
the desire of human team members to work with robotic
counterparts. We hypothesized that giving workers partial
decision-making authority over a task allocation process for
the scheduling of work would achieve such a maximization,
and conducted an experiment on human subjects to test this
hypothesis. We found that an autonomous robot can outperform
a worker in the execution of part or all of the task allocation
(p < 0.001 for both). However, rather than finding an ideal
balance of control authority to maximize worker satisfaction,
we observed that workers preferred to give control authority
to the robot (p < 0.001). Our results indicate that workers
prefer to be part of an efficient team rather than have a role
in the scheduling process, if maintaining such a role decreases
their efficiency. These results provide guidance for the successful
introduction of semi-autonomous robots into human teams.

I. INTRODUCTION

In manufacturing, there is a growing desire to leverage
the unique strengths of humans and robots to form highly
effective human-robot teams [9], [26], [27]. Often robots
are not capable of performing the same tasks as their
human counterparts, and human workers shift toward the
performance of a smaller set of tasks better suited for human
dexterity and intelligence, upon the introduction of a robot
worker to their environment. The proper functioning of a
human-robot manufacturing team requires strict coordination
between human and robotic work that satisfies hard temporal
and spatial constraints. Academic researchers and industry
practitioners alike have developed systems for the planning
or scheduling of human-robot work where the humans are
either included in the decision-making process [9], [11],
[32] or the work is scheduled autonomously [2], [5]. In
this work we experimentally investigate whether the robot
or the human worker should individually maintain or share
decision-making authority over how best to allocate the work
in order to maximize both human-robot team fluency and the
satisfaction of the human worker.

Human workers often develop a sense of identity and
security from their roles or jobs in a factory, and many
are used to having some degree of autonomy in decision-
making. As a result, a human worker who is tasked by an
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automated scheduling algorithm may feel devalued. Even
if the algorithm increases process efficiency at first, taking
control away from human workers may alienate them and,
in turn, ultimately damage overall productivity. On the other
hand, workers may find the process of scheduling to be
burdensome, and prefer to be part of an efficient team rather
than have a role in the scheduling process, if maintaining
such a role decreases their efficiency. While autonomous
scheduling algorithms can provide near-optimal schedules
within seconds, we also want to determine how much
decision-making authority humans should have in the task
allocation process, so that they feel appreciated while still
maintaining a high level of team efficiency.

We hypothesize that there is an inverse relationship be-
tween human-robot team efficiency and the satisfaction of
the human workers, according to how much control the
human workers have over task allocation, or the assignment
of which worker will perform which task. We conducted a
human-subject experiment (n = 24) where subjects worked
alongside both another human and a robot. Rather than
finding a desired middle ground between fully autonomous
and manual scheduling scenarios, we found statistically
significant evidence that giving human subjects more control
authority over task allocation negatively influenced team
fluency (p < .02) and the desire of the subject to work with
the robot again (p < 0.001). We also found evidence of a
complex relationship between human/robot decision-making
authority and human preferences over task allocation; people
sought looser couplings between human and robot work
when they did not retain primary decision-making authority.

II. BACKGROUND

The development of effective human-machine systems has
been the focus of research for many in the fields of human
factors, robotics, manufacturing and aerospace, to name a
few. A key goal of this work has been to leverage the unique
strengths of both the human and robot. Researchers have
defined a good robot teammate as one that permits teammates
to choose actions and timings on the fly, dynamically antici-
pates and adapts, ensures time-critical tasks are accomplished
first and supports interaction that is fluid and natural to the
human [6], [12], [23], [29], [31].

The human-robot interface has long been identified as a
major bottleneck for the utilization of these robotic systems
to their full potential [7]. As a result, significant research



efforts have been aimed at easing the use of these systems
in the field, including the careful design and validation of
supervisory and control interfaces [4], [10], [15], [21], [20].

Related research efforts have focused on the inclusion of
a human in the decision-making loop to improve the quality
of task plans and schedules for robots or semi-autonomous
systems [9], [10], [11]. This is particularly important if the
human operators have knowledge of factors not explicitly
captured by the system model or if scheduling decisions have
life and death consequences. In a study of aircraft carrier
flight deck operations, veteran operators used heuristics to
quickly generate an efficient plan and outperformed opti-
mization algorithms [28]. Other works aimed to leverage the
strengths of both humans and machines in scheduling by
soliciting user input in the form of quantitative, qualitative,
hard or soft constraints over various scheduling options.
Recommended schedules were then autonomously compiled
and provided to users [3], [16], [17], [22], [32]. While
developed to support scheduling of human teams, these
approaches can be readily extended to human-robot teams.

Supervisory systems have also been developed to assist
human operators in the coordination of the activities of either
four-robot or eight-robot teams [8]. Experiments demon-
strated that operators were less able to detect key surveillance
targets when controlling a larger number of robots. Similarly,
other studies have investigated the perceived workload and
performance of subjects operating multiple ground mobile-
based robots [1]. Findings indicated that a number of robots
greater than two greatly increased the perceived workload
and decreased the performance of the human subjects.

Some industry practitioners, however, have taken a differ-
ent approach to the scheduling human-robot teams. When
fulfilling online orders in warehouses, workers have to nav-
igate the warehouse to find the correct items, pick up the
item and then return to the packaging area to complete the
order. Kiva Systems has developed robots that are able to
fetch these items for the worker and ensure that each worker
is never idle while waiting for the next item to package.
One might initially think that narrowing the role of workers
in a factory setting may cause them to feel less important;
however, CNN has reported that “robots make for a more
pleasant work environment” because they “eliminate much
of the mundane physical labor employees once did to retrieve
products off shelves.” [2].

In this work, we are motivated by the application of
robotics in the manufacturing domain, where human workers
will perform physical tasks in coordination with robotic
partners. In some cases, the human workers may also be
responsible for tasking the team and tracking progress. We
seek to understand how much control human workers should
have over the assignment of roles and schedules when work-
ing in teams with robots. The following sections will describe
our experiment to lend insight into the relationship between
team efficiency and worker satisfaction, as a function of the
control authority of human workers over team scheduling.

III. AIM OF THE EXPERIMENT

We sought to understand the contributions of efficiency,
worker decision-making authority and human idle time to
objective and subjective measures of team performance and
worker satisfaction. Understanding the relationship between
these measures will provide researchers and industry prac-
titioners with better insight into how to design successful
human-robot teams.

A. Independent Variables

In our experiment, we control the level of decision-making
authority over task allocation the worker has during work
scheduling for their team. This independent variable can have
one of three values:

1) Manual Control-The subject decides who will perform
which tasks

2) Semi-Autonomous Control-The subject decides which
tasks he will perform, while the robot allocates the
remaining tasks to itself and the human assistant

3) Autonomous Control-The robot allocates all tasks.
The robot performs task sequencing in all three condi-
tions. We explore the decision-making authority over task
allocation alone, rather than over both task allocation and
sequencing, in order to isolate the effects of task allocation
and mitigate experimental confound. We leave investigation
of sequencing and joint task allocation and sequencing to our
future experimentation.

B. Hypotheses

H1 Team productivity degrades when the subject has
more control over the rescheduling process. As a metric of
productivity, we measure both the time it takes to reschedule
and the time it takes to finish all tasks.
Determining the optimal schedule while under hard upper-
and lower-bound temporal constraints is NP-Hard [5]. Even
for problems of a modest size, optimal scheduling becomes
intractable in these circumstances. While we have seen a
great deal of work in the development of supervisory control
interfaces and human in-the-loop systems to leverage the
strengths of human insight and the computational power of
autonomous scheduling algorithms ([4], [15], [21], [9], [11]),
we expect a near-optimal scheduling algorithm to generate
better schedules than those generated by the human subjects.
H2 Subjects prefer having partial control over the
rescheduling process rather than complete control, and pre-
fer having complete control to having no control. We utilize a
series of subjective Likert-scale questions to determine which
level of control the subjects prefer.
We posit that allowing subjects to decide which tasks they
will perform and having the robot complete the remainder
of the rescheduling will be most satisfying for the subject.
In this scenario, a subject can select their preferred tasks
according to perceived physical and mental demands, and
has a more substantial role in the success of their team. We
believe that both of these factors will contribute to the subject
being most satisfied by sharing control of the rescheduling
process with the robot. On the other hand, giving subjects



the responsibility of quickly and optimally rescheduling all
work will be overwhelming and least desirable. Furthermore,
allowing the robot to have complete control will improve
team fluency, but at the cost of possibly devaluing the role
of the subject.
H3 Subjects are more satisfied with their experience
working on the team when they are less idle. To test this
hypothesis, we utilize timing information of task execution
during the assembly process and the same set of subjective
Likert-scale questions used to test Hypothesis 2.
Many studies have used idle time as a proxy for team fluency
[19], [25], [30], and we posit that subjects’ satisfaction is
negatively correlated with idle time.

IV. EXPERIMENTAL METHODS

We designed an environment analogous to a manufacturing
setting. The subject is a member of a human-robot team
responsible for completing a set of tasks that includes both
the fetching and assembly of part kits. For each trial, the
team must schedule and complete this set of tasks. In our
experiment, the goal was to assemble various components
of a Lego kit, as shown in Figure 1. A video describing the
experiment can be found at http://tiny.cc/k4hzgx.

A. Materials and Setup

We used a Willow Garage PR2 platform as shown in
Figure 2, as the robotic assistant for our human-robot team.
Relevant to the experiment, the PR2 has a holonomic base
with optical encoders for each wheel and a 270 deg Hokuyo
laser at the base. We mapped the laboratory using this laser,
as well as the standard Gmapping package in the Robot
Operating System (ROS). For navigation, we used the Adap-
tive Monte Carlo Localization (AMCL) [13] probabilistic
localization package and a hybrid-dynamical proportional-
derivative (PD) controller. The locations of the pick-up and
drop-off locations for each part kit were hard-coded into the
robot controller. The inspection component of the fetching
task was simulated.

B. Human-Robot Team Composition

Our human-robot manufacturing team consisted of the
human subject, a robotic assistant and a human assistant. The
human subject was capable of both fetching and building,
and the robot assistant was only capable of fetching. One
of the experimenters played the role of a third teammate
for all subjects and was capable of both fetching and

Fig. 1. The Assembled Lego Model.

Fig. 2. This figure depicts a diagram of the laboratory room where the
experiment took place. There are two locations where the human and robot
workers can inspect part kits during a fetching task, and two locations where
the human workers can build the part kits.

building. The third human teammate was included to more
realistically represent the composition of a human-robot
team in a manufacturing setting. The human subjects either
performed the task allocation or shared the decision-making
authority over task allocation with the robotic teammate,
depending on the experimental condition. The robot assistant
was always responsible for sequencing the team’s work.
The third teammate did not provide any decision-making
assistance to the subject or the robot.

C. Experiment Task

In our scenario, the fetching of a kit required walking to
one of two inspection stations where the kits were located,
inspecting the part kit and carrying it to the build area.
The architecture of our fetching task is analogous to what
is required in many manufacturing domains: To adhere to
strict quality assurance standards, fetching a part kit requires
verification from one to two people that all correct parts are
in the kit, and certification from another person that the kit
has been verified.

There were a number of constraints imposed on the analog
assembly process, in order to model relevant constraints
encountered during assembly manufacturing: First, a part kit
must have been fetched before it could be built. Also, no
two agents were able to occupy the same fetching or build
station. There were two fetching and two build stations, as
shown in Figure 2. Four part kits were located at one fetching
station, and four kits were located at the second fetching
station. When fetching a part kit, inspection of that kit must
have occurred at the fetching station where it was initially
located.

Because there were an equal number of building stations
and agents able to build, there were no additional constraints
imposed exclusively on build tasks. However, because there
were three agents who could fetch and only two fetching
stations, the agents were required to take turns using the
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fetching stations. Allowing workers to sort through parts
from multiple kits at the same location risked mixing the
wrong part with the wrong kit. We imposed a 10-minute
deadline from the time that the fetching of a part kit began
until that part kit had been built, for similar reasons. In
manufacturing, if a part or part kit is missing from an
expected location for too long, work in that area of the
factory will temporarily halt until the missing pieces are
found.

D. Formulation of the Human-Robot Scheduling Problem

Assembly of the Lego model involved eight tasks τ =
{τ1, τ2, . . . , τ8}, each of which was composed of a fetch
and build subtask τi = {τfetchi , τ buildi }. The time each
subject took to complete each subtask Csubject−fetchi and
Csubject−buildi was measured during an experiment training
round. The timings for the robot Crobot−fetchi and human
assistant Cassist−fetchi and Cassist−buildi (performed by
an experimenter) were collected prior to the experiments.
Constraints on lowerbound completion time of tasks are
presented in Equations 1-5.

f buildi − sbuildi ≥ Csubject−buildi −M(1−Asubject
τbuild
i

) (1)

ffetchi − sfetchi ≥ Csubject−fetchi −M(1−Asubject
τfetch
i

) (2)

ffetchi − sfetchi ≥ Crobot−fetchi −M(1−Arobot
τfetch
i

) (3)

f buildi − sbuildi ≥ Cassist−buildi −M(1−Aassistτbuild
i

) (4)

ffetchi − sfetchi ≥ Cassist−fetchi −M(1−Aassist
τfetch
i

), (5)

where Aagent
τsubtask
i

is a binary decision variable for the as-
signment of agent ∈ {subject, robot, assist} to each
subtask ∈ {fetch, build} of τi ∈ τ .

Constraints 6 and 7 also ensured that each agent performed
one subtask at a time.

syx − f
j
i ≥ −M

(
1− x〈τj

i ,τ
y
x 〉
)

−M
(
2−Aagent

τj
i

−Aagent
τy
x

)
,∀τ ji , τ

y
x ∈ τ

(6)

sji − f
y
x ≥ −Mx〈τj

i ,τ
y
x 〉

−M
(
2−Aagent

τj
i

−Aagent
τy
x

)
,∀τ ji , τ

y
x ∈ τ ,

(7)

where x〈τj
i ,τ

y
x 〉 ∈ {0, 1} is a binary decision variable

specifying whether τ ji comes after or before τyx .
Temporal constraints 8 and 9 ensured that parts for each

task were fetched before building began, and that building
finished within D = 10 minutes of fetching the parts.

∞ ≥ sbuildi − ffetchi ≥ 0,∀τi ∈ τ (8)

D ≥ f buildi − sfetchi ≥ 0,∀τi ∈ τ , (9)

where sbuildi , sfetchi and f buildi , ffetchi are the start and finish
times of the build and fetch subtasks, respectively.

The spatial constraint in Equation 10 ensured that no two
agents occupied the same fetching station at the same time.

sfetchj − ffetchi ≥ 0 ∨ sfetchi − ffetchj ≥ 0,

∀τi, τj ∈ τ s.t. Rfetchi = Rfetchj ,
(10)

where Rfetchk denotes the physical floor area reserved for
the fetching subtask τfetchk . Fetching subtasks {τfetchi |i ∈
{1, 2, 3, 4}} used the first inspection station Rfetch1 , and
{τfetchi′ |i′ ∈ {5, 6, 7, 8}} used the second inspection station
Rfetch2 .

Finally, one pair of tasks τtwo−step = 〈τ3, τ4〉 was related
through a precedence constraint. Specifically particpants
were instructed that the first task, τ3 in the pair be completed
before starting to fetch parts for the second task τ4. This
constraint is presented in Equation 11.

sfetchj − f buildi ≥ 0,∀ 〈τi, τj〉 ∈ τtwo−step (11)

To objective of the problem (Equation 12) was to minimize
the maximum amount of work assigned to any one agent,
while satisfying the constraints in Equations 1 - 11.

obj = argmin

(
max
agent

(∑
τi

( ∑
subtask

Cagent
τsubtask
i

Aagent
τsubtask
i

)))
(12)

E. Scheduling Mechanism

To enable the robot to schedule with varying degrees of
decision-making input from the subject, we adapted Ter-
cio, a fast, near-optimal scheduling algorithm that divides
the scheduling process into task allocation and sequencing
subroutines [14]. The algorithm works by solving for the
optimal task allocation and then finding a corresponding
task sequence. If the schedule does not satisfy a specified
makespan, a second iteration is performed by finding the
second-most optimal task allocation and corresponding se-
quence. The process terminates when the user is satisfied
with the schedule quality, or when no better schedule can be
found. In this experiment we specified that Tercio run for 25
iterations and return the best schedule.

In the scenario where the subject performed task allo-
cation, the robot used Tercio to sequence tasks and return
a flexible, dispatchable schedule [24]. When the subject
decided which tasks he or she would perform, the robot used
Tercio to find an efficient schedule by iterating over different
allocations to the robot and the human assistant. Tercio
receives upperbound, lowerbound, and expected duration of
each task, and uses the expected durations to compute near-
optimal schedules. The upperbound and lowerbound times
are used in computing the flexible, dispatchable schedule
to allow subjects the flexibility to work faster or slower
than expected. We set the lowerbound duration of subtasks
assigned to the subject to be 25% faster than their timings
during training to mitigate subject idle time due to learning
effects.



F. Human-Robot Coordination

Subjects were provided each agent’s expected time to
complete each of the sixteen subtasks, for experiment con-
ditions where the subject performed the task allocation.
In the manual condition, subjects specified the assignment
of agent ∈ {subject, robot, assist} to each subtask ∈
{fetch, build} of τi ∈ τ , by writing the assignment list
on a blank paper. The experimenter input the data to the
scheduling algorithm, which then optimized the sequencing
of subtasks {x<τj

i ,τ
m
n >}.

In the semi-autonomous condition, the subjects chose
only the subtasks that they would complete themselves,
and the robot allocated the remaining subtasks. Again the
robot sequenced all subtasks {x<τj

i ,τ
m
n >}. In the autonomous

condition, the scheduling algorithm optimized both the allo-
cation and sequencing of subtasks.

The robot served as a central coordinating agent, commu-
nicating to the subject and the human teammate when to start
their next subtasks. The subject and human teammate con-
firmed to the robot as they started or finished subtasks. The
team members communicated this information by sending
simple, text-based messages over a TCP/IP GUI1.

G. Procedure

We first introduced the subject to the manufacturing
scenario. Subjects were told that they were a member of
a human-robot manufacturing team. The manufacturer had
recently acquired a new robot to work alongside people in
the factory to improve the manufacturer’s productivity. We
explained the various temporal and spatial constraints of our
analog manufacturing task as well as the capabilities and
roles of each team member.

We then conducted a training round where the subject
fetched and built each of the eight part kits. We timed
how long it took the participant to complete each task, and
provided this information to the robot and the subject for
use in scheduling the work. Participants were instructed to
work as quickly as possible without making mistakes. Next,
the experimenter explained the constraints imposed on the
assembly process, and the subject was trained on how to
communicate with the robot via the TCP/IP GUI.

We then performed three trials in which the subject was
exposed to each of the three conditions (manual, semi-
autonomous or autonomous control), varying the order of the
conditions across subjects. Each trial consisted of reschedul-
ing the work and completing all tasks according to that
schedule. In the scenarios where the subject participated in
the task allocation process, we provided the subject with
information about how long it took for each agent to perform
each task. The subject was instructed to quickly construct
an efficient task allocation with the goal of minimizing the
sum of the time spent rescheduling and completing the tasks.
Subjects took on approximately 5 minutes when asked to

1SocketTest v3.0.0 c©2003-2008 Akshathnkumar Shetty (http://
sockettest.sourceforge.net/)

allocate all of the tasks, and approximately 2 minutes when
deciding which tasks to complete themselves.

Either autonomously or according to the task allocation
information provided by the subject, the robot completed the
rescheduling and the assembly process began. Each trial took
approximately 15 minutes. After each trial, subjects were
asked to answer a post-test questionnaire with 21 Likert-
scale questions assessing their experience. The experiment
concluded with a final post-test questionnaire with three
Likert-scale questions and two free-response questions, as
shown in Tables I and II.

H. Experimental Design

The goal of the experiment was to understand the re-
lationship between efficiency and worker satisfaction, as a
function of how much control the worker has over his or her
own role on the team. Our experiment used a within-subjects
design, allowing for more powerful statistical testing. In prior
experience, we have seen that human subjects build Lego
models at vastly different rates. By utilizing a within-subjects
design, we mitigated the effects of inter-subject variability.
However, because of this design, we needed to account for
possible learning effects over the different trials. The speed
with which subjects build generally increases with practice.
To block for this factor, we balanced the assignment subjects
into groups for each of the k! orderings of our k = 3
conditions.

To block for variability in the characteristics of the human
assistant on the team, a laboratory researcher played the role
of the human assistant for all trials. This assistant performed
tasks at a nearly constant speed and did not aid the subject
in rescheduling the work.

I. Objective Evaluation

Objective measures of team fluency consist of assembly
time, rescheduling time and idle time. “Assembly time” is
defined as the difference between the time the last task
was completed and the time the first task was initiated.
“Rescheduling” time is defined as the sum of the time it took
the subject to allocate tasks when the subject was involved
and the time it took the robot to complete the remainder of
the scheduling work. (The experimenter was required to input
the task allocation of the subject into the robot’s scheduling
algorithm, but we did not include this time as a part of the
rescheduling time.) Lastly, we defined “idle time” as the sum
of the periods during which the subject was not working.

J. Subjective Evaluation

Subjects received post-trial questionnaires after each trial,
consisting of 21 Likert-scale questions, as shown in Table
I. Hoffman proposed a set of composite measures for the
evaluation of human-robot fluency [18]. Questions 1-3 cor-
responded to Hoffman’s measure of Robot Teammate Traits,
and Questions 4-13 represented Hoffman’s adaptation of the
“Working Alliance Index” for human-robot teams, measuring
the quality of the alliance amongst the teammates. We added
questions 14-21 based on our own insight. Subjects were not

http://sockettest.sourceforge.net/
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TABLE I
SUBJECTIVE MEASURES - POST-TRIAL QUESTIONNAIRE

Robot Teammate Traits
1. The robot was intelligent.
2. The robot was trustworthy.
3. The robot was committed to the task.
Working Alliance for Human-Robot Teams
4. I feel uncomfortable with the robot. (reverse scale)
5. The robot and I understand each other.
6. I believe the robot likes me.
7. The robot and I respect each other.
8. I feel that the robot worker appreciates me.
9. The robot worker and I trust each other.
10. The robot worker perceives accurately what my goals are.
11. The robot worker does not understand what I am trying to
accomplish.
12. The robot worker and I are working towards mutually agreed
upon goals.
13. I find what I am doing with the robot worker confusing.
(reverse scale)
Additional Measures of Team Fluency
14. I was satisfied by the teams performance.
15. I would work with the robot the next time the tasks were to
be completed.
16. The robot increased the productivity of the team.
17. The team collaborated well together.
18. The team performed the tasks in the least time possible. 19.
The robot worker was necessary to the successful completion of
the tasks.
20. The human worker was necessary to the successful completion
of the tasks.
21. I was necessary to the successful completion of the tasks.

TABLE II
SUBJECTIVE MEASURES - POST-TEST QUESTIONNAIRE

Overall Preference
22. If it was the PR2s job to reschedule the work, I would want
to work with the robot again.
23. If it was my job to reschedule my work and the PR2
reschedule the work for the PR2 and my human teammate, I
would want to work with the robot again.
24. If it was my job to reschedule the work for myself, my human
teammate, and the PR2, I would want to work with the robot
again.
Open Response Questions
25. Which of the three scenarios did you prefer and why?
26. If you were going to add a robotic assistant to a manufacturing
team, to whom would you give the job of rescheduling the work
and why?

informed of their rescheduling and build times during the
experiment.

Subjects also received a post-test questionnaire after com-
pleting the three trials. This questionnaire gathered demo-
graphic information, and included three additional Likert-
scale questions summarizing the experience of the subject,
as well as two open-ended questions.

V. RESULTS

In this section, we report the demographics of the partic-
ipants, as well as statistically significant and insightful find-
ings from our experiment. We define statistical significance
at the α = .05 level.

A. Participants

Twenty-four participants were included in the experiment.
Each participant worked on the human-robot manufacturing
team under each level of decision-making authority for a
within-subjects design. To control for learning effects, par-
ticipants were balanced between one of six groups, including
one group for each of the six possible sequences of the
three conditions and four subjects for each sequence.The
participants (14 men and 10 women) had an average age
of 27± 7 years (minimum and maximum ages were 20 and
42) and were recruited via email and fliers distributed around
a university campus.

B. Objective Measures of Human-Robot Team Fluency

We consider the team’s assembly time and the subjects’
rescheduling time as a function of the subject’s decision-
making authority. Recall that hypothesis H1 predicts that the
team will be more fluent, in terms of both assembly and
rescheduling time, when the robot has more control authority
over task allocation. Rescheduling and assembly times are
depicted in Figure 3.

Analysis of variance demonstrated statistically significant
differences in the distribution of rescheduling time as a
function of decision-making authority, F (2, 69) = 55.1,
p < 0.01. Rescheduling time in the autonomous condition
(M = 30, SD = 0) was lower than in the semi-autonomous
condition (M = 108, SD = 69), t(23) = 7.24, p <
0.01. Likewise, rescheduling time in the semi-autonomous
condition was lower than in the manual condition (M = 315,
SD = 154), t(23) = 7.23, p < 0.01.

Repeated-measure analysis of variances demonstrated sig-
nificant differences in assembly time, as a function of
condition F (2, 46) = 3.84, p = .03. Assembly time in
the autonomous condition (M = 520, SD = 60.6) was
faster than in the semi-autonomous (M = 564, SD = 83.9),
t(23) = 2.37, p = 0.01, and manual conditions (M = 582,
SD = 115), t(23) = 2.18, p = 0.02.

Learning effects were found for assembly time as a
function of trial number (ANOVA F (2, 69) = 3.68, p = .03).
Specifically, third-trial assembly times (M = 519, SD = 85)
were lower than those in the first (M = 585, SD = 49), t(23),
p = .002 and second trials (M = 567, SD = 75), t(23), p =
.022. Nonetheless, the k–factorial design counterbalanced the
learning effects, and results indicated significant differences
in both assembly time, F (2, 46) = 3.84, p = .03, and
rescheduling time, F (2, 69) = 55.1, p < 0.01 as a function
of level of automation.

C. Subjective Measure of Satisfaction as a Function of Task-
Allocation Authority

Recall that our second hypothesis H2 states that workers
prefer partial authority over the task process rather than total
control, and that having no control is preferable to having
complete control.

An omnibus Friedman test confirmed a statistically signif-
icant difference in the distribution of a subset of the Likert-
scale responses for the three conditions, as shown in Table



TABLE III
P-VALUES FOR STATISTICALLY SIGNIFICANT POST-TRIAL QUESTIONS

(N=24). STATISTICALLY SIGNIFICANT VALUES ARE SHOWN IN BOLD.

Question Omnibus Auto v. Semi v. Auto. v.
Man. Man. Semi.

1 p = .031 p = .008 p = .073 p = .059
5 p = .046 p = .007 p = .111 p = .105
10 p = .009 p = .001 p = .008 p = .063
11 p = .002 p < .001 p = .002 p = .017
14 p = .005 p < .001 p = .003 p = .008
15 p = .033 p = .011 p = .064 p = .064
16 p = .018 p = .004 p = .048 p = .031
18 p = .018 p < .001 p = .015 p = .002

III. A pair-wise Friedman test confirmed our hypothesis that
subjects were more satisfied under the autonomous and semi-
autonomous conditions than the manual condition for the
questions listed in Table III.

However, there did not exist a single question for which
subjects favored the semi-autonomous condition over the
autonomous condition. A post-hoc Friedman test with a
requisite Bonferroni correction of α

3 indicated that subjects
were significantly more satisfied with team performance
(Question 14, p = .008) under the autonomous condi-
tion than the semi-autonomous condition. Likewise, subjects
agreed more strongly under the autonomous condition that
the team performed the tasks within the least amount of time
(Question 18, p = .002).

The post-test questionnaire included three questions de-
signed to determine whether subjects would be more likely to
work with the robot again given the level of decision-making
authority allotted to the subject and the robot. Applying the
omnibus Friedman test across Questions 22-24 from Table II,
we observed a statistically significant difference in subjects’
responses to these questions (p < 0.001). Post-hoc analysis,
using pair-wise comparison with a Bonferroni correction,
confirmed that subjects agreed that they were more likely
to work with the robot again if the robot performed task
allocation autonomously than if the subject and the robot
shared task allocation authority (p < 0.001) or if the subject
had complete task allocation authority (p < 0.01). Similarly,

Fig. 3. This figure shows the average and standard error for the assembly
times in each condition.

TABLE IV
REPRESENTATIVE OPEN-ENDED RESPONSES FROM SUBJECTS

PREFERRING THE MANUAL, SEMI-AUTONOMOUS, AND AUTONOMOUS

CONDITIONS.

Manual
“People may resent being told what to do by a robot...worker
dissatisfaction would probably impact efficiency to the point
where any bit of time gained by the robot would be lost by the
demotivation [sic] of the workers.”
“There is something soul-sucking about taking the thinking away
from the workers”
Semi-autonomous
“I prefer the scenario where I pick the tasks I want because some
task are more fun for me than others...even if it might slightly
increase completion time.”
“I got to schedule my work and the robot filled in the rest of the
schedule with the purpose of optimizing time”
Autonomous
“It removes the possibility of scheduling being influence by the
ego of the team leader.” “I never felt like I was wasting time
or waiting when the PR2 schedule tasks.” “Easier for the robot
to deal with scheduling many complex tasks than it is for a
human because it can consider all at once [without] getting
overwhelmed.”

subjects were more likely to report they would work with
the robot again if the robot and the human shared task
allocation authority than if the subject had sole authority
for task allocation (p < 0.01).

D. Analysis of Open-Ended Responses
Questions 25 and 26 of the post-trial questionnaire offered

subjects the opportunity to provide open-ended responses to
prompts on which condition they preferred and to whom
they would give control of the task allocation in a manu-
facturing setting. While the majority of subjects’ responses
were supportive of a robotic assistant that autonomously
allocates work, we also provide representative responses
from subjects who preferred the manual, semi-autonomous,
and autonomous conditions as shown in Table IV. While
most of the subjects’ responses directly supported one of
the three experimental conditions, some subjects suggested a
blended level of control where the robot would “assign tasks
but allow person to override (if for example they become
overwhelmed or bored).”

E. Subject Idle Time and Satisfaction
Our third hypothesis H3 states that subjects are more

satisfied working on a human-robot team when the they are
less idle. Our post-test questionnaire prompted subjects to
rate the degree to which they would want to work with the
robot again depending on the robots role in the scheduling
process (one question for each of the three conditions). Both
idle time and subject satisfaction are dependent variables in
our experiment. Experiment conditions (autonomous, semi-
autonomous, and manual) were ranked according to each
subject’s preference. The condition’s rank was then plot-
ted against the corresponding idle time for each subject-
condition pair. The Pearson product-moment correlation co-
efficient of satisfaction and idle time (r = 0.125) was not
significant (t(23) = 0.90, p = 0.367).



F. Posthoc Analysis

We conducted a posthoc analysis to better understand
differences in the ways people allocate work under the
various experiment conditions. In Definition 1, we define a
metric, Frequency of Independent Work Allocation (FIWA),
to assess the degree to which the agent in charge of task
allocation decouples his/her work from the rest of the agents
in the team.

Definition 1: Frequency of Independent Work Allocation
(FIWA) - the number of instances in which the agent is
allocated to complete either:

1) A subtask that does not depend on another subtask
being completed before its execution (e.g., τfetch1 )

2) A pair subtasks that are linked by precedence (e.g.,〈
τfetch1 , τ build1

〉
or
〈
τ build3 , τfetch4

〉
).

We investigated differences in a subject’s FIWA score as
a function of their decision-making authority. The FIWA
score for a subject was greater in the semi-autonomous
condition than the autonomous condition 58.3% of the
time, but was greater in the manual versus autonomous
condition only 37.5% of the time. A z–Test for two
proportions demonstrated statistical significance of this
difference z = 1.72, p = 0.043. As such, we establish a
new hypothesis for testing in a future experiment: H4 In
a scenario where the goal is to maximize team efficiency,
a human worker is more likely to allow for interdependent
work between himself and his team if the subject is
responsible in allocating work to the entire team.

VI. DISCUSSION

A. Guidance on Deploying Autonomous Robot Teammates

The aim of this study was to determine how much control a
human member of a human-robot team should have over his
or her robot counterpart in order to maximize team efficiency
and worker satisfaction. We hypothesized that giving workers
some control over the task allocation process would increase
satisfaction without too great a sacrifice to team efficiency;
however, autonomous control yielded improvements in ob-
jective and subjective measures, as compared to manual or
semi-autonomous control. This finding is in keeping with
anecdotal evidence that subjects prefer working with highly
autonomous robots [2].

These results provide guidance for the successful in-
troduction of robots into human teams. First, providing
human teammates subjects more decision-making authority
over robot behavior is not sufficient to improve the worker
satisfaction, and may degrade team performance. Also, team
fluency does appear to positively correlate with willingness
to collaborate with robotic technology. Second, these ex-
periments provide preliminary evidence that there exists a
complex relationship between human/robot decision-making
authority and human preferences over task allocation; peo-
ple may voluntarily seek looser couplings between human

and robot work when they do not retain primary decision-
making authority. This preference may negatively affect team
performance, and warrants investigation in a future study.

B. Limitations and Future Work

There are limitations to our experimental findings. Our
sample population consisted of college students and young
professionals whose livelihoods are not threatened by the
possibility of robots replacing them. Providing manufac-
turing workers with more control in the decision-making
process may still influence the satisfaction of those work-
ers. However, our findings suggest that team fluency is
also likely to be an important component in the successful
introduction of robot teammates. To better understand the
relative contributions of team fluency and decision-making
authority towards worker satisfaction in manufacturing, we
will conduct a future study where we specifically recruit
manufacturing workers.

Each participant in our experiment worked worked with
the human-robot for one, 90–minute period. However, man-
ufacturing workers would be working with robots every
workday, possibly for years. Human workers may have
strong preferences for some jobs over others, and may
make different choices or have different preferences in task
allocation when working with robots every day for the long
term. We propose a longitudinal study is necessary to observe
the trajectory of human worker satisfaction over time, since
the short and long-term effects of decision-making authority
may differ.

VII. CONCLUSION

With the increasing desire and ability to integrate au-
tonomous robotic agents into manufacturing environments,
it is important to understand how much decision-making
authority human workers should have over their robotic
counterparts when allocating tasks to human and robot team
members. While autonomy can improve team efficiency,
providing a worker too little or too much control may be
alienating or overwhelming, respectively. We conducted an
experiment with human subjects to determine how much
control a worker should have over the task allocation process.
We found that an autonomous robot can outperform a human
worker when conducting part (p < 0.001) or all of the task
allocation (p < 0.001). However, rather than finding an ideal
balance of control authority to maximize worker satisfaction,
we observed that workers preferred to give control authority
to the robot (p < 0.001). Our results suggest that providing
workers with a role in the allocation of tasks to their robotic
counterparts may not be an effective method of improving
worker satisfaction. Rather, team fluency may more strongly
influence worker satisfaction than level of decision-making
authority.
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