Modeling Neural Control of Physically Realistic Movement
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Introducti Methods: Direct decoding of syste

Monkey data; m=400, =200

« Objective: neural control of artificial motor systems * The controlling signal: firing rates of C units recorded from motor cortex
= Firing rates estimated in bins of fixed length. Session MAE cc, cc,
« Previous work has focused on kinematic control. This does = ] . ) SBM | Kinem  p | SBM _ Kinem. | SBM _ Kinem
not take into account physical constraints and may result in e Let Z(t):[Z(t—I),...Z(t)] be the history of firing rates over | bins. Linear | CL (sequential) | 0.29 | 0.27 <0001 061 | 064 | 075 | 079
unnatural movement artifacts such as jitter. « We treat the movement decoding as a parametric regression problem: fiter [ LA (continuous) | 009 | 009 _>01 | 076 | 079 | oot | o092
~ t:0) s [ CL (sequential) [ 024 | 023 <0.001] 078 | 079 | 084 | 086 |
« Possible solution is to use full biomechanical model of the Z(t) : K(t):[kA (t),kB, (t), ke (1), kp (t)] [LA (continuous) [ 0.09 | 0.08 <0001| o080 [ 081 | 0%2 [ 094 |

system, but it is expensive and difficult to control with limited « Training paradigm for the model:

neural bandwidth. = © = =
= Observed data: firing rates Z,(t) and hand positions Xi(t); Human data; m=1000, B=250

* Our proposal: a computationally simple model with only a few = We estimate instantaneous velocities \7(t) and accelerations &(t). Session o :f:\ei " CC*Kinem S Cchinem
parameters that are directly controlled by the decoded neural ) ) . ) <D’;01 :
ignal = From accelerations, we recover the stiffness coefficients, e.g.: Linear 1 033 038 <0 056 | 047 @ 041 | 032
signal. ) R fiter 2 041 | 042 004 030 | 032 | 025 | 025
|2 ma, (t)+ V, (t)-i— K‘(L + X(t )) 3 057 | 055 >01| 008 | 008 | 021 | 020
AT 2|_ 1 028 | 029 007 | 066 0.62 0.50 0.46
- SVM 2 0.30 0.30 >0.1 0.58 0.55 0.38 0.39
The spring-based model = Given the coupled observed/estimated Z(t) — Kk, (t), k. (t), fit the 3 031 | 032 <0001] 033 | 028 | 045 | 039
regression parameters for a chosen regression models. ‘ ‘
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2 = Linear regression model: linear filter (LF) Power spectrum of true vs. &
e} k t) = T Z(t) i . reconstructed movement ;r, ”
B \Q\//\A/\/\/A\ A / A ( ) =W where the weight vector w is learned from data. (Session 1) %
<< oe _ham Zkam = v = Nonlinear regression model: Support Vector Machine (SVM) .
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« Observed firing rates Z(t) f K(t)

« Inspired by Hinton & Nair, 2005.

Conclusions

* Represent the hand as a point mass m located at the wrist. Methods: Data and Evaluation

« Four virtual springs: one end attached to the hand, the other

* Direct decoding of the parameters of artificial spring-based
end slides without friction.

models allows for movement reconstruction on par with kinematic
decoding.

All analysis performed on an offline movement reconstruction tasks.

+ Control of the system is via dynamically modifying the spring -Monkey data: behaving animals, moving manipulandum to control cursor. ) o ) ) )
stiffness coefficients k,, kg, kc and kp. * Introduction of realistic physical constraints yields smoother

) ) o . = 96-electrode arrays implanted in MI hand/arm area (see Shoham et al., 2005) decoded movement.
« Viscosity coefficient 8 controls damping.

= CL: sequential tracking (piecewise linear movement, discrete target). BEEEEE

» Impose stiffness constraints k,+kz=k-+kp=k to maintain non- _ )
negative coefficients. = LA: continuous purSUIt (SmOOth target movement). ® G. E. Hinton, V. Nair. Inferring motor programs from images of handwritten digits. Advances in Neural
*. . . Information Processing Systems, 2005.

*+ Human data " paralyzed SUbJeCt’ mStrUCted to attempt movement *S. Shoham. L. M. Paninsky, M. R. Fellows, N. G. Hatsopoulos, J.P. Donoghue, R. A. Normann. Statistical

. . . . Encoding Model for a Primary Motor Cortical Brain-Machine Interface. IEEE TBME, 2005.
« A single patient (brain stem stroke); see poster 256.10 for details.

« Pursuit tracking task (follow cursor manipulated by technician); see 256.11. Suppor greculy scronledsos: NHNDS, V4 O DARPA, et sy St .
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