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Abstract—The application of robotics to traditionally manual
manufacturing processes requires careful coordination between
human and robotic agents in order to support safe and effi-
cient coordinated work. Tasks must be allocated to agents and
sequenced according to temporal and spatial constraints. Also,
systems must be capable of responding on-the-fly to disturbances
and people working in close physical proximity to robots. In this
paper, we present a centralized algorithm, named “Tercio,” that
handles tightly intercoupled temporal and spatial constraints.
Our key innovation is a fast, satisficing multi-agent task se-
quencer inspired by real-time processor scheduling techniques
and adapted to leverage hierarchical problem structure. We use
this sequencer in conjunction with a MILP solver and empirically
demonstrate the ability to generate near-optimal schedules for
real-world problems an order of magnitude larger than those
reported in prior art. Finally, we demonstrate the use of our
algorithm in a multi-robot hardware testbed.

Index Terms—Scheduling, Human-Robot Teaming

1. INTRODUCTION

Robotic systems are increasingly entering into domains pre-
viously occupied exclusively by humans. In the manufacturing
field, for example, there is a strong economic motivation to
enable human and robotic agents to cooperatively perform
traditionally manual work. This integration requires a chore-
ography of human and robotic work that meets upper- and
lowerbound temporal deadlines for task completion (e.g., the
assigned work must be completed within a single shift) and
spatial restrictions on agent proximity (e.g., robots must main-
tain at least 4 meters of separation from other agents) in order
to support safe and efficient human-robot cooperation. Multi-
agent coordination problems with temporospatial constraints
can be readily formulated as a mixed-integer linear program
(MILP) (Brucker, 2001; Lenstra and Kan, 1978); however,
the problem of optimally scheduling n ≥ 3 tasks (each with
a sequence of ni subtasks) on a set of m machines is NP-
Hard (Sotskov and Shakhlevich, 1995) and is computationally
intractable for problems of interest to large-scale factory
operations.

Various decentralized or distributed approaches have
achieved fast computation and favorable scalability character-
istics (Choi et al., 2009; Castañón and Wu, 2003; Curtis and
Murphey, 2003; Ren et al., 2005; Tal Shima and Chandler,
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2005). Rapid computation is desirable because it enables the
system to respond on-the-fly to schedule disturbances, such
as an inaccurately performed job, a machine breakdown, or
changing temporal constraints (Ahmed et al., 2005; Castañón
and Wu, 2003; Sariel and Balch, 2005). Some approaches
boost computational performance by decomposing plan con-
straints and contributions to the objective function among
agents (Choi et al., 2009). However, these methods break
down when agents’ schedules become tightly intercoupled,
such as scenarios wherein multiple agents are maneuvering
in close physical proximity to one another. While distributed
coordination approaches are necessary for field operations
in which environment and geography affect communication
among agents, factory operations allow sufficient connectivity
and bandwidth for either centralized or distributed approaches
to task assignment and scheduling.

In this paper, we present Tercio1, a centralized task as-
signment and scheduling algorithm that scales to multi-agent,
factory-size problems and supports on-the-fly scheduling in
the presence of temporal and spatial proximity constraints. We
empirically demonstrate that this capability enables human and
robotic agents to perform manufacturing tasks effectively and
in close proximity to one another.

Tercio takes as input a set of tasks composed of precedence-
related subtasks; a set of interval temporal constraints relating
the start and finish times of subtasks; two-dimensional co-
ordinates specifying the spatial locations where subtasks are
performed; physical constraints restricting agent proximity;
a set of agent capabilities specifying the tasks and subtasks
each agent may perform and the minimum, maximum, and
expected time for each agent to complete each task; and
an objective function to optimize. Tercio provides a solution
consisting of the assignment of agents (i.e., humans or robots)
to tasks and a schedule for each agent’s jobs (i.e., start and
finish times for each job) such that all temporal and spatial
proximity constraints are satisfied and the objective function
is empirically within 10% of optimal the majority of the time
(see Section 10).

Tercio is made efficient through a fast, satisficing multi-
agent task sequencer that is inspired by real-time processor
scheduling techniques but adapted to leverage hierarchical
problem structure. Our task sequencer computes, in polyno-

1”Tercio” is named for the Spanish military formation used during the
Renaissance period, which consisted of several different types of troops, each
with their own strengths, working together as a single unit.
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mial time, a multi-agent schedule satisfying upper- and lower-
bound temporal deadlines, as well as spatial restrictions of
agent proximity. Although the sequencing algorithm is satisfic-
ing and incomplete, we empirically show that it produces task
schedules within 10 percent of optimal. We also demonstrate
that it produces solutions for nearly all problem instances
solvable by a complete solution technique. We use this fast
task sequencer in conjunction with a MILP solver, and indicate
that Tercio is able to generate task assignments and schedules
for up to 10 agents and 1,000 subtasks in approximately
one minute, on average. In this regard, Tercio scales better
than representative state-of-the-art benchmarks in heuristic
(i.e., Nunes and Gini (2015)), meta-heuristic (i.e., Zhang and
Wong (2015)), and exact (i.e., (Gurobi Optimization, 2016))
approaches. Tercio also returns flexible time windows for
execution (Wilcox et al., 2012), enabling agents to adapt
to small disturbances online without the need for a full re-
computation of the schedule.

Tercio was first introduced by Gombolay et al. (2013)2.
In this paper, we present two advancements for this work,
proofs of correctness, and further analysis of the algorithm’s
performance. First, we generalize the types of task sets
that Tercio can efficiently schedule. Second, we present an
improved sequencer that produces less-conservative sched-
ules than the method originally presented (Gombolay et al.,
2013). Third, we include proofs of correctness for Tercio’s
subroutines. Finally, we expand the empirical evaluation of
Tercio to demonstrate its significance over the closest available
benchmarks in prior literature Gurobi Optimization (2016);
Nunes and Gini (2015); Zhang and Wong (2015).

2. RELATED WORK

There is a wealth of prior work related to task assignment
and scheduling within the manufacturing field and other ap-
plications. Korsah et al. provided a comprehensive taxonomy
(Korsah et al., 2013) for the multi-robot task allocation and
scheduling problem. According to this taxonomy, our problem
fits within the cross-schedule dependencies [XD] category,
with single-task robots [ST], single-robot tasks [SR] and the
time-extended allocation [TA] problem (XD [ST-SR-TA]).
Cross-schedule dependencies exist when the utility of one
agent is directly affected by the scheduling commitment of
another. As noted by Korsah (2011), these dependencies occur
in the form of various temporal constraints (e.g., precedence
constraints) or of finite-capacity resources that must be shared
by agents to complete their tasks. We consider both temporal
and resource-based cross-schedule dependencies in this work.
We note that prior works often seek to find a feasible schedule
with the shortest duration, although other application-specific
cost functions are sometimes considered.

While in many cases the problem of task allocation with
cross-schedule dependencies can be readily formulated and
solved as a MILP (Brucker, 2001; Lenstra and Kan, 1978),
the complexity MILP-based solution techniques (e.g., branch-
and-bound search) is exponential, leading to computational

2Parts of this work have been published in Proc. of Robotics: Science and
Systems (RSS 2013).

Fig. 1: This table provides a summary of relevant prior work.

intractability for large-scale factory operations. Various algo-
rithms have been proposed with the goal of achieving favorable
scalability characteristics. Here, we survey solution techniques
for scheduling problems similar to the problem we present in
this work – including MILP formulations, auction- and market-
based methods, and other hybrid approaches – and discuss the
applicability of these prior techniques to our problem. Table
1 depicts a summary of the relevant approaches.

2.1. MILP/CP Solution Techniques

One promising approach to solving this class of problems
has been the development of a hybrid algorithm incorporating
MILP and constraint programming (CP) methods along with
decomposition. Techniques based on Benders Decomposition
(Benders, 1962; Geoffrion, 1972; Martin, 1999) are among the
most widely used. Benders Decomposition works by iteratively
updating a function, f(ȳ), which provides a lowerbound on
the optimal solution for an optimization problem where y is
a subset of the decision variables and ȳ indicates a specific
assignment to those decision variables. For a scheduling prob-
lem, y might represent the assignment of agents to jobs, and
the remaining variables might represent potential sequences of
those jobs. Through bifurcation of the decision variables, it is
possible to improve the computation time for a solution to the
optimization problem (Hooker, 2000).

Various scheduling applications have incorporated Benders
Decomposition. Logic-Based Benders Decomposition in par-
ticular has been applied to solve job shop scheduling problems
where n tasks must be scheduled at m facilities (Hooker,
2000). Benders Cuts (i.e., a lowerbound constraint on the
optimal solution provided by f(ȳ)) are generated by separating
the allocation of tasks from the sequencing of those tasks.
Reported results have demonstrated optimal solutions for
problems involving approximately 10 facilities and 50 tasks.
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Cordeau et al. (2001) and Mercier et al. (2005) employed
Benders Decomposition for aircraft routing and crew schedul-
ing (Cordeau et al., 2001). The authors heuristically decom-
posed aircraft routing from crew assignment and generated
Benders Cuts for the resulting assignment sub-problem. They
empirically demonstrated that this method produced more
cost-efficient schedules than prior art. Rekik et al. similarly
employed Benders Decomposition to schedule personnel shift-
work (Rekik et al., 2004). The authors applied hand-tailored
forward and backward constraints to cut the search space, and
proved the correctness of these constraints. Rekik et al. showed
that Benders Decomposition can be used to solve particularly
challenging problems in which the forward and backward
constraints do not sufficiently prune the search space.

While Benders Decomposition has served as the basis for
many state-of-the-art scheduling algorithms, several alternative
techniques have also successfully combined MILP and CP
approaches. Jain and Grossmann (Jain and Grossmann, 2001)
presented an iterative method that first solves a relaxed MILP
formulation and then searches for the complete solution using
CP. When applied to the scheduling of jobs for machines,
the MILP relaxation solves for the assignment of jobs and
the CP solves for the schedule. If a solution is identified,
the algorithm returns the optimal solution; otherwise, the
algorithm infers cuts based on the solution of the MILP
relaxation and solves the new MILP relaxation using these
cuts. The authors reported results for problems involving up
to 20 tasks and 5 machines. Li and Womer later improved
on this work by employing a hybrid Benders Decomposition
algorithm with MILP and CP solver subroutines (Li and
Womer, 2008), and reported that their method can solve
problems involving 30 tasks and eight different agent types
up to four times faster than a standard MILP. Ren and Tang
(Ren and Tang, 2009) took a similar approach, but employed
heuristic strategies to generate informative cuts in the event
that the CP solver was unable to identify a feasible task
sequence. A related method proposed by Harjunkoski and
Grossman (2002) utilized an iterative approach to producing
task assignments and schedules. Both Ren and Tang and
Harjunkoski and Grossman empirically demonstrated that their
algorithms can solve problems involving up to eight machines
and 36 jobs; however, these works did not address problems
associated with cross-schedule dependencies.

Although not mathematical programs, some prior works
have incorporated PDDL-style problem formulations. For ex-
ample, Erdem et al. (2012b, 2013) developed distributed and
semi-distributed techniques for scheduling problems involving
precedence and absolute temporal constraints, as well as other
resource and spatial proximity constraints. These works utilize
a formulation that supports causality-based reasoning. The
Erdem et al. (2012b, 2013) technique yielded optimal solutions
for problems with absolute deadlines and complex geometric
constraints, and readily scaled to problems involving up to
eight agents and 80 tasks.

2.2. Auction and Market-Based Solution Techniques
Auction methods and other market-based approaches to

scheduling problems, such as those developed by Ponda et

al., Choi et al., and Liu and Shell, also frequently rely upon
decomposition of the problem structure (Choi et al., 2009;
Liu and Shell, 2013; Ponda et al., 2010). For example, Ponda
et al. (2010) developed a decentralized, market-based solution
technique for allocating tasks to agents. given that tasks are
constrained by time windows. Ponda et al. (2010) employed
the Consensus-Based Bundle Algorithm (CBBA) (Choi et al.,
2009), in which the objective function and constraints are
decomposed by agent so that each agent can quickly solve
for the value of its bid on each task. Thus, while the work by
Ponda et al. (2010) represents an added capability for CBBA,
the scalability of the algorithm is strictly worse than CBBA.

Recently, Nunes and Gini (2015) developed the Temporal
Sequential Single-Item (TeSSI) auction algorithm for decen-
tralized scheduling, which has been shown to outperform
CBBA. TeSSI takes as input a task set in the form of a
simple temporal problem (STP); each task has an earliest
start and latest finish time (absolute wait and deadline con-
straints). Constraints relating tasks are comprised of travel time
constraints; resource constraints are not included. Nunes and
Gini (2015) empirically demonstrated their approach yields
improved performance compared with CBBA (Choi et al.,
2009). Further, their approach has since been extended to
incorporate precedence relations among tasks (McIntire et al.,
2016). However, TeSSI and its variants (Nunes and Gini, 2015;
McIntire et al., 2016) solve a narrower class of problem than
Tercio, in that while they handle some cross-schedule depen-
dencies in the form of precedence relations, they do not handle
subtask-to-subtask deadlines (i.e., deadlines constraining the
maximum time between the start time of one subtask and the
finish time of the second) or resource capacity constraints.

Other techniques solve the task allocation problem effi-
ciently (Sung et al., 2013; Liu and Shell, 2013; Bertsekas,
1990; Zavlanos et al., 2008; Beard et al., 2002), but do
not address the sequencing problem. For example, Sung et
al. addressed multi-robot task allocation where each agent
maintains a queue of tasks and partial information about
other agents’ queues (Sung et al., 2013). During execution,
agents communicate when possible and choose to exchange
tasks using a heuristic approach. Sung et al. empirically
demonstrated that their algorithm can solve problems involving
up to six agents and up to 250 tasks; however, the problems
did not involve cross-schedule dependencies or task deadlines.

Liu and Shell recently proposed a novel distributed method
for task allocation via strategic pricing (Liu and Shell, 2013).
Their work builds upon prior approaches to distributed auction
algorithms (Bertsekas, 1990; Zavlanos et al., 2008), runs in
polynomial time, and produces globally optimal solutions.
However, this technique does not consider coupling constraints
– for example, a problem in which one agent’s assignment
directly affects the domain of feasible assignments for other
agents, as is the case when agents are performing tasks
subject to temporal and resource constraints. Chien et al.
proposed planning methods for a team of robotic rovers to
accomplish a set of scientific objectives (Chien et al., 2000).
The rovers needed to complete a set of tasks where each
task required the use of shared, single-access resources (i.e.,
“shared resources”). The approach by Chien et al. (2000)
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uses an iterative-repair centralized planner coupled with an
auction algorithm to perform centralized goal allocation and
decentralized route planning and goal sequencing. Chien et al.
benchmarked against a set of randomized problems with three
rovers and 12 goals; however, thorough empirical evaluation
with an optimal benchmark was not reported.

Lemaire et al. approached the problem of allocating UAVs
to tasks, represented by a bipartite graph (Lemaire et al., 2004).
Here, one set of tasks (UAV navigation) was required to be
completed before the second set (target sensing). The authors
first presented a centralized auction solution and reported
empirical results for a problem involving 50 tasks and four
agents. Next, they described a distributed approach wherein
an auctioneer agent assigns the first set of tasks to the multi-
robot team, and then the second set of tasks is auctioned. This
method supports rescheduling in light of dynamic disturbances
occurring during task execution; however, the authors did not
report empirical results for their distributed method. Sycara
et al. (1991) explored the problem of task allocation and
sequencing for a set of agents. In this work, agents were
required to share a finite set of resources necessary for task
execution. The authors formulation was distributed in nature
and relied upon multiple heuristics to sequentially construct
an effective schedule; however, their approach was suboptimal
and did not consider deadline constraints relating tasks.

2.3. Hybrid Solution Techniques

Other hybrid approaches have integrated heuristic sched-
ulers within the MILP solver to achieve better scalability
characteristics. For example, Chen et al. incorporated depth-
first search (DFS) with heuristic scheduling (Chen and Askin,
2009). In this approach, a DFS algorithm sequentially assigns
tasks to agents, and a heuristic scheduling algorithm sequences
the tasks according to a minimum slack priority. The algorithm
also employs heuristics to guide the order in which tasks are
assigned to resources during the search. Chen benchmarked
their work on problems involving approximately 50 tasks and
10 resources (or agents) using a standard problem database
(Patterson, 1984; Drexl et al., 2000).

Alternatively, Castro and Petrovic (2012) used a heuristic
scheduler to seed a feasible schedule for the MILP with
regard to patient procedures conducted within a hospital. This
method incorporates a tiered approach to minimize a three-
term objective function: First, a heuristic scheduling algorithm
generates an initial feasible solution. Next, a MILP is solved
for first term of the objective function using the heuristic
solution as a seed schedule. The MILP is solved again to
optimize the second objective function term, using the solution
from the first MILP as a constraint. This process repeats,
but for the third objective function term. The solution time
is reduced by sequentially optimizing the objective function
terms; however, this approach sacrifices global optimality.

Other approaches perform cooperative scheduling by incor-
porating Tabu Search within a MILP solver (Tan, 2004), or
by applying heuristics to abstract the problem to groupings of
agents (Kushleyev et al., 2013). These hybrid methods are able
to solve scheduling problems involving 5 agents (or groups

of agents) and 50 tasks in minutes or seconds, and address
problems incorporating multiple resources, task precedence,
and temporal constraints relating task start and end times to the
plan epoch time. However, these approaches do not take more
general, task-task temporal constraints into consideration.

Cesta et al. (2002) addressed the problem of project schedul-
ing with time windows by formulating it as a constraint
satisfaction problem. In their work, candidate (potentially
infeasible) solutions are initially generated using heuristic
methods; random and deterministic heuristic techniques are
then used to iteratively repair any infeasibilities in the problem.
Cesta et al. (2002) noted that randomization is essential to
counteract the bias of greedy scheduling heuristics; however,
they did not consider wait constraints that create cross-
schedule dependencies, nor did they consider shared resources.

2.4. Meta-Heuristic Techniques

Successful meta-heuristic methods have included simulated
annealing (SA) and genetic algorithms (GA). Davis (1985)
produced one of the early works applying GAs to job shop
scheduling, although many researchers have since followed
suit (Falkenauer and Bouffouix, 1991; Fang et al., 1993;
Godinho Filho et al., 2014; Zhang et al., 1997). Recently,
Zhang and Wong (2015) developed a GA to perform process
planning for single-task machines, single-machine tasks, and
time-extended scheduling with precedence constraints; how-
ever, the formulation did not consider deadline constraints or
shared-resource constraints.

Researchers have also sought to apply simulated anneal-
ing techniques to specific scheduling problems (Mousavi
and Tavakkoli-Moghaddam, 2013; Osman and Potts, 1989;
Van Laarhoven et al., 1992). Prior works have combined GAs
and SA to further improve upon solution quality (Dai et al.,
2013; Wang and Zheng, 2002). These techniques rely upon
a random walk through the space of possible schedules; as
the number of steps in the walk (i.e., algorithm iterations)
approaches ∞, the optimal solution will be found.

These solution techniques are typically applied to job
shop scheduling problems in which tasks are related through
neither tightly intercoupled upper- and lowerbound temporal
constraints nor shared resource constraints (Falkenauer and
Bouffouix, 1991; Fang et al., 1993; Zhang and Wong, 2015;
Zhang et al., 1997). As they are only probabilistically optimal
and rely upon random search, meta-heuristics can require a
large amount of computation time in order to identify and
improve schedules when tight upperbound constraints exist.

2.5. Application to Task Assignment and Scheduling with
Temporospatial Constraints

The problem of scheduling – allocating agents to tasks and
sequencing those tasks – has been studied in a wide array
of works incorporating various solution techniques. However,
prior research does not address the need to quickly solve large-
scale problems involving tight dependencies among agents’
schedules, which can make decomposition problematic. Typ-
ically, allowing multiple robots to work closely within the
same physical space produces dependencies among the agents’
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temporal and spatial constraints, leading to uninformative
decompositions. We are unaware of prior work that has
yielded a solution technique for time-extended scheduling
of heterogeneous agents in which each unit of work (i.e.,
subtask) is related through upper- and lowerbound temporal
constraints without restriction on problem structure (e.g., only
some subtasks can be related by certain constraints), where
agents must share access to resources (e.g., physical locations)
when performing their work.

While we are not aware of prior work focused on our
problem definition, we are able to adapt heuristic, meta-
heuristic, and exact solution techniques to provide an infor-
mative empirical validation. In particular, we benchmarked our
solution technique, Tercio, against the following techniques:

1) We adapted the insertion-heuristic based TeSSI algo-
rithm (Nunes and Gini, 2015) to accommodate our class
of problems. Insertion heuristics are commonly used in
vehicle routing and scheduling (Campbell and Savels-
bergh, 2004; Fernandez-Viagas and Framinan, 2014;
Solomon, 1987).

2) A state-of-the-art GA proposed by Zhang and Wong
(2015) for integrated process planning and scheduling.

3) An exact, MILP-based solution technique,
Gurobi (Gurobi Optimization, 2016), which uses
state-of-the-art branch-and-bound search and cutting
plane heuristics, for the mathematical formulation
presented in Section 3.

In Section 10, we show that our technique has the singular abil-
ity to balance computational efficiency with solution quality to
provide fast, empirically near-optimal solutions for large-scale
scheduling problems.

3. PROBLEM STATEMENT

In this section, we formulate a task assignment and schedul-
ing problem for multiple robots working within a shared
physical space.

Tercio takes the following as input:
• τ : The set of all tasks to be performed. Each task τi ∈ τ

is composed of mi precedence-constrained subtasks, de-
noted τ ji , for j = [1,mi], where a subtask τ j+1

i may not
be released to execute until its predecessor, τ ji , finishes
executing. Note: |τ | is the number of subtasks in τ .

• A: The set of all agents that perform subtasks.
• TC: The set of Interval Temporal Constraints

(Dechter et al., 1991) relating subtasks’ start and finish
times. Lowerbound “wait constraints” are denoted as
W〈τji ,τyx〉, and specify that τyx starts at least W ≥ 0 time

units after τ ji ends. Upperbound “deadline constraints”
are denoted as Ds2s

〈τji ,τyx〉
, and specify that τyx must finish

within Ds2s > 0 time units of the start of τ ji . “Absolute”
deadline constraints Dabs

τ
j
i

limit the finish time of τ ji to
within Dabs > 0 time units of the epoch start time.

• τR: The set of all subtask pairs separated by less than
the allowable spatial proximity, derived from spatial lo-
cations on the factory floor where subtasks are performed
(specified via two-dimensional Cartesian coordinates).

• AC: The set of agent capabilities specifying the sub-
tasks each agent a ∈ A may perform, as well as that
agent’s minimum lba

τji
, maximum uba

τji
, and expected

completion time Ca
τji

for each subtask τ ji .
• z: An objective function to minimize that includes the

makespan and possibly other application-specific terms.
A solution to the problem consists of an assignment (i.e.,

∀τ ji ,∃!a ∈ A s.t. Aa
τji

= 1) of each subtask τ ji ∈ τ to

one agent a ∈ A and the assignment of the start sji ∈ R
and finish time f ji ∈ R of each subtask such that all
constraints (Equations 2-12) are satisfied and the objective
function (Equation 1) is minimized.

Remark (On Complexity). Sotskov and Shakhlevich (1995)
proved that the following problem (denoted SS’95) is NP-
Hard: Find a minimum makespan schedule for a set of
machines Ml ∈ M (i.e., agents a ∈ A) completing a set of
jobs Ji ∈ J (i.e. tasks τi ∈ τ ) consisting of operations lji ∈ Ji
(i.e., τ ji ∈ τ ) with duration tji such that lji must be completed
before lj+1

i (i.e., TC = {W〈τji ,τj+1
i 〉|τ

j
i , τ

j+1
i ∈ τ}), and

operation li,j must be completed on machine Mj (i.e., a fixed
agent assignment such that

(
Aa
τji

= 1|j 6= a
)
→ infeasible),

where |M |, |J | ≥ 3. In this paper, we consider a problem
specification (denoted GWS’17) that is a superset of SS’95
by including general deadline, wait, and resource constraints,
and a variable agent assignment. One can map in polynomial
time a problem in SS’95 to one in GWS’17 by specifying
the fixed agent assignment (i.e., Ca

τji
← ∞,∀j 6= a and

Ca
τji
← tji otherwise) in O(|τ ||A|) time. TC consists only

of the wait constraints between consecutive subtasks (i.e.,
TC = {W〈τji ,τj+1

i 〉|τ
j
i , τ

j+1
i ∈ τ}) and τR = ∅. As such, there

exists a mapping in P from a problem in SS’95 to one in
GWS’17. Therefore, we can say that SS’95 ≤P GWS’17. As
problems in SS’95 are NP-Hard, the problem we address are
at least NP-Hard provided that P 6=NP.

The multi-agent coordination problem (with temporospatial
constraints) can be readily formulated as a MILP as follows.
In this formulation, Aa

τji
∈ {0, 1} is a binary decision variable

for the assignment of agent a to subtask τ ji , x〈τji ,τyx〉 ∈ {0, 1} is

a binary decision variable specifying whether τ ji comes after
or before τyx , and sji , f

j
i ∈ [0,∞) are the start and finish times

of τ ji . A is the set of all agents a, τ is the set of all tasks and
subtasks, and τR is the set of all subtask pairs

〈
τ ji , τ

y
x

〉
that

are separated by less than the allowable spatial proximity. M
is an artificial variable set to a large positive number, and is
used to encode conditional constraints.

Equation 2 ensures that each task is assigned to one agent.
Equation 3 encodes the explicit ordering of subtasks according
to the lowerbound temporal constraints. Equations 4 and 5
encode the minimum wait times and upperbound deadline
constraints, respectively, between pairs of subtasks. Equation
6 enforces the absolute deadlines constraining subtask finish
times. Equations 7 and 8 ensure that agents are not required
to complete tasks any faster or slower than they are capable
of. Note that human and robotic workers inherently have
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varying capabilities. For example, a robot may be able to
place composite material, whereas a human might be able
to perform a more dexterous task, such as wire-laying. Also,
two humans are likely to perform the same task at different
rates. In this work, we assume that workers are heterogeneous
agents, and that each subtask has an agent-specific completion
time. Equations 9 and 10 sequence actions to ensure that
agents maintain safe buffer distances from one another while
performing tasks. Equations 11 and 12 ensure that each agent
only performs one task at a time. Note that Equations 9 and
10 couple the variables relevant to sequencing and spatial
proximity constraints and to task start and end times, and
produce tight dependencies among agents’ schedules.

Objective:min(z) (1)
subject to∑

a∈A

Aa
τ
j
i
= 1, ∀τ ji ∈ τ (2)

x〈τji ,τyx〉 = 1, ∀W〈τji ,τyx〉 ∈ TC (3)

W〈τji ,τyx〉 ≤ s
y
x − f ji , ∀W〈τji ,τyx〉 ∈ TC (4)

Ds2s

〈τji ,τyx〉 ≥ f
y
x − sji ,∀D

s2s

〈τji ,τyx〉 ∈ TC (5)

Dabs

τ
j
i
≥ f ji ,∀D

abs

τ
j
i
∈ TC (6)

f ji − s
j
i ≥ lb

a

τ
j
i
−M

(
1−Aa

τ
j
i

)
, ∀τ ji ∈ τ , a ∈ A (7)

f ji − s
j
i ≤ ub

a

τ
j
i
+M

(
1−Aa

τ
j
i

)
, ∀τ ji ∈ τ , a ∈ A (8)

syx − f ji ≥M
(
x〈τji ,τyx〉 − 1

)
, ∀
〈
τyx , τ

j
i

〉
∈ τR (9)

sji − f
y
x ≥ −Mx〈τji ,τyx〉∀

〈
τ ji , τ

y
x

〉
∈ τR (10)

syx − f ji ≥M
(
1 + x〈τji ,τyx〉 −A

a

τ
j
i
−Aaτyx

)
, ∀τ ji , τ

y
x ∈ τ (11)

sji − f
y
x ≥M

(
2− x〈τji ,τyx〉 −A

a

τ
j
i
−Aaτyx

)
, ∀τ ji , τ

y
x ∈ τ (12)

Employing branch-and-bound search to identify the op-
timal solution in this MILP-based formulation requires
O
(

2|A||τ |)
3
)

just in terms of the integer variables for alloca-
tion (Aa

τji
) and sequencing (x〈τji ,τyx〉). Note that the number of

possible sequencing permutations is O (|τ |!), while the num-
ber of sequencing variables in this formulation is O

(
|τ |2

)
.

Within the manufacturing settings of interest, the number of
tasks and subtasks is typically much larger than the number
of agents, so the computational bottleneck when solving for a
schedule occurs within the sequencing sub-problem.

As noted in Section 2, other related works have included
formulation of similar scheduling problems as MILPs: For
example, Korsah et al. (2013) proposed a general formulation
of the instantaneous assignment problem for the XD class.
However, our formulation considers time-extended scheduling
in which one must also determine how to sequence jobs. Pinto
and Grossmann (1995) proposed a MILP formulation that
bears similarities to ours: both consider assignments of agents
to tasks (Equation 2), as well as the ordering of tasks for ma-
chines (or agents) as given by Equations 11 and 12. However,
our MILP formulation includes shared resource constraints
(Equation 9 and 10), as well as the unique capabilities or
production rates of agents (Equations 7 and Equations 8).Other
works have considered separate aspects of our problem, such

Fig. 2: This figure depicts the Boeing 777 Fuselage Upright
Autonomous Build Process. Courtesy: The Boeing Company.

as inclusion of heterogeneous agents (Topcuoglu et al. (1999))
or shared resources (Jones et al. (2011)). However, these works
do not propose a mathematical formulation that addresses the
XD [ST-SR-TA] problem variant with resource constraints.

Tercio approximately solves our problem by producing sub-
optimal makespan solutions. Section 10 demonstrates through
empirical evaluation that the produced makespans are within
10% of optimal for the range of problems evaluated. To
preserve temporal flexibility at execution, the solution is then
reformulated as a Simple Temporal Problem that is flexibly
dispatched (Wilcox et al., 2012) (Section 4.1).

3.1. Real-World Motivation Example

Our problem statement is motivated by real-world appli-
cations, such as the Boeing 777 Fully Autonomous Upright
Build (FAUB) project (pictured in Figure 2). This type of
application requires the coordination of six to eight robots
for successful assembly of an aerospace structure. Precedence
constraints among the work packages must be respected to
ensure structural integrity during the build process. Task-task
temporal constraints are imposed by process requirements
for the timed application of sealant. The robots’ work must
be sequenced to ensure mutually exclusive access to tools,
utilities, and floor space; efficient solutions to the problem
involve an intricate choreography of robot movements. A
fast dynamic scheduling method is necessary to efficiently
and effectively respond to schedule disruptions such as those
caused by process time variation, re-work, and inspection.

4. TERCIO

In this section, we present Tercio, a centralized task as-
signment and scheduling algorithm that scales to multi-agent,
factory-size problems and supports on-the-fly rescheduling
with temporal and spatial proximity constraints. Figure 3
depicts the system architecture, and the pseudocode for the
Tercio algorithm is presented in Figure 4. Tercio is made
efficient through a fast, multi-agent task sequencer inspired
by real-time processor scheduling techniques but adapted to
leverage the hierarchical problem structure, wherein tasks
are composed of precedence-related subtasks. Our approach
decomposes the problem statement in Section 3 into sub-
problems of task allocation and sequencing. We use a MILP-
based solution method (Section 5) to allocate agents to tasks
and a polynomial-time task sequencer to efficiently solve the
task sequencing problem (Section 6). Although the task se-
quencer is satisficing and incomplete, it substantially improves
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Fig. 3: This figure depicts the system architecture of Tercio.

worst-case time complexity. (We present time complexity
analysis for each component of Tercio at the conclusion of
their respective description below.)

4.1. Tercio Pseudocode

Tercio takes the inputs defined in Section 3, along with
a user-specified makespan cutoff intended to terminate the
optimization process. This cutoff can often be derived from
the temporal constraints of the manufacturing process: for
example, a user may specify that a provided task set must be
completed within an 8-hour shift. Tercio works by iterating
through agent allocations until a schedule can be identified
that satisfies the maximum allowable makespan for the prob-
lem. However, Tercio can also run as an anytime heuristic,
terminating once the allotted time has expired.

As shown in Figure 4, Tercio initializes the makespan (Line
1) and previous solution (Line 2), and then iterates Lines 3-
7 to compute a schedule that meets this makespan. A third-
party optimizer (Gurobi) solves the agent-allocation MILP
(Line 4) and returns the agent allocation matrix, A. Interval
temporal (TC) constraints are updated according to this matrix
by tightening task time intervals (Line 5). For example, if a
task is originally designated to take between 5 and 15 minutes,
but the assigned robot can complete it in no fewer than 10
minutes, the interval tightens from [5, 15] to [10, 15].

The agent allocation, the capability-updated TCs and the
spatial map of tasks are then provided as input to the Ter-
cio multi-agent task sequencer (Line 6). The task sequencer
(described further in Section 6) returns a tight upperbound on
the optimal makespan for the given agent allocation, as well
as a sequence of tasks for each agent. While this makespan
is longer than cutoff (or while the algorithm’s runtime has
not exceeded the specified timeout), the algorithm iterates
Lines 3-7, each time adding a constraint (Line 7) to exclude
previously attempted agent allocations. Tercio terminates when
either the returned makespan falls beneath cutoff or when
no solution can be found after iterating through all feasible
agent allocations. Note that, for each iteration, a search tree
is generated for the agent allocation. We propose preserving
the search tree across iterations in future work to reduce
computation time, updating it with excluded allocations.

If the cutoff makespan is satisfied, agent and spatial resource
sequencing constraints (interval form of [0,∞)) are added
to TC (Line 9). The resulting Simple Temporal Problem,
composed of the interval temporal constraints, is compiled
into a dispatchable form (Line 10) (Muscettola et al., 1998;
Wilcox et al., 2012) which guarantees that, for any consistent

TERCIO( τ , A, TC, τR, AC, z, cutoff/timeout)
1: makespan ← inf
2: exclusions ← ∅
3: while makespan > cutoff or runtime < timeout do
4: A ← ALLOCATION(z, A, τ , TC, AC, τR, exclusions)
5: TC ← update agent capabilities
6: makespan,seq ← SEQUENCER(A,TC, τR)
7: exclusions ← exclusions ∪ A
8: end while
9: TC ← add ordering constraints to enforce seq

10: STP ← DISPATCHABLE(TC)
11: return STP

Fig. 4: Pseudocode for the Tercio Algorithm.

choice of a time point within a flexible window, there exists
a solution that can be identified through one-step propagation
of interval bounds. The dispatchable form maintains flexibility
to increase robustness to disturbances, and has been shown
to decrease the amount of time spent re-computing solutions
in response to disturbances for randomly generated structured
problems by up to 75% (Wilcox et al., 2012).

5. TERCIO: AGENT ALLOCATION

The Tercio Agent Allocator performs agent-task allocation
by solving an MILP that includes Equations 2, 7, and 8,
ensuring that each task is assigned to exactly one agent and
that the allocation does not violate the upper- and lowerbound
temporal constraints. In this work, we investigate the objective
of minimizing schedule makespan. This corresponds to solving
the MILP defined in Section 3 according to the objective
function depicted in Equation 13, where we seek the optimal
makespan (i.e., the overall process duration).

min(z), z = gMILP (A, τ ) = max
〈τji ,τyx〉

(
f ji − s

y
x

)
(13)

However, decomposition of task allocation and sequencing
necessitates an objective function that guides the task alloca-
tion subroutine toward solutions that are likely to be favorable
for the sequencing subroutine. As such, we developed the
following objective function (Equation 14), comprised of three
mixed-integer linear terms (Equations 15-16). Equation 15
minimizes the maximum work assigned to any one agent,
which mitigates situations resulting in a single agent bottle-
necking the schedule. Equation 16 minimizes the total amount
of work time (i.e. ”agent-hours”) by selecting the most efficient
agent for each subtask. As such, Tercio’s agent-allocation
subroutine maximizes Equation 14 subject to Equations 15
and 16. In our MILP-based task allocation subroutine, binary
decision variable Aa

τji
represents the assignment of agent a to

subtask τ ji . The worst-case time complexity of assigning one
of a = |A| agents to each subtask in τ via branch-and-bound
search is given by O

(
2|A||τ |

)
.

min(z), z = α1g1(A, τ ) + α2g2(A, τ ) (14)

g1(A, τ ) ≥
∑
τ
j
i ∈τ

Aa
τ
j
i
× Ca

τ
j
i
, ∀a ∈ A (15)

g2(A, τ ) ≥
∑
a∈A

∑
τ
j
i ∈τ

Aa
τ
j
i
× Ca

τ
j
i

(16)
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6. TERCIO: MULTI-AGENT TASK SEQUENCER

The Tercio Task Sequencer takes the problem defined in
Section 3 as input, along with a set of task assignments
provided by the Tercio Agent Allocator described in Section
5. The Task Sequencer is satisficing, meaning the produced
schedule merely satisfies the constraints of the problem (Equa-
tions 2 -12) and does not take an objective function as input.
The Task Sequencer returns a valid task sequence if the
algorithm can identify one. Tercio schedules tasks in simula-
tion using the dynamic priority policy Earliest-Deadline First
(EDF), as well as an online schedulability test that guarantees
satisfaction of temporospatial constraints for any opportunistic
scheduling policy (i.e., a policy that executes a task if one is
available to execute). We formulate this schedulability test as
a CP problem and determine whether a full, feasible schedule
can be developed if subtask τ ji is scheduled at time t.

The Tercio Task Sequencer is inspired by real-time pro-
cessor scheduling techniques and operates on the structure
of a real-time processor scheduling model, called the “self-
suspending task model.” The sequencer performs a rapid
variant of “edge-checking,” (similar to that performed in
Laborie (2003) and Vilı́m et al. (2005)), which we call
the Multiprocessor Russian Dolls Test. To our knowledge,
the Tercio Task Sequencer is the first real-time scheduling
method for multiprocessor systems that tests the schedulability
of non-preemptive, self-suspending tasks in scenarios where
multiple tasks have more than one self-suspension and tasks
are constrained by shared memory resources.

We now outline the steps taken by the Tercio Task Se-
quencer. In Section 7, we discuss the relationship of our prob-
lem to prior art in real-time processor scheduling and describe
our problem as a real-time processor scheduling problem.
We then present how the problem depicted in Section 3 is
reformulated into a real-time processor scheduling problem.
Finally, in Section 8, we present the Task Sequencer’s priority
policy and Multiprocessor Russian Dolls Test.

6.1. Multi-Agent Task Sequencer Walk-Through

Here, we address the mechanics of our task sequencing
algorithm, as depicted in Figure 5. At Line 1, the task set
is reformulated (if necessary) into a specific structure that
makes the task sequencer operate more efficiently. The task
sequencer requires that every subtask τ ji involved in an ab-
solute deadline constraint Dabs

τ
j
i

or subtask-to-subtask deadline
constraint Ds2s

〈τba,τji 〉
have only one predecessor subtask τyx . This

means that either τyx = τ j−1i , or else there exists a lowerbound
wait constraint W〈τyx ,τji 〉. In turn, every τyx must have exactly
one such predecessor subtask. This recurses until reaching
either the epoch subtask τ00 in the case of an absolute deadline
constraint, or τ ba in the case of a subtask-to-subtask deadline.

In Section 7.3, we prove that the reformulation process pre-
serves correctness – any schedule that satisfies the constraints
of the reformulated task set will also satisfy the constraints of
the original set. The ability to reformulate depends upon the
laxity of the deadlines within the task set and the structure
of the constraints. The tighter the deadlines and the more

TERCIO-SEQUENCER(τ )
1: reformulate Ds2s and W
2: t← 0 . set simulation time to zero
3: ensure temporal feasibility of Dabs

4: while true do
5: availableTasks← get and sort subtasks ready for execution

at time t according to EDF
6: for all τ ji ∈availableTasks do
7: if executing τ ji at t will not violate temporospatial con-

straints then
8: seq ← schedule τ ji
9: end if

10: end for
11: t← t+ 1 . increment simulation time
12: if all tasks executed then break;
13: end if
14: end while
15: makespan, seq ← extract multi-agent schedule
16: return makespan, seq

Fig. 5: Pseudocode for the Tercio Multi-agent Task Sequencer.

connected the constraint graph, the less able the algorithm
will be to reformulate the problem into the structure our
schedulability test requires. However, this more restricted
structure enables the our schedulability test to compute an
empirically tight schedulability test in polynomial time.

In Line 2, simulation time is initialized to zero. In Line 3,
the algorithm determines whether the set of absolute deadlines
Dabs in the reformulated task set is temporally consistent,
meaning that the set of agents will be able to successfully
schedule against those deadline constraints and their associated
spatial constraints. This is determined using the Multiprocessor
Russian Dolls Test, as described in Section 8. After ensuring
schedule feasibility due to Dabs, the algorithm begins to
schedule all subtasks in τ in simulation (Lines 4-14). In Line
5, the algorithm prioritizes the order in which it attempts to
schedule available subtasks according to the Earliest-Deadline
First (EDF) dynamic scheduling priority. EDF, commonly used
in real-time systems (Harbour and Palencia, 2003; Zhang and
Burns, 2009; Zhao et al., 2007) and multi-agent schedul-
ing (Chen et al., 2014), attempts to execute the task τ ji with
the earliest (smallest in magnitude) deadline dji first.

Line 6 iterates over all available subtasks τ ji and applies
the Multiprocessor Russian Dolls Test (Line 7) to determine
whether a subtask can feasibly be scheduled at time t while
satisfying the temporospatial constraints. If feasible, the sub-
task is scheduled at time t (Line 8) and an All-Pairs Shortest
Path (APSP) computation (Johnson, 1954; Floyd, 1962) is
performed to update the temporal constraints. The simulation
time is incremented (Line 11) and the algorithm continues until
all tasks have been scheduled (Line 12). Finally, the algorithm
returns the makespan and subtask sequence (Line 15).

7. REAL-TIME PROCESSOR SCHEDULING ANALOGY FOR
THE TASK SEQUENCER

The design of our informative, polynomial-time task se-
quencer was inspired by a processor scheduling analogy in
which each agent is a computer processor able to perform one
task at a time, and a physical location in discretized space is
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modeled as a shared memory resource accessible by only one
processor at a time. Wait constraints (lowerbounds on interval
temporal constraints) are modeled as “self-suspensions” (Lak-
shmanan and Rajkumar, 2010; Ridouard and Richard, 2006)
– times during which a task is blocked while another piece of
hardware completes a different, time-durative task.

Typically, assembly manufacturing tasks have more struc-
ture (e.g., parallel and sequential subcomponents) and
more complex temporal constraints than real-time processor
scheduling problems. AI scheduling methods address complex
temporal constraints and gain computational tractability by
leveraging hierarchical structure within the plan (Smith et al.,
2000). We bridged AI and real-time processor scheduling in
order to develop a fast multi-agent task sequencer that satisfies
tightly coupled upper- and lowerbound temporal deadlines and
spatial proximity restrictions (shared resource constraints).

The Tercio Task Sequencer operates on an augmented self-
suspending task model (defined in Section 7.2) and returns
a valid task sequence if the algorithm can identify one. The
task sequencer is satisficing and incomplete; however, we have
empirically validated that it returns makespans within 10% of
the optimal when integrated with the Tercio Agent Allocation
algorithm (see Section 10).

Processor scheduling of self-suspending task systems has
been the focus of much prior work due to the integration of
relatively recent hardware and supporting software systems
(e.g., GPUs, PPUs) that trigger the external blocking of tasks
(Devi, 2003; Lakshmanan and Rajkumar, 2010; Ridouard
and Richard, 2006). Self-suspensions can be thought of as
lowerbound temporal constraints relating tasks: for example,
a user might specify that a first coat of paint needs at least
30 minutes to dry before a second coat may be applied – this
30-minute wait time is a self-suspension of the painting task.

Prior work has computed the uniprocessor schedulability of
a task set with single (Liu and Anderson, 2010; Ridouard and
Richard, 2006) or multiple (Gombolay and Shah, 2012, 2015)
self-suspensions. In our work, we compute the multiprocessor
schedulability of a task set in which multiple tasks have
more than one suspension and each subtask has a resource
constraint. Our approach incorporates a scheduling policy that
partially restricts the behavior of the scheduler in order to
reduce incidence of multiprocessor schedule anomalies due
to self-suspensions. Our approach is similar in spirit to prior
art that restricted behavior to reduce anomalies that inherently
arise from application of uniprocessor scheduling methods to
self-suspending task sets (Gombolay and Shah, 2012, 2015;
Rajkumar, 1991; Lakshmanan et al., 2010; Ridouard and
Richard, 2006). We first introduce our task model in this
section. Second, we describe how our task sequencer satisfies
temporospatial constraints in Section 8.

7.1. Traditional Self-Suspending Task Model

The Tercio Task Sequencer relies upon a well-formed task
model that captures hierarchical and precedence structure
within the task network. The basis for our framework is the
self-suspending task model, described in Equation 17:

τi : (W〈τ0i ,τ1i 〉, C
1
i ,W〈τ1i ,τ2i 〉, C

2
i , . . . , C

m
i , Ti, Di) (17)

In this model, a set of tasks, τ , must be processed by the
computer. An instance of each task τi is released (eligible
to execute) at every period Ti. The execution of the first
subtask of τi may be delayed from the epoch start as specified
by a lowerbound wait constraint, W〈τ0i ,τ1i 〉, called the “phase
offset.” For each task, there are mi subtasks, with mi − 1
self-suspension intervals for each task τi ∈ τ . We use τ ji
to denote the jth subtask of τi. C

j
i is the expected duration

(cost) of τ ji . A subtask τki is released once its predecessor
subtask and preceding self-suspension have both finished
executing. W〈τj−1

i ,τ
j
i 〉 is the lowerbound wait constraint (or

self-suspension) interval relating the end of τ j−1i and the start
of τ ji . Ti and Di are the period and deadline of τi, respectively.

7.2. Augmented Self-Suspending Task Model

The standard self-suspending task model provides a solid
basis for describing many real-world processor scheduling
problems of interest (Devi, 2003; Lakshmanan and Rajkumar,
2010; Ridouard and Richard, 2006). Scheduling problems
within the manufacturing domain inherently have strong, hier-
archical structures that are captured well by the traditional self-
suspending task model. However, self-suspending task systems
generally assume that processors are homogeneous, and do not
include more general temporal or resource constraints among
tasks and subtasks (Liu and Anderson, 2010).

τi : (W〈τ0i ,τ1i 〉, (C
a
τ1i
, R1

i ),W〈τ1i ,τ2i 〉, (C
a
τ2i
, R2

i ), . . .

(Caτmi , R
m
i ), Ti, D

s2s
i , Dabs

i ); {Aa
τ
j
i

}, {W〈τji ,τyx〉} (18)

We first augmented the model to encode the assignment of
processors (i.e., agents) to subtasks, denoted by the set of
binary decision variables, {Aa

τji
}. The subtask cost Ca

τji
is now

dependent upon the capabilities of the agent a processing the
subtask. The second augmentation enables a user to specify
subtask-to-subtask deadlines, Ds2s

〈τji ,τki 〉
, between the start of τ ji

and end of τki (Equation 19); as well as absolute deadlines,
Dabs

τ
j
i

, for the absolute finish times of subtasks (Equation 20),
as shown in Equations 19 and 20. Subtask-to-subtask deadlines
are restricted to constrain subtasks within the same task,
enabling fast edge-checking in our schedulability test (Section
8). In Section 7.3, we describe how general upperbound
deadline constraints relating pairs of subtasks are reformulated
into this augmented self-suspending task model.

Ds2s

〈τji ,τki 〉
≥ fki − sji (19)

Dabs

τ
j
i

≥ f ji (20)

We define dji as the implicit deadline on the finish time
f ji of subtask τ ji , which is implied by the absolute and
subtask deadlines Dabs ∪ Ds2s. These deadline constraints
provide additional expressiveness to encode binary temporal
constraints relating tasks. For instance, these constraints may
be used to specify that a sequence of subtasks involving sealant
application must be completed within 30 minutes of opening
the sealant container. These types of constraints are commonly
included in AI and operations research scheduling models,
and are vital for modeling many real-world problems (Dechter
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et al., 1991; Muscettola et al., 1998).
We augmented the model to express subtask-to-subtask wait

constraints (Equation 21) provided that the subtasks meet
certain criteria. To describe this restriction, we first introduce
two categories of subtasks: free and embedded.

Definition 1. A free subtask, τ ji ∈ τfree, is a subtask that
does not share a deadline constraint with τ j−1i . In other words,
a subtask τ ji is free iff for any deadline D〈τai ,τbi 〉 associated
with that task, (j ≤ a) ∨ (b < j). We define τ1i as free, since
a preceding subtask does not exist.

Definition 2. An embedded subtask, τ j+1
i ∈ τembedded, is a

subtask that shares a deadline constraint with τ ji (i.e. τ j+1
i /∈

τfree). τfree ∩ τembedded = ∅.

W〈τji ,τyx〉 ≤ s
y
x − f ji (21)

For our augmented self-suspending task model, a wait
constraint can be applied to subtasks across different tasks〈
τ ji , τ

y
x

〉
if and only if the τyx is a free subtask. This restriction

also enables fast edge-checking in our schedulability test,
presented in Section 8. We address how general lowerbound
wait constraints relating pairs of subtasks are reformulated into
this model in Section 7.3.

We also extended the model to include shared memory
resources. Each subtask τ ji requires that a set of shared
memory resources, Rji = {Rji,1, . . . , R

j
i,ki
}, be utilized to

perform that subtask (e.g., for memory shared among multiple
processors). In a manufacturing setting, a shared memory
resource corresponds to a region of space on the factory floor
that must be physically unoccupied in order for an agent to
execute a subtask there. Shared memory resources encode
hard spatial constraints that prohibit agents from working in
dangerously close physical proximity to one another.

We made four simplifying assumptions about this aug-
mented self-suspending task model. First, we set the implicit
deadlines of the tasks equal to the period of the task set. This
modification accurately models many assembly line manufac-
turing processes wherein the set of tasks at each location are
repeated once every “pulse” (i.e., period, H) of the production
line. In this scenario, the user allots a certain amount of time,
T , for the set of tasks to be accomplished, and the set of tasks
is repeated with a period of T .

We also assume that all subtasks are non-preemptable,
meaning that the interruption of a subtask significantly de-
grades its quality, and that the cost of a subtask τ ji assigned
to agent a is determined by the expected cost of agent a
executing subtask τ ji . Finally, we assume that switching times
between tasks (i.e., travel times on the factory floor) are
small compared with subtask times and can be modeled as
constant. We find this assumption suitable for many assembly
manufacturing applications – for example, situations in which
work is performed within a localized area and does not require
lengthy traversals across the factory floor, or where calibration
and set-up times at new work locations are long compared
with travel times. This assumption would not be reasonable
for applications involving the optimization of vehicle routes
across a factory or satisfaction of more-complex geometric

SEQUENCER-REFORMULATE(τ )
1: while ∃Ds2s

〈τji ,τyx〉
s.t. there is no line of precedence from τyx to τ ji

do
2: Dabs

τ
y
x
← Ds2s

〈τji ,τyx〉
−APSP〈τyx ,τ00 〉

3: Replace Ds2s

〈τji ,τyx〉
with Dabs

τ
y
x

4: end while
5: while ∃τ ji with constrained start time and two predecessors, do
6: for counter = 2 to number of τ ji ’s predecessors do
7: τ ba ← τ ji ’s (counter−1)th predecessor
8: τyx ← τ ji ’s (counter)th predecessor
9: feasible1 ← whether it is feasible for τ ba to precede τyx

10: feasible2 ← whether it is feasible for τyx to precede τ ba
11: if feasible1 ∧ feasible2 then
12: if |APSP〈τba,τji 〉| ≤ |APSP〈τyx ,τji 〉| then
13: Replace W〈τba,τji 〉 with W〈τba,τyx〉 (Eq 22)
14: else
15: Replace W〈τyx ,τji 〉 with W〈τyx ,τba〉 (Eq 22)
16: end if
17: else if feasible1 then
18: Replace W〈τba,τji 〉 with W〈τba,τyx〉 (Eq 22)
19: else if feasible2 then
20: Replace W〈τyx ,τji 〉 with W〈τyx ,τba〉 (Eq 22)
21: end if
22: if feasible1 ∨ feasible2 then
23: continue
24: else if counter = # predecessor subtasks then return null
25: end if
26: end for
27: end while
28: return τ

Fig. 6: Pseudocode for the Reformulation Subroutine.

constraints. We leave the study of more general geometric and
temporal logic constraints, such as those considered in Erdem
et al. (2012a) and Plaku (2012), for future work.

7.3. Reformulating the Task Set

Tercio’s Task Sequencer uses an online schedulability test
to determine whether a given subtask τ ji can be scheduled
at time t considering the deadline constraints within the task
set. This schedulability test requires the specific structure
of the augmented self-suspending task model in order for
this inference to be efficient. In this section, we present
our method for reformulating general upperbound deadlines,
Ds2s

〈τba,τji 〉
, and lowerbound wait constraints, W〈τba,τyx〉, into this

more-structured form.
The reformulation ensures that for every absolute dead-

line constraint Dabs

τ
j
i

or subtask-to-subtask deadline constraint

Ds2s

〈τba,τji 〉
, subtask τ ji has only one predecessor subtask τyx .

This means that either τyx = τ j−1i , or that there exists a
self-suspension W〈τyx ,τji 〉. In turn, τyx must have exactly one
such predecessor subtask. This process recurses until reaching
either the epoch subtask τ00 , in the case of an absolute deadline
constraint, or τ ba , in the case of a subtask-to-subtask deadline.
The reformulation preserves correctness, meaning that any
schedule that satisfies the constraints of the reformulated task
set will also satisfy the constraints of the original task set.
The reformulation rules are based on the triangle rules and
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proofs of correctness developed by Tsamardinos et al. for the
reformulation of temporal networks (Tsamardinos et al., 1998).
However, note that the reformulation process for our algorithm
is incomplete: it heuristically attempts to solve an NP-hard
scheduling problem, does not explore the entire search space,
and thus does not always return a sequence if one exists. The
ability to reformulate depends upon the laxity of the deadlines
in the task set and the structure of the constraints. The tighter
the deadlines and the more connected the constraint graph, the
less likely it is that the algorithm will be able to reformulate
the problem into the structure our schedulability test requires.
Figure 6 depicts SEQUENCER-REFORMULATE, which
takes a task set as input and returns either a reformulated task
set (if the algorithm can find a solution) or null (if no feasible
reformulated task set can be identified).

7.4. Reformulation Pseudo-code

Line 1 checks whether any subtask-to-subtask deadlines
Ds2s

〈τji ,τyx〉
exist such that there is neither a wait constraint

W〈τji ,τyx〉 nor a set of wait constraints linking τ ji and τyx via one
or more intermediary subtasks (e.g., W〈τji ,τba〉 and W〈τba,τyx〉).
If there exists such a deadline Ds2s

〈τji ,τyx〉
, it is replaced with a

new absolute deadline, Dabs
τ
y
x

, that implicitly enforces Ds2s

〈τji ,τyx〉
(Line 2). Note in Line 2, APSP〈τji ,τyx〉 is the APSP temporal

upperbound between τ ji and τyx , and that the APSP temporal
lowerbound between ordered tasks is non-positive.

For each subtask with its initiation constrained by a deadline
and which involves more than one predecessor subtask, the
algorithm iterates over the predecessor subtasks (Lines 5-6).
Lines 7-8 consider two predecessors at a time, τ ba and τyx ,
and determine whether the lowerbound constraints can be
reformulated such that τ ba is the predecessor of τyx , or vice-
versa (Lines 9-10). For a subtask τ ji with two predecessors,
τ ba and τyx , the algorithm restructures the problem such that τ ba
is the predecessor of τyx by replacing W〈τyx ,τji 〉 with W〈τba,τyx〉,
according to Equation 22:

W〈τba,τyx〉 = max
(
W〈τba,τji 〉 − Cτ

y
x
−W〈τyx ,τji 〉,W〈τba,τyx〉

)
(22)

In Line 11, in the event that both methods of reformulating the
problem are feasible, the algorithm employs a “tie-breaker”:
If the temporal distance path τ ji → τyx → τ ba is shorter than
that between τ ji → τ ba → τyx , the path from τ ji to τyx is
removed and a temporal wait constraint is added from τ ba to
τyx – as a result, τyx is now the predecessor of τ ba . If only one
method of reformulation is feasible (Lines 17 and 19), the
constraints are modified accordingly (Lines 18 and 20). Each
time the constraint network is modified, the reformulation
process restarts (Lines 22-23). The algorithm returns null if
it is impossible to reorder τ ba and τyx and if there are no more
predecessor subtasks of τ ji to process (Line 24); otherwise,
the algorithm returns the reformulated task set (Line 28).

7.5. Reformulation Example

In this section, we provide an example to illustrate the
reformulation process. Figures 7 and 8 depict a task set

Fig. 7: This figure depicts a task set that must be reformulated
to adhere to the augmented self-suspending task model.

Fig. 8: This figure depicts the first two steps for the reformu-
lation of the task set in Figure 7.

before and after reformulation, respectively. In these figures,
subtask start and end times are denoted as nodes (black
circles), and constraints are represented by edges. Blue edges
indicate lowerbound temporal constraints (phase offsets, self-
suspensions, or wait constraints), and orange edges repre-
sent upperbound temporal constraints (absolute or subtask-
to-subtask deadline constraints). Recall that a task set must
satisfy two conditions in order to be correctly sequenced by
Tercio: First, for every subtask-to-subtask deadline Ds2s

〈τji ,τyx〉
,

there must be a path of precedence from τ ji to τyx . Second,
each subtask must have exactly one predecessor subtask.

Consider the task set depicted in Figure 7. This example
includes three temporal constraints that conflict with the above
requirements: Ds2s

〈τ22 ,τ23 〉 does not satisfy the requirement of a
directed path of precedence from τ22 to τ23 . Also, embedded
subtask τ22 has more than one precedence constraint delaying
its initiation: (W〈τ11 ,τ22 〉 and W〈τ12 ,τ22 〉).

The first step to addressing these temporal constraints is
to reformulate Ds2s

〈τ22 ,τ23 〉 as an absolute deadline Dabs
τ23

, as
shown in Figure 8, such that Dabs

τ23
is sufficiently tight to

guarantee that f23 does not occur later than s22 + Ds2s

〈τ2
2 ,τ

2
3 〉

.

To ensure consistency, the reformulation subroutine sets Dabs
τ23

equal to −APSP〈τ22 ,τ00 〉+Ds2s

〈τ22 ,τ23 〉. The requirement of a path

of precedence from τ ji to τyx for every subtask-to-subtask
deadline Ds2s

〈τji ,τyx〉
is now satisfied.

Next, we address the wait constraints, W〈τ11 ,τ22 〉 and
W〈τ12 ,τ22 〉. In order to do so, we must first determine whether
to require for τ12 to precede τ11 , or vice-versa. If neither option
is possible, the reformulation algorithm cannot reformulate
the task set. If only one option is possible, the algorithm
selects and enforces that precedence constraint. If both options
are temporally feasible, the algorithm assigns the ordering
to reduce the delay of τ22 . In this example, ordering τ12
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before τ11 is preferred, so the algorithm replaces W〈τ12 ,τ22 〉
with W〈τ12 ,τ11 〉 = max

(
W〈τ12 ,τ22 〉 −

(
W〈τ11 ,τ22 〉C

2
1

)
, 0
)

to ensure
satisfaction of the original constraint. The task set can now be
correctly sequenced by the Tercio Task Sequencer algorithm.

7.6. Proofs of Termination and Correct Reformulation

In this section, we show that the reformulation algorithm
(Figure 6) will terminate for finite task sets. We also demon-
strate that the algorithm preserves correctness – that any
schedule that satisfies the constraints of the reformulated task
set will also satisfy the constraints of the original task set.

Theorem 7.1. The Reformulation Subroutine preserves cor-
rectness, meaning that any schedule that satisfies the con-
straints of the reformulated task set will also satisfy the
constraints of the original task set.

Proof by Deduction: Here, we show that each lower-
bound temporal constraint removed in Lines 13, 15, 18, and
20 is made redundant by the newly added temporal constraint.
Consider an embedded subtask τ ji , with predecessors τ ba and
τyx , ordered as follows:

sji ≥ f
y
x +W〈τyx ,τji 〉 (23)

and
sji ≥ f

b
a +W〈τba,τji 〉 (24)

The reformulation process either orders τyx before τ ba , or vice-
versa. If ordering τyx before τ ba is temporally feasible (Johnson,
1954; Floyd, 1962), the algorithm removes constraint W〈τyx ,τji 〉
and adds constraint W〈τyx ,τba〉 according to Equation 22. (Note
that the proof for ordering τ ba before τyx is symmetric.) When
W〈τba,τji 〉 in Equation 22 is sufficiently large to contribute to
the new wait constraint W〈τyx ,τba〉, Equation 24 and Equation
22 recover Equation 23:

sji ≥W〈τba,τji 〉 + fba ≥W〈τba,τji 〉 + Cτba + sba

≥W〈τba,τji 〉 + Cτba +W〈τyx ,τba〉 + fyx

≥W〈τba,τji 〉 + Cτba +W〈τyx ,τji 〉 −
(
Cτba +W〈τba,τji 〉

)
+ fyx

≥ fyx +W〈τyx ,τji 〉. (25)

If there already exists a constraint W〈τyx ,τba〉 and W〈τyx ,τji 〉 −(
Cτba +W〈τba,τji 〉

)
≤ W〈τyx ,τba〉, then ordering τyx before τ ba

inherently satisfies Equation 23. Likewise, if W〈τyx ,τba〉 does

not exist and W〈τyx ,τji 〉 −
(
Cτba +W〈τba,τji 〉

)
≤ 0, then ordering

τyx before τ ba inherently satisfies Equation 23. Equation 24
remains satisfied because W〈τba,τji 〉 remains unaltered.

Theorem 7.2. The Reformulation Subroutine terminates.

Proof by Deduction: Lines 1-4 process a finite number of
subtask-to-subtask deadlines, replacing each with an absolute
deadline. Lines 5-27 add temporal precedence constraints to
the network. Each lowerbound temporal constraint removed
in Lines 13, 15, 18, and 20 is redundant given the newly
added temporal constraint, meaning that any schedule that
satisfies the new temporal constraint also satisfies the removed
constraint (see Theorem 7.1). Therefore, the size of the set of

feasible schedules only decreases with each reformulation step,
and the algorithm is ultimately guaranteed to terminate.

7.7. SEQUENCER-REFORMULATE Complexity Analysis

Here, we present the computational complexity
of SEQUENCER-REFORMULATE. Lines 1-4 of
SEQUENCER-REFORMULATE convert a subset of
the subtask-to-subtask deadlines into absolute deadlines.
This involves a maximum of |τ |2 operations. Lines 5-27
reformulate the task graph to ensure that all subtasks
τ ji with constrained start times have no more than one
predecessor. At most, |τ |2 wait constraints are modified,
and one wait constraint is removed at each iteration (Lines
13, 15, 18, 20). The feasibility of each modification is
assessed using Johnson’s Algorithm (Johnson, 1954),
which has a complexity of O

(
|τ |2log|τ |+ |τ ||TC|

)
.

Thus, the complexity of the reformulation algorithm is
O
(
|τ |2 + |τ |2

(
|τ |2log|τ |+ |τ ||TC|

))
.

8. MULTI-AGENT ONLINE CONSISTENCY CHECK

The Tercio Task Sequencer presented in Figure 5 uses a
schedulability test to ensure feasibility while scheduling tasks
against deadline constraints and shared memory (or spatial)
resource constraints. Our schedulability test, the Multiproces-
sor Russian Dolls Test, works by determining whether the
execution of one set of subtasks associated with a single
deadline constraint can be nested within the laxity of a second
set of subtasks associated with another deadline constraint. The
test operates on the augmented self-suspending task model in-
troduced in Section 7.2, and makes the explicit assumption that
any subtask with a start time tightened by a deadline constraint
will be released upon completion of its single predecessor and
any wait or self-suspension time. This assumption enables the
algorithm to compute an empirically tight schedulability test
in polynomial time.

Our test is a variant of a resource edge-finding algorithm
(Laborie, 2003; Vilı́m et al., 2005), the purpose of which is
to determine whether an event must or may execute before
or after a set of activities (Baptiste and Pape, 2000). To our
knowledge, our approach is the first to leverage the structure of
the self-suspending task model to perform fast edge-checking.

We incorporate the test in two ways: First, we use it to
ensure that the sequencing algorithm can identify a feasible
schedule against Dabs upon initiation of the scheduling sim-
ulation. Second, we use the test to ensure that scheduling a
subtask τ ji at time t will not result in plan infeasibility due to
Dabs ∪Ds2s.

To describe our test, we first define an active deadline
(Definition 3) and an active subtask (Definition 4).

Definition 3. Active Deadline: A subtask-to-subtask deadline
Ds2s

〈τji ,τyx〉
is considered active for t ∈ [sji , f

y
x ), and an absolute

deadline Dabs

τ
j
i

is considered active for t ∈ [0, f ji ).

Definition 4. Active Subtask: A subtask is active at time t if
it is unexecuted at time t and is directly constrained by an
active deadline.
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8.1. Pseudocode Walkthrough

Figure 9 depicts the pseudocode for the Multiprocessor
Russian Dolls Test. The test takes as input a subtask τ ji , the
task set τ , the time t, and the type of test, and returns either
the feasibility of the set of absolute deadlines (type = 1) or
the feasibility of scheduling τ ji at time t (type = 2).

Our test operates on a specific problem structure: For
every absolute deadline constraint Dabs

τ
j
i

or subtask-to-subtask

deadline constraint Ds2s

〈τba,τji 〉
, subtask τ ji must have only one

predecessor subtask τyx . This means that either τyx = τ j−1i , or
else there exists a self-suspension W〈τyx ,τji 〉. In turn, each τyx
must have exactly one such predecessor subtask. This recurses
until reaching either the epoch subtask τ00 , in the case of an
absolute deadline constraint, or τ ba , in the case of a subtask-
to-subtask deadline. This structure allows us to assume that a
subtask constrained by a deadline will be released as soon as
its predecessor subtask has executed and the wait constraint
has expired. In Section 7.3, we describe the mechanism for
reformulating a general task set into this structure.

Before sequencing the task, the algorithm tests the feasi-
bility of the absolute deadlines by calling the Russian Dolls
Test with τ ji = τ00 (the epoch), the task set τ , time t = 0,
and type = 1 as input. The test determines whether the set
of subtasks constrained by each active deadline can feasibly
be executed within the laxity of the other active deadlines.
Recall that initially, when t = 0, only the absolute deadlines
are active. The algorithm collects the set of active tasks (Line
2) and iterates over all pairs of unique subtasks constrained
by absolute deadlines (Lines 14-15). If a pair of subtasks,
τki and τyx , is allocated to the same agent (i.e., processor) or
requires the same resource, there is potential for contention
between these subtasks. Line 17 checks whether the execution
of one subtask τki , which must occur before dki , can be
nested within the laxity, dyx −Cτki , of the deadline of subtask
τyx , or vice-versa. This nesting is possible if proposition(
dki ≤ dyx − Cyx

)
∨
(
dki − Cki ≥ dyx

)
holds; if no such nesting

is possible (i.e., if
(
dki > dyx − Cyx

)
∧
(
dki − Cki < dyx

)
), the

system returns that it cannot successfully schedule against the
set of absolute deadline constraints (Line 17). If the system can
perform this nesting for all such pairs of subtasks, it returns
that it can successfully schedule τ ji at time t (Line 22).

If the task sequencer calls the Russian Dolls Test to de-
termine the feasibility of scheduling τ ji at time t (if type
= 2), it must first consider the direct effect of executing
τ ji . The algorithm iterates over all active subtasks (Definition
4) not including τ ji (Line 4). If another active subtask τyx
is assigned to the same agent or requires the same resource
as τ ji (Line 5), the test determines whether it is possible to
nest the execution of τ ji within the laxity of τyx ’s deadline
(Line 6). If such nesting is impossible, the algorithm returns
false, prohibiting the scheduling of τ ji at time t (Line 13).
Otherwise, if scheduling τ ji at time t would activate a subtask-
to-subtask deadline Ds2s

〈τji ,τzi 〉
(Definition 3), the algorithm must

consider the indirect effects of activation on the other subtasks
influenced by this deadline constraint. If such activation would
occur, the test stores the set of those subtasks explicitly

multiprocessorRussianDollsTest(τ ji ,τ ,t,type)
1: if type = 1 then
2: τgroup ← τactive

3: else if (type = 2) ∧
(
∃Ds2s

〈τji ,τzi 〉

)
then

4: for all τyx ∈ τactive\τ ji do
5: if τyx and τ ji use the same agent or resource then
6: if t+ Cji > dyx − Cyx then return false
7: end if
8: end if
9: end for

10: τgroup ← {τki |j < k ≤ z, ∀Ds2s

〈τji ,τzi 〉
}

11: else
12: τgroup ← ∅
13: end if
14: for all τki ∈ τgroup do
15: for all τyx ∈ τactive\τki do
16: if τki and τyx use the same agent or resource then
17: if

(
dki > dyx − Cyx

)
∧
(
dki − Cki < dyx

)
then return

false
18: end if
19: end if
20: end for
21: end for
22: return true

Fig. 9: Pseudocode describing the Multiprocessor Russian
Dolls Test.

constrained by Ds2s

〈τji ,τzi 〉
, excluding τ ji (Line 10). (Note that

the algorithm has already tested the feasibility of τ ji .)
Next, the algorithm iterates over the subtasks in this group

and over the set of active subtasks (Lines 14-15). If an active
subtask τyx and a subtask τki constrained by Ds2s

〈τji ,τzi 〉
are

assigned to the same agent or require the same resource (Line
16), the test determines whether it is possible to nest the
execution of τki within the laxity of τyx ’s deadline, or vice-
versa (Line 17). The implicit deadline dki for τki ∈ τgroup is
calculated assuming τ ji is executed at time t for the purposes
of the test. If nesting is not feasible, the algorithm returns
false, indicating there is no guarantee that a feasible schedule
exists if τ ji is executed at time t (Line 17). If nesting can be
performed for all such pairs of subtasks, the algorithm returns
true, indicating that τ ji can be scheduled at time t (Line 22).

8.2. Proof of Correctness of Multiprocessor Russian Dolls Test

The Multiprocessor Russian Dolls Test is polynomial in
time complexity as it only performs pairwise comparisons
between active subtasks and the tasks in τgroup, and is there-
fore not a complete schedulability test. However, we prove in
this section that the algorithm is nonetheless correct, in that
only pairwise comparisons of subtasks are necessary to ensure
schedule feasibility.

The test leverages the problem structure inherent in the
augmented self-suspending task model in order to perform
efficient computation. Recall that the task model requires
every subtask constrained by an absolute Dabs

τ
j
i

or subtask-to-
subtask Ds2s

〈τji ,τki 〉
deadline to have exactly one predecessor. For

absolute deadline Dabs

τ
j
i

, the precedence recurses from τ ji to
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τ j−1i and so on through τ1i . Likewise, for subtask-to-subtask
deadline Ds2s

〈τji ,τki 〉
, the precedence recurses from τki to τk−1i

through τ ji . This problem structure restricts the interaction of
deadlines in the task set.

Lemma 8.1. Scheduling τ ji does not change the implicit
deadlines or the laxity of any subtask τyx unless x = i and
a subtask-to-subtask deadline Ds2s

〈τji ,τzi 〉
with i ≤ y ≤ z exists.

Proof: Consider a set of intra-task deadlines for τi. If
the problem is correctly structured as an augmented self-
suspending task model, then each embedded subtask in the set
τgroup = {τ j+1

i , . . . , τyi , τ
z
i } has one predecessor that is ei-

ther a member of τgroup or is τ ji . Thus, when τ ji is scheduled,
implicit deadlines δyx for subtasks τyx /∈ {τ ji , τ

j+1
i , . . . , τyi , τ

z
i }

are unchanged.

Next, we use Lemma 8.1 to demonstrate the correctness of
the Russian Dolls Test:

Theorem 8.2. The Russian Dolls Test is correct in that it
requires only pairwise comparisons between active subtasks
τactive and subtasks in τgroup.

Proof: When τ ji is scheduled, the implicit deadlines for
active subtasks may be tightened. We show that this tightening
will not result in temporal infeasibility. As in Lemma 8.1,
scheduling τ ji does not change the implicit deadlines or slack
times of any subtask τyx unless x = i and a subtask-to-
subtask deadline Ds2s

〈τji ,τzi 〉
with i ≤ y ≤ z exists. In the case

where x 6= i or there is no Ds2s

〈τji ,τzi 〉
, if it is feasible to nest

an active subtask τyx within the laxity of every other active
subtask τ qp at time to, this schedule commitment will reduce
the slack available for future scheduling commitments but will
not tighten the deadlines of other active subtasks. As such, a
pairwise comparison between subtasks in τgroup and subtasks
in τactive is sufficient to produce of a feasible schedule.

According to Theorem 8.2, it is sufficient to consider all
pairwise comparisons between subtasks in τactive and τgroup
to ensure correctness of the Russian Dolls Test. However,
these comparisons are not necessary for correctness. While the
computational complexity of the test is polynomial in time, as
discussed in Section 10, we seek to reduce the computational
complexity further by leveraging the fact that these subtasks
do not all utilize the same agents and resources.

Corollary 8.3. The Russian Dolls Test is correct in that it
requires only pairwise comparisons for each

〈
τyx , τ

j
i

〉
where

τyx ∈ τactive and τ ji ∈ τgroup (as in Theorem 8.2), such that
Aa
τji

= Aa
τjx

and
〈
τyx , τ

j
i

〉
∈ τR.

Proof: Scheduling any subtask in τ ji ∈ τgroup can only
result in infeasibility if the required agent or resource is not
available to execute τ ji before dji because the agent or resource
is occupied by some τyx ∈ τactive. Thus, to ensure feasibility
in the Russian Dolls Test, it is only necessary to consider
pairwise comparisons between subtasks in τgroup and τactive
that share the same agent or resource.

8.3. Russian Dolls Test Complexity Analysis

Here, we analyze the computational complexity of the
Russian Dolls Test. The test can be called under one of two
conditions, Type 1 or Type 2, depending on how the test is
being used. In either case, the complexity is the same. For
Type 1, at most |τ | are added to τgroup. Then, in Lines 14-
21, every member of τgroup is compared to each member
of τactive in order to determine whether each τki ∈ τgroup
can nest within the slack of τyx ∈ τactive, or vice-versa (Line
17). As such, the complexity of the Russian Dolls Type 1
Test is O

(
|τ |2

)
. For Type 2, the algorithm first checks the

feasibility of scheduling τ ji at time t in Lines 4-9. Here, the test
considers pairings of τ ji to each subtask in τactive, resulting in
a maximum of |τ |− 1 operations. Next, Lines 14-21 consider
pairings of each τki in τgroup to each subtask in τactive.
There are at most τ −1 in both τgroup and τactive, resulting
in |τ |(|τ | − 1) evaluations. Overall, the Type 2 Russian Dolls
Test is of complexity O (|τ |(|τ | − 1) + (|τ | − 1)) = O

(
|τ |2

)
.

Thus, the complexity of the Russian Dolls Test under Type 1
or 2 is given by O

(
|τ |2

)
.

9. COMPLEXITY OF TERCIO

As presented in Section 5, the computational complexity of
Tercio’s agent allocation subroutine is given by O

(
2|A||τ |

)
.

Here, we derive the complexity of Tercio’s sequencing sub-
routine (Figure 5). Tercio’s sequencing subroutine, TERCIO-
SEQUENCER, begins in Line 1 by calling the reformulation
algorithm, SEQUENCER-REFORMULATE (Figure 6), to
transform general task sets into the structured model required
for the schedulability test. The complexity of this subroutine
is given by O

(
|τ |2 + |τ |2

(
|τ |2log|τ |+ |τ ||TC|

))
. After re-

formulation, the sequencing subroutine uses the Russian Dolls
Test (Figure 9, Type 1 test) to ensure the feasibility of Dabs,
which has a complexity of O(|τ |) (Section 8.3).

Next, the sequencer iterates through time to sequence all
tasks (Line 1, Figure 5). The sequencing algorithm iterates
fmax = max

τ
j
i
f ji time steps at most, assuming a unit time

step, and fmax
dt

otherwise. At each iteration, a maximum
of n subtasks (Lines 5-6) are available for scheduling
with satisfied precedence constraints. The priority queue
of available subtasks is sorted with O(nlog(n)). Line 7 of
the sequencer (Figure 5) then evaluates the feasibility of
scheduling each subtask using the Russian Dolls Type 2 Test,
the complexity of which is given by O(|τ |) (Section 8.3).
Finally, the sequencer performs an APSP computation (Line
8, Figure 5) for each subtask τ ji with a deadline constraint
Ds2s

〈τji ,τyx〉
. This involves O

(
|τ |2log|τ |+ |τ ||TC|

)
operations.

Thus, the sequencer’s complexity is of O (Sequencer) =

O
(
|τ |2 + |τ2|+

(
|τ |2+ |τ |2nfmaxnlog(n)

) (
|τ |2log|τ |+ |τ ||TC|

))
=

O
((
fmaxn2log(n)

) (
|τ |4log|τ |+ |τ |3|TC|

))
.

Given the above, Tercio – including task allocation, the
sequencer, and all sequencing subroutines – is of complexity
O

(
2|A||τ | (fmaxn2log(n)

) (
|τ |4log|τ |+ |τ |3|TC|

))
.

10. EVALUATION AND DISCUSSION

In this section, we empirically validate that Tercio quickly
produces solutions within 10% of optimal for multi-agent
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scheduling problems with temporospatial constraints. Results
were generated using an off-the-shelf laptop with an Intel Core
i7-2820QM CPU 3.20GHz (8 Cores) and 16 GB of RAM.

Tercio is composed of a Task Reformulator (Section 7.3,
Figure 6), Task Allocator (Section 5) and Task (Section 6,
Figure 5). The Reformulator is implemented in Java, the Task
Allocation algorithm is solved using a Java interface to a
third-party optimizer (Gurobi), and the Task Sequencer is in
MATLAB. Tercio is an iterative algorithm; for this evaluation,
we limited the number of iterations to 25. We found that
solutions returned by Tercio did not improve significantly
with additional iterations for the problems we were able to
benchmark against the optimal solution. For agent allocation,
we set α1 = 2 and α2 = 1, as this generally achieves
helpful allocations for the sequencer, and terminated Gurobi
once the incumbent solution was found to be within 0.1% of
optimal. We compared our approach against three benchmarks:
1) TeSSI (Nunes and Gini, 2015), 2) OCGA (Zhang and Wong,
2015), and 3) an exact, MILP-based solution method. For all
algorithms, a 60-minute timeout was applied.

We compared our approach to a technique based on TeSSI
and its variants (Nunes and Gini, 2015; McIntire et al., 2016).
At its core, TeSSI is an insertion heuristic. As discussed
in (Gendreau et al., 1998), insertion heuristics function by
deciding which subtask should next be inserted, where, and
to which agent based on some prescribed criteria. TeSSI’s
criterion is the makespan of the agent to which the subtask
is assigned. TeSSI operates on a more-restricted problem
structure that involves neither upper- and lowerbound temporal
constraints nor resource constraints. Thus, to compute each
agent’s makespan, TeSSI simply adds the duration of each
task and the time spent traveling between tasks, which is
linear in the number of subtasks assigned to the agent. In
contrast, Tercio considers problems with upper- and lower-
bound temporal constraints and resource constraints. In order
to correctly schedule against upperbound temporal constraints,
it is necessary to employ a temporal consistency check (e.g.,
Tercio’s Russian Dolls Test) as commitments are made. A
directed path consistency algorithm (Dechter et al., 1991) may
also serve this purpose as an alternative to the Russian Dolls
Test. For our comparison, we used Snowball (Planken et al.,
2012), a state-of-the-art algorithm that achieves complexity of
O(n2) for certain cases, such as graphs of constant tree width.
We refer to this APSP-variant of TeSSI as TeSSI*.

OCGA is a state-of-the-art genetic algorithm developed
for job shop scheduling problems (Zhang and Wong, 2015).
We adopted the parameter prescribed by Zhang and Wong
(2015) for OCGA as follows: population size N = 100,
pairs of parents replicating per iteration r = 7, probability
for crossover pc = 1, probability for shifting genes’ loci
pe = 1, probability for re-allocating agent for a given subtask
pm = 0.06, degeneration ratio R = 0.09, and number of
iterations N = 2, 500. As with TeSSI*, it was necessary
to add a directed path consistency algorithm to evaluate the
quality of each schedule; we also used Snowball for this
purpose (Planken et al., 2012). In order to improve runtime, we
used a hashing function, which stored the quality of previously
computed schedules to reduce the number of calls to Snowball

with successive iterations of OCGA. Genetic algorithms such
as OCGA are generally probabilistically guaranteed to find
the optimal solution as the number of iterations approaches
infinity. Thus, given enough time, OCGA will identify a
solution better than that generated by Tercio. We find that
a more-helpful benchmark than comparing solution quality
between OCGA and Tercio is to measure how much time
is required for OCGA to find a solution comparable to or
better than that identified by Tercio. Thus, in our results, we
report the computation time required for OCGA to find such
a solution. For instances in which Tercio cannot identify a
solution, we report the total computation time required for all
2,500 iterations, as prescribed by Zhang and Wong (2015).

The exact, MILP-based formulation, corresponding to solv-
ing the MILP defined in Section 3 and objective function in
Equation 13, was solved by calling Gurobi using its default
settings, which sets the optimality threshold to 0.1%.

10.1. Generating Random Problems

We evaluated the performance of Tercio when applied to
randomly generated problems. The lowerbound agent-task
times were of the form lba

τji
and were drawn from a uniform

distribution over the interval [1, 10]. Expected agent-task times
Ca
τji

were generated from Ca
τji
∼ U [lba

τji
, 10]. We did not ex-

plicitly constrain the maximum amount of time an agent spent
performing a subtask. Approximately 25% of the generated
precedence constraints W〈τy−1

x ,τ
y
x〉 were wait constraints with

non-zero lowerbounds drawn from the interval [1, 10]. Approx-
imately 25% of subtasks had a wait constraint, W〈τji ,τyx〉, in
addition to their self-suspension constraint, W〈τy−1

x ,τ
y
x〉.

In order to generate subtask-to-subtask deadlines, we ran-
domly sampled two subtasks, τ ji and τyx , such that y ≥ j,
and added a deadline constraint, Ds2s

〈τji ,τyx〉
. To add absolute

deadlines, we randomly sampled a subtask, τ ji , and added
a deadline constraint, Dabs

τ
j
i

. We sought to generate problems
of sufficient challenge for our validation. We established a
metric, D̂ =

∑
Ds2s〈τji ,τyx〉

(y − j + 1) +
∑
Dabs
τ
j
i

j, and set it to

1
4 for our empirical evaluation depicted by Figure 10a-10l.
The upperbound of each deadline constraint was drawn from
a uniform distribution, with the lowerbound set to the tightest
feasible deadline and the upperbound set to the sum over
subtask costs and wait constraint times. The 1-D physical
locations of subtasks were drawn from a uniform distribution
[1, |τ |]. The number of subtasks mi within each task τi was
drawn from a uniform distribution in the interval [1, 2n], where
n is the number of tasks τi in τ . While an agent performed
subtask τ ji at resource location (x), no other agent could work
on a subtask at location (u) if x− 1 ≤ u ≤ x+ 1.

10.2. Computation Speed and Scalability

Figures 10a, 10e, and 10i depict our evaluation of Tercios
scalability and computational speed. We present the median
and upper/lower quartiles of the computation time for 50
randomly generated problems incorporating 5, 10, or 100
agents (Figures 10a, 10e, and 10i, respectively) and between 4
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)
(j) (k) (l)

Fig. 10: This figure depicts the performance of Tercio relative to TeSSI*, OCGA, and the exact solution (where possible).
Subfigures 10a-10d, 10e-10h, and 10i-10l present results for problems involving 5, 10, and 100 agents, respectively. When
reporting computation time or solution quality (i.e., the makespan), the graphs depict the median and quartiles. Tercio is
represented in blue, TeSSI* in red, OCGA in green, and the MILP-based solution technique in black. Note that OCGA is not
depicted when reporting the optimality gap, as we terminated OCGA once it found a solution as good as that of Tercio.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11: This figure depicts the performance of Tercio relative to the exact solution, TeSSI*, and OCGA. Subfigures 11a-11d,
11e-11h, and 11i-11l present results for problems that involve 10 agents and are lightly, moderately, and severely constrained,
respectively. Tercio is depicted in blue, TeSSI* in red, OCGA in green, and the MILP-based solution technique in black.
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and 1, 024 subtasks. Where possible, we provide the compu-
tation time for the MILP-based solution method, the insertion
algorithm, and the time required for OCGA to find a solution
as good as that identified by Tercio. Note that the median
is typically reported for such optimization problems because
the distributions are often skewed and the mean is a less
informative measure (Tsamardinos and Pollack, 2003).

Tercio can solve problems involving up to 100 agents and
1,000 subtasks in ∼120 seconds, a substantial improvement
over our benchmarks. We note that TeSSI* and OCGA com-
pute more slowly than previously published variants because
of the need to include a temporospatial feasibility test for
each assignment according to the upper- and lowerbound tem-
porospatial constraints, requiring O(n2) step in the innermost
loop of the algorithm. This feasibility test greatly increases
computation time despite using the fastest technique available
(Planken et al., 2012). Our findings underscore the benefit to
computation time provided by our schedulability test.

10.3. Optimality

We empirically validate that Tercio produces solutions
within 10% of optimal. Figures 10c, 10g, and 10k depict the
median and upper/lower quartiles of the makespans produced
by Tercio, along with the insertion algorithm for 50 randomly
generated problems involving 5 and 10 agents and problem
sizes spanning four to 42 tasks. The median deviation from
optimal for Tercio was less than 10% for all testable problem
sizes. However, the median deviation from optimal for the
insertion algorithm increased up to 100% for larger problems.

10.4. Evaluating Completeness

Figures 10d, 10h, and 10l depict the proportion of problems
solved by Tercio with 5, 10, and 100 agents, respectively.
While TeSSI* and OCGA were able to solve slightly more
smaller problems than Tercio, Tercio’s ability overtook that of
both TeSSI* and OCGA as problem size increased. Further,
Tercio’s completeness is proportional to the number of agents;
conversely, OCGA and TeSSI* appear less able to identify
satisfactory solutions as the number of agents increases.

10.5. Robustness

To test the robustness of our approach, we considered
problems that are more- or less-constrained in Figures 11a-
11d, 11e-11h, and 11i-11l. We set D̂ = { 04 ,

1
4 ,

2
4}, respectively.

Further, we varied the proportion of subtasks with wait con-
straints W〈τji ,τyx〉 such that τyx 6= τ j+1

i in the set { 04 ,
1
4 ,

2
4},

respectively. We found that, relative to OCGA and TeSSI*,
Tercio’s performance remained strong across a range of con-
straint settings. Tercio’s completeness did degrade for the
most-constrained problems (Figure 11l), but its scalability and
solution quality remained strong relative to our benchmarks.

10.6. Robot Demonstration

Here, we demonstrate the use of Tercio in two hypothetical
manufacturing scenarios. In both cases, a team (i.e., set) of
robots worked to complete tasks on a simulated fuselage. The

robots performed their tasks at specific locations on the factory
floor, where there can be multiple subtasks at each location.
In order to prevent collisions, each robot reserved the physical
location for its subtasks, along with any immediately adjacent
task locations; thus, no two workers could be present at the
same location (or in neighboring locations) at the same time.
For simplicity, only absolute deadlines Dabs were considered,
although other constraints could be easily incorporated.

In the first evaluation, two KUKA Youbots simulated com-
pletion of drilling tasks on an aerospace fuselage, as shown in
Figure 12 (video available at http://tiny.cc/t6wjxw). Initially,
the robots planned to evenly split 12 identical tasks down
the middle of the fuselage. After the robots completed their
first subtasks, a worker then requested time to inspect the
completed work along the left half of the fuselage; in the
problem formulation, this corresponds to adding a resource
reservation for the left half for a specified period of time.
Tercio re-planned in response to the addition of this new
constraint, and reallocated work in a reasonable manner to
make productive use of both robots. For the purposes of this
demonstration, the re-planning process involved calling Tercio
while forcing a fixed assignment and ordering of all subtasks
completed prior to the re-plan request. More-efficient methods
could also be considered, such as pruning completed subtasks
and reformulating appropriate temporal constraints.

Second, we demonstrated Tercio on a larger simu-
lated problem, as shown in Figure 13 (video available at
http://tiny.cc/jladjy). In this demonstration, which incorporated
ABB’s Robot Studio simulation environment, Tercio coor-
dinated 5 robots to perform 110 identical tasks around an
aerospace fuselage. Tercio was applied to re-plan in response
to three disturbances: 1) a human workers request to enter the
space to perform a quality-assurance (QA) inspection, 2) a
robot breakdown, and 3) changing task deadlines. The duration
of the QA request and the robot breakdown were known at the
time of the disturbance. Tercio modeled the quality-assurance
request as a resource reservation for the section of the fuselage
to be inspected (i.e., no robots could occupy that space for a
given duration). Tercio modeled the robot breakdown as an
agent occupied by a repair subtask for a given duration.

These demonstrations indicate the applicability of the Tercio
algorithm for solving real-world problems with application-
specific features and complex objective functions. For ex-
ample, localization errors among mobile robots must be
accounted for during schedule generation. Intra-robot errors
accumulate, which can result in gaps or overlaps in work. In
order to reduce the number of opportunities for such errors
to occur, we added a term to reduce the number of times
when two different agents were used to perform adjacent work,
as defined by g4(A, τ ) ≥

∑
a∈A

∑
〈τji ,τyx〉∈τR Aa

τ
j
i

× (1−Aaτyx ).
Also, schedule changes in response to disturbances must
be interpretable by human workers. Small disturbances can
potentially result in substantial changes to robot task as-
signments, and human workers may find it challenging to
understand and anticipate the actions of the robots. In many
cases, small schedule changes may be an acceptable trade-off
for a marginally sub-optimal solution. As such, we included
an additional term to minimize the number of assignment
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Fig. 12: A robotic team completes mock aerospace final-
assembly tasks while maintaining a safe distance from human
workers.

Fig. 13: A robotic team adapts performance of work related
to a virtual fuselage in response to multiple disruptions.

changes from one schedule’s allocation P a
τji

to the next Aa
τji

,
as defined by g5(A,P , τ ) ≥

∑
a∈A

∑
τ
j
i ∈τ

Aa
τ
j
i

× (1− P a
τ
j
i

).
While practitioners might attempt to apply other scheduling
technology (e.g., one of the benchmarks we employed), we
believe Tercio provides a singular ability to rapidly and near-
optimally reschedule robots in dynamic environments.

11. CONCLUSION

We developed Tercio, a scheduling algorithm made efficient
through a fast, multi-agent task sequencer inspired by real-time
processor scheduling techniques. We used the task sequencer
in conjunction with a MILP solver to compute an integrated
multi-agent task sequence that satisfies precedence and tem-
poral and spatial-proximity constraints. Although Tercio is
incomplete, we empirically show that the algorithm produces
schedules within 10% of the optimal for real-world, structured
problems. We also show that Tercio is able to solve more prob-
lems and achieve better-quality solutions for such problems
than the prior state-of-the-art technique. Finally, we provide
physical and virtual demonstrations of Tercio coordinating the
activities of a robotic team within a human work environment.
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J.-F. Cordeau, G. Stojković, F. Soumis, and J. Desrosiers.
Benders decomposition for simultaneous aicraft routing and
crew scheduling. Transport. Sci., 35(4):357–388, 2001.

J. W. Curtis and R. Murphey. Simultaneous area search and
task assignment for a team of cooperative agents. In Proc.
GNC, 2003.

M. Dai, D. Tang, A. Giret, M. A. Salido, and W. D. Li.
Energy-efficient scheduling for a flexible flow shop using
an improved genetic-simulated annealing algorithm. Rob.
and Comp.-Intg. Manuf., 29(5):418–429, 2013.

L. Davis. Job shop scheduling with genetic algorithms. In
Proc. Int’l Conference on GA’s, 1985.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. AI, 49(1), 1991.

U. C. Devi. An improved schedulability test for uniprocessor
periodic task systems. In Proc. ECRTS, 2003.

A. Drexl, R. Nissen, J. H. Patterson, and F. Salewski.
Progen/πx an instance generator for resource-constrained
project scheduling problems with partially renewable re-
sources and further extensions. EJOR, 125(1):59 – 72, 2000.

E. Erdem, E. Aker, and V. Patoglu. Answer set programming
for collaborative housekeeping robotics: representation, rea-
soning, and execution. ISR, 5(4):275–291, 2012a.

E. Erdem, K. Haspalamutgil, V. Patoglu, and T. Uras.
Causality-based planning and diagnostic reasoning for cog-
nitive factories. In Proc. ETFA, pages 1–8, 2012b.

E. Erdem, V. Patoglu, Z. G. Saribatur, P. Schüller, and T. Uras.
Finding optimal plans for multiple teams of robots through
a mediator: A logic-based approach. Theory and Practice
of Logic Programming (Sl), 13(4-5):831–846, 2013.

E. Falkenauer and S. Bouffouix. A genetic algorithm for job
shop. In Proc. ICRA, pages 824–829. IEEE, 1991.

H.-L. Fang, P. Ross, and D. Corne. A promising genetic al-



19

gorithm approach to job-shop scheduling, rescheduling, and
open-shop scheduling problems. In Proc. Int’l Conference
on GA’s, pages 375–382, 1993.

V. Fernandez-Viagas and J. M. Framinan. On insertion tie-
breaking rules in heuristics for the permutation flowshop
scheduling problem. Computers & Operations Research,
45:60–67, 2014.

R. W. Floyd. Algorithm 97: Shortest path. Comm. ACM, 5
(6):345–, June 1962.

M. Gendreau, A. Hertz, G. Laporte, and M. Stan. A general-
ized insertion heuristic for the traveling salesman problem
with time windows. OR, 46(3):330–335, 1998.

A. M. Geoffrion. Generalized benders decomposition. J. Op-
timization Theory and Applications, 10(4):237–260, 1972.

M. Godinho Filho, C. F. Barco, and R. F. T. Neto. Using
genetic algorithms to solve scheduling problems on flexible
manufacturing systems (fms): a literature survey, classifi-
cation and analysis. Flexible Services and Manufacturing
Journal, 26(3):408–431, 2014.

M. C. Gombolay and J. A. Shah. Uniprocessor sched-
uler for task sets with well-formed precedence relations,
temporal deadlines, and wait constraints. In Proc. AIAA
Infotech@Aerospace, 2012.

M. C. Gombolay and J. A. Shah. Schedulability analysis of
task sets with upper- and lower-bound temporal constraints.
J. Aerospace Information Systems, 11(12):821–841, 2015.

M. C. Gombolay, R. J. Wilcox, and J. A. Shah. Fast scheduling
of multi-robot teams with temporospatial constrints. In
Proc. RSS, Berlin, Germany, June 24-28, 2013.

I. Gurobi Optimization. Gurobi optimizer reference manual,
2016. URL http://www.gurobi.com.

M. G. Harbour and J. C. Palencia. Response time analysis for
tasks scheduled under EDF within fixed priorities. In Proc.
RTSS, 2003.

I. Harjunkoski and I. E. Grossman. Decomposition techniques
for multistage scheduling problems using mixed-integer and
constraint programming methods. Computers & Chemical
Engineering, 26:1533–1552, 2002.

J. N. Hooker. Logic-Based Benders Decomposition, in Logic-
Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. John Wiley & Sons, Inc., 2000.

V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP
models for a class of optimization problems. J. Computing,
13(4):258–276, 2001.

S. M. Johnson. Optimal two- and three-stage production
schedules with setup times included. Naval Research
Logistics Quarterly, 1(1):61–68, 1954.

E. Jones, M. Dias, and A. Stentz. Time-extended multi-robot
coordination for domains with intra-path constraints. AuRo,
30(1):41–56, 2011.

G. A. Korsah. Exploring bounded optimal coordination
for heterogeneous teams with cross-schedule dependencies.
PhD thesis, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, January 2011.

G. A. Korsah, A. Stentz, and M. B. Dias. A comprehensive
taxonomy for multi-robot task allocation. IJRR, 32(12):
1495–1512, 2013.

A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar. To-

wards a swarm of agile micro quadrotors. AuRo, 35(4):
287–300, 2013.

P. Laborie. Algorithms for propagating resource constraints in
AI planning and scheduling: existing approaches and new
results. AI, 143(2):151–188, 2003.

K. Lakshmanan and R. R. Rajkumar. Scheduling self-
suspending real-time tasks with rate-monotonic priorities.
In Proc. RTAS, 2010.

K. Lakshmanan, S. Kato, and R. R. Rajkumar. Open problems
in scheduling self-suspending tasks. In Proc. RTSOPS,
2010.

T. Lemaire, R. Alami, and S. Lacroix. A distributed tasks
allocation scheme in multi-uav context. In Proc. ICRA,
pages 3622–3627, April 2004.

J. K. Lenstra and A. H. G. R. Kan. Complexity of scheduling
under precedence constraints. OR, 26(1):22–35, 1978.

H. Li and K. Womer. Scheduling projects with multi-skill
personnel by a hybrid MILP/CP benders decomposition
algorithm. J. Scheduling, 12:281–298, 2008.

C. Liu and J. H. Anderson. Improving the schedulability of
sporadic self-suspending soft real-time multiprocessor task
systems. In Proc. RTCSA, 2010.

L. Liu and D. A. Shell. Optimal market-based multi-robot task
allocation via strategic pricing. In Proc. RSS, 2013.

R. K. Martin. Large Scale Linear and Integer Optimization:
A unified Approach. Kluwer Acadmic Publishers, 1999.

M. McIntire, E. Nunes, and M. Gini. Iterated multi-robot
auctions for precedence-constrained task scheduling. In
Proc. AAMAS, pages 1078–1086, 2016.

A. Mercier, J.-F. Cordeau, and F. Soumis. A computational
study of benders decomposition for the integrated aircraft
routing and crew scheduling problem. Computers & Oper-
ations Research, 32(6):1451 – 1476, 2005.

S. M. Mousavi and R. Tavakkoli-Moghaddam. A hybrid
simulated annealing algorithm for location and routing
scheduling problems with cross-docking in the supply chain.
J. Manufacturing Systems, 32(2):335–347, 2013.

N. Muscettola, P. Morris, and I. Tsamardinos. Reformulating
temporal plans for efficient execution. In Proc. KR&R, June
2-5, 1998.

E. Nunes and M. Gini. Multi-robot auctions for allocation
of tasks with temporal constraints. In Proc. AAAI, pages
2110–2116, 2015.

I. H. Osman and C. Potts. Simulated annealing for permutation
flow-shop scheduling. Omega, 17(6):551–557, 1989.

J. H. Patterson. A comparison of exact approaches for solving
the multiple constrained resource, project scheduling prob-
lem. Management Science, 30(7):854 – 867, 1984.

J. M. Pinto and I. E. Grossmann. A continuous time MILP
model for short term scheduling of multistage batch plants.
Industrial & Eng. Chem. Research, 34(9):3037–3051, 1995.

E. Plaku. Planning in discrete and continuous spaces: From
ltl tasks to robot motions. In Adv. in Autonomous Robotics,
pages 331–342. Springer, 2012.

L. R. Planken, M. M. de Weerdt, and R. P. van der
Krogt. Computing all-pairs shortest paths by leveraging low
treewidth. JAIR, pages 353–388, 2012.

S. Ponda, J. Redding, H.-L. Choi, J. P. How, M. Vavrina, and



20

J. Vian. Decentralized planning for complex missions with
dynamic communication constraints. In Proc. of ACC, pages
3998–4003. IEEE, 2010.

R. R. Rajkumar. Dealing with self-suspending period tasks.
Technical report, IBM, Armonk, New York, 1991.

M. Rekik, J.-F. Cordeau, and F. Soumis. Using benders de-
composition to implicitly model tour scheduling. Transport.
Sci., 128:111–133, 2004.

H. Ren and L. Tang. An improved hybrid milp/cp algorithm
framework for the job-shop scheduling. In Proc. ICAL,
August 2009.

W. Ren, R. W. Beard, and T. W. McLain. Coordination
variables, coordination functions, and cooperative timing
missions. GNC, 28(1):150–161, 2005.

F. Ridouard and P. Richard. Negative results for scheduling
independent hard real-time tasks with self-suspensions. In
Proc. RTNS, May 30-31 2006.

S. Sariel and T. Balch. Real time auction based allocation
of tasks for multi-robot exploration problem in dynamic
environments. In Proc. AAAI Workshop on Integrating
Planning into Scheduling, July 9 - 13 2005.

D. E. Smith, F. Frank, and A. Jónsson. Bridging the gap
between planning and scheduling. KER, 15:47–83, 2000.

M. M. Solomon. Algorithms for the vehicle routing and
scheduling problems with time window constraints. OR,
35(2):254–265, 1987.

Y. N. Sotskov and N. V. Shakhlevich. Np-hardness of shop-
scheduling problems with three jobs. Discrete Applied
Mathematics, 59(3):237–266, 1995.

C. Sung, N. Ayanian, and D. Rus. Improving the performance
of multi-robot systems by task switching. In Proc. ICRA,
2013.

K. P. Sycara, S. F. Roth, N. Sadeh, and M. S. Fox. Resource
allocation in distributed factory scheduling. Expert, 6(1):
29–40, 1991.

S. J. R. Tal Shima and P. Chandler. UAV team decision and
control using efficient collaborative estimation. In Proc.
ACC, pages 4107–4112, June 8-10 2005.

W. Tan. A linearized polynomial milp for the integration of
process planning and scheduling. JIM, 15:593–605, 2004.

H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling
algorithms for heterogeneous processors. In Proc. Hetero-
geneous Computing Workshop, pages 3–14. IEEE, 1999.

I. Tsamardinos and M. E. Pollack. Efficient solution tech-
niques for disjunctive temporal reasoning problems. AI, 151
(1-2):43–89, 2003.

I. Tsamardinos, N. Muscettola, and P. Morris. Fast transfor-
mation of temporal plans for efficient execution. In Proc.
AAAI, 1998.

P. J. Van Laarhoven, E. H. Aarts, and J. K. Lenstra. Job
shop scheduling by simulated annealing. OR, 40(1):113–
125, 1992.

P. Vilı́m, R. Barták, and O. Čepek. Extension of o (n log n)
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