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Abstract

We present a survey of algorithms and data structures
that solve computational geometry problems under the as-
sumption the input is drawn from a fixed universe. We
show that many geometric problems can be solved faster
in a fixed universe on the RAM. We overview the use of
sorting, x-fast tries and stratified trees and combine these
techniques to give efficient solutions to the orthogonal
point location, orthogonal range query, and approximate
nearest neighbor problems that beat their the algebraic de-
cision tree lower bounds.

1 Introduction

Many computational geometry problems are based on the
fact that points are real numbers. Arithmetic operations
such as addition, multiplication, square roots, etc can be
done in constant time. Under this model, many algorithms
have been developed for classic problems such as convex
hull and Voronoi diagrams that are optimal (more specif-
ically, Ω(n logn) by reduction to sorting under decision
tree models).

In many practical applications, however, points can be
represented in a fixed universe (in other words, a grid).
By assuming a more powerful model of computation (that
is, a word RAM), one can often devise data structures
and algorithms that perform better than methods intended
for algebraic decision tree models. An example outside
of computational geometry is sorting, which has a well-
know Ω(n logn) bound under the decision tree model
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[CLRS01]. If all elements are assumed to be integer,
however, one can use a method such as counting sort to
achieve linear time (although it becomes linear in the size
of the universe, which is often quite large). An immediate
consequence is that many sweepline algorithms in com-
putational geometry can also be solved in “linear” time as
well.

Recently, researchers in computational geometry have
been discovering the abundance of data structures avail-
able for performing efficient operations on an integer grid.
As in the above sorting example, these data structures
acheive better time bounds than those acheivable under
a comparsion based computational model by cleverly ex-
ploiting the bit representations of the coordinates. A
popular data structure used for fixed universe computa-
tional geometry is van Emde Boas’ stratfied tree [van77],
which can perform predecessor/successor queries in log-
logarithmic time and linear space. Other sophisticated
data structures include ∗-fast tries which can be cleverly
combined and applied to achieve log-logarithmic time
bounds for difficult problems in computational geometry.

In this paper we survey some rather nonobvious results
that allow for very efficient operations for the problems
of orthogonal point location and range queries, and ap-
proximate nearest neighbors. We begin in section 2 by
describing some methods that have been developed for
1-dimensional fixed universe problems. In particular we
discuss the one-dimensional stratified tree and x-fast trie.
We then describe simple algorithms that can be solved on
a grid. Finally, we present a survey of orthogonal point
location in Section 4, orthogonal range queries in Section
5, and approximate nearest neighbor in Section 6 and pro-
vide conluding remarks in Section 7.
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2 Background

We begin by defining some common notation used in our
paper.

• U is the size of our universe. For simplicity, we as-
sume that it is a power of 2.

• n is the number of objects.

• k is the number of answers in the output (for algo-
rithms with output-sensitive time complexity).

While it is often helpful to think of the universe as the
set of integers [0,U) or [1,U ], it should be noted that it
is often unnecessary to depend on this fact. Stating it an-
other way, many of the results that we describe (with the
notable exception of the approximate nearest neighbors
described in section 6) do not rely on a uniform grid over
the fixed universe. This allows us to generalize results to
alternative representations of numbers such as IEEE float-
ing point [Gol91].

We proceed by describing several algorithms and data
structures that exploit the fixed universe assumption in
one dimension.

2.1 Sorting

Sorting has a known lower bound of Ω(n logn) under the
decision tree computational model. In a fixed universe,
the obvious algorithm is counting sort. Assuming a size U
universe, this algorithm traverses each point and hashes it
in constant time into an array of size U . This takes O(n).
The array is then traversed in-order and the elements of
the non-empty bins reported in sorted order. This gives
an O(n + U) running time for counting sort. Unfortu-
natley, this algorithm has a linear dependence on U , and
requires Θ(U) space. Another simple, common integer
sorting algorithm is Radix Sort. With this algorithm, a
O(n logn U) algorithm is acheived. Using dynamic Strat-
ified Trees (see Section 2.3) (e.g. van Emde Boas Prior-
ity Queues) sorting can be accomplished in O(n log logU)
time by n successor queries (each running in O(log logU)
time). More recently, Andersson et al. [AHNR95] pro-
posed an algorithm that allows sorting in O(n log logn)
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Figure 1: An x-fast trie that stores the set {0,1,4,6,7} in
the universe [0,7]. Leaves correspond to elements of the
set. Note that the element 100 = 4 is stored at the node
labeled 10 to save space. Each element is connected to
adjacent ones in a doubly linked list. The node labeled
0 has no right child, and thus a descendant pointer (thick
dashed line) is stored to the maximum element of its left
subtree. On the right, the existing prefixes at each level
are shown.

time, independent of U , and O(
√

U) space. Note, the
above sorting algorithms beat the Ω(n logn) time bound
by assuming a word RAM computational model, i.e. a
unit-cost RAM that supports bit opertaions in constant
time. In Section 3 we demonstrate how the above sort-
ing techniques can provide simple, efficient solutions to
problems in fixed universe computational geometry.

2.2 x-Fast Tries

In a fixed universe, a binary trie is a natural way to store
a set of elements for the purpose answering of existence
queries in O(logU) time. Here, we will review a paper by
Willard [Wil83] in which he modifies a standard binary
trie to allow for O(log logU) time existence queries. Fur-
thermore, the resulting data structure will allow successor
and predecessor queries in O(log logU) time as well.

We begin by building a standard binary trie on all the
elements. If a subtrie contains only one element, we save
space by making the node a leaf and storing the element
there. At this point, each leaf represents an element of
the set. Since the height of the trie is O(logU), it follows
that it takes O(n logU) space. We then augment the trie
as follows.
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• We add links between all elements and their prede-
cessors and successors.

• If an internal node has no left subtree, we add a spe-
cial descendant link to the smallest element of its
right subtree. Analogously, if an internal node has no
right subtree, we add a descentant link to the largest
element of its left subtree.

An example of this modified trie is shown in figure 1.

Now, assume that we want to perform a successor query
on some value x (predecessor queries can be solved anal-
ogously). One way to do this is to just walk down the
trie according to the binary representation of x. At some
point, we’ll stop because we can’t go any farther. We call
this node the stopping node. This node can also be inter-
preted as representing the deepest binary prefix of x that
is stored in the trie. There are two possible cases.

• Suppose that the stopping node is a leaf. We check
whether it corresponds to x. If so, then x is in the
set, and we can follow the successor link. If not, the
leaf node stores some other element y. Since x and
y have the same binary prefix, and no other elements
in the set have that prefix, y is either a predecessor or
successor of x. Since all elements are connected to
their predecessor and successor, we can just walk a
constant number of steps “sideways” from y to find
the successor of x.

• Suppose that the stopping node is not a leaf. There
must be a descendant link; otherwise, we would have
stopped at a deeper node. Following the descendant
link will lead to an element y, which is either a pre-
decessor or successor of x. We can then walk “side-
ways” as before to find the successor of x.

It is obvious that, after finding the stopping node, both
cases are handled in constant time. Thus, the efficiency
bottleneck is in finding the stopping node, which, as de-
scribed, takes O(logU) time. This is pretty dismal, since
we could just store all the elements in a balanced binary
tree and get O(logn) time for all operations.

To make stopping node searches faster, consider stor-
ing an O(U) sized array for each level of the trie. We use

this array to check whether a certain binary prefix exists
at a given level. Specifically, element p of the array stored
at level i is null if the prefix p does not exist at level i of
the trie. Otherwise, element p stores a pointer to the cor-
responding node. Clearly, these checks can be performed
in constant time.

Using these arrays, we can find the stopping node
by performing binary search on the levels of the tree.
One can alternatively interpret this as performing binary
search on the binary representation of the query. It fol-
lows that we can find the stopping node in O(log logU)
time.

Of course, using these arrays is horribly inefficient with
space. Since we’re storing an O(U) array at O(logU)
levels, the total space consumption of the arrays is
O(U logU). That’s not very good, especially consider-
ing that we could just precompute predecessors and suc-
cessors for all U elements in the universe and store them
in arrays. This would give us constant time queries and
O(U) space.

To remedy this, we use a data structure described by
Fredman et al. [FKS82] which allows us to perform con-
stant time existence queries on a set of n elements drawn
from a fixed universe using only O(n) space. We use this
data structure in place of the arrays at each level of the
trie. The query time remains the same, and the total space
consumption becomes a much more palatable O(n logU).
This data structure is known as an x-fast trie.

It is possible to achieve O(n) space consumption while
retaining the O(log logU) query times by pruning. The
resulting data structure is called a y-fast trie. In the inter-
est of brevity, we will not describe it here. Details can be
found in Willard’s paper [Wil83].

2.3 Stratified Trees

A Stratified Tree over a universe [U ] is a tree where each
node represents some range in [U ]. The root node rep-
resents the entire range U. Each internal node r has

√
U ′

children (where U ′ is size of the range r represents). At
each successive level of the tree, a range of size U ′ is split
into
√

U ′ ranges of size
√

U ′. Therefore the height of
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Figure 2: The recursive structure of a Stratified Tree over
the universe of size U . Each box labeled ST is itself a
Stratified Tree over a universe of size

√
U . The max and

min element are stored non-recursively. H is a “summary”
of the non-empty Si.

a Stratified Tree is log logU . We now describe the con-
struction and fields of a Stratified Tree data structure.

Given [U ] and P ⊆ [U ] we build a recursive search
structure called a Stratified Tree [van77] (denoted
ST([U ],P), or simply ST) that supports successor queries
in O(log logU) time. The original stratified tree described
by van Emde Boas[van77] uses O(U) space, however by
using perfect hashing techniques[DKM+88], the space re-
quirement can be reduced to O(n). For simplicity, the data
structure we describe is static, but can easily be made into
a dynamic[Wil83] structure (commonly called a Priority
Queue) that achieves the same time bounds.

Let M = max{P}, m = min{P}, and P′ = P\ {M,m}.
We non-recursively store max and min at ST, e.g. ST.max
= M, ST.min = m. Next divide [U ] into

√
U ranges, Si,

i ∈ [
√

U ], each of size
√

U . Let I = {i|Si∩P′ 6= /0}, be the
set of indicies of the non-empty ranges. Insert each i ∈ I
into a hashtable (using perfect hashing [DKM+88]) that
maps i ∈ I to Si. At each non-empty Si, recursively store
ST(
√

U ,P′ ∩ Si), e.g. build a stratified tree in a universe
of size

√
U for the points that lie in the range Si. Lastly

compute H = ST(
√

U ,I). H is a stratified tree that stores
the indicies I of the non-empty ranges Si.

2.3.1 Successor Queries

We outline the successor procedure for a stratified tree.
Let q be a query, and P be values that lie in the uni-
verse [U ]. If q is less that the minimum element stored
in our universe [U ].min, then the successor of q is clearly
[U ].min. Suppose q falls within some range Si. If q is
smaller than the largest element in Si, then we know that
Successor(q) is upper bounded by Si.max, and inpartic-
ular, must lie in the range Si. If q happens to be larger
than all values stored in range Si, then Successor(q) must
be the minimum value in the next non-empty range S j
(i < j). Fortunetely H, which stores the indicies of non-
empty ranges, is also a stratified tree, and thus supports
successor queries.

Successor(P,q)
if q < U .min then

return U .min
else

Let q be in range Si
if q < Si.max then

return Successor(Si,q)
else

k = Successor(H,i)
return H[k].min

end if
end if

Figure 3: The stratified tree successor procedure.

Lemma 2.1. Successor takes time O(log logU) time.

Proof.

T (U) = T (
√

U)+O(1)

T (2m) = T (2m/2)+O(1)

T ′(m) = T ′(m/2)+O(1)

T ′(m) = O(mlog2 1 logm) (by Master’s Theorem)
=⇒ T (U) = O(log logU)
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3 Applications of Integer Sorting

We can use the improved sorting bounds in a fixed uni-
verse (described in Section 2.1) to solve other compu-
tational geometry problems faster than traditional alge-
braic decision tree based lower bounds. In particular,
there are many algorithm that are asymptoticaly limited
by a sorting step. For example, Graham’s scan algorithm
[dvOS00] for computing the convex hull, sorts the points
and then does O(1) linear scans of the sorted points. In
a pure comparison model, this algorithm has Θ(n logn)
running time, due purely to the sorting step. Using inte-
ger sort [AHNR95] and the fixed universe RAM model,
we can sort n points in O(n log logn) time. The remain-
der of Graham’s scan algorithm is unchanged and thus we
arrive at a O(n log logn) algorithm for Convex Hull. We
can leverage our fast convex hull to break the compari-
son based lower bounds of several other geometric prob-
lems. Given the convex hull of a set of points, the rotat-
ing calipers[Tou83] technique can be used to solve many
problems (e.g. diameter, width, etc.) in O(n) time thus we
have O(n log logn) algorithms for many common prob-
lems. We refer the reader to the survey [Ove88a] which
describes more results that are of this nature.

4 Orthogonal Point Location

When visiting a new place a common question is “Where
am I?”. This question is the topic of point location in
computational geometry. Provided a map of the universe,
point location algorithms seek efficient solutions to this
question. In general, this “map” is defined by a set of
possibly overlapping regions in ℜd . Given a query point
q ∈ℜd point location algorithms return the set of regions
that contain q.

Planar point location algorithms solve point location
in 2-dimensions. The typical scenario is outlined in Fig-
ure 4. In the figure, a set of n non-crossing line segments
define a subdivision of the plane. There are many well
known, optimal solutions to planar point location that per-
form a query in O(logn) time and use O(n) space. One
such algorithm is the persistent data structure algorithm
of Sarnak and Tarjan [ST86]. A more commonly used al-

Figure 4: Planar point location on subdivision defined by
n line segments.

gorithm is that of Seidel [Sei91] that involves randomized
incremental construction. An optimal solution to point lo-
cation in higher dimensions remains somewhat of an open
problem [dvOS00]. Nonetheless, efficient solutions solve
queries in O(n1−1/bd/2c logO(1) n) and with linear space
[Mat92].

Thus far we have only considered point location in a
real-valued space. In a fixed universe better time bounds
can be achieved. For example, a simple but effective so-
lution is to pre-compute the set of regions contained by
each point of the integer grid. This algorithm is com-
monly used in the graphics community for performing
planar point location in OpenGL [WNDS99]. It can an-
swer point location queries in constant time, however, it
utilizes O(U2 logn) space. In the following sections we
discuss more space efficient algorithms for performing
point location that utilize stratified trees to acheive log
logarithmic query times and linear space. Although, these
data structures are defined in the context of orthogonal
point location (i.e. point location in rectangular subdivi-
sions) de Berg et al. discuss extensions of their algorithm
to point location on c-oriented polygons and fat triangles.
They also discuss how they can perform ray-tracing. The
interested reader may consult the paper for a description
of the extensions and applications of the orthogonal point
location algorithm presented below.
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4.1 Fixed Universe Orthogonal Point Loca-
tion

In [dvS92], de Berg et al. define a data structure that an-
swers orthogonal point location queries in a fixed uni-
verse, in log-logarithmic time and linear space. Here, or-
thogonal is used to specify that the proposed algorithm
works on spaces subdivided into rectangles. It is fur-
ther assumed that these rectangles are disjoint. This algo-
rithm outperforms the poly-log time bounds reported by
Edelsbrunner et al. for point location in rectangular sub-
divisions of d dimensions in real-valued spaces [EHH86].
In their paper, de Berg et al. apply the above data struc-
ture to solve point location queries in one, two and three-
dimensions. We present a concise explanation of their
method for orthogonal point location in a fixed universe
below.

4.1.1 The Interval Trie

The interval trie is the underlying data structure used for
orthogonal point location. It is used to efficiently store
and query a set of one dimensional intervals. Unlike an
interval tree [CLRS01], the interval trie is a static data
structure that stores redundant copies of each interval. As
will be shown in a later section, this property allows the
interval trie to be easily modified to support fast point lo-
cation queries. In a fixed universe, an interval is defined
by two endpoints in [1,U ] that are either closed or open
depending on whether they are part of the interval. For
point location we assume that all intervals are closed on
the left and open on the right. An interval trie is a com-
plete binary trie of size O(U) that stores the intervals of
[1,U ].

An interval trie is illustrated by Figure 5. The leaves of
the tree are labeled 1,2, ...U . Each node τ is associated a
range ρ(τ) that is an interval of [1,U ]. A leaf node with
label j has range ρ( j) = [ j−1/2, j + 1/2). The range of
an internal node is defined by considering the leaves of the
subtree rooted at that node. It is computed by taking the
union of the range of each leaf in the subtree. Consider an
interval I stored by the tree. This interval overlaps a node
τ in one of four ways as illustrated in Figure 6. If ρ(τ) and
I overlap completely then one interval contains the other.

0 1

0 1 0 1

0 1 0 10 1 0 1

0 1

00

001000 010 011 100 101

01 10 11

110 111

1 2 3 4 5 6 7 8

Figure 5: Interval trie built on universe of size U = 8.

I

[ )

[ )

τ

ρ(τ)

I
[ )

[ )

τ

ρ(τ)
[ )

I
[ )

τ

ρ(τ)

[ )
I

[ )

τ

ρ(τ)

I cuts τ on the right I cuts τ on the left τ contains I I spans τ

Figure 6: An interval I can overlap a node τ of the interval
trie in one of four ways.

Otherwise, we say that I cuts τ.

We insert an interval into the tree by giving it to each
node that it cuts in the interval tree as illustrated by Fig-
ure 7. If the interval cuts a node from the right we store its
lower bound in that node. If it cuts the node from the left
we store its upper bound. Note that each interval is asso-
ciated a level lI in the trie, at which it begins to cut nodes.
I is contained by exactly one node in each level above lI
and is cut by exactly two nodes at and below this level as
demonstrated in Figure 7. This is an important property
that we exploit in a later section to achieve efficient space
bounds. With the exception of the above properties, the
interval trie can be viewed as a binary trie of that stores
the endpoints of each interval (see Section 2.2).

Consider storing a set of intervals of [1,U ] into the trie.
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Figure 7: The endpoints of each interval are stored by the
nodes it cuts in the interval tree. Each interval cuts two
nodes starting at some level lI in the interval tree.

In the worst case all the intervals are stored at each level
of the tree (see Figure 8). We can use this trie to perform
one-dimensional point location: given a query point q, we
traverse down the trie comparing it to the intervals stored
by its corresponding node at each level. Along this path
we report the intervals that contain q. q is compared to
at most n intervals at each node along its path from the
root to a leaf of the trie, which results in a query time of
O(n logU +k). Here, k is the number of intervals that con-
tain q. In the case of orthogonal point location, each in-
terval is disjoint and thus q is contained by at most one in-
terval. The query time is therefore reduced to O(n logU).

As presented, the interval trie results in an in-efficient
solution to one-dimensional point location. In the follow-
ing section we demonstrate how to alter the interval trie
to acheive log-logarithmic query time and linear space.

4.1.2 Orthogonal Point Location in One Dimension

In one dimension, orthogonal point location subdivides
the universe into n disjoint intervals of [1,U ]. Consider
storing these intervals into an interval trie (see Figure 9).
Note, because the intervals are disjoint, each node of the
interval trie is cut by at most two intervals. As mentioned

3
[ )
2 6 7

2 3 6 7

3, 4 5, 6

Upper Bound

Lower Bound

l  , l  , ..., l1       2                 4

[ [ [ )))

1, 2 7, 8

5 81 4

1 4 5 8

1, 2, 3, 4 5, 6, 7, 8

Figure 8: A set of intervals, in which each interval cuts
O(logU) levels of the tree. Such a worst case scenario
results in an O(n logU) query time.

5 6

5, 6

Upper Bound

Lower Bound

l  , l1       3

[ [ [ )))
81

1 8

[)
2 2 5 6

I I I I1 2 3 4

2

2, 2 5,5 6,6

8

5

2

l  2

l  4

spanned subtrees

Figure 9: Orthogonal point location in one dimension -
the interval trie stores disjoint intervals of [1,U ] that sub-
divide the universe. Each node of the interval tree is either
cut or spanned by some interval.
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above, direct use of this data structure results in inefficient
query and space bounds for one-dimensional point loca-
tion. Below we demonstrate how to achieve more efficient
bounds by altering this data structure.

To improve query time, the interval trie is represented
as an x-fast trie (see Section 2.2). Using this data struc-
ture, a query is satisfied by performing binary search on
the levels of the interval trie as described below. Since
the interval trie has logU levels, this algorithm results in
O(log logU) query time.

Consider the query point q and level l of the interval
trie. Using the perfect hashing scheme of the x-fast trie
we can locate the subtree that contains q at level l in con-
stant time. As depicted in Figure 9, the root, τ, of this
subtree is either cut or spanned by an interval. If it is
spanned, then τ is empty, i.e. it does not store the end-
points of any intervals. Clearly, the interval that spans τ
cuts nodes higher in the tree. To find this interval, we
therfore continue the search at a higher level. If it is cut,
it will contain the endpoints of the (at most) two intervals
that cut it. In constant time we check if q belongs to ei-
ther of these intervals. If so we stop and report the interval
containing q. If q is in neither interval, then q is inside an
interval that is contained by τ (see Figure 9). We therefore
continue the search deeper in the tree.

The space consumption of the interval trie is improved
by superimposing a level-search tree onto its levels as il-
lustrated by Figure 10. A level-search tree is a b-ary tree
that stores the levels of the interval trie. As depicted in the
figure, each node of the level-search tree is assigned b−1
levels. The key insight is that maintaining a full interval
trie of size O(u) is waistful if n¿U , as is often the case.
A level-search tree is used as a sparse representation of the
trie, in which only full nodes (i.e. nodes storing intervals)
are maintained by the level-search tree.

We refer to the combined data structure as a deBerg
tree. Intervals are stored into the deBerg tree as illustrated
in Figure 11. An interval I is given to the two nodes it
cuts at level lI of the interval trie, associated with node
v in the level search tree. Traversing a downward path
from v to the root of the level-search tree, I is also given
to an associated level of each node of the level-search
tree along this path. Note, at a given level of the inter-

Interval Trie Level-Search Tree

de Berg Tree

Figure 10: A deBerg tree. The deBerg tree is formed by
overlaying a level-search tree over the leves of the inter-
val trie. The dotted lines that extend from the interval trie,
specify how its levels are allocated to each node of the
level search tree. Note, each level-search tree node is as-
signed at most b− 1 levels from the interval trie (in the
above deBerg tree b = 3).

val trie, an interval is stored in at most two nodes. As-
suming the level search tree has height h, an interval is
stored in at most h levels. For n intervals this results in
O(nh) space for the deBerg tree. Note the level-search
tree has O(logU) leaves and therefore its height is found
as h = Θ(logb logU) = Θ(log logU/ logb).

Using the deBerg tree, point location is performed in
a similar fashion to binary search on the interval trie ex-
plained above (see Figure 12):

• At a node v of the level search tree we check its b−
1 assocated levels for subtrees with a full root, that
contains our query point.

• Suppose a set of such subtrees exist. We check q
against the (at most) two intervals stored at each full
node. If q is found to be within an interval, we stop
and report the interval. Otherwise, q’s interval is
contained by the deepest subtree - we continue the
search in the child directly under the deepest asso-
ciated level in which a subtree with a full root was
found. (Cases 1 and 2 of Figure 12).
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I

Interval Trie

Portion of Level Search Tree

that Stores I

Figure 11: An interval is given to the levels of each node
v in the level-search tree, along the path from the child
node assigned level lI to the root. Note, the interval I cuts
all the nodes of the paths along the black solid lines in the
interval trie. In this fashion, an interval is assigned to at
most 2h levels of the interval trie, implicitly represented
by the deBerg data structure.
.

• Suppose no such subtree exists in v. This indicates
that the interval containing q spans all the levels as-
sociated with v and we continue our search in the
highest child of v. (Case 3 in Figure 12)

The proposed algorithm checks a query point against
the b− 1 levels of a level-search tree node in constant
time. This is done at most h times to find its associated
interval (i.e. a path traversal in the level-search tree is
performed). The resulting query time is O(hb).

The deBerg tree of Figure 10 exhibits an inherent trade-
off between space and time depending on whether we
hold h or b constant. Holding h constant gives linear space
and O((logU)1/h) query time, whereas assuming b as
constant gives O(log logU) query time and O(n log logU)
space. In one dimension, this tradeoff can be compensated
for by applying the prunning technique of van Emde Boas
[van77] to achieve O(log logU) query time while main-
taining linear space. In the following section we demon-
strate how this stratified tree may be extended to handle
orthogonal point location queries in two and three dimen-
sions.

case 1:   I   cuts subtree τq 2

Iq

[ )

spanned

subtrees that possibly contain q
τ1

τ2

Level Search Tree Node

Interval Trie

case 2:   I   is contained by each subtreeq

Iq

[ )

spanned

subtrees that possibly contain q
τ1

τ2

Level Search Tree Node

Interval Trie

τ

Iq

[ )

sp
a

n
n

e
d

Level Search Tree Node

Interval Trie I   cuts subtreeq

case 3:   I   spans each level of vq

v

v

v

Figure 12: At a level-search node, v, a query point q is
found in one of three locations. Let Iq denote the interval
that contains q. Case 1: If Iq cuts a subtree stored by a
level of v,we stop our search at that node and report Iq.
Case 2: Each subtree with a full root, possibly cut by Iq,
actually contain Iq. In this scenario, Iq cuts a subtree di-
rectly below the deepest full root subtree of v. As shown
in the figure, this is because the next level below this deep-
est subtree is spanned by Iq. This indicates that Iq cuts a
node (τ) of the interval trie that is stored by the subtree
rooted at the child of v in between these levels in the in-
terval trie. Case 3: If Iq spans all the levels of v it cuts a
node higher in the tree and we therefore check v’s highest
child for this node.
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4.1.3 Orthogonal Point Location in Two and Three
Dimensions

To perform orthogonal point location in two and three
dimensions we add secondary structure to a one-
dimensional deBerg tree. This is analagous to the
range trees of Section 5.1.1. We first consider the two-
dimensional case below.

Consider a rectangular subdivision constructed from n
disjoint rectangles. Such a subdivision is illustrated in
Figure 13. We store this rectangular subdivision using a
two-dimensional deBerg tree, defined as follows:

• Project each rectangle onto the x-axis and store these
intervals into a one-dimensional deBerg tree (middle
of Figure 13).

• Next, consider a node τ of the interval trie implic-
itly stored by the one-dimensional deBerg tree. This
node is assigned a range ρ(τ) = [xmin,xmax) defined
by the subtree rooted at τ. In two dimensions, this
range is defined by two vertical lines situated at
x = xmax and x = xmin as illustrated in Figure 13.
These vertical lines intersect a set of rectangles in
the subdivision. The rectangles whose x-intervals cut
these lines are stored by τ.

• Consider the intervals formed by the intersection of
each vertical line with the rectangles that cut them.
To locate the rectangle that contains a query point q,
for each vertical line we perform a one-dimensional
point location on its associated intervals. The inter-
vals of each line, however, are not a subdivision in
general, since rectangles that span τ generate “gaps”
betweem the intervals along each line (see bottom of
Figure 13). To remedy this we fill these gaps, which
at most doubles the number of intervals stored by τ.
We then build one-dimensional deBerg trees on the
subdivision of each vertical line and store each tree
at τ.

Consider the space bounds of the two dimensional de-
Berg tree. As in its one-dimensional version, the x-
interval of each rectangle is assigned to O(2h) nodes of
the deBerg tree. Therefore, inserting each rectangle into
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Figure 13: Orthogonal point location in two dimensions.
(top) A rectangular subdivision of the fixed universe of
size [U ]2. (middle) Each rectangle is projected onto the x-
axis and its x-interval is stored by the primary structure of
the two-dimensional deBerg tree. (bottom) Each node of
the two-dimensional deBerg tree stores is cut by a set of
rectangles, stored by the secondary structure of the tree.
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the tree gives O(nh) storage space. This space bound
assumes that we represent the one-dimensional stratified
trees of each node using the pruning technique of [dvS92]
to achieve linear space and a O(log logU) query time.
Note, in order to form the secondary structure at each
node of the deBerg tree we needed to perform a gap fill-
ing step. Since this can only at most double the number
of intervals stored by the secondary structure, the space
bound is conserved.

The algorithm for performing two-dimensional point
location on the above data structure is analogous to the
one-dimensional case:

• At a node v of the level search tree we check its b−
1 associated levels for a subtree with full root, that
contains our query point.

• Suppose a set of such subtrees exist. Each subtree
stores a set of rectangles that cut its root. To find
if q is within a rectangle, we perform a one dimen-
sional query at each full root node using the 1D de-
Berg trees that these nodes store. If q is found to be
inside a rectangle, we stop and report it. Otherwise,
q is inside a rectangle that is contained by the deep-
est subtree - we continue the search in the child of
v that is directly under the deepest level in which a
subtree with a full root was found.

• Suppose no such subtree exists in v. This indicates
that the rectangle containing q spans all the levels
associated with v and we continue our search in the
highest child of v.

As in one-dimension, the above algorithm checks at
most O(hb) subtrees of the deBerg tree to satisfy a query.
At each subtree two one-dimensional point locations are
performed resulting in an O(hb(log logU)) query time.

Next, consider three-dimensional orthogonal point lo-
cation. A rectangular subdivision in three dimensions is
illustrated by Figure 14. We store this rectangular subdi-
vision using a three-dimensional deBerg tree, defined as
follows:

• Store the x-intervals of each rectangle into a one di-
mensional deBerg tree.
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Figure 14: Orthogonal point location in three dimensions.
(top) A rectangular subdivision of the fixed universe of
size [U ]3. (bottom) Each node of the three-dimensional
deBerg tree is cut by a set of rectangles stored by the sec-
ondary structure of the tree.
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• Next, consider a node τ of the interval trie implic-
itly stored by the one-dimensional deBerg tree. This
node is assigned a range ρ(τ) = [xmin,xmax) defined
by the subtree rooted at τ. In three dimensions, this
range is defined by the two planes x = xmax and
x = xmin that are parallel to the yz-plane as illustrated
in Figure 14. These planes intersect a set of rect-
angles in the subdivision. The rectangles whose x-
intervals cut these lines are stored by τ.

• Consider the 2D rectangles formed by the intersec-
tion of each plane with the rectangles that cut them
(see bottom of Figure 14). To locate the rectangle
that contains a query point q, for each plane we per-
form a two-dimensional point location on its associ-
ated rectangles. The rectangles of each plane, how-
ever, are not a subdivision in general, since rectan-
gles that span τ generate “gaps” between the rectan-
gles along each line (see Figure 14). To remedy this
we fill these gaps with “dummy” rectangles. This
increases the number of rectangles stored by τ by a
constant factor. We then build two-dimensional de-
Berg trees on the subdivision on each plane and store
each tree at τ.

As in its one and two dimensional analogs, the three-
dimensional deBerg tree stores each rectangle in at most
2h nodes. Similar to the one-dimensional deBerg tree, a
pruning method can be applied to the two-dimensional de-
Berg tree to achieve O((log logU)2) in linear space. Uti-
lizing this data structure for its secondary structure, the
three-dimensional deBerg tree has O(nh) space. Note,
the gap filling algorithm increases the number of rect-
angles stored by the data structure, but only by a con-
stant factor and thus it maintains linear space. To per-
form a three-dimensional point location query follows di-
rectly from the algorithm for two-dimensional stratified
trees presented above. The main difference being that this
algorithm performs two-dimensional as opposed to one-
dimensional point location queries at each node of the de-
Berg tree resulting in an O(hb(log logU)2) query time.

Comparing the space and time bounds found for the
deBerg tree in one, two, and three dimensions one finds
that they all satisfy O(nh) space and O(hb(log logU)d−1)
query time, where d is dimension. Table 1 presents a sum-
mary of the above space and time bounds for performing

Dimension Query Time Space
one O(log logU) O(n)
two O((log logU)2) O(n)

three O((logU)1/h(log logU)2) O(n)

Table 1: Summary of space and time bounds acheived
by the data structure of de Berg in one, two, and three
dimensions on a fixed universe. Note the one and two
dimensional trees require a pruning step to achieve log-
logarithmic query time with linear space.

orthogonal point location in fixed universes of one, two,
and three dimensions. The resulting time bounds achieved
under the fixed unverse assumption beat those achieved
for real-valued spaces, in which query time is O(logd n)
as presented by Edelsbrunner. Unfortunately, the deBerg
tree breaks down in higher dimensions: in higher dimen-
sions the deBerg tree does not yield linear space. An el-
egant extension of the stratified tree to higher dimensions
is therefore difficult. Nonetheless, the data structure pre-
sented by de Berg et al. demonstrate the efficiency achiev-
able under a fixed universe assumption.

5 Orthogonal Range Queries

Suppose that we have a database of people, where each
person is parameterized by age, weight, and height. One
question that we might want to answer is “show me all
people who are between 21 and 25 years old, weigh be-
tween 130 and 170 pounds, and are less than 6 feet tall.”
This is known as an orthogonal range query. Besides
being an interesting computational geometry problem, it
comes up often in database applications.

More formally, suppose we are given a set of n points in
ℜd . Each point p is represented as a vector (p1, . . . , pd).
Given an orthogonal range query q− = (q−1 , . . . ,q−n ) and
q+ = (q+

1 , . . . ,q+
n ), we wish to find all points p that satisfy

q−1 ≤ p1 ≤ q+
1 , . . . ,q−n ≤ p1 ≤ q+

n . An example of such a
query in two dimensions is shown in figure 15.

In this section, we begin by describing two common
solutions to the problem under the algebraic decision tree
model. We then proceed by reviewing the data structure
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Figure 15: Left, an orthogonal range query on
(x−,x+,y−,y+). Middle, a half-infinite range query on
(x−,x+,y−). Right, a dominance query on (x−,y−).
Black points are part of the query answer, gray points are
not.

proposed by Overmars [Ove88b] for orthogonal range
queries in fixed universes.

5.1 Background

Under the algebraic decision tree model, two common
ways to solve for orthogonal range queries are range trees
and priority search trees. In this section, we describe these
two data structures.

5.1.1 Range trees

Range trees [dvOS00] are a well-known data struc-
ture, capable of answering orthogonal range queries in
O(logd n + k) using O(n logd−1 n) storage, where d is the
number of dimensions and k is the size of the output. We
will only give a brief high-level description; the interested
reader should refer to the aforementioned reference.

To begin, we define a one-dimensional range tree as a
binary search tree with points stored at leaves. Each node
in this tree stores a value. The value of a leaf node is
simply the stored point. The value of an internal node is
the largest point stored in the left subtree of that node.
This binary tree clearly takes O(n) space.

A query can be performed by searching for the two end-
points of the range. Starting from the root, the resulting
search paths are the same for a while, and then they fork
at some node b. The parts of the two paths under b form a
“blanket” over a set of subtrees. By traversing all O(logn)

subtrees that hang directly under this blanket, we can re-
port the query result in O(logn + k) time, where k is the
number of points.

To extend range trees to two dimensions (call the first
dimension x and the second dimension y), we build a
one-dimensional range tree on all points, stored by x-
coordinate. We call this the primary tree. For a node v in
the primary tree, we define S(v) be the set of points stored
in the subtree rooted at v. For each node v, we associate
a secondary tree that stores all nodes in S(v), stored by
y-coordinate.

When we perform a query, we first perform a query on
the primary tree with the given x-range. As before, this
results in a blanket and a set of O(logn) subtrees that hang
directly under this blanket. We then query the secondary
trees stored at the roots of these subtrees with the given y-
range. This results in a query time of O(log2 n+ k), since
we are doing queries on O(logn) secondary trees. The
space consumption turns out to be O(n logn).

The same technique can be applied inductively to
higher dimensions; in general, d-dimensional points are
inserted into a one-dimensional primary range tree by
their first coordinate, and secondary (d− 1)-dimensional
range trees are stored at each node of the primary range
tree.

5.1.2 Priority search trees

A priority search tree [McC85, dvOS00] is a data struc-
ture that answers half-infinite range queries in the form
“which points lie between some x− and x+ and above
some y−?” as shown in figure 15.

We define a priority search tree as a binary tree in which
each node represents a point. It can be constructed recur-
sively as follows. Given a set of points, we select the
point with the highest y-coordinate as the root. We then
select a vertical line with x-coordinate s and partition the
remaining points into sets L and R, depending on which
side of the vertical line they fall. We store the value of s
at the root, and recursively construct two priority search
trees for the sets L and R, which become the children of
the root. This construction process is shown in figure 16.
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Figure 16: Recursive construction of a priority search
tree.

Figure 17: A half-infinite range query forms a blanket
(thick line) in the priority search tree. The big node is the
fork.

For simplicity, we are assuming that no two points
share the same x-coordinate. We also note that choos-
ing s to make |L| ≈ |R| at each recursive call will result
in a balanced priority search tree. In the remainder of this
discussion, we assume that s is chosen in such a manner
at each recursive step.

To answer a query (x−,x+,y−), we perform simultane-
ous searches on x− and x+ and identify the node b where
the search paths “fork.” As in range trees, the search paths
under b form a “blanket” over a set of subtrees, as shown
in figure 17. Since we assume that the priority search
tree is balances, we assume that the size of the blanket is
O(logn). The points directly on the blanket may or may
not lie in the half-infinite range. However, since there are
O(logn) of them, we can just check each one.

We also have to examine each of the O(logn) sub-
trees under the blanket. By construction, we know that
all nodes in these subtrees necessarily lie between x− and
x+. Thus, we only have to check whether points in these
subtrees lie above y−. For each subtree, we can output
such nodes in a recursive manner as follows. First, we
check the root of the subtree; if it lies below y−, then by
construction we know that all nodes under the root also
lie below y−, and we terminate the search. If the root
lies above y−, we output the root, and recurse on its chil-
dren. It is easy to see that the time it takes to process each
subtree is proportional to how many answers are in the
subtree. Thus, the total query time is O(logn+ k), where
k is the total number of answers. Since each node in the
priority search tree corresponds to a point, the space re-
quirement is clearly O(n).

At this point, we note that a priority search tree can only
answer half-infinite range queries for a certain infinite di-
rection (as described, the infinite direction of a query is
“up”). The same priority search tree can not be used for
“down,” “left,” or “right” infinite directions, although we
could easily modify the construction to build trees for any
desired direction.

It remains to be seen how priority search trees can be
used for actual orthogonal range queries. To do this, we
store all points in a regular balanced binary search tree T ,
indexed by y-coordinate. For each internal node v that is
a left child of its parent, we store an “up” priority search
tree that contains all points in the subtree of T rooted at
v. Analogously, we store a “down” priority search tree for
each right internal node.

Now, given an orthogonal range query (x−,x+,y−,y+),
we search for y− and y+ in T and find the node b where
the search paths fork. All answers to the query must lie
in the subtree rooted at b. Since the y-coordinate of the
point stored at b lies between y− and y+, all points in the
left subtree of b have y-coordinate less than y+. Thus,
we can query the “up” priority search tree stored at the
left child of b with (x−,x+,y−) without worrying about
reporting any extra points. By parallel reasoning, we can
query the “down” priority search tree stored at the right
child of b with (x−,x+,y+). Finally, we check the point
stored at b and output the point if it lies in the range.
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The query time is O(logn) to find the forking node in
T , and O(logn+k) to run two priority search tree queries.
As for space, we note that each on each of the O(logn)
levels of T , each of the n points is stored in exactly one
of the priority search trees (which take linear space). It
follows that the total space consumption is O(n logn).

5.2 Dominance queries

We begin our discussion of fixed universe orthogonal
range queries by developing a method to answer two-
dimensional dominance queries. These are queries of the
form “given a query (x−,y−), report all points whose x-
coordinate is ≥ x− and y-coordinate is ≥ y−.” An exam-
ple is shown in figure 15. Again, we follow the descrip-
tion given by Overmars [Ove88b]. With substantial loss
of generality, we assume that all points do not share x-
coordinates. We will remove this assumption later.

All points are stored in an x-fast trie T (section 2.2),
indexed by x-coordinate. The basic idea is to overlay a
priority search tree (section 5.1.2) on top of T . We will
describe how to do this algorithmically. We create an ex-
tra field in every node of T to store an upper point. Ini-
tially, the upper points of all leaves are set to be their cor-
responding points in T , and the upper points of all nonleaf
nodes are null. Then, we iterate through the upper points
on the leaves in order of decreasing y-coordinate. For each
upper point, we percolate it up T as far as possible; that
is, we move it up the path to the root and stop when we
hit a node with an upper point already stored.

The result of this is a priority search tree. To allow for
fast searches, we store the following additional informa-
tion at each leaf δ of T .

• A standard priority search tree Pδ that contains all
O(logU) upper points on the path from δ to the root
of T .

• A linked list Rδ that contains the O(logU) subtree
roots with upper points that are hanging off the right
side of the path from δ to the root. We sort the list by
decreasing y-coordinate of the upper points.

To solve a dominance query (x−,y−), we do the follow-

ing. We begin by searching for the successor of x− in T in
O(log logU) time. Call the successor δ. As with standard
priority search trees, the path from δ to the root forms a
blanket (or rather, a half-blanket) which “covers” upper
points that are possible answers for the dominance query.
All the upper points on the blanket are stored in Pδ, and
thus we can just query Pδ for (x−,∞,y−). Since the size
of the Pδ is O(logU), this search takes O(log logU + kP)
time, where kP is the number of answers in Pδ.

We also have to look in all the O(logU) right sub-
trees stored in Rδ. As described in section 5.1.2, we can
process each subtree in time proportional to the number
of answers that lie in that subtree. However, we can’t
check all O(logU) subtrees if we want to retain our nice
O(log logU + k) time bound. Thankfully, we have that
the subtrees in Rδ are stored in decreasing order of the y-
coordinate stored in the upper point at the root. So, we
can process the subtrees in that order. If we reach a sub-
tree whose root upper point is below y−, we know that
no subtrees following that one in Rδ will contain any an-
swers. Thus, we can terminate the search. The result is
that we can find all answers in right subtrees in O(kR)
time, where kR is the number of answers in Rδ.

In summary, it takes O(log logU) to find the successor,
O(log logU + kP) to process Pδ, and O(log logU + kR) to
process Rδ. The total query time, then, is O(log logU +k),
where k is the total number of answers.

As for the amount of space, we know that the x-fast
trie itself takes O(n logU). Each of the n leaves stores a
Pδ and Rδ with O(logU) space each. Thus, total space
consumption remains at O(n logU).

To fix our original assumption that all points have
unique x-coordinates, we simply group all points with
the same x-coordinate together. Within the group, the
points are stored in a linked list ordered by decreasing
y-coordinate. The element with the largest y-coordinate is
chosen as the “representative” of the group in the domi-
nance query data structure.

If the group representative is a valid answer in the dom-
inance query, we can walk down the list until we reach a
point below y−. Since the number of operations that we
must do for each group is proportional to the number of
answers it stores, we retain O(log logU + k) queries.
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5.3 Half-infinite range queries

In the section 5.2, we described how storing the list Rδ al-
lows us to efficiently find all answers under the induced
blanket of a dominance query. To handle half-infinite
range queries (in the “up” direction), it is necessary to
store more information at each leaf δ. As before, we store
structures Pδ. Instead of storing Rδ, we store an array of
logU lists R1

δ, . . . ,R
logU
δ . Like Rδ, these lists store subtree

roots with upper points that are hanging off the right side
of the path from δ to the root. The difference is that list
Ri

δ only stores subtree roots that are strictly below level i
of the tree (where the root is at level 1). Additionally and
analogously, we store lists L1

δ, . . . ,L
logU
δ for left-hanging

subtree roots. As in the previous section, all of these lists
are sorted in order of decreasing y-coordinate.

Now, given a half-infinite range query (x−,x+,y−), we
begin by searching for x− and x+ in the x-fast trie T . Call
the resulting leaf nodes α and ω. As with regular priority
search trees, the corresponding search paths form a blan-
ket over subtrees we have to examine. We begin by query-
ing Pα and Pω to output all nodes on the blanket that are in
the range. Then, we search for the node b that is the “fork”
of the two search paths. As the depth of T is O(logU), we
can not afford to walk down the trie to find it. However,
since T is an x-fast trie, we can simply perform a binary
search on the levels of T to find b in O(log logU) time.

Suppose b is on level i of the tree. In a regular prior-
ity search tree, we would want to examine all right sub-
trees hanging off the left “branch” of the blanket, and all
left subtrees hanging off the right “branch.” Conveniently,
these are exactly the subtrees stored in Ri

α and Li
ω. We can

process these lists just as we did for dominance queries to
achieve an O(log logU + k) total query time.

The x-fast trie itself takes O(n logU) space, and each
of the n leaves stores a priority search tree with O(logU)
elements and O(logU) lists with O(logU) elements each.
Therefore, total space consumption is O(n log2 U).

5.4 Putting it all together

Finally, we are equipped to handle fixed universe orthog-
onal range queries in two dimensions. To do so, we treat

the data structure of section 5.3 as a black box that allows
us to perform fixed universe half-infinite range queries in
O(log logU + k) time. Call this data structure a fixed uni-
verse priority search tree (FUPST).

Recall from section 5.1.2 how regular priority search
trees were used to perform orthogonal range queries in
two dimensions: the points are stored in a balanced binary
search tree by y-coordinate, and each left (right) child
stores an “up” (“down”) priority search tree. Similarly,
we store an x-fast trie on the points, indexed by the y-
coordinate, and associate every left (right) child with an
“up” (“down”) FUPST.

Now, recall how we performed an orthogonal range
query in section 5.1.2: we queried the y− and y+ and
found a forking node b in the binary search tree and per-
formed two priority search tree queries on its children. In
the x-fast trie, we can also find a forking node b using bi-
nary search, as described in section 5.3. This search takes
O(log logU) time. Then, we perform half-infinite range
queries on the FUPSTs stored in the two children of b. As
previously stated, this takes O(log logU + k).

Since there are O(n logU) nodes in the x-fast trie, and
each node stores a FUPST that takes O(n log2 U) space,
the total space consumption is O(n2log3U). It is possible
to achieve O(n logU) by using techniques borrowed from
y-fast tries (briefly described in section 2.2. However, in
the interest of brevity, we omit these details and refer the
interested reader to the paper by Overmars [Ove88b].

5.5 Higher dimensions

Unfortunately, priority search trees don’t scale to higher
dimensions very easily. Range trees, as described in sec-
tion 5.1.1, do. The basic idea is to use the data structure
described in section 5.4 as a base case for the recursive
construction of a multidimensional range tree. For exam-
ple, in three-dimensions, we use a one-dimensional range
tree as a primary tree and store fixed universe orthogo-
nal range query structures at each internal node. This re-
sults in a query time of O(logn log logU +k), compared to
O(log3 n + k) for a standard multidimensional range tree.
We can easily generalize to higher dimensions.
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6 Approximate Nearest Neighbors

Given a set of Points P, a query point q, and a metric
d(x,y), the Nearest Neighbor (NN) problem is to find a
point pnn ∈ P , s.t. d(q, pnn) ≤ d(q, p) ∀p ∈ P. e.g. The
distance from pnn to q is minimal among all points from
the set P. The ε-Approximate Nearest Neighbor (ε-ANN
or ANN) problem is to find a pann ∈ P s.t. d(q, pann) ≤
(1 + ε) d(q, pnn). e.g. The distance from q to pann is at-
most a factor of (1+ε) of the distance to true nearest neigh-
bor.

6.1 Exact Solutions

The standard solution to nearest neighbor queries in 2-
dimensions is to first compute the Voronoi diagram of
the point set P and then the problem is reduced to pla-
nar point location on the faces of the Voronoi diagram.
There are a variety of planar point location algorithms
[dvOS00, Sei91, ST86] that run in O(logN) time and use
(N) space (here N is the size complexity of the voronoi
arrangement). These combined algorithms works well in
the 2-dimensional case, however they are not as practi-
cal as the dimension increases. For example, it has been
shown[dvOS00] that the complexity of the Voronoi dia-
gram of n points in higher dimensions is Θ(ndd/2e). Also
many exact geometric algorithms have an exponential de-
pendence on dimension (for a fixed dimension this ex-
ponential dependence disapears in big-O notation) which
is known as the “curse of dimensionality”. Even if you
assume points P lie on a grid, Voronoi based algorithms
can not take advantage of any of the fixed universe point
location algorithms described above (section 4), because
although the points are taken from a fixed universe, the
edges of the Voronoi arrangment may not be.

6.2 ANN in 2 dimensions

Amir et al. [AEIS99] introduced a data structure that an-
swers ε-Approximate Nearest Neighbor queries in O(d +
log logU) time based on a multidimensional extension to
the Stratified Tree [van77]. We describe a 2-dimensional
variant of this algorithm due to Cary [Car01] that

U/ε

U/ε

U

U

(a) (b)

Figure 18: a) The universe U and points P. b) The uni-
verse after growing by 1/ε2. The dark square denotes the
original universe.

acheieves the same O(log logU) query bounds and uses
space polynomial in n and ε. We assume the reader is
familar with the 1-dimensional stratified tree introduced
in section 2.3.

Initially we are given a set of points P with coordinates
that lie on the integer grid [U ]2. As in the 1-dimensional
stratified tree, we will define a recursive data structure that
divides our universe into “square root” pieces, each of size
“square root” of the size our universe.

This is accomplished as follows. Let [U ′]2 be the cur-
rent universe (for some recursive level of the construc-
tion), with U ′ ≤ U . If U ′ ≤ 1/ε2 we store the nearest
neighbor of each point p = (i, j) ∈ [U ′]2 in a table of size
[U ′]2 = O(1/ε4). Thus given a query point q ∈ [U ′]2 the
nearest neighbor can be found in O(1) time by indexing
into the table.

Now assume U ′ > 1/ε2. We first grow our universe by
a factor 1/ε2, e.g. our [U ′]2 grid now becomes [U ′/ε]2
(see Figure 18). Next divide [U ′/ε]2 into U ′/ε2 regular
squares, Si j, each of size

√
U ′×

√
U ′ (see Figure 19). For

each square Si j, let pi j be the point at the center of Si j.
Let Bi j = { p | p ∈ P′ ∧ d(p, pi j) ≤

√
U ′/ε} be the set

of points in P′ within distance
√

U ′/ε from the center of
square Si j. If q lies near the boundary of a square, its near-
est neighbor may lie in a bordering square (see Figure
19). Intuitively, expanding the neighborhood around Si j
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Figure 19: The subdivision of the universe in to
√

U×
√

U
squares and the ball of radius

√
U/ε around point pi j at

the center of square Si j. Two possible positions of the
query point q are shown. In (a) the exact nearest neighbor
lies within ball Bi j. In figure (b) the exact nearest neighbor
lies outside Bi j. In both cases the nearest neighbor falls
in an adjacent square to the square q lies in. In both cases
The approximate nearest neighbor returned will be chosen
among the points that lie in Bi j.

allows us to consider points that fall in adjacent squares.
As ε shrinks, we increase the overlapping area and thus
improve the approximation. For each non-empty Bi j 6= /0,
store the indicies (i, j) in a hashtable that maps (i, j) to
Si j. Given a query point q that lies in square Si j, we can
quickly determine if ball Bi j contains any points from P′

using this hashtable. Storing the non-empty squares Si j
in a hashtable also reduces the amount of space needed
because empty squares need not be stored. This reduces
the space from O(U) to O(n2) (this space bound is not
tight, and can be improved). In each Si j with non-empty
Bi j, store the recursive ANN structure for the subprob-
lem ANN([

√
U ′/ε]2 , Bi j) in the universe of size [

√
U ′/ε]2

with points Bi j. Let I = { (i, j)|Si j ∩P′ 6= /0 } be the set
indicies of non-empty squares Si j (Note: set I may be dif-
ferent than the set of indicies stored in hashtable). Lastly,
we create the recursive structure H = ANN([

√
U ′]2,I) of

non-empty indicies, I, in the universe of size [
√

U ′]2. H
is used during the search procedure. If q lies in an empty
square (e.g Bi j = /0), then we use H to find the nearest
non-empty square Shk to square Si j. This concludes the
construction of ANN([U ′]2,P′).

Search(P,q)
if U ′ ≤ 1/ε2 then

return approximate nearest neighbor with table
lookup;

else
Let Si j be the square containing q
if Bi j 6= /0 then

return Search(Bi j,q);
else

Shk = Search(H,(i, j));
return any p ∈ Shk

end if
end if

Figure 20: The approximate nearest neighbor search pro-
cedure

6.2.1 ANN queries

The search procedes as follows. If the size of the current
universe is less than 1/ε2, we can directly find the nearest
neighbor through a table lookup in constant time (remem-
ber, we store exact solutions for universes smaller than a
preset size). Otherwise we find the square Si j which q lies
in (this can be implemented using simple bit tricks, which
are allowable in the RAM model), ie q ∈ Si j. If Bi j is
nonempty (can check this in O(1) time with hashtable) we
recurse with P′ = Bi j and q in universe of size [

√
U ′/ε]2. If

Bi j is empty, we search for the closest non-empty square
Shk to square Si j. To find Shk we recurse with P′ = H
and p = (i, j) ((i, j) are the indicies of block Si j). Finally,
we return any point within square Shk as the Approximate
Nearest Neighbor..

The reader should notice the similarity to the Succes-
sor procedure (Figure 3) described in section 2.3.1. The
Nearest Neighbor problem (as well as ANN) can be con-
sidered as a generalized Successor problem. The proof
that Search runs in time O(log logU) is similar to lemma
2.1 and thus we omit it.

We give a sketch of the correctness for Search based
on [Car01]. Notice that there are two ways we introduce
error into the calculations: If there is a point outside Bi j
that is closer to q than all points in Bi j (see Figure 19.b
) or q lies in an empty square and the point chosen in
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Shk is not the closest point to q. However, because we
are on a

√
U grid, the error introduced is O(

√
U) (since

the nearest point will be atmost one grid square from the
point chosen). Finally we observe that the distance from
q to its nearest neighbor must be Ω(

√
U/ε) since it must

lie outside ball Bi j. Thus the point chosen is a (1 + O(ε))-
Approximate Nearest Neighbor.

As mentioned above the space requirements are poly-
nomial in n and 1/ε. Because at each recursive level, the
ranges overlap, a point may end up in at most O(1/ε2)
leaves. At each non-empty leaf we store an array of size
O(1/ε4). Thus for all of the n points we have O(n2/ε6)
space used.

6.3 Higher dimensions

As discussed earlier, there are efficient exact solutions to
the NN problem in low dimensions (d ¡= 2, d = 3 is ar-
guable). The major benefit of the algorithm described
is that It can be extended to higher dimensions. Cary
[Car01] extends the ANN structure to higher dimensions
and shows a O(d log logU/ log loglogU) query bound.
Original results from Amir et al. [AEIS99] gave a O(d +
log logU + log1/ε) result. Both of these approximate al-
gorithms avoid the exponential dependence on dimension.
We also mention a technique due to Chan [Cha02] that can
anwer ANN queries in O(min { log logU,

√
logn}) with-

out the need for any complex data structures. The algo-
rithm detailed by Chan is based on sorting the points by
permutations of the shuffle order [BET99, Cha00] of the
points and comparing points that are adjacent in the shuf-
fle ordering. These algorithms trade accuracy for speed
in higher dimensions to attempt to break the “curse of di-
mensionality”.

7 Conclusion

We have surveyed many computational geometry prob-
lems and shown that they can be solved quickly under
the fixed universe assumption. By breaking the decision
tree “sorting barrier” we were able to give asymptotically
faster (independent of the universe size U) algorithms for

convex hull and other problems based on convex hull. We
also presented a class of geometric algorithms and data
structures that were dependent on the size of the uni-
verse the input is taken from. It is relevent to consider
for what size universes are these algorithms preferable to
classic algorithms for the same problem. Obviously, if
U = O(n), then the fixed universe algorithms will per-
form better. However, if U À O(n), then the fixed uni-
verse is possibly a bad choice. We notice, that we are
often trading a O(logn) factor for a O(log logU) factor,
thus if n = ω(logU) then any fixed universe algorithm
is asymptotically faster. We also studied an approximate
nearest neighbor algorithm that traded some accuracy in
the solution to avoid an exponential dependency on the
dimension. In each case, we have made some realistic
relaxations to our computational model, and arrived at so-
lutions with theoretical advantages.
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