
FastPoseEstimation with Parameter SensitiveHashing

Gregory Shakhnarovich1� Paul Viola2 Trevor Darrell1

gregory@ai.mit.edu viola@microsoft.com trevor@ai.mit.edu

1ComputerScienceandArti�cial IntelligenceLab,MIT 2MicrosoftResearch
Cambridge,MA 02139 Redmond,WA 98052

Abstract

Example-basedmethodsare effectivefor parameteres-
timation problemswhen the underlying systemis simple
or the dimensionalityof the input is low. For complex
and high-dimensionalproblemssuch as poseestimation,
the numberof required examplesand the computational
complexity rapidly becomeprohibitively high. We intro-
ducea new algorithmthat learnsa setof hashingfunctions
that ef�ciently index examplesrelevant to a particular es-
timation task. Our algorithmextendsa recentlydeveloped
methodfor locality-sensitivehashing, which �nds approxi-
mateneighborsin timesublinearin thenumberofexamples.
Thismethoddependscritically on thechoiceof hashfunc-
tions;weshowhowto �nd thesetof hashfunctionsthatare
optimally relevant to a particular estimationproblem. Ex-
perimentsdemonstrate that the resultingalgorithm, which
we call Parameter-SensitiveHashing, can rapidly and ac-
curatelyestimatethearticulatedposeof human�gur esfrom
a largedatabaseof exampleimages.

1. Intr oduction

Many problemsin computervision canbenaturallyfor-
mulatedas parameterestimationproblems: given an im-
ageor a video sequencex, we estimatethe parameters�
of a model describingthe sceneor the object of interest.
Examplesincludeestimationof thecon�guration of anar-
ticulatedbody, the contractionof musclesin the face,or
theorientationof a rigid object.Example-basedestimation
methodscapitalizeontheavailability of alargesetof exam-
plesfor which the parametervaluesareknown: they infer
the parametervaluesfor the input from the known values
in similar examples.This doesnot requiremodelingglobal
structureof theinput/parameterrelationship,which is only

� Part of this researchperformedwhile �rst two authorswereat Mit-
subishiElectric ResearchLabs,Cambridge,MA. Their supportis grate-
fully acknowledged.

assumedto be suf�ciently smoothto make suchinference
meaningful.

Classicmethodsfor example-basedlearning,suchasthe
k-nearestneighborrule (k-NN) and locally-weightedre-
gression(LWR), areappealingdueto their simplicity and
theasymptoticoptimality of theresultingestimators.How-
ever, the computationalcomplexity of similarity searchin
high-dimensionalspacesand on very large data setshas
madethesemethodsinfeasiblefor many visionproblems.

In thispaperwedescribeanew example-basedalgorithm
for fastparameterestimationusinglocalmodels,whichare
dynamicallybuilt for eachnew input image.We overcome
the problemof computationalcomplexity with a recently
developedalgorithmfor fastapproximateneighborsearch,
Locality-Sensitive Hashing(LSH)[11]. The training ex-
amplesare indexed by a numberof hashtables,suchthat
theprobabilityof collision is large for examplessimilar in
their parametersandsmall for dissimilarones. For practi-
cal problems,suchasposeestimation,goodresultscanbe
achieved with a speedupfactorof 103 to 104 over an ex-
haustivesearchin a databaseaslargeas106 examples.

What onereally wantsis to basetheestimateon exam-
plessimilar to theinput in their parametervaluesaswell as
in theinput space.Note,however, thatwhile LSH provides
a techniquefor quickly �nding closeneighborsin theinput
space,thesearenot necessarilycloseneighborsin the pa-
rameterspace.An exactsolutionfor this taskwouldrequire
knowledgeof theparametervaluesfor theinput - precisely
theproblemoneneedsto solve!

The main contribution of this paper is Parameter-
Sensitive Hashing(PSH),an extensionof LSH. PSHuses
hashfunctionssensitive to the similarity in the parameter
space,andretrievesapproximatenearestneighborsin that
spacein sublineartime. Thekey constructionis a new fea-
turespacethatis learnedfrom examplesin orderto moreac-
curatelyre�ect theproximity in parameterspace.We show
how theobjectiveof parametersensitivity canbeformulated
in termsof a classi�cationproblem,andproposea simple
andef�cient algorithmfor evaluatingthis objectiveandse-
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(a) Input (b) A subsetof thefeatures (c) 3 topmatchesin PSH,left to right (d) RobustLWR

Figure 1. Pose estimation with parameter sensitive hashing and local regression.

lectingparameter-sensitivehashfunctions.Finally, thegoal
estimateis producedby robustLWRwhichusestheapprox-
imateneighborsto dynamicallybuild asimplemodelof the
neighborhoodof the input. To our knowledge,this is the
�rst useof an LSH-basedtechniquewith local regression.
Ourapproachis illustratedin Figure1.

Theremainderof thispaperis organizedasfollows. Pre-
viouswork is reviewedin Section2. ThePSHalgorithmis
presentedin Section3 (thealgorithmfor constructingef�-
cienthashfunctionsis describedin Section3.1). We eval-
uateour framework onanarticulatedposeestimationprob-
lem: estimatingthe poseof a humanupperbody from a
singleimage. The detailsof the taskandour experiments
aredescribedin Section4. We concludeanddiscusssome
openquestionsin Section5.

2. Background and previous work

The body of literatureon object parameterestimation
fromasingleimage,andin particularonestimatingthepose
of articulatedbodies,is very large, and spaceconstraints
forceusto mentiononly work mostrelatedto ourapproach.

In [17] 3D poseis recoveredfrom the2D projectionsof
a numberof known featurepointson an articulatedbody.
Otheref�cient algorithmsfor matchingarticulatedpatterns
aregiven in [9, 15]. Theseapproachesassumethat detec-
tors areavailable for speci�c featurelocations,and that a
globalmodelof thearticulationis available.In [14] a`shape
context' featurevectoris usedto representgeneralcontour
shape.In [16], the mappingof a silhouetteto 3D poseis
learnedusing multi-view training data. Thesetechniques
weresuccessful,but they wererestrictedto contourfeatures
andgenerallyunableto useappearancewithin asilhouette.

Finally, in [1] a hand image was matchedto a large
databaseof renderedforms, usinga sophisticatedsimilar-
ity measureon imagefeatures.This work is mostsimilar
to ours and in part inspiredour approach. However, the
complexity of nearestneighborsearchmakesthis approach
dif�cult to apply to the very large numbersof examples
neededfor generalarticulatedposeestimationwith image-
baseddistancemetrics.

We approachposeestimationas a local learningtask,
andexploit recentadvancesin locality- sensitivehashingto
make example-basedlearningfeasiblefor poseestimation.
We review eachof thesetopicsin turn.

2.1. Examplebasedestimation

The taskof example-basedparameterestimationin vi-
sioncanbeformulatedasfollows. Input,which consistsof
imagefeatures(e.g.edgemap,vectorof responsesof a�lter
set,or edgedirectionhistograms)computedon theoriginal
image,is assumedto begeneratedby anunknown paramet-
ric processx = f (� ) (e.g.,� is a vectorof joint anglesin
thearticulatedposecontext. A trainingsetof labeledexam-
ples(x1; � 1); : : : ; (xN ; � N ) is provided.Onemustestimate
� 0 astheinverseof f for a novel input x 0. Theobjective is
to minimizetheresidualin termsof thedistance(similarity
measure)d� in theparameterspace.

Methodsbasedonnearestneighbors(NN) areamongthe
oldesttechniquesfor suchestimation.The k-NN estimate
[7] is obtainedby averagingthe valuesfor the k training
examplesmostsimilar to theinput:

�̂ N N =
1
k

X

x i 2 neighborhood

� i ; (1)

i.e. the target function is approximatedby a constantin
eachneighborhoodde�ned by k. Thisestimateis known to
beconsistent,andto asymptoticallyachieveBayes-optimal
risk undermany lossfunctions[7]. Note that similarity is
measuredin termsof thedistancedX in theinputspace.

A naturalextensionto k-NN, in which theneighborsare
weightedaccordingto their similarity to the query point,
leadsto locally-weightedregression(LWR)[5, 2]: thetarget
function is approximatedlocally (within any small region)
by a function from a particularmodelclassg(x; � ). The
parameters� arechosento optimizetheweightedlearning
criterionin thetestinputx0,

� � = argmin
�

X

x i 2 neighborhood

d� (g(x i ; � ); � i ) K (dX (x i ; x0)) ;

(2)
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whereK is thekernel function that determinestheweight
falloff with increasingdistancefrom thequerypoint.

In robustLWR [4], thein�uenceof outliersisdiminished
througha shortiterative process.In eachiterationafter the
modelis �t, theneighborhoodpointsarere-weightedsothat
pointswith higherresidualw.r.t. the �tted valuesbecome
lessin�uential.

Therearetwo major problemswith the straightforward
applicationof example-basedmethodsto parameterestima-
tion in vision. The�rst is thecomputationalcomplexity of
theexistingNN searchalgorithms,particularlyin thehigh-
dimensionalspacesoftenencounteredin vision tasks.Us-
ing fastapproximateNN algorithmsmayovercomethisob-
stacle. The ideaof usingapproximateNN hasbeenmen-
tionedin previouswork for objector texture classi�cation
[3, 10], and for the estimationtasks[13, 1]. However to
our knowledgeno experimentsusingrecentalgorithmsfor
estimationtaskshavebeenconducted.

The secondproblem,not immediatelysolvedby adopt-
inganef�cient similarity searchalgorithm,is therelianceof
thesearchondX , thefeaturemetric,withoutexplicitly tak-
ing into accountd� . Wewill show how to explicitly selecta
featuresubspacein which dX approximatesd� , without an
explicit globalmodelof this relationship.Theapproximate
NN in this spaceareof much higher relevancethat those
retrievedusingdistancein theoriginal featurespaces.

2.2. LocalitySensitiveHashing

The following problem,called(r; � )-NN, canbe solved
in sublineartime by LSH [11]: if for a querypoint u there
existsa trainingpoint v suchthatd(u; v) � r , then(with
highprobability)apointv 0 is returnedsuchthatd(u; v 0) �
(1 + � )r . Otherwise,theabsenceof suchpoint is reported.
We shallnow de�ne theterm“locality-sensitive” andsum-
marizetheLSH algorithm.

A family H of functions over X is called locality-
sensitive, or morespeci�cally (r; r (1+ � ); p1; p2)-sensitive,
if for any u; v 2 X ,

if d(u; v) � r then Pr
H

(h(u) = h(v)) � p1;

if d(u; v) > (1 + � )r then Pr
H

(h(u) = h(v)) � p2;
(3)

where PrH is the probability with respectto a random
choiceof h 2 H. We will assume,w.l.o.g., that every
h 2 H is binaryvalued.

A k-bit locality-sensitivehashfunction(LSHF)

g(x) = [h1(x); h2(x); : : : ; hk (x)]T (4)

constructsahashkey by concatenatingthebitscomputedby
a randomlyselectedsetof h1; : : : ; hk . Notethat theproba-
bility of collision for similarpointsis at least1� (1 � p1)k ,

while for dissimilarpointsit is at mostpk
2 . A usefulLSHF

musthavep1 > p2 andp1 > 1=2.
In the preprocessingstage, each training example is

enteredinto l hashtablesindexed by independentlycon-
structedg1; : : : ; gl . For a query point x0, the exhaustive
searchis only carriedout amongtheexamplesin theunion
of l hashbucketsindexedby x 0. If thealgorithmsucceeds,
thesecandidatesincludean(r; � )-NN of x 0.

Thevaluesof l andk affectboththeprecisionandtheef-
�ciency of LSH. A largel increasestheprobabilityof suc-
cess,but also the potentialnumberof candidateexamples
(andthustherunningtime). A largek speedsup thesearch
by reducingthenumberof collisions,but alsoincreasesthe
probabilityof amiss.Supposethatourgoalis to searchex-
haustively atmostB examplesfor eachquery;thensetting

k = log1=p2

�
N
B

�
; l =

�
N
B

� log (1 =p 1 )
log (1 =p 2 )

(5)

ensures[11] that LSH will succeedwith high probability.
Its expectedquerytime is O

�
dN 1=(1+ � )

�
, which translates

into a factor 1000 speedupcomparedto exhaustive exact
searchfor N = 106; � = 1.

Theconstructionof anef�cient setof LSHFs(with high
p1 and low p2) is obviously critical to the successof the
algorithm. In thenext sectionwe developa learningalgo-
rithm for constructingsucha setfor parameterestimation.

3. Estimation with Parameter-Sensitive Hash-
ing

Let (x1; � 1); : : : ; (xN ; � N ) be the training examples
with their associatedparametervalues.An exampleis rep-
resentedby a featurevectorx = [x1; : : : ; xD ] wherex j is
computedby a scalar-valuedfunction � j on the input im-
age,suchasa �lter responseat a certainlocationor a bin
count in edgedirectionhistogramin a certainregion. We
assumethefollowing:

1. A distancefunctiond� is givenwhich measuressimi-
larity betweenparametervectors,andaradiusR in the
parameterspaceis given suchthat � 1; � 2 areconsid-
eredsimilar if f d� (� 1; � 2) < R.

2. The training examplesarerepresentative of the prob-
lem space,i.e. for a randomlydrawn examplethere
exists,with high probability, an examplewith similar
parametervalues.

3. The processthat generatesthe examplesis unbiased,
or it is possibleto correctfor suchbias.

The distancefunction and the similarity thresholdarede-
pendenton theparticulartask,andoften re�ect perceptual
similaritiesbetweenthescenesor objects.
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The secondassumptionmay appeara bit vague,andin
fact its precisemeaningdependson thenatureof theprob-
lem. If we control theexamplegenerationprocess,we can
attemptto “�ll” thespace,storinganexamplein everynode
on an R-grid in parameterspace. This becomesinfeasi-
ble very quickly asthedimensionof � increases.Alterna-
tively, it hasbeenoften observed or conjectured[12, 18]
that imagesof many real-world phenomenado not �ll the
spaceuniformly, but ratherbelongto an intrinsically low-
dimensionalmanifold,anddenselycovering that manifold
is enoughto ensurethisproperty.

Thelastassumptionimpliesthat thereareno signi�cant
sourcesof variationin theexamplesbesidesthevariationin
theparameters,or that thecontributionof suchsourcescan
be accountedfor. While perhapslimiting, this is possible
to comply with in many vision problems,eitherexplicitly,
by normalizingthe examples,or implicitly, e.g. by using
featuresinvariantwith respectto the“nuisance”parameters.

3.1. Parametersensitivehashfunctions

For a hashfunctionh, let p1(h) andp2(h) be theprob-
abilitiesof collision for similar/differentexamples.Recall
(Section2.2) that a family of hashfunctionsH is useful
when, averagedover h 2 H, p2(h) is low and p1(h) is
high. In [11] quantitieslike p1(h) arederivedfor the task
of �nding neighborsin the input space.For theparameter
estimationtask,wherethe goal is to �nd neighborsin the
unknown parameterspace,analyticderivationof p1(h) and
p2(h) is infeasiblesinceh is a measurementin the image
domain.

However, we canshow thatp1(h) andp2(h) haveanin-
tuitive interpretationin the context of the following clas-
si�cation problem. Let us assignto eachpossiblepair of
examples(x i ; x j ) thelabel

yij =

8
><

>:

+1 if d� (� i ; � j ) < r;

� 1 if d� (� i ; � j ) > R;
notde�ned otherwise;

(6)

wherer = R=(1 + � ). Notethatwe do not de�ne thelabel
for the “gray area”of similarity betweenr andR, in order
to conformto Eq. (3).

We can now formulate a classi�cation task relatedto
theselabels. A binary hashfunction h eitherhasa colli-
sionh(x i ) = h(x j ) or not;we saythath predictsthelabel

ŷh (x i ; x j ) =

(
+1 if h(x i ) = h(x j ) (collision);
� 1 otherwise:

(7)

Thus,whenh is interpretedasaclassi�er, p2(h) is theprob-
ability of a falsepositive Pr(ŷij = +1 jyij = � 1), and
similarly 1 � p1(h) is the probability of a falsenegative.

Our objective thereforeis to �nd h's with high prediction
accuracy. This canbe doneby evaluatingh on a large set
of pairedexamplesfor which true labelscanbecomputed.
Suchapairedproblemsetcanbebuilt from ourtrainingset,
sincewe know d� ; r ; R.

We shouldbe carefulabouttwo thingswhenconstruct-
ing the pairedproblem. First, we must not include pairs
with similarity within the “gray area” betweenr and R.
Second,we shouldtake into accounttheasymmetryof the
classi�cationtask: therearemany morenegativeexamples
amongpossiblepairsthantherearepositive. Consequently,
in order to representthe negative examplesappropriately,
wemustincludemany moreof themin thepairedproblem.

The exact natureof thehashfunctionsh will affect the
featureselectionalgorithm. Herewe considerh which are
decisionstumps:

h�;T (x) =

(
+1 if � (x) � T;
� 1 otherwise:

where � (x) is a real-valued image function and T is a
threshold. The searchfor effective hashfunctionsis now
a searchfor a setof h�;T with high accuracy on thepaired
problem.Figure2 shows analgorithmwhich for a given�
�nds the optimal T in two passesover the pairedtraining
set. Intuitively, it tries all possibledistinct thresholdsand
countsthe numberof negative examplesthat areassigned
thesamehashvalueandpositivesthat areassigneddiffer-
entvalues.Sinceexamplesaresortedby featurevalue,these
quantitiescanbe updatedwith little work. The threshold
Tbest is theonethatminimizestheir sum.

3.2. Similarity search

Onceaneffectivesetof hashingfunctionsis found,LSH
is usedto query the databaserapidly, and �nds the union
of the l hashbuckets, X 0 =

S l
j =1 gj (x0). Let M be

the numberof distinct points in X 0; with high probability
M � N (if M = 0 the algorithmsterminatesin fail-
ure mode). X 0 is exhaustively searchedto producethe K
(r; � )-NN x0

1; : : : ; x0
K , orderedby increasingdX (x0

i ; x0),
with parameters� 0

1; : : : ; � 0
K . Theestimateis basedon these

points,which with high probability, belongto an approxi-
mateneighborhoodof x0 both in theparameterandin the
inputspaces.

3.3. Local regression

The simplestway to proceedis to return � 0
1 as the an-

swer. Therearetwo problemswith this. First � 0
1 canbeup

to R away from thetrueparameterof the input, � 0. Often,
the R for which it is feasibleto satisfythe representative-
nesspropertymentionedabove is too largeto make this an
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Given: Feature �
Given: Pairs ~X = (x i n ; x j n ; yn )N

n =1 .
Start with an empty array A.
Tp := number of positive pairs
Tn := number of negative pairs
for n = 1 to N do

v1 := � (x i n ); v2 = � (x j n )
l1 := 1 if vi n > vj n , 0 otherwise
l2 := � l1

A := A [ f < v1 ; l1 ; n >; < v2 ; l2 ; n > g
end for
At this point A has 2N elements. Each
paired example is represented twice.
Sort A by the values of v
Sp := Sn := 0
cbest := Tn

for k = 1 to 2N do
Let < v; l ; n > = A[k]
if yn = +1 then

Sp := Sp � l
else if yn = � 1 then

Sn := Sn � l
end if
c := (Tn � Sn ) + Sp

if c < cbest then
cbest := c; Tbest := v

end if
end for

Figure 2. Algorithm for PSHF evaluation in the
case of decision stumps (see Section 3).

acceptablesolution(seeFigure5 for examples).The sec-
ondproblemis causedby our inability to directly measure
d� (� 0; � ); thesearchrelieson thepropertiesof LSHF, and
on the monotonicityof dX with respectto d� , which are
usuallynotperfect.We needa robustestimatebasedon the
approximateneighborhoodfoundby PSH.

A possibleway of achieving this is by usingthe k-NN
estimateas a starting point of a gradientdescentsearch
[1]. Alternatively, active learningcanbeusedto re�ne the
“map” of theneighborhood[6]. Bothapproaches,however,
requirean explicit generative modelof p(x j� ), or an “ora-
cle”, which for a givenvalueof � generatesanexampleto
be matchedto x0. While in somecasesit is possible(e.g.
animationsoftwarewhichwouldrenderobjectswith agiven
pose),wewould like to avoid sucha limitation.

Instead,we userobustLWR. Sincewe expectthenum-
ber of neighborsto be small, we uselow-orderpolynomi-
als(constantor linear)to avoid over�tting. Theparameters
of LWR in Eq. 2, e.g. the degreeof g (0 or 1) and the
kernelbandwidth,aswell asthenumberof iterationsof re-
weighting,canbechosenbasedonvalidationset.

4. Poseestimationwith PSH

We appliedour algorithmto the problemof recovering
thearticulatedposeof a humanupperbody. Themodelhas
13degreesof freedom:oneDOFfor orientation,namelythe
rotationangleof the torsoaroundtheverticalaxis,and12
DOFsin rotationaljoints (2 in eachcollar, 3 in eachshoul-
der, and1 in eachelbow). We do not assumeconstantil-
luminationor �x edposesfor otherbodypartsin theupper
body(headandhands),andthereforeneedto representthe
variation in theseand other nuisanceparameters,suchas
clothingandhair style,in our trainingset.

For this application,it is importantto separatetheprob-
lemof objectdetectionfrom thatof poseestimation.Given
simplebackgroundsanda stationarycamera,body detec-
tion andlocalizationis not dif�cult. In theexperimentsre-
portedhere,it is assumedthatthebodyhasbeensegmented
from background,scaled,andcenteredin the image. For
moredif�cult scenarios,a morecomplex objectdetection
systemmayberequired.

Input images are representedin our experimentsby
multi-scaleedge directionhistograms. Edgesaredetected
using the Sobel operatorand each edge pixel is classi-
�ed into oneof four directionbins: � =8; 3� =8; 5� =8; 7� =8.
Then,thehistogramsof directionbinsarecomputedwithin
sliding squarewindows of varying sizes(8, 16, 32 pixels)
placedatmultiple locationsin theimage.Thefeaturespace
consistsof theconcatenatedvaluesof all of thehistograms.
We chosethis representation,often usedin imageanaly-
sis andretrieval, becauseit is largely invariantto someof
thenuisanceparameterswith respectto pose,suchasillu-
minationandcolor. Figure1(b) illustratesa subsetof the
features,namelyhalf of the8� 8 histogrambins.

The training set consistedof 150,000imagesrendered
from a humanoidmodel using POSER [8], with param-
eter valuessampledindependentlyand uniformly within
anatomicallyfeasibleranges;the torsoorientationis con-
strainedto the range[� 40o; 40o]. Eachtraining imageis
180� 200pixels. In ourmodel,all anglesareconstrainedto
[� � ; � ], soassimilarity measurewe use

d� (� 1; � 2) =
mX

i =1

1 � cos(� i
1 � � i

2) (8)

wherem is thedimensionof theparameterspace(number
of joint angles),and � i

j is the i -th componentof � j . We
found that this distancefunction usually re�ects our per-
ceptionof posesimilarity (seeFigure3 for examples).

After examining large numbersof imagescorrespond-
ing to poseswith variousdistances,we set r = 0:25 and
� = 1. An LSH query is thereforeconsideredsuccessful
if it returnsexampleswithin R = 0:5 of the input. Analy-
sisof thedistribution of d� over pairsof trainingexamples
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POS POS NEG NEG

AND

(a) (b) d� = 0:147 (c) d� = 0:203 (d) d� = 1:085 (e)d� = 4:782
dX = 0:053 dX = 0:052 dX = 0:063 dX = 0:060
dI = 1:316 dI = 3:557 dI = 3:631 dI = 3:486

Figure 3. Positive and negative paired examples. For each image in (b)–(e), the � 1 label of the
pair formed with (a) is based on the distance d� to the underl ying parameter s of (a), with similarity
threshold r = 0:25. dX and the root mean squared pix el distances dI are given for reference .

revealsthatonly about0:05%of thepairsconstituteaposi-
tiveexampleby thiscriterion(thedistributionappearsto be
roughlylog-normal).Figure3 shows5 of 1,775,000paired
examplesusedby PSHto select269outof 11,270features.
All featuresachieve an accuracy betterthan0.465on the
pairedproblem;this thresholdwassetto balancethenum-
berof featuresandtheiraccuracy. BasedonEq. 5,PSHwas
implementedvia 200 hashtablesusing 18-bit hashfunc-
tions.

Model k = 7 k = 12 k = 50
k-NN 0.882(0.39) 0.844(0.36) 0.814(0.31)

Linear 0.957(0.47) 0.968(0.49) 1.284(0.69)

constLWR 0.882(0.39) 0.843(0.36) 0.810(0.31)

linearLWR 0.885(0.40) 0.843(0.36) 0.808(0.31)

robustconstLWR 0.930(0.49) 0.825(0.41) 0.755(0.32)

robustlinearLWR 1.029(0.56) 0.883(0.46) 0.738(0.33)

Table 1. Mean estimation error for synthetis
test data, over 1000 examples. Standar d de
viation sho wn in parentheses. Not sho wn is
the baseline error of 1NN, 1.614 (0.88)

To quantitatively evaluatethe algorithm's performance,
we testedit on 1000syntheticimages,generatedfrom the
samemodel.Table1 summarizedtheresultswith different
methodsof �tting a local model; ' linear' refersto a non-
weightedlinearmodel�t to theneighborhood.On average
PSHsearched5100candidates,about3.4%of thedata,per
input example;in almostall cases,the true nearestneigh-
borsunderdX werealsothetopPSHcandidates.

The results con�rm some intuitive expectations. As
the number of approximateneighborsused to construct
the local model increases,the non-weightedk-NN suffers
from outliers,while the LWR improve; the gain is notice-
ably higher for the robust LWR. Sincehigherordermod-

els requiremoreexamplesfor a good�t, theorder-1 LWR
only becomesbetterfor large neighborhoodsizes(50 and
higher). Over all, theseresultsshow consistentadvantage
to LWR.

Wealsotestedthealgorithmon800imagesof arealper-
son; imageswereprocessedby a simplesegmentationand
alignmentprogram.Figure4 showsafew examplesof pose
estimationon real images.Notethat the resultsin thebot-
tom row arenot imagesfrom thedatabase,but a visualiza-
tionof theposeestimatedwith robustlinearLWR on12-NN
asapproximatedby PSH;weusedGaussiankernelwith the
bandwidthsetto thedX distanceto the12-thneighbor. In
somecases,thereis avisible improvementversusthe1-NN
estimatebasedon the top matchin PSH.The numberof
candidatesin PSHwassigni�cantly lower thanfor thesyn-
thetic images- about2000, or 1.3% of the database;this
canbe explainedby the fact that two syntheticimagesare
morelikely to have exactly equalvaluesfor many features.
It takesanunoptimizedMatlabprogramlessthan2 seconds
to producetheposeestimate(not including therendering).
This is a dramaticimprovementover searchingthe entire
databasefor theexactNN, whichtakesmorethan2 minutes
perquery, andin mostcasesproducesthesametopmatches
asthePSH.

Lackinggroundtruth for theseimages,werely onvisual
inspectionof theposefor evaluation.For mostof theexam-
ples the poseestimatewasaccurate;on someexamplesit
failedto variousextents.Figures4 and5 show a numberof
examples,includingtwo de�nite failures.Notethatin some
casestheapproximatenearestneighboris a poorposeesti-
mate,while robustLWR yieldsa good�t. We believe that
therearethreemainsourcesof failure:signi�cant mismatch
betweend� anddX , imperfectsegmentationandalignment,
andthe limitationsof thetrainingset,in termsof coverage
andrepresentativenessof theproblemdomain.
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Figure 4. Examples of upper bod y pose estimation (Section 4). Top row: input images. Middle row:
top PSH matc h. Bottom row: robust constant LWR estimate based on 12 NN. Note that the images
in the bottom row are not in the training database  these are rendered onl y to illustrate the pose
estimate obtained by LWR.
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Figure 5. More examples, inc luding typical “err ors”. In the leftmost column, the gross error in the top
matc h is corrected by LWR. The rightmost two columns sho w various degrees of error in estimation.
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5. Summary and Conclusions

We presentan algorithm that usesnew hashing-based
searchtechniquesto rapidly �nd relevant examplesin a
largedatabaseof imagedata,andestimatestheparameters
for theinput usinga local modellearnedfrom thoseexam-
ples. Experimentsshow thatour estimationmethod,based
onparameter-sensitivehashingandrobustlocally-weighted
regression,is successfulon the taskof articulatedposees-
timationfrom staticinput. Theseexperimentsalsodemon-
stratetheusefulnessof syntheticallycreateddatafor learn-
ing andestimation.

In addition to the useof local regressionto re�ne the
estimate,our work differs from thatof others,e.g. [1, 13],
in that it allows accurateestimationwhenexaminingonly
a fractionof a dataset.The runningtime of our algorithm
is sublinear;in our experimentswe observeda speedupof
almost2ordersof magnituderelativeto theexhaustiveexact
nearest-neighborsearch,reducingthetime to estimatepose
from an imagefrom minutesto under2 secondswithout
adverselyaffecting the accuracy. We expectan optimized
versionof the systemto run at real time speed. This has
thepotentialof turninginfeasibleexample-basedestimation
methodsinto attractive for suchtasks.

Therearemany interestingquestionsthat remainopen.
Thelearningalgorithm,presentedin Section3.1,implicitly
assumesindependencebetweenthefeatures;weareexplor-
ing moresophisticatedfeatureselectionmethodsthatwould
accountfor possibledependencies.Moreover, it shouldbe
pointedout that thereexist fastalgorithmsfor approximate
similarity searchotherthanLSH. It remainsanopenques-
tion whetherthosealgorithmscanbe modi�ed for param-
eter sensitivity and becomeuseful for estimationtasksin
vision,replacingLSH in our framework.

Finally, as we mentionedearlier, the presentedframe-
work is not speci�c to pose;we intendto investigateits use
in otherparameterestimationtasks.
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