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Introduction Results

• Objective: neural control of artificial motor systems.

• Previous work has focused on kinematic control. This does 
not take into account physical constraints and may result in 
unnatural movement artifacts such as jitter.

• Possible solution is to use full biomechanical model of the 
system, but it is expensive and difficult to control with limited 
neural bandwidth.

• Our proposal: a computationally simple model with only a few 
parameters that are directly controlled by the decoded neural 
signal.
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• Inspired by Hinton & Nair, 2005. 

• Represent the hand as a point mass m located at the wrist.

• Four virtual springs: one end attached to the hand, the other 
end slides without friction. 

• Control of the system is via dynamically modifying the spring 
stiffness coefficients kA, kB, kC and kD.

• Viscosity coefficient β controls damping.

• Impose stiffness constraints kA+kB=kC+kD=κ to maintain non-
negative coefficients.

• The controlling signal: firing rates of C units recorded from motor cortex

Firing rates estimated in bins of fixed length.

• Let                                           be the history of firing rates over l bins.

• We treat the movement decoding as a parametric regression problem:

• Training paradigm for the model:

Observed data: firing rates              and hand positions     ;          

We estimate instantaneous velocities          and accelerations .

From accelerations, we recover the stiffness coefficients, e.g.:

Given the coupled observed/estimated                           , fit the 
regression parameters for a chosen regression models.

The complementary coefficients (B,D) recovered from stiffness constraint.

Linear regression model: linear filter (LF)

where the weight vector w is learned from data.

Nonlinear regression model: Support Vector Machine (SVM)

where h is a kernel function, and αi  are learned

from training data. 

• Testing paradigm:

• Observed firing rates 
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• Direct decoding of the parameters of artificial spring-based 
models allows for movement reconstruction on par with kinematic
decoding.

• Introduction of realistic physical constraints yields smoother 
decoded  movement.

Methods: Data and Evaluation

All analysis performed on an offline movement reconstruction tasks.  

•Monkey data: behaving animals, moving manipulandum to control cursor.

96-electrode arrays implanted in MI hand/arm area (see Shoham et al., 2005)

CL: sequential tracking (piecewise linear movement, discrete target).

LA: continuous pursuit (smooth target movement).

• Human data*: paralyzed subject, instructed to attempt movement

• A single patient (brain stem stroke); see poster 256.10 for details.

• Pursuit tracking task (follow cursor manipulated by technician); see 256.11.
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*CAUTION:  Investigational device. Limited by Federal (USA) law to 
investigational use – only being studied in USA.
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