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Multiplexed Flash Illumination for Relighting and Depth Extraction

Abstract1

We multiplex flash illumination to recover both flash and ambient2

light information as well as extract depth information in a single ex-3

posure. Traditional photographic flashes illuminate the scene with4

a spatially-constant light beam. By adding a mask and optics to a5

flash, we can project a spatially varying illumination onto the scene6

which allows us to spatially multiplex the flash and ambient illu-7

minations onto the imager. We apply flash multiplexing to enable8

single exposure flash/no-flash image fusion, in particular, perform-9

ing flash/no-flash relighting on dynamic scenes with moving ob-10

jects. We exploit the defocus of the multiplexing pattern to also11

infer depth information.12

1 Introduction13

Taking good photographs in low-light situations is challenging, and14

a flash is often the most practical option for very dark scenes. Un-15

fortunately, a flash can often ruin the natural ambiance of the avail-16

able lighting, producing harsh, unflattering pictures. Flash/no-flash17

methods [ED04; PSA∗04] combine two images of a scene, one18

taken with a flash and one taken without, to produce a new im-19

age with the best properties of both images. While these methods20

work well for static scenes, the requirement of multiple exposures21

is a significant barrier to the average user, and infeasible for moving22

scenes because of the need for multiple exposures.23

We propose a method for simultaneously capturing flash and ambi-24

ent lighting information in a single exposure. We use a coded flash25

to project a high-frequency pattern onto the scene, which spatially26

multiplexes flash and no-flash information (see Figure 1). Spatially27

multiplexing flash and no-flash gives information about both the de-28

tail and color in the flash regions and the ambient illumination in the29

no-flash regions, though with a reduced resolution and contribution30

from indirect illumination due to the flash.31

We build on the idea of assorted pixels [NN02; NM00] but extend it32

to computational illumination. We aim to spatially multiplex flash33

information into a single image. In contrast to previous work on34

temporal multiplexing of illumination, e.g. [DHT∗00; WGT∗05;35

MS05; NKGR06; SNB07], our goal is to simultaneously record36

both types of information,. Simultaneous capture is important for37

dynamic scenes to avoid a temporal mismatch between the images38

corresponding to the two lighting conditions.39

Furthermore, we want to leverage the defocus information from the40

multiplexing light pattern in order to infer depth information. How-41

ever, in contrast to previous work, [MNBN07] we seek to do so in42

the presence of ambient illumination and with a light pattern that is43

not co-axial with the lens, in order to increase light efficiency.44

The main contributions of this paper are:45

• The introduction of assorted flash pixels to record spatially46

multiplexed flash and ambient information.47

• Estimation of a sparse depth map from flash defocus.48

• Single exposure flash/no-flash applied to dynamic scenes.49

2 Related Work50

Assorted Pixels, proposed by Nayar and Narasimhan[NN02], in-51

troduced a method for sampling multiple dimensions of imaging52

Figure 1: Top: A scene photographed with and without flash. Bot-
tom: Close-ups of two samplings of flash and no-flash pixels using
our multiplexed flash illumination.

(e.g. brightness, color spectrum, time, polarization) by mosaicing53

pixels that sample different dimensions into a single array of pixels.54

We extend this concept by allowing the illumnation to be mosaiced.55

Unlike traditional Assorted Pixels, in which the multiplexing oc-56

curs purely on the image sensor, we multiplex at the illumination57

source and must identify which pixels on the sensor are sampling58

along which dimension.59

Structured lighting has been used to accomplish a variety of tasks,60

including depth and shape estimation[ZN06], refocusing [LCV∗04;61

MNBN07], light transport estimation [SCG∗], and direct and indi-62

rect lighting separation [NKGR06]. Many of these techniques are63

restricted to static scenes because they require multiple images of64

the scene, while our goal is to capture flash and ambient informa-65

tion for a scene in a single exposure. Additionally, some methods66

(e.g. [MNBN07]), require a coaxial camera and projector which is67

accomplished using a beam-splitter. Beam-splitters lose lights, and68

introduce glare, which is undesirable for low-light photography, our69

main application.70

A number of approaches seek to capture a full basis of possible71

illumination to enable arbitrary relighting of a scene, e.g. [DHT∗00;72

WGT∗05]. This requires a large number of images to encode the73

full set of possible direction and, in the case of dynamic scenes,74

careful correction must be applied to warp the data [WGT∗05]. In75

contrast, we seek a simultaneous capture but restrict ourselves to76

two illumination conditions.77

Nayar et. al. [NKGR06] describe a method for fast separation of78

the direct and indirect component of a scene illuminated by a single79

light source. This method uses a sequence of high-frequency pat-80

terns projectected onto the scene to perform the separation. They81

also describe a single exposure version which can produce separa-82

tions, albeit with a loss in resolution. We assume the scene is lit83

by two sources, our multiplexed flash and an ambient light source.84

Our goal is to separate the image into flash and ambient compo-85

nents by spatially multiplexing each component in a single image.86
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We are unable to separate the indirect flash lighting from the am-87

bient lighting, therefore our no-flash pixels capture the combined88

ambient plus indirect flash lighting.89

We build on methods that combine a flash and no-flash image of a90

scene to produce a new image containing the desirable properties91

of both [ED04; PSA∗04; ARNL05]. We recover a high resolution92

detail layer from the flash portions of the image and a large scale93

intensity layer from the no-flash regions. We demonstrate single94

exposure flash/no-flash and coarse depth map estimation as appli-95

cations of our multiplexed flash illumination.96
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Figure 2: Our prototype(a) consists of a DSLR camera and a film
camera modified to project a high-frequency pattern through its
main lens. (b) A binary mask is used to block flash rays and produce
a spatially varying pattern at the flash focus plane.

3 Multiplexed Illumination97

We divide the flash beam into a grid of pixels and allow each pixel98

to be either on or off. If a flash pixel is on, light is projected onto the99

scene and focused at the focal plane of the camera. If a flash pixel is100

off, light is blocked and does not enter the scene. Figure 2(b) shows101

a diagram of our optical system. We do not assume that the flash102

and camera are coaxial (i.e. no beam-splitter). We have found that103

the beam splitters necessary for coaxial illumination suffer from104

loss of light and flare. We only assume that flash and camera are105

loosely aligned.106

3.1 Hardware Prototype107

In order to achieve spatially varying flash intensities, we augment108

a traditional photographic flash with a binary mask pattern and fo-109

cusing optics. In essence, we turn a traditional flash into a flash110

projector. The key distinction between our modified flash and a111

projector is that our flash produces a short burst of light as opposed112

to continously illuminating the scene, which is essential for freez-113

ing motion in photographs. While a projector can be used to sim-114

ulate our flash, particularly for static scenes, we found there were115

a number of disadvantages to using a standard consumer projec-116

tor. In particular, projectors often have low contrast, poor optics117

(e.g. high chromatic aberation and lens distortion), and a wide fixed118

aperture providing very shallow depth of field. In our design, we119

used printed binary transparency masks with a very high contrast120

ratio and the focusing optics of a high quality professional SLR121

camera lens with low chromatic aberation and full aperture control122

in order to control depth of field. An image of our system is shown123

in Figure 2(a). The film camera body on top has been transformed124

into our ”flash projector” by removing the back and placing our125

mask at the original film plane. A standard flash is mounted behind126

the ”film plane” with a diffuser separating the flash and mask. Es-127

sentially, the camera is being used in ”reverse” – light is shone from128

the original image plane out through the lens, producing a focused129

version of the mask onto the scene. An additional feature of this130

design is that if the focusing lens is thrown completely out of focus,131

the flash pattern is removed (via defocus blur) and the multiplexed132

flash is restored back to a traditional flash1. This allows the flash to133

operate in two modes: traditonal and multiplexed flash.134

3.2 Illumination Patterns135

In this section we consider several possible patterns for the flash136

illumination including uniform, poisson-disk, and striped. Once a137

type of pattern is chosen, the main parameter we explore is the ratio138

of flash and no-flash pixels in a particular sampling pattern. This ra-139

tio has two direct consequences: the sampling rate (in the Nyquist140

sense) of the reconstructed flash and no-flash images and the total141

amount of flash light in the scene. In general, the ratio should be142

chosen such that the resulting sampling rate matches the frequency143

content of each component. Unfortunately, the frequency content144

cannot be known a priori, and we are forced to make decisions145

based on some estimate of expected frequency content and how im-146

portant it is for the specific application. In particular, we observe147

that flash/no-flash techniques rely more on the high frequencies of148

the flash component and on the low frequencies of the no-flash one.149

The total number of ”on” flash pixels affects the total amount of150

light sent into the scene, but not the direct light received by a151

given illuminated point; it only increases the fraction of illuminated152

points. However, as the ratio of flash pixels increases, this intro-153

duces more indirect flash light, ”corrupting” the no-flash pixels.154

Uniform A uniform checkerboard produces an equal number of155

flash and no-flash samples, uniformly distributed and regularly156

spaced. The ratio of flash to no-flash samples can be adjusted to157

produce regularly spaced samples with greater or fewer no-flash158

samples. However, although the flash mask contains regularly159

spaced samples, parallax between the flash and the camera distorts160

the spacing of samples when imaged at the camera. This distor-161

tion makes localizing the flash vs. no-flash samples on the camera162

sensor more difficult than with traditional assorted pixel schemes.163

Stripes A stripe pattern can help localize the flash and no-flash164

samples if the optical centers of the flash and camera are carefully165

aligned. In particular, we can constrain the epipolar geometry such166

that vertical lines in the flash mask are projected to vertical lines167

in the camera. A disadvantage of this pattern is that it yields a168

non-uniform sampling between the vertical versus horizontal di-169

mensions.170

Poisson-disk As mentioned above, applications of flash/no-flash171

pairs usually take their high-frequency information from the flash172

component. As a consequence, we may choose to undersample the173

no-flash component to increase the total flash intensity and record174

a larger number of well-exposed flash pixels. In order to hide some175

of the aliasing and noise that may occur, Poisson-disk distributed176

points can be used instead of a uniform grid when undersampling.177

4 Reconstruction178

Once we have captured a multiplexed flash illumination image, we179

must identify and separate the flash pixels from the no-flash pix-180

els. Since we seek a direct simple extension of the traditional flash,181

the illumination and lens are not confocal and parallax makes it182

harder to identify which pixels are lit by the flash. Without geo-183

metric correspondence, we rely on statistical methods to determine184

1with some loss in intensity due to the mask blocking light.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Top row: A scene photographed with(a) and without(b) a standard flash. (c) Standard flash/no-flash image fusion. Our recon-
structed flash(d) and no-flash(e) images and our single-exposure flash/no-flash reconstruction(f).

flash and no-flash pixels. A simple method proposed by Nayar185

et. al. [NKGR06] is to choose flash pixels as the maximum pixels186

in some local window. Similarly, no-flash pixels are the minimum187

pixels in each local window. To reduce speckle noise, we compute188

a weighted average of the K largest and smallest pixels in a local189

window and use this as our estimate of flash and ambient pixels,190

respectively. The size of the window is chosen differently for flash191

and no-flash pixels and is based on the known ratio of flash to no-192

flash pixels.193
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Figure 4: Plot of reconstruction error as a function of the percent-
age of no-flash samples used in a uniform sampling pattern.

Figure 4 shows a plot of the reconstruction error for the flash and194

no-flash components of our test scene (shown in Figure 3) as a func-195

tion of the percentage of no-flash pixels in the flash pattern. Flash196

and no-flash images were taken separately and used as the ground197

truth. As expected, as the percentage of no-flash pixels increase, the198

no-flash reconstruction error decreases, and the flash reconstruc-199

tion error increases. This graph suggests that there is little benefit200

to increasing the ratio of no-flash pixels above ≈ 20%. For our201

flash/no-flash application we use masks with ≈ 6 − 12% no-flash202

pixels. This trade-off between capturing flash and no-flash pixels203

is similar to the spatial-angular tradeoff common to many lightfield204

camera designs [Ng05; GZC∗06; GSMD07].205

Improving Resolution As a consequence of using max and min206

operators to localize points, detail has a tendency to dilate or erode207

in the flash and no-flash images, depending on the local intensity208

gradient (see Figure 3(f) for an example). In order to improve209

sharpness and combat dilation and erosion in the flash image, we210

use texture synthesis to fill in missing data [EL99]. We remove a211

disk of pixels around each no-flash pixel location and infill these212

pixels with texture synthesis (see Figure 6). An additonal advan-213

tage of using Poisson-disk distributed no-flash samples is that the214

irregularity of the sampling hides artifacts that may occur when in-215

painting regions on a regular grid.216

4.1 Improved localization217

We have developed an algorithm to improve localization of flash218

and no-flash pixels when using a uniform grid illumination pattern.219

Because we do not coaxially align the flash projector and the cam-220

era there is parallax which makes localizing the no-flash pixels non-221

trivial. This is particularly evident across depth discontinuities and222

on highly curved surfaces. Depth discontinuites cause shifts in the223

stride between adjacent flash or no-flash pixels. Curved surfaces224

cause a row (or column) of points to be projected along a curve225

instead of along a straight line. However, locally (within a small226

neighborhood) the projected flash pattern is often very similar to227

a uniform grid. The general idea of our algorithm is to identify228

likely flash and no-flash pixels and then iteratively propagate local229
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Figure 5: Improving localization. (a) A typical φmin kernel. (b) A close-up of the flash pattern projected on a scene. Notice that φmin

closely resembles (b). (c) An input scene. The inital estimate of no-flash pixel locations (d) and the corresponding P map (e). Notice that
(d) has many missing pixels locations and is lacking structure. (f) shows the final estimate of no-flash pixel locations and the final P map (g)
after 20 iterations. Our localization method is able to propagate local structure and accurately identifies no-flash pixels.

evidence to influence the estimate of nearby locations.230

Initialization We initialize the estimated locations using a method231

similar to Nayar et. al. [NKGR06], finding the maximum or mini-232

mum pixels in non-overlappingM×M windows, whereM is cho-233

sen to match the projected size (or stride) of the illumination pattern234

in camera pixels. We note that if the focal lengths of the flash pro-235

jector and the camera are matched then the size of the projected236

pattern (magnification) is not affected by scene depth or parallax.237

Propagating local evidence Given an initial estimate of the238

flash and no-flash pixel locations, F and NF respectively, we wish239

to refine them by incorporating a local spatial model of the relative240

positions between adjacent flash pixels. The intuition is that if we241

have found the location of one flash pixel, we can use this informa-242

tion to help estimate the location of neighboring flash pixels.243

To propagate information we construct a map P as:244

P = F ∗ φmax +NF ∗ φmin. (1)

where F and NF are indicator images that have, e.g. NF (p) = 1245

for no-flash pixels p and zero otherwise, φmax and φmin are ker-246

nels that encode the relative spatial locations of other flash pixel247

locations as signed functions and ∗ denotes convolution. For exam-248

ple, φmax is positive where we expect to find flash pixels, negative249

where we expect to find no-flash pixels and zero otherwise. We set250

φmin = −φmax.251

We iteratively perform a sequence of steps designed to find pixel252

locations that simultaneously agree with the input data (e.g. are lo-253

cal maximums or minimums) and are appropriately spaced relative254

to neighboring flash and no-flash pixels. First, we build255

Pmax = P × Igray (2)
Pmin = P × (1− Igray) (3)

where I is a grayscale ([0-1] normalized) version of the input image256

I . Pmax and Pmin reweight P , giving more weight to flash pixels257

locations that are in bright parts of the image, and more weight to258

no-flash pixels locations in dark parts of the image. As Pmax and259

Pmin are processed symmetrically - MAX can be substituted for260

MIN (and vice-versa)- the remaining steps will be described for261

computing Pmin only. We find the set Q of local maxima of the262

laplacian∇2Pmin with response greater than a threshold τ :263

Q =

{
q

∣∣∣∣∇2Pmin(q) > τ ∧ q = arg max
p∈Ωq

∇2Pmin(p)

}
. (4)

In practice we use a local window of 5 × 5 pixels, and a threshold264

τ = 2. Local maxima of ∇2Pmin are points where the gradient265

is increasing quickly (e.g. at the minimum of no-flash pixels) and266

we threshold to discard points with small response. We use Q to267

update our current estimate of no-flash pixel locations NF as:268

∀q ∈ Q,NF (q) = CLAMP (∇2Pmin(q)−R0)/R1, 0, 1) (5)

which linearly maps the range [R0,R1] to [0,1] and clamps values269

outside the range (we found [R0,R1] = [1,5] to work well in prac-270

tice). We set NF (p) = 0 for all p /∈ Q. Finally, we recalculate P271

(using Equation 1) and iterate. After K iterations we calculate the272

final flash and no-flash pixel positions by thresholding F and NF .273

In practice we run K = 20 iterations and use a threshold of 0.2.274

Figure 5 shows an example of P and NF before and after running275

our iterative estimation algorithm.276

5 Depth from flash defocus277

Similar to [MNBN07], we can use the flash projector defocus to278

estimate a coarse depth map of the scene. However, there are sev-279

eral distinctions between our work and previous approaches. First,280

we do not assume the flash projector and the camera are coaxially281

aligned, which introduces parallax and makes the localization more282

challenging. We describe a method to improve localization in Sec-283

tion 4.1. A second fundamental difference between our setup and284

the one described by Moreno-Noguer and colleagues is that we aim285

for an infinite contrast ratio2 between flash and no-flash pixels while286

they specifically illuminate the entire scene with some baseline il-287

lumination. We aim for an infinite contrast ratio because we wish288

to recover only no-flash illumination in the no-flash pixels. One ad-289

vantage of Moreno-Noguer and colleagues approach[MNBN07] is290

that they are able estimate and ”invert” the projector illumination291

blur because it is nonzero everywhere. Our goal is to estimate a292

sparse depth map by analyzing the blur at each no-flash pixel, and293

we rely on the previously mentioned methods to improve the reso-294

lution of the flash image (Section 4).295

Patch Database Our approach is to construct a database D of296

examplar patches ed that model how flash defocus changes as a297

function of scene depth d. In order to build our database we take298

multiple photographs a planar scene containing patches with dif-299

ferent albedos over a range of depths. The camera and flash focus300

remain fixed for all images, as the distance d to the planar scene301

is varied from dmin to dmax producing a stack of images {Id}.302

We used a relatively small aperture for the camera (f/10) and a303

large aperture for the flash projector (f/2.8) to ensure that most of304

the observed defocus is due to the flash and not the camera. From305

2In practice this is impossible - due to indirect illumination, defocus, and
the finite contrast of the occluding mask.
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(a) (b) (c) (d)

Figure 6: Using texture synthesis to improve resolution. (a) multiplexed illumination image. (b) No-flash pixels labeled and disk of pixels
around each is marked. Standard reconstruction(c) dilates and blurs features. Texture synthesis fills in missing points and avoids resolution
loss.
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Figure 7: a) A patch database for seven depths ranging from 126cm
to 138cm in 2cm increments. Each depth has K = 4 exemplar
patches. b) Error plot testing our depth estimation method. The
blue curve shows the percentage points assigned the correct depth
label as a function of depth. The red curve shows the percentage
of points assigned the correct depth label, or a label ±1 from the
correct label. In this case a mislabeling by 1 corresponds to a 2cm
error in depth estimation. The green curve shows the performance
of assigning depth labels at random.

each image Id we estimate the no-flash pixel locations and crop a306

N ×N window around each no-flash pixel creating a large collec-307

tion of example patches for each depth. We use k-means clustering308

to compute K examplar patches ek
d, k = 1 . . .K for each depth d,309

and the set of all these examplars over all depths forms our database310

D =
{
ek

d|k = 1 . . .K, d ∈ [dmin, dmax]
}

. In order to provide311

albedo invariance, we independantly normalize each color channel312

of ek
d to have unit mean. Figure 7 shows a database of patches for313

7 depth values ranging in 2cm increments from 126cm to 138cm.314

For each depth d we have computed K = 4 exemplar patches.315

Estimating Depth Given a new scene, we would like to estimate316

depth at each no-flash location p. Let lp be the N × N window317

of pixels centered at p, and µ̂p be the per-color channel (i.e. RGB)318

mean of lp. We compute the error E(lp, d) for depth d as:319

E(lp, d) = min
k=1...K

∥∥lp − µ̂p · ek
d

∥∥2
. (6)

We rescale the examplar patches ek
d by the RGB means µ̂p, instead320

of normalizing lp to unit means per channel in order to avoid ampli-321

fying noise in lp. For example a blue object may have a very low red322

channel, and thus normalizing the red channel to unit mean would323

amplify any noise present. Conversely, weighting ek
d by µ̂p will324

downweight the importance of the red channel when computing the325

error. In the simplest case we use nearest neighbor classification326

and select the d∗ that minimizes E(lp, d) as the depth at pixel p:327

d∗ = arg min
d
E(lp, d) (7)

We can add spatial regularization using a markov random field328

(e.g. graph cuts) [BVZ01].329

(a)

(b)

Figure 8: a) Multiplexed flash illumination input image. b) Sparse
depth map computed at each no-flash pixel. Blue values are closer
to the camera. Red values are further away.

Figure 7 shows an error plot of the number of correctly classified330

points as a function of depth, for a set of seven images of a pla-331

nar scene, covering the depth range 126cm to 138cm in 2cm incre-332

ments, using nearest neighbor classification. The seven test images333

were the same images used to create the patch database. Each test334

image contained approximately 8300 no-flash pixels. The y-axis of335

the plot shows the percentage of points correctly label as a function336

of depth. On the low end, points at 134cm were correctly identified337

42% of the time, whereas on the high end, points at 126cm were338

correctly identified 98% of the time. Chance would correctly label339

points 14% of the time. In addition, the curve marked ”off by one”340

shows the percentage of points that were assigned a depth label off341

by at most one from the correct label (corresponding to a depth er-342
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ror of 2cm in our experiment). This improves the percentage to343

greater than 78% of points.344

Figure 8 shows results for a scene with depth variation over the full345

working range. The yellow box on the left is slanted away and our346

depth map reflects this. Also note the bean bag and brown box are347

estimated at the same depth, as are the different segments of the348

gray card, disregarding the significant difference in albedos.349

6 Single exposure flash / no-flash350

To demonstrate our multiplexed illumination, we show single expo-351

sure flash/no-flash on a dynamic scene. Traditional flash /no-flash352

methods[ED04; PSA∗04] take as input a flash and a no-flash image353

of the same scene. These methods assume there is minimal motion354

between flash and no-flash images (such that a simple alignment355

will produce pixel level correspondence). Next, the images are de-356

composed into detail and large-scale layers using the bilateral fil-357

ter (and other variants such as the cross/joint bilateral filter [ED04;358

PSA∗04]). Finally a new image is synthesized by combining the359

detail layer of the well exposed, low noise flash image with the360

large-scale intensity layer of the under exposed and noisy flash im-361

age. In essence, this combines the sharp details of the flash image362

with the pleasing ambient lighting of the no-flash image.363

Scenes with motion pose a problem for traditional flash/no-flash364

methods because it is no longer possible to align objects between365

exposures. Using our flash design, we are able to capture enough366

information in a single image to perform a flash/no-flash image fu-367

sion. Figure 9(a) shows a person tossing a bean bag, captured using368

a standard flash in order to freeze the motion of the object. Fig-369

ure 9(b) shows a no-flash image taken of the same scene shortly370

aftwards. Objects have changed position in the no-flash image, and371

there is a large amount of motion blur. Figure 9(c) shows the re-372

sults of performing flash/no-flash fusion using the components cap-373

tured from a single image. In this example, we used Poisson-disk374

distributed no-flash points and reconstructed the flash image using375

texture synthesis to fill in missing data. Our result has the sharp-376

ness of the flash image, as well as the shadowing and glow of the377

no-flash image.378

7 Discussion379

Flash multiplexing shows promise for computational illumination380

in dynamic scenes because it enables the simultaneous capture of381

multiple components of illumination. Our prototype is able to mul-382

tiplex flash and ambient lighting into assorted flash pixels captured383

at the image sensor. The defocus of the light pattern further al-384

lows us to extract simple depth information. As an application of385

our multiplexed flash illumination, we demonstrate the first single-386

exposure flash/no-flash method suitable for dynamic scenes.387

Illumination multiplexing raises challenging issues. A limitation of388

our method is the assumption that no-flash pixels capture only am-389

bient lighting. In practice, these pixels are illuminated not only by390

the ambient lighting, but also by the indirect light from the flash.391

Additionally, there will be some light spill due to defocus of nearby392

flash pixels and the finite contrast of the transparency mask used393

to create our sampling pattern. We want to explore ways to fur-394

ther separate the recovered no-flash image into true ambient and395

flash indirect lighting. Recent work on multi-light white balance396

[HMP∗08] may help accomplish this separation. Currently, we use397

texture synthesis to improve the resolution of the flash image. How-398

ever texture synthesis is computationally expensive when running399

on large images, so we would like to explore other local methods to400

improve resolution. Finally, we would like to extend our method to401

work with video.402
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Figure 9: The motion in a dynamic scene is frozen with standard flash phography(a) but the soft ambient light is lost. Two image flash cannot
be used because the no-flash image(b) has changed and is blurry. From our multiplexed illumination image(c) we can create a new image
that freezes the motion and retains the character of the ambient lighting.
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