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Abstract

This paper is concerned with the estimation
of a classifier’s accuracy. We present a num-
ber of novel bootstrap estimators, based on
kernel smoothing, that consistently show su-
perior performance on both synthetic and
real data, with respect to other established
methods. We call the process of (re)sampling
the data via kernel-based smoothed boot-
strap data cloning. The new cloning methods
outperform cross-validation and the .632+
bootstrap, which, according to Efron and
Tibshirani, is the estimator of choice. Fi-
nally, we extend our estimators to complex
real-life data sets, in which a data point
might include real, bounded, integer and
nominal attributes, thus allowing for better
classifier evaluation over limited real data
repositories such as the UCI repository.

1. Introduction

A common approach to the evaluation and compari-
son of inductive learning algorithms is to test them on
data sets from various “real-life” settings. We shall
refer to such data as “real”, in contrast to data gen-
erated by artificial methods. While many theoretical
conclusions can be drawn from an algorithm’s perfor-
mance on synthetic data, good performance on real
data sets is believed to be evidence for an algorithm’s
practical plausibility. Public repositories of real data
have appeared in recent years; one of the most known
and widely used of these is the University of California
at Irvine (UCI) repository (Blake & Merz, 1998).

Unfortunately, real data is expensive, tedious to col-

lect, and often available only in limited amounts. The
UCI repository, which is one of the largest, contains
about 100 data sets, just a few compared to the huge
number of studies using these data sets. Such over-
usage of data can lead to a compromise in the signifi-
cance of the obtained results (Salzberg, 1997).

This problem would be greatly alleviated if one could
generate arbitrarily many “new” data samples, dis-
tributed according to the same probability law as the
real data set at hand. This would provide a valu-
able tool for the machine learning research community,
since algorithm performance results on real data would
be obtained with greater statistical significance. Since
the true distribution of the data is unknown, this task
is impossible. However, one can “clone” the available
data and generate a family of data sets that are differ-
ent from but similar to the original one (in a statistical
sense to be defined) and evaluate the performance of
an algorithm on these data sets. The bootstrap, in-
troduced in (Efron, 1979), provides a means for such
data cloning.

In this paper we propose a number of novel boot-
strap estimators for classifier error. The new esti-
mators are based on a smoothed version of bootstrap
where we use a density estimation technique to resam-
ple from the available data with some additional noise.
Smoothed bootstrap estimators are already known; as
far as we know, however, they have never been em-
ployed for classifier error estimation. The new estima-
tors improve on existing ones by variance reduction.
We present an extensive set of simulation results on
synthetic data that show the consistent advantage of
our estimators over the best known estimators to date.
In particular, our estimators outperform the .632+ of
(Efron & Tibshirani, 1997) and the standard cross-



validation technique. We repeat the exact experiments
performed by Efron and Tibshirani and test our meth-
ods with respect to various classifiers, including Sup-
port Vector Machines.

Second, we propose algorithms for computing
smoothed bootstrap samples on complex real data sets,
such as those in the UCI repository, that may include
real, integer and nominal attributes. We refer to this
method as statistical data cloning. Finally, we test our
cloning algorithms on a few data sets from UCI, and
show again that our data cloning techniques exhibit
performance superior to that of the traditional estima-
tors. Throughout the paper we use the term “cloning”
for all smoothed bootstrap sampling techniques.

1.1 The learning paradigm

We consider the following supervised learning
paradigm. A data set X(n) consists of n labeled pairs
〈x1, y1〉, . . . , 〈xn, yn〉. The points xi are generated
i.i.d. in a d-dimensional data space D, according to an
unknown probability distribution F , and y = 0, 1, . . .
are class labels. For brevity, we shall usually use the
notation x to refer to 〈x, y〉. Given a data sample
X(n), the learning algorithm A produces a concept
CA(X(n)) = A(X(n)) from a certain concept class.
This concept, called a classifier, is a function that as-
signs a class label to each x.

Throughout the paper, we consider the zero-one
loss function and, following standard notation (e.g.
(McLachlan, 1992)), we denote the error function (the
penalty for the classification decision made byA(X(n))
on the test point x) by Q

(
x, X(n),A(X(n))

)
. We as-

sume that this penalty is 0 for correct classification
and 1 otherwise. In every context in this paper, we
shall consider a certain fixed learning algorithm A. It
is convenient then to use the shorthand

Q
(
x, X(n)

)
= Q

(
x, X(n),A(X(n))

)
.

For further simplicity, we shall use a similar notation
for the average error of the classifier trained on X(n),
over a test set W (m) = (w1, . . . ,wm):

Q
(
W (m), X(n)

)
=

1
m

m∑
i=1

Q(wi, X
(n))

1.2 Generalization error of a classifier

We are interested in measuring the accuracy of a clas-
sifier by its ability to generalize, that is, to assign the
correct class label to a previously unseen data point.
The true error Err of a classifier trained on X(n) is

Err = Err(X (n),F ) = EF(x0 )[Q(x0 ,X (n))]. (1)

Here, the assumption is that a random test point
〈x0, y0〉 is distributed according to the same F as the
training set. Err is sometimes called a conditional true
error, since it depends on the random variable X(n).
For a fixed training set, Err can be written as

Err(X (n),F ) =
∫
D

Q(x0 ,X (n))F (x0 )dx0 (2)

Note that this is different from the expected true error
for a training set of size n:

µn(F ) = EF (X(n))[Err(X (n),F )]. (3)

In practice, given a small data set, it is not clear how
to estimate the expectation over all training sets of
size n . We therefore focus in this paper on the task
of estimating Err .

1.3 Bias and variance in error estimation

Being based on X(n), which is a random variable, any
estimator Êrr of the true error Err is a random vari-
able itself. Neither its bias EF (X(n))[Êrr −Err ] nor its
variance each by itself can serve as a good measure of
the estimator’s quality. In a single experiment, the er-
ror of an unbiased estimator with a large variance can
to be greater than that of a mildly biased estimator
with a small variance.

We follow the practice of using the squared error
(Êrr −Err)2 as a measure of estimator quality (Efron
& Tibshirani, 1997), and motivate it as follows. Con-
sider the task of obtaining a single estimate of a clas-
sifier’s accuracy on a given data set. Assuming that
the objective in choosing an estimator is to minimize
the probability of a large absolute (or squared) error
in this single estimate, then by Markov’s inequality,

Pr
(

(Err − Êrr)2 ≥ ε
)
≤ E

[
(Err − Êrr)2

]
/ε. (4)

The sample mean of (Err − Êrr)2 (MSE) is an esti-

mate of E
[(

Err − Êrr
)2
]

and can be used to estimate

the bound in (4). We compute the root mean squared
error (RMSE ) to bring the value to linear scale.

2. On some known methods for
estimation of Err

2.1 Empirical error

A classifier can be tested on the same data it was
trained on. The empirical (or resubstitution) error

err = Q(X(n), X(n)), (5)



is typically over-optimistic and has a negative bias that
is especially large for learning algorithms with high
overfitting. In an extreme case, like that of the nearest
neighbor rule, err can be zero even when Err is 1/2.

2.2 Cross-validation

To avoid underestimating the error due to resubstitu-
tion, in the k-fold cross-validation (CV), the data set
is partitioned into k mutually disjoint subsets called
folds. For each fold Sj , j = 1, . . . , k, the classifier is
trained on all of the data except Sj and tested on Sj .
The resulting estimator is computed as the average of
the error rates over the k folds:

ErrCV×k =
1
k

k∑
j=1

Q(Sj ,X (n)\Sj ). (6)

The extreme case of the k-fold CV-based estimator
is the leave-one-out estimator, ErrCV×n . The CV is
known to produce an almost unbiased estimate of Err ,
since for every fold the classifier is trained on almost
the complete X(n); however, it often suffers from high
variance due to the learning algorithm’s instability un-
der small perturbations in the data (Kohavi, 1995). A
possible approach to reducing the variance of CV is to
average ErrCV×k over several k-fold divisions of the
data, giving ErrMCV×k .

2.3 Bootstrap and its use for error estimation

The bootstrap method is based on the following idea.
A (nonparametric) maximum likelihood estimator of
a statistic θ(X(n)) is given by the expectation of θ
with respect to the empirical distribution F̂n, which
gives a probability mass of 1/n to each sample xi
in X(n) (Efron, 1992). Usually no analytical expres-
sion for this expectation exists, as it is in case of
θ(X(n)) = Err . However, a Monte-Carlo algorithm
allows for numerical evaluation of this expectation by
drawing B samples of size n from F̂n. These samples
X(n)∗

1, . . . , X
(n)∗

B are called bootstrap samples, and the
value θ(X(n)∗

b) is called a bootstrap replication of θ. A
bootstrap estimate of θ is then computed by averaging
over the bootstrap replications. The smoothing done
by bootstrap typically reduces the discontinuities in
the statistic, and thus lowers its variability.

2.3.1 Ordinary bootstrap estimator

The ordinary, or naive, bootstrap estimate of Err , con-
structed with B replications, is given by

ErrBS =
1
B

B∑
b=1

Q(X (n),X (n)∗
b), (7)

that is, the classifier is trained on a BS sample and
tested on the original data set, and the average over
the B samples is computed. Note that the test point xi
is included in the training set X(n)∗

b with probability
1−(1−1/n)n, which is approximately .632 for large n.
Due to this expected partial resubstitution, one should
expect ErrBS to be biased downwards.

2.3.2 Leave-one-out bootstrap

Leave-one-out bootstrap (Efron & Tibshirani, 1997) is
a “smoothed” version of ErrCV×n . To compute it,
one draws the bootstrap samples from the empirical
distribution of the original sample with the i-th point
removed, X(n)

(i) . This distribution F̂(i) assigns proba-
bility 1/(n− 1) to all xj , j 6= i. Then

Err (1)
BS =

1
n

n∑
i=1

1
B

B∑
b=1

Q(xi ,X
(n)
(i)

∗

b
). (8)

This smoothing reduces the variance. However, in
computation of a single term in (8), the training set
has an expected .632n distinct data points, as opposed
to ErrCV×n , which is based on classifiers trained on
n− 1 points. Since, for many classifiers, Err tends to
decrease as the size of the training set grows, this fact
implies an upward bias.

2.3.3 Hybrid bootstrap and .632+

The error estimate of the general form of a hybrid boot-
strap error estimator is given by

Êrr
λ

= λErr (1)
BS + (1 − λ)err,

and a mixing parameter λ is sought that minimizes the
bias. Many authors (e.g. (McLachlan, 1992)) report
“substantial empirical evidence” favoring λ = 0.632.
Efron also gives a heuristic motivation for this number:
a bootstrap sample of size n is expected to be sup-
ported by approximately .632n original data points.
This choice of λ gives rise to the .632 bootstrap esti-
mator given by Err .632 = .632 Err (1)

BS + .368 err. The
intuition behind Err .632 suggests compensation for the
downward bias of err with the upward bias of Err (1)

BS .
However, for a classifier with high overfitting (such as
1-NN) err ≡ 0, and Err .632 is downward biased itself.

Err .632+, proposed by Efron and Tibshirani in (Efron
& Tibshirani, 1997), is a sophisticated estimator that
attempts to estimate the amount of overfitting and
adjust λ accordingly. The authors define the “no-
information” error rate, which is the error rate of the
classifier when the data conveys no information for the
classifier (x’s and y’s independent), and estimate it by



averaging the error rate over all possible permutations
of the data and labels. From the no-information error
rate estimate γ̂ , the overfitting rate R̂ is derived, and
finally the .632+ estimator is obtained as

Err .632+ = Err .632 + (Err (1)
BS − err)

.368 · .632 · R̂
1 − .368 R̂

.

3. Related work

A great deal of work exists on both regression (with the
prediction error usually measured in terms of squared
loss) and classification (with various loss functions).
According to reports in the ML community, cross-
validation, and in particular leave-one-out, is the most
widely used method for this task. Bootstrap methods
are less popular. They are known to have higher biases
than CV but lower variances, and consequently show
better results in terms of squared error when a large
number of trials is performed ((Efron, 1983),(Shao &
Tu, 1995)). (Kohavi, 1995) shows, for 10 UCI data
sets, that CV-based estimators work better due to the
large bias of the bootstrap. However, (Efron & Tib-
shirani, 1997) obtain the best performance with .632+
for a number of data sets, including some of those used
by Kohavi. Therefore, .632+ seems to be the state-of-
the-art BS-based estimator.

There have been previous efforts at classification using
density estimation for complex, real-life data involving
non-numeric features (Hermans et al., 1982), but with
no clear means of sampling from the estimated density.

4. Smoothed bootstrap

Constructing a bootstrap replication of the data by
sampling with replacement is equivalent to randomly
drawing samples from the empirical probability distri-
bution F̂n. Instead, one may estimate the PDF of the
data, and use the estimated density to draw samples.
This is the underlying idea of smoothed bootstrap (Sil-
verman & Young, 1987).

4.1 Kernel-based nonparametric density
estimation

We use kernel-based density estimation (Parzen win-
dows), as described, for example, in (Scott, 1992). The
PDF of a point x, based on the sample X(n), is

f̂(x) =
1

n|H|

n∑
i=1

K
(
H−1 (x− xi)

)
, (9)

where the kernel K is a probability density function,
and H is a matrix which essentially determines the

covariance structure of K. It has been suggested in
the literature (Fukunaga, 1990) that if the data set is
whitened1, one can use the product kernel, which is a
product of d unidimensional kernels:

f̂(x) =
1

n
∏d
j=1 hj

n∑
i=1

d∏
j=1

K

(
xj − xij
hj

)
. (10)

To apply a kernel method, two parameters must be set:
the kernel function and the bandwidth. The choice of
the bandwidth is critical to the success of the method,
and a large number of methods for automatic band-
width selection exist. Intuitively, the optimal band-
width must obey some smoothness conditions, which
can be expressed as bounds on

∫
f ′′. Our system uses

the direct plug-in method, based on kernel-based esti-
mation of the derivatives of f (Wand & Jones, 1995).

The choice of kernel is considered to be much less im-
portant for the quality of the density estimate. We use
the Epanechnikov kernel K(x) = 3(x − 1)2/4, which
has been shown to be the optimal kernel for density
estimation, in terms of minimizing the mean squared
error (Scott, 1992), and also allows simple resampling.

4.2 Sampling from the estimated density

Kernel-based PDF estimation is a computationally ex-
pensive task. However, to sample from f̂ , one does
not need to compute (9) explicitly. For arbitrary x,
the value of f̂(x) is the sum of the contributions of
all of the sample points, each weighted by 1/n. Thus,
the result of adding random noise w drawn from K
to a uniformly chosen xi will have density f̂ . Using
the Epanechnikov kernel, each component of w can be
generated in expected time O(1), e.g. using the re-
jection method (Devroye & Győfri, 1985). Therefore,
resampling n points in smoothed BS has the same or-
der of magnitude as that in ordinary BS.

5. New estimators

It is evident from both theoretical and empirical re-
sults that variance reduction in an estimator of Err
can be more advantageous than bias correction. In
order to reduce the variance, we consider two modifi-
cations of known estimators. Both are guided by the
need to smooth the discontinuities in Q in order to re-
duce the variability due to perturbations in the data.

1We say that the data is whitened if it is transformed
to have a unit covariance matrix.



5.1 Using cloning in BS-based estimators

The first idea is to use cloning where normally an or-
dinary BS is used. Possible improvement in the ex-
pected squared error here is achieved by using a more
sophisticated sampling method. Smoothed bootstrap
is known (Shao & Tu, 1995) to outperform the ordi-
nary BS for statistics that are sensitive to local prop-
erties of the underlying distribution. Our intuition is
that this holds for Q in the case of many classifiers. In
particular, since the .632+ estimator is believed to be
the best choice of BS estimator, it can be modified to
use cloning. We denote BS-type estimators that use
cloning instead of ordinary BS by appending an as-
terisk, e.g., Err .632+∗. From the previous section, we
know that this change does not increase the computa-
tional intensity of the procedure.

5.2 Bootstrapped cross-validation

An alternative approach is to smooth the estimation
results by bootstrapping the data in each stage of
the computation. Here, increased computational ef-
fort should allow us to get a more stable estimate. To
smooth the discontinuities in the results of CV caused
by perturbations in the training and test sets, CV is
performed on each BS sample (or clone) of X(n):

ErrCV ∗×k =
1
B

B∑
b=1

ErrCV×k

(
X (n)∗

b

)
. (11)

The computational cost is similar to that of computing
ErrMCV×k with B trials.

6. Simulation study with synthetic data

In order to test the plausibility of the proposed estima-
tors, we followed the experimental framework of (Efron
& Tibshirani, 1997), described in Table 1. In all cases,
there are two classes. In experiments 2 and 4, the dis-
tribution of the data is independent of the class label,
so that any classifier has an expected accuracy of 1/2.
The true error Err was approximated by testing each
trained classifier on 20,000 data points drawn from the
same distribution (a validation set). Both the training
data and the validation data are balanced: the same
amount of data is assigned to each class. In all of the
experiments, the classifiers are 1- and 3-NN, Fisher’s
Linear Discriminant Functions (LDF), and Support
Vector Machines (SVMs) with radial basis function
kernels. Whenever bootstrapping was used, 100 BS
samples were generated. In each trial, the same data
sets and the same bootstrap samples and clones were
used for all of the estimators (to reduce the variability
in the differences due to random factors).

Table 1. Setting of the simulation with synthetic data de-
scribed in Section 6. All data sets have two classes. In
1 and 3 the classes have distinct means. In 2 and 4 the
distribution is independent of the class label. The size of
each data set is given by n.

# Distribution n Trials

1 N
(
(±1, 0, 0, 0, 0)T , I5

)
14 100

2 N (05, I5) 14 100

3 N
(
(±.5, 0)T , I2

)
20 100

4 N (02, I2) 20 100

5 N (010, I10) vs.
∏10
j=1 N

(√
j/2, 1/j

)
100 50

In Table 2 we compare the best of the new methods
to the best of the old ones. To determine the statis-
tical significance of these results, we perform hypoth-
esis testing for each classifier/data set. The null hy-
pothesis is that the expected squared errors of the two
methods are equal. We want to reject this hypothesis
in favor of the alternative that the expected error of
the new method is smaller. Since all of the estima-
tors are applied to the same data set in each trial,
the obtained values are dependent, and the paired
single-tailed test for comparison of the means is ap-
propriate (Papoulis, 1991). The sample of interest
here is d = (Êrrold − Err)2 − (Êrrnew − Err)2 . The
significance α of the test corresponds to the z-value
zα = µd/(σd/

√
N), where N is the number of trials,

µd is the sample mean, and σd is the sample variance of
the differences. These values appear in the last three
columns of Table 2.

In 17 out of 20 cases, one of the new estimators was sig-
nificantly (α ≤ .01) better in terms of RMSE than any
of the old ones. While our estimators are sometimes
more biased, their variance is noticeably smaller, as
hoped. We note the particularly good performance of
Err .632+∗, which in 12 cases was better than Err .632+,
and of ErrCV ∗×5∗, which outperformed all versions of
ErrCV×k and ErrCV ∗×k in 16 cases.

7. Cloning real-life data sets

Generally, the data space can be written as

D ⊆ R
mc × Zmo × A1 × . . .× An , (12)

where mc, mo and mn are the numbers of continuous,
discrete and nominal attributes, respectively. Ai de-
notes a nominal domain (possibly different for each i).
Kernel density estimation as in (9) may not be appli-
cable in the general case. Below we propose ways to
overcome some of the difficulties.



Table 2. Results on synthetic data. Better RMSE shown in bold.

Data set Classifier Err Êrrnew Mean STD RMSE Êrrold Mean STD RMSE
√
µd σd α

1

LDF .262 ErrCV∗×n∗ .2668 .0626 .0767 ErrBS .2537 .0662 .0776 .0121 .006 .37
1-NN .2785 Err.632 ∗ .217 .0707 .0863 Err.632+ .256 .1139 .0999 .05 .0105 .01

3-NN .2462 ErrCV∗×5 ∗ .24 .0651 .0598 ErrBS .199 .0745 .0815 .055 .0061 10−13

SVM .2367 ErrCV∗×5 ∗ .247 .0632 .0671 Err.632 .146 .0626 .1108 .055 .0061 10−13

2

LDF .5 ErrCV∗×n∗ .511 .0729 .0731 Err
(1)
BS .507 .0705 .0703 -.02 .0024 .15

1-NN .5 ErrCV∗×n∗ .535 .0729 .0803 Err
(1)
BS .54 .1051 .1118 .078 .0137 10−10

3-NN .5 Err.632+∗ .4585 .0526 .0668 Err.632+ .4588 .066 .0772 .039 .0066 .01
SVM .5 Err.632+∗ .412 .0472 .1005 Err.632+ .4173 .0562 .1003 -.0057 .0084 .48

3

LDF .35 ErrCV∗×5 ∗ .35 .0794 .0813 ErrBS .313 .091 .0996 .0575 .0078 10−10

1-NN .414 ErrCV∗×5 ∗ .363 .0646 .0737 Err.632+ .354 .0834 .1002 .068 .0106 10−10

3-NN .392 ErrCV∗×5 ∗ .361 .0679 .0689 Err.632+ .391 .0848 .0816 .044 .0067 10−5

SVM .356 ErrCV∗×5 ∗ .368 .072 .0776 ErrBS .32 .0886 .0959 .056 .01 10−6

4

LDF .5 Err.632+∗ .471 .0771 .0828 Err.632+ .468 .086 .0924 .041 .0026 10−19

1-NN .5 Err
(1)
BS ∗ .527 .0572 .0633 Err

(1)
BS .533 .1005 .1061 .085 .0126 10−15

3-NN .5 Err.632+∗ .458 .0457 .0625 Err.632+ .457 .0622 .0763 .0438 .0065 10−5

SVM .5 Err.632+∗ .485 .0511 .0537 Err.632+ .484 .0614 .0641 .035 .0044 .0002

5

LDF .018 ErrCV∗×n∗ .009 .0084 .0148 Err.632 .0085 .0076 .0147 .0017 5 · 10−5 .33

1-NN .022 ErrCV∗×n∗ .016 .0094 .0123 Err
(1)
BS .014 .01 .0141 .007 3 · 10−5 0

3-NN .027 ErrCV∗×10 ∗ .0171 .0073 .013 Err
(1)
BS .0171 .0106 .0156 .009 .0001 10−6

SVM .0036 ErrCV∗×n∗ .002 .0018 .0029 Err.632 .001 .0018 .0033 .0015 ≈ 10−6 10−7

7.1 Cloning data with boundaries

If the actual density is discontinuous at some point,
then the regular kernel estimate is obviously very in-
accurate. Such a discontinuity occurs at an endpoint of
an interval outside which the density vanishes. Near
discontinuities, (9) becomes inaccurate since it over-
estimates the density outside the boundaries. Most
boundary correction techniques mentioned in the lit-
erature involve kernel functions with negative values
(Scott, 1992). Such a kernel is no longer a PDF , mak-
ing sampling problematic. In addition, different PDF s
behave in different ways at boundaries. No general so-
lution to the task of finding the “right” type of bound-
ary kernel to fit the specific behavior of the estimated
PDF is known to date.

To generate boundary-obeying values, we use the fol-
lowing method. Let D be the set of admissible values
(“inside” the boundaries). We force the kernel to be
zero outside D and divide by s =

∫
x∈DK(x)dx in or-

der for the kernel to integrate to unity.

Sampling from this boundary corrected kernel is
straightforward. We repeat the algorithm for sampling
from f̂ until the result falls within D. The probabil-
ity of failure of a single trial is 1 − s. As long as we
do not apply the algorithm to an isolated point of the
distribution, we have a positive lower bound on s, and
an upper bound on the expected time before a valid
point is generated.

7.2 Cloning data with discrete attributes

Discrete feature values come from a domain that can
be mapped to Z, with a corresponding metric and or-
der. Applying kernel functions of a continuous variable

to a discrete attribute is unnatural and, in our experi-
ence, leads to poor results when applied to resampling.
Instead we follow (Aitchison & Aitken, 1976) and use
a family of discrete kernels:

Kd(x, xi) = Kd(h, x, xi) =
h‖x−xi‖

2∑T
k=1 h

‖x−xi‖2
. (13)

Kd(x, xi) is centered on xi and assigns a weight to x
that is proportional to its distance from xi; the rate
at which it drops depends on h. Since we have no
theoretically solid method of choosing h, the following
heuristic was used to avoid oversmoothing. For each
x, we would like to keep 95% of the probability mass
assigned to x by the empirical distribution F̂n close
to x. We take the standard deviation of the values of
x as a measure of spread, and set h = .051/σ2

x . The
discrete attributes are sampled similarly to the contin-
uous ones, with the substitution of Kd for K.

7.3 Cloning data with nominal attributes

Our choice of classifiers in the experiments reported in
this paper dictated the use of data sets with no nom-
inal attributes. For completeness, we present the out-
line of our method for resampling nominal attributes;
a detailed description will appear in a fuller version.

The support space of a nominal (sometimes called
categorical) attribute is a non-metric finite unordered
space A. Smoothing of the marginal distribution of
nominal attributes could introduce impossible data
points. We feel that this hazard overwhelms the possi-
ble benefit from enriching the cloned data, and choose
not to perform smoothing directly on a nominal do-
main. First, we sample the values of the numeric



and preceding nominal attributes from the estimated
marginal distributions. Next, we estimate the joint
distribution of the attribute in question and the pre-
ceding attributes. Using Bayes rule, we can then es-
timate of the conditional distribution of the attribute
given the previously determined prefix of the point.

Table 5. RMSE performance of multiple CVs versus pro-
posed estimators. ’-’ indicates that ErrMCV×k is worse,
’+’ that it is better, and ’?’ that it is not different with
significance below .1

Err.632+∗ ErrCV∗×5 ∗ ErrCV∗×n∗
- + ? - + ? - + ?

ErrMCV×n 8 0 0 6 1 1 4 2 2
ErrMCV×10 7 1 0 5 2 1 4 2 2
ErrMCV×5 7 0 1 6 2 0 4 2 2

8. Simulation study with data from
UCI machine learning repository

We used the Wisconsin Breast Cancer, Vehicle (both
used in (Efron & Tibshirani, 1997)) and Pima Indians
Diabetes data sets. For each data set, we chose clas-
sifiers reported to work well on that domain. Table 3
describes the simulation. In each trial, a small data
subset of size n was chosen as the input for the exper-
iments. A classifier was then trained on this X(n) and
tested on the remaining larger subset to estimate the
conditional true error. This value was then compared
to the predictions of different estimators, to which only
X(n) was made available.

As with the synthetic data, in the majority of the cases
one of the new estimators performed significantly bet-
ter in terms of RMSE than any of the old estimators
(Table 6). In most cases, the winning estimator had
the lowest variance. In Table 4 we show that the cloned
version of Err .632+ outperformed its traditional coun-
terpart in 6 out of 8 cases with significance below .05,
and in a seventh case with significance .15. We also
show (Table 5) that running the standard CV multiple
times provides only a partial solution, as suggested in
(Salzberg, 1997), in exchange for a significant increase
in computational cost. ErrMCV×k for various k are
outperformed by Err .632+∗ and by ErrCV ∗×5∗.

9. Conclusions and future work

The contribution of this paper is two-fold. First, we
propose new smoothed bootstrap schemes to clone
data for better error estimation for supervised learning
algorithms, and report on extensive simulations with
both synthetic and real data. We present an argument,
based on Markov’s inequality, in favor of the root mean
squared error as a measure of estimator quality, and

show that in terms of RMSE, cloning improves the
quality of the bootstrap-based estimators. Our results
show a high correlation of this improvement with re-
duction of variance in the estimator. In particular, in
7 out of 8 experiments on the UCI data sets (Table 4),
and in 12 of 20 on synthetic data sets, .632+ is outper-
formed by its cloning-based counterpart. In general,
while no estimator wins in all cases, in 24 of 28 cases,
including 7 of 8 experiments on UCI data , one of the
new estimators achieved lower RMSE than any of the
old ones. Based on these observations, we recommend
the novel cloning-based .632+* estimator. Cloned 5-
fold CV was the best estimator for synthetic data, but
showed inferior performance on UCI sets. We intend
to investigate what properties of the data affect the
relative performance of these two estimators.

Second, we propose a suite of algorithms that can sta-
tistically clone real data from “complex” domains in
which data points have several types of dependent at-
tributes (real, integer, bounded and nominal).

We should emphasize that the use of statistical cloning
techniques comes with increased computation. How-
ever, with the proposed choice of kernel, the increase
in computation needed for cloning is within a constant
factor relative to ordinary bootstrap. Bootstrapped
cross-validation involves O(n2) additional applications
of the learning algorithm, which is expensive. How-
ever, in the spirit of work done recently to allow effec-
tive leave-one-out estimation “customized” for specific
classifiers, such as SVMs (Joachims, 2000), the design
of an efficient cloning technique for particular classi-
fiers is an interesting problem.

One of the advantages of bootstrap over cross-
validation is the ability to provide confidence intervals
for the estimated value. We are working on expanding
our system to include this capability.
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