6.815/6.865 Digital & Computational Photography

Problem Set 3: Matting and Morphing

Due Friday, April 4 7:00pm

Matting

Matting refers to the process of separating the foreground and background elements of an
image, generally for the purpose of compositing. A variety of methods have been pro-
posed to solve this difficult and underconstrained task. In this assignment, you will be
implementing a simplified version of Chuang et al.’s Bayesian technique from CVPR 2001:
http://grail.cs.washington.edu/projects/digital-matting/image-matting/.

The user provides an input image and a corresponding trimap which coarsely classifies
each pixel as foreground, background, and unknown. The known information from the
foreground and background pixels is then used to estimate the color and transparency of
the unknown pixels. This is done as follows:

e Model the color statistics of foreground and background using three-dimensional
Gaussian distributions in RGB space. Note that Chuang et al. model both the fore-
ground and background using multiple Gaussians each (a Gaussian Mixture Model)
to create local estimates of the likelihoods. For this assignment, assume that the dis-
tributions are spatially invariant. In other words, you only need to compute two
Gaussians—one for the foreground pixels, and another for the background pixels.

e For each unknown pixel, compute a maximum a posteriori estimate of the foreground
color, background color, and alpha channel. This is achieved using an iterative opti-
mization which is described in the paper and lecture notes.

Problem 1 (6.815/6882)

Implement the simplified matting technique described above and apply it to the provided
images. Specifically, you should compute a matte for toy. jpg using the trimap trimap.png
and composite your result with bookshelf. jpg. The provided image, along with the de-
sired result, is shown below.


http://grail.cs.washington.edu/projects/digital-matting/image-matting/

One thing you should notice about toy.jpg is that the foreground and background are both
fairly uniform in color. This is why the simplified technique works well, even though it
would be too simplified for more general cases.

Place your implementation in a script called matting.m. It doesn’t have to be a neatly ab-
stracted function or anything. If you’d like, you can even hardcode the image dimensions.
The results shown on the previous page were achieved using an initial « of 0.5 for all un-
known pixels, oc = 0.01, and 20 iterations. It’s not a very fast algorithm—maybe a few
minutes for the given parameters—so don’t be alarmed if your code seems slow at first.

In your writeup: Paste images of your alpha matte and composite. That’s all.

Extra credit: In case you have lots of spare time over spring break and want some extra
points: implement the full technique in the Chuang paper and show your results for images
with more variable color distributions. Compare the results to the simplified method.

Morphing

In this part of the assignment you will implement a triangulation based warping method,
and then use it to perform morphing. You can use your technique to achieve a variety of
very cool (but often very tacky) special effects.

Let’s say we're given a small set of input (warped!) pixel coordinates py, ..., p, and their
corresponding output (unwarped!) pixel coordinates py, ..., f,'. Suppose we define a tri-
angular mesh over the input coordinates py, ..., p,. We can apply this same triangulation
to the output pixel coordinates and produce a triangle-to-triangle correspondence between
the two images. We can then use barycentric coordinates to define a pixel-to-pixel mapping
between each corresponding triangle.

For any point p, located in a triangle with vertices po, p1, p2, the barycentric coordinates
Ao, A, Ay are defined such that:

p = Aopo + AMp1+ Aapz 1)
and A\g + A+ A, = 1. 2)

If we replace the vertices py, p1, p2, with the vertices, py, p1, P2, from the corresponding
triangle in the output mesh and use the same barycentric coordinates will we get the cor-
responding pixel f in the output image:

p = Aopo + A1p1 + Axpa.

1 As discussed in lecture, you want to go from warped to unwarped coordinates to produce good results.



Given a point p, and vertices py, p1, p2, the barycentric coordinates can be solved for using
equations (1) and (2). There are 3 unknowns, A, A1, Ap, and 3 equations (equation (1) holds
for both the x and y coordinates).

Problem 2 (6.815/6.865)

Write a script checkerwarp.m that loads the provided checkerboard.png image and gen-
erates the warped image according to the following displacements:

(32,32) — (88,58)
(224,32) — (229,82)
(224,224) — (165,212)
(32,224) — (61,178)

You can use the MATLAB delaunay function in order to triangulate your mesh, and tsearch
to search the triangulation. Remember to add feature points that keep the corners of the

images unwarped. Use bilinear interpolation (e.g. MATLAB interp2 function) to lookup

the color at fractional pixel locations.

You'll be using the same code for the next two problems, so it might be beneficial for you
to write a general warping function. This isn’t required, though.

In your writeup: Paste your results for both warping from input coordinates to output
coordinates, and warping from output to input coordinates. Describe, in a few sentences,
any problems you’ve found with either method.

Problem 3 (6.815/6.865)

Load the images facel. jpg and face2. jpg and their corresponding feature points from
the provided facepts.mat file (loading the MAT file creates two matrices faceptsl and
facepts2 in your MATLAB workspace). Compute the result of warping the feature points
for facel to their corresponding feature points for face2. Put your code in a script called

facewarp.m. Again, remember to add correspondences that keep the corners of the image
fixed.

In your writeup: Display the warped facel image that you generated.

Problem 4 (6.815/6.865)

Finally, with image warping completed, we're ready to perform morphing. Let’s say you
want to compute an image that’s partially between the two faces (say, 0 < ¢ < 1 where 0
corresponds to facel. jpg and 1 corresponds to face2. jpg). Here’s how you do it:

e Linearly interpolate the feature points from both images to produce a set of interme-
diate warping positions: (1-t)*faceptsl + t*facepts2.

e Warp both images to the intermediate positions.



e Linearly blend the two images from the previous step (again using (1 — t) and t as
blending weights.

The interpolation and blending should be weighted so that you can smoothly go from one
image to another. Write this code in a script called morph.m.

In your writeup: Show a morphing sequence of maybe five or six images that goes from
facel. jpg to face2. jpg using evenly spaced values of t between 0 and 1. Also, show a
morphing sequence using your own example images.

Bells & whistles: Combine your matting and morphing. Performing morphing on images
you have composited objects into.

Problem 5 (6.865 only)

This problem is for 6.865 only, and unlike the previous problems, it’s going to be all reading
and writing. Your job is to review a recent publication in computational photography. This
will hopefully give you some more insight into the review process that these papers go
through, and perhaps help you come up with ideas about your final project (and in case
you were concerned, we don’t expect your final project to be publication-quality, but it’s
still helpful to keep the review criteria in mind).

You should select one paper from the provided papers.html file. If there’s another relevant
paper that you're particularly interested in reading, ask us about it and we’ll probably be
okay with it (unless it’s something that you're already supposed to read for one of the
problem sets).

You should use the SIGGRAPH review form, available at the following URL: http://www.
siggraph.org/s2005/main.php?f=cfp&p=papers&s=reviewform. You may omit the nu-
merical ratings from questions 5 and 6. For question 8, try to come up with at least one
outstanding question that you think the authors didn’t address in the paper. You can skip
question 9. You should put your review in your PDF file along with everything else. Try
to be thorough! Probably a paragraph or two for each question, and significantly more for
question 7.

One final note: don’t be compelled to like a paper because it was already published. Ev-
ery paper has some shortcomings. Maybe the method is very elegant and general but
doesn’t end up producing very impressive results. Maybe the results are spectacular, but
the method itself has some mathematical holes. Maybe everything seems great, but there
just aren’t enough details to reproduce the results. It’s up to you as a reviewer to weigh the
strengths and weaknesses of each paper.

Submission

Like the previous assignment, you should assemble a ZIP file that is named after your
Athena login. Make sure this file contains:

o A PDF file with your results and (if you're in 6.865) your review.
e Your MATLAB code:


http://www.siggraph.org/s2005/main.php?f=cfp&p=papers&s=reviewform
http://www.siggraph.org/s2005/main.php?f=cfp&p=papers&s=reviewform

matting.m

checkerwarp.m

facewarp.m
— morph.m
e Any images (other than the provided ones) that might be necessary to run your code.

All submissions are due on the Stellar website by April 4 at 7pm.



