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Abstract

We develop a view-normalization approach to multi-view
face and gait recognition. An image-based visual hull
(IBVH) is computed from a set of monocular views and
used to render virtual views for tracking and recognition.
We determine canonical viewpoints by examining the 3-D
structure, appearance (texture), and motion of the moving
person. For optimal face recognition, we place virtual cam-
eras to capture frontal face appearance; for gait recogni-
tion we place virtual cameras to capture a side-view of the
person. Multiple cameras can be rendered simultaneously,
and camera position is dynamically updated as the person
moves through the workspace. Image sequences from each
canonical view are passed to an unmodified face or gait
recognition algorithm. We show that our approach provides
greater recognition accuracy than is obtained using the un-
normalized input sequences, and that integrated face and
gait recognition provides improved performance over either
modality alone. Canonical view estimation, rendering, and
recognition have been efficiently implemented and can run
at near real-time speeds.

1. Introduction
Person tracking and recognition systems should ideally in-
tegrate information from multiple views, and work well
even when people are far away. Two key issues that make
this challenging are varying appearance due to changing
pose, and the relatively low resolution of images taken at a
distance. We have designed a system for real-time multi-
modal recognition from multiple views that substantially
overcomes these two problems.

To address the first issue we adopt a view-normalization
approach and use an approximate shape model to render
images for recognition at canonical poses. These images
are sent to externally provided recognition modules which
assume view-dependent input. For distant observations
view-normalization must not presume accurate 3-D mod-
els are available; our system is designed for environments

where relatively coarse-disparity stereo range images or
segmented monocular views are provided. We have cho-
sen to use shape models derived from silhouette informa-
tion since they are practically computable in real time from
these types of input data.

To overcome the second issue, we adopt a multi-modal
recognition strategy. Low-resolution information makes it
less likely that recognition using any single modality will
be accurate enough for many desired applications. By com-
bining cues together, we can obtain increased performance.
A typical drawback of multi-modal approaches is that they
presume different types of imagery as input. Face recog-
nition usually works best with front-parallel images of the
face, whereas gait recognition often requires side-view se-
quences of people walking. It can be difficult in practice
to simultaneously acquire those views when the person is
moving along a variable path. We propose a method for
view-normalization which performs this automatically, gen-
erating appropriately placed virtual views for each modality.

We have implemented a system for integrated face and
gait recognition using a shape model based on an image-
based visual hulls. Our recognition algorithms were sep-
arately developed for view-dependent recognition. In our
system a small number of static calibrated cameras observe
a workspace and generate segmented views of a person;
these are used to construct a 3-D visual hull model. Canoni-
cal virtual camera positions are estimated, and rendered im-
ages from those viewpoints are passed to the recognition
methods.

In the following section we will review some of the pre-
vious work related to multi-view, pose-invariant face and
gait recognition. We will consider different approximate
shape models for virtual view rendering, and argue for the
use of the image-based visual hull algorithm due to its ap-
pealing tradeoff of accuracy and computational efficiency.
We will then present new methods for estimating canonical
frames given visual hull representations, based on shape,
appearance, and motion cues. Finally, we will show recog-
nition results integrating face and gait cues with separately
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developed view-dependent recognition modules. The par-
ticular modules we have used for our current experiments
are based on principle components analysis and spatio-
temporal templates, for face and gait respectively, but our
framework is applicable to any view-dependent face or gait
recognition method.

2. Previous Work
To achieve pose-invariance, recognition models generally
must incorporate information from multiple views of an ob-
ject’s pose. Broadly speaking, there are several classes of
techniques for view-independent face recognition, includ-
ing modular learning, elastic matching, view-interpolation,
and geometric warping. Our visual hull approach is an in-
stance of the last category, using multiple views and silhou-
ette inputs.

Several authors have developed methods for recognition
using a set of distinct view categories. The well-known
eigenfaces paradigm was extended to recognize a set of
different poses using an eigenspace for each view [17].
Rather than using replicated classifiers for distinct views,
several authors have investigated elastic matching or view
interpolation methods [21, 22]. Beymer and Poggio intro-
duced a method for interpolating face views for recognition
given dense correspondences, using a Radial Basis Func-
tion paradigm [2]. Seitz [19] developed a view morphing
technique which used dense correspondences to interpolate
rigid views of an object, but did not apply this technique to
recognition.

Generalizing the notion of elastic matching, recognition
based on principle components analysis of shape and tex-
ture distributions has been shown to be able to model and
recognize a range of object poses[8]. When a model has
been constructed fast optimization of shape and texture co-
efficients is possible. However, all these methods have gen-
erally presumed either knowledge of face pose and/or an
accurate, dense depth or correspondence field during model
training. This can be difficult to acquire in practice, so we
have focused on geometric warping methods.

2.1. Geometric models
If we presume a model of the underlying geometry of the
object, we can use that geometry to warp one view onto an-
other view. For tracking faces, previous authors have used
planar [3] and ellipsoidal [1] models to bring images into a
canonical view. Several authors have used affine, cylindri-
cal and ellipsoidal models for warping views during motion
tracking [9, 6, 1].

Simple shape models are often inaccurate for view warp-
ing. More complex models may be used, such as warping
with a depth map obtained from a laser range scanner. But
as model detail increases, it becomes difficult to precisely

align a static model with dynamically changing observa-
tions. This negates the value of the detailed features. To
overcome these problems, we would like to use a dynamic
model of actual object shape, computed in real-time from
the object being tracked. Dynamic models can be recovered
from a variety of sources, but we will restrict ourselves to
models recovered from a set of regular cameras.

We know the relative camera positions between the
views, so if we accurately knew the depth at each pixel we
could simply apply view morphing or traditional rigid mo-
tion warping. However, our source views are monocular and
widely separated, so it is difficult to determine correspon-
dences using traditional methods for multi-view matching.

With a rich statistical 3-D shape model of the object
class, such as developed in [4], we could estimate a 3-D
shape directly from the set of 2-D appearance images, and
use that to render a high-quality image from the desired
view. While this is an appealing idea, we would like our
method to be general, and will not in practice assume such
a statistical range model is available.

An equally appealing approach would be to apply voxel
coloring or carving techniques [19, 11], to recover a discrete
3-D volumetric representation, and then use volume render-
ing techniques to generate the canonical view. However,
these systems are computationally expensive, and require a
specified discretization in 3-D which may not be optimal to
re-render a given viewpoint.

We are interested in dynamic 3-D shape models that are
computable without requiring dense correspondence or vol-
umetric reconstruction. We will use a model which is com-
putable solely from silhouette input, which we can obtain
either from monocular analysis or segmentation of coarse-
disparity range data.

2.2. Visual Hulls
The concept ofvisual hull (VH) was introduced in [12]. A
VH of an object is the maximal volume that creates all the
possible silhouettes of the object. The VH is known to in-
clude the object, and to be included in the object’s convex
hull. In practice, the VH is usually computed with respect
to a finite (often small) number of silhouettes.

An efficient technique consists of computing animage-
based VH(IBVH) ([15]). For a desired viewpoint, for each
pixel in the resulting image the intersection of the corre-
sponding viewing ray and the VH is computed. The com-
putation can be performed in 2D image planes, resulting
in an algorithm that renders a desired view ofn2 pixels in
O(kn2) wherek is the number of input images (the number
of views). A variant of this algorithm provides a polyhedral
3D approximation of the VH [14]. ThisO(k2n2) algorithm
represents contour of each silhouette as a polygon set, and
computes in 2D image planes the pairwise intersections be-
tween every pait of cones, resulting ink−1 polygon sets for
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(a) Input (b) Output

Figure 1: (a) An example of rendering virtual views with an image-based visual hulls: the images obtained at the 4 cameras
(top row) and their segmentation (bottom row). (b) The polyhedral VH model built from the input silhouettes in (a) (top pair),
and synthetic views (bottom pair) rendered by a “virtual camera” corresponding to a frontal viewpoint. The view from the
back has poor texture but reasonable shape.

each silhouette. Intersection of these polygons set at each
cone face defines the 3D polyhedron; this is the approxima-
tion of the surface of the VH with a polygonal mesh.

After the VH is constructed, its surface is texture-
mapped based on the original images ([14]). Letθi be the
angle between the viewing ray of the virtual camera for a
given pixelp, and the viewing ray of thei-th camera forp.
Then each view is assigned a weight1 − θi/maxiθi, and
the value ofp in the synthetic view is a weighted sum of the
values in the original images.

Figure 1 shows an example of the original images, and
the resulting VH without and with texture. The VH allows
us to render a synthetic view of the object from desired
viewpoints, at a moderate computational cost, and also pro-
vides information about the object’s 3D location and shape.
We use this information to track the position and pose of
a user in the environment, and to reduce the complex task
of view-invariant recognition to the simpler one of view-
normalized recognition.

3. Tracking and estimating canonical
views

To render virtual views for recognition, we need to deter-
mine the canonical pose of the camera which will generate
the most discriminative view. In general, one could formu-
late the view selection process as part of the overall recogni-
tion framework, as in [5]. Indeed, given freedom to design

the recognition method as well as to select the optimal view,
a general optimization would be necessary. In our current
work, however, we presume the use of external, black-box
recognition engines for face and gait recognition. These
methods have been constructed with the explicit assumption
of a canonical view, so we use them directly. For faces we
place the camera in the plane fronto-parallel to the face, and
for gait sequences we place the camera so that it observes
a side-view of the walking sequence. We have developed
algorithms based on motion analysis and pattern detection
to estimate these viewpoints. A strong assumption that we
make is that the person is walking and generally facing for-
ward; this allows us to use trajectory analysis to help con-
strain the search for canonical views.

3.1. Trajectory analysis
Without loss of generality we presume that theXZ-plane of
our coordinate system is the ground plane, and theY axis
is the normal to the ground. We estimate the location of
the centroid of the subject by taking the center of gravity
of the VH c = 〈cx, cy, cz〉. The method of computingc
depends on the VH algorithm. For the polyhedral VH, it is
simply the centroid of the polyhedral model, which can be
computed while building the model. This method was used
in all the experiments described in this paper. For the sam-
pled VH, one estimates the VH by integrating the volume
enclosed within the endpoints of the ray intervals, and com-
putes the zero-th moment of that volume. A third, more ad-
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Figure 2: An example of tracking body position and orientation using a Kalman Filter: input from one of the cameras (top
row), synthetic frontal view (middle row) and synthetic side-view (bottom row).

hoc approach consisting of computation of the 3D bounding
prism (which can be done directly from the silhouettes) and
taking its centroid, was found by us to be inferior in prac-
tice.

Given the estimated centroids of the VH in two consec-
utive framesct and ct+1, we estimate the motion of the
object betweent andt + 1 by ∆c = ct+1 − ct. Under the
assumption that the motion is parallel to theXZ plane, we
consider the projection of∆c on that plane as the motion
vector.

We shall call the set of the synchronized views obtained
at timet amultiframeft. The VH computed fromft will be
denoted byV Ht. Instantaneously, we need to fit a straight
line z = mx + b to the (noisy) centroid observations. This
is done by solving a linear least-squares optimization prob-
lem, for the〈xt, zt〉 in each multiframeV Ht. This gives us
the unit vectorvt in the estimated direction of the person
at timet. Once we have established the direction, we can
place a “virtual camera”, say, in front of the person, at a
desired distanceδ:

Ot = ct + δvt (1)

For a general trajectory, we use a constant-velocity Kalman
filter to recover the centroid path.

Figures 2 and 3 demonstrates the results of the method.

Input from only one camera out of four is shown for ref-
erence. While the orientation estimate is not perfect, we
keep track of the orientation after the person turns at about
60 degrees, and can automatically produce synthetic frontal
(middle row of Figure 2) and profile (bottom row) views.
(Note that there are some texture rendering artifacts present
in the profile sequence–these are visually distracting but do
not cause problems for our silhouette based gait algorithm.)

The assumption of fronto-parallel motion implicit in our
trajectory analysis can be relaxed by combining the motion-
based orientation estimate with one based on face-detection,
as described in the next section.

3.2. Detection-based view estimation
A pattern detection approach can be applied to a set of ren-
dered virtual views to find those that are most “canonical”
relative to a desired class. For faces, we use a real-time face-
detection method [20] to detect the frontal view condition.
This implementation, which uses small number of highly-
relevant features, can process images of 400x300 pixels in
roughly .07 seconds. However, we need to apply it to much
smaller images. Given the VH of a person, and assuming
roughly upright body pose, we need to consider only the
top part of the VH. In our experiments we chose to look at
the top 1.5 feet. We place the virtual camera at the distance
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Figure 3: Trajectory estimated from sequence in Figure 2.
Frames shown in top row of Figure 2 are marked with an
asterisk. Virtual views are generated along the tangent and
normal to this trajectory for face and gait recognition, re-
spectively.

Figure 4: View-normalized gait and face recognition fea-
tures based on trajectory in Figure 3.

that would produce the desired resolution of the image (in
the described setup, 60x60 pixels).

If no trajectory information is available, we can search a
circle of views around the 3-D location of a users head (Fig-
ure 5). If trajectory information is available, the head area
is then rendered for a small range of spatial angles around
the currently estimated face orientation. A set of 25 such
images has the same total size as one 300x300 image, and
takes similar time for a face detector to process.

We also reduce the scale space, since the virtual camera
is placed at a known distance from the VH, thus leading
only a small range of possible sizes of the face.

4. Recognition on virtual sequences
We take the virtual sequences rendered from canonical
viewpoints and input them to view-dependent face and gait
recognition algorithms. Typically these methods are based
on 2-D or 2.5-D (XY+T) analysis.

Figure 5: Virtual views can also be generated based on the
position of the users head and a ground plane constraint.

(a) Partition of a silhouette (b) Fitting an ellipse to each
region

Figure 6: Computing the feature vector for gait recognition.
From [13].

4.1. Gait Recognition

Human gait can serve as a discriminative feature for visual
recognition, as suggested by theoretical biometric ([10])
and empirical ([7, 16, 18]) results. Here we applied a simple
gait recognition scheme based on silhouette extent analysis,
which was developed separately from our work. The ba-
sic method is reported in [13] and was successfully demon-
strated on sequences where the direction of motion was ex-
plicitly parallel to the camera plane.

The gait dynamics feature vector consists of smoothed
versions of moment features in image regions containing
the walking person. For each silhouette of a gait video se-
quence, we find the centroid of the whole silhouette and
divide it into 7 regions using the centroid. For each of the
regions, we fit an ellipse to describe the centroid, the aspect
ratio and the orientation of the portion of foreground object
visible in that region(Figure 6(b)). These silhouette–based
features are computed for each frame of a video sequence.
These time-varying signals from a video sequence are com-
pressed across time using the mean and standard deviation
of the centroid, aspect ratio, and orientation of each region.
The time-compressed features from all 7 regions together
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form a gait feature vector. A diagonal covariance Gaussian
model is used for each of these features, and a nearest neigh-
bor classifier is used to decide which person has walking
dynamics closest to the query feature vector. This method
is surprisingly simple, but works in a range of realistic con-
ditions [13]. More complex models, including those that re-
cover kinematic biometrics and/or periodic features, could
also be easily integrated into our framework.

The features used in this gait recognition algorithm
are clearly view-dependent, and it is generally impractical
to collect data for each person across all possible views.
Recognition using a sequence rendered from a virtual view-
point in canonical position is an appealing alternative. For
each sequence of multiframesx, two silhouette sequences
are produced - a synthetic view from the left and from the
right can be created for each frame, relative to the estimated
motion vector. We denote those bysL andsR. Figure 4(top)
shows an example view-normalized silhouette input to the
recognition method.

We maintain an ID-tagged database of silhouette se-
quences, obtained from the VH of the previously observed
people. To recognize a new sequence, we compute the dis-
tances between the feature vector ofsL andsR and those of
all the silhouette sequencess in the database. We exclude
sL andsR themselves, and choose the minimum between
the two values as the distance betweenx and the other sil-
houettes. Then, we normalize the vector

pg(x) =
[
1/ min

label(s)=1
dist(s,x), . . . , 1/ min

label(s)=K
dist(s,x)

]
(2)

The estimated confidence thatx is actually from personk
is denotedpgk(x). Choosingk which maximizes this con-
fidence gives our classification decision.

4.2. Face recognition
When a scene is viewed by a small number of far-placed
cameras, often there is no view close enough to frontal to
allow face recognition, and even detection. For example,
on all of the original textures in Figure 8(a) face detection
fails. However, faces are easily detected in the frontal vir-
tual views, such as that shown in Figure 4(bottom) and Fig-
ure 8(b). Figure 8(c) shows a sample of view-normalized
model faces.

We consider face recognition algorithms that are trained
on a database with certain amount of view-dependence.
Typically such a database includes frontal views of faces.
So far, we tested our approach with eigenfaces.

For each multiframext, we render synthetic views of the
top part of VH for a small range of spatial angles around the
estimated motion vector. These images are processed by a
face detector, and the ones where a face was detected are
included in a set ofFacest(x). After having seenn frames,
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Figure 7: A rank-threshold plot for gait recognition using
view-normalization (solid line) versus using only the raw
input silhouettes (dotted line).

the setFaces(x) =
⋃n
i=1 Facesi(x). If Faces(x) is non-

empty, we can use all the face images in it for recognition.
Let m = |Faces(x)|. LetD be anm × K matrix of dis-
tances between eachIi ∈ Faces(x) and each one of theK
eigenspaces represented in the database:

Dij = |Ii − SjIi|, (3)

Then we compute for each imageIi a weight vector
wi = [1/Di1, . . . , 1/DiK ], which is further normalized to
produce a confidence vector. This vector describes the es-
timated confidence thatIi belongs to theKth person. We
havem images, so for the whole sequencex we compute
the confidence vector

pf (x) =
1
m

m∑
i=1

wi. (4)

Our classification is then done by selecting

x = argmax
j

pf j(x).

4.3. Multi-modal recognition
Finally, we combine the face and gait recognition results in
order to establish a higher confidence level. Since empiri-
cally the success rates of face and gait classifiers were simi-
lar (c.f. Table 1(d)), we assigned an equal weight of .5 when
combining confidence vectors. Givenpf (x) andpg(x) for
the observed sequence of multi-viewsx, we compute the
multi-modal confidence vector

pc(x) =

{
pg(x), if Faces(x) = ∅
(pg(x) + pf (x)) /2, otherwise.

(5)
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(a)

5 0 0 0 0 0 0 0 0 1 0 0
0 4 0 0 0 0 0 0 1 0 0 1
0 0 3 0 0 0 0 1 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 1 0
0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 1 0 0 0 4 0 0 1 1
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 0 0 0 4

(b)

5 0 1 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 2 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 1
0 0 1 0 0 0 5 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 4

(c)

6 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
1 0 3 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 1 0
0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 1 1
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 4

(d)
Modality (chance) No VH - face No VH - gait No VH - gait and face VH - Face only VH - Gait only VH - Gait and face
Recognition rate .08 .31 .52 .44 .8 .87 .91

Table 1: Confusion matrices for (a) gait-only, (b) face-only, and (c) integrated recognition using VH. Note that there was no
face data obtained for subject 8, who was wearing a hat during the experiments. (d) Summary of the recognition results.

(a) Original (b) VN

(c)

Figure 8: Face detection typically fails on the input views
due to varying pose (a), but succeeds on the visual hull-
based view-normalized image (b). Pairs of view-normalized
faces from the same individual are shown in (c). Conven-
tional view-dependent face recognition methods can match
(b) to the appropriate individual in (c) (top row, right or bot-
tom row, second right).

5. Results

We tested our methods using an installation with four
monocular cameras. Each were located at roughly the same
height, approximately 45 degrees apart, yielding set of im-
ages like that in Figure 1. The intersection of their fields
of view defines the working space of our system. The cam-
eras were calibrated off-line and temporally synchronized
in hardware.

Silhouettes were computed using a simple color back-
ground model. For each pixel, the mean and variance of its
values are computed over a large number of frames when
the scene is known to contain no object. Segmentation is

performed with three steps. First, each pixel in the data im-
age is labelled ’background’ if its value is within two stan-
dard deviations from the mean, and ’foreground’ otherwise.
Second, a normalized correlation analysis is then computed
for a small window around each foreground pixel, and it
is reset to background if the correlation score is sufficiently
high. Finally, a morphological close operation is performed.
The last two steps reduce the impact of shadows.

For 12 subjects we collected between 2 and 6 VH se-
quences as they walked in an arbitrary direction through the
visual hull workspace, which was approximately 3m in di-
ameter. The accuracy of gait classification was estimated
using leave-one-out cross-validation. Figure 7 compares
gait recognition performance using normalized vs. unnor-
malized views. Accuracy vs. rank threshold is plotted
for the each approach, indicating the percentage of trials
where the correct label was within the topn predicted la-
bels (wheren is the rank-threshold value). As can be seen,
recognition with the unnormalized sequences was substan-
tially worse than with our view-normalization approach. A
confusion matrix forn = 1 is shown in Table 1(a)

View-normalized face recognition was also performed
on these data, using the method described above. Table
1(b) shows the results of classification using only the face
observations. Finally, Table 1(c) shows the confusion ma-
trix for integrated recognition. Table 1(d) summarizes the
overall recognition rates for face-only, gait-only, and inte-
grated recognition. Integrated recognition reduced the rank-
threshold=1 recognition error rate from 13% to 9%.

Note the significantly inferior performance of the recog-
nition in both modalities with the same data, but when no
view-normalization is applied (Table 1 (d)). In this experi-
ment, we used the images from all the four cameras, where
segmented silhouettes were fed to the gait classifier, and
face detection was used to extract faces from the textured
camera inputs (with silhouettes defining the search regions).
Face recognition performed especially poorly. In many se-
quences not a single face was detected, which is not sur-
prising after looking at Figure 8. In addition, some false
detections further decrease the performance.
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6. Conclusions and Future Work
We have described a view-normalization approach for in-
tegrated tracking and recognition of people. Our system
combines face and gait recognition methods, and informa-
tion from multiple views. An image-based visual hull is
used for shape modeling and for trajectory tracking. Re-
sults were shown using view-dependent face and gait recog-
nition modules, and were better than the unnormalized or
single modality results. Each component of the system runs
at real-time speeds.

Currently the implementation uses monocular silhou-
ettes based on color segmentation with static backgrounds,
but could be extended to accommodate more sophisticated
segmentation algorithms. Our system works within the
strict intersection of the field of view of all cameras, but
we expect this to be relaxed as a more general visual hull
algorithm is developed. Finally, our confidence integration
method is clearly primitive in present form, and should be
extended to an explicit probabilistic framework.
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