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Introduction
Nearest-neighbor (NN) classifiers are often accurate but
prohibitively expensive due to the cost of search. Re-
cently proposed algorithms allow for much faster search
at the cost of settling for an approximate, rather than ex-
act, NN. We investigate the effect such approximations
have on the classification error.

Problem definition

•We consider binary classification problems: data XN =
{(xi, yi)}N

i=1 drawn i.i.d. from f (x, y) over Rd × {1, 2}.
•Priors: pc = Pr(y = c)

•Compound density: f (x) = p1f1(x) + p2f2(x).
•Posterior: Pr(y = c|x) = ηc(x); shorthand η ≡ η(x) ≡

η1(x).
•Test point (x0, y0) ∼ f (x).
•NN classifier: find x′ ∈ XN such that

ρ = ‖x0 − x′‖ = min
x∈XN

‖x0 − x‖

and predict ŷ0 := y′.
• ε-NN classifier: ŷ0 := y′ε where

‖x0 − x′ε‖ ≤ (1 + ε)ρ.

Note: the random variable ρ depends on f, N and x0.

Known results

•Conditional Bayes risk: R∗(x0) = min{η, 1− η}.
•Bayes risk is R∗ = Ex0

[R∗(x0)]

•NN risk for N -sample: RN = Ex0,X [R(x0; XN)]

•Cover and Hart’s asymptotic bound [3]:

R∞ ≤ 2R∗(1−R∗)

Key idea of the proof: limN→∞ ρ(N) = 0, and so y′ ∼ η.
Then, R∞(x0) = 2η(1 − η), and the inequality follows
by taking the expectation (and considering the variance
term).

•Convergence of RN to R∞ can be arbitrarily slow [2, 4];
no distribution-independent results for RN are known.

The question we are interested in:
How much worse is Rε

N compared to RN?
What is the accuracy/speed tradeoff between exact and
approximate NN classification?

Why use an ε-NN classifier?

• In high dimensions exact NN search is reduced to brute
force (linear) search.

•Locality sensitive hashing: search in O(dN 1/1+ε).
•Newer algorithm [1]: O(N 1/(1+ε)2+o(1).
•Other algorithms exist (Best Bin First, ANN, etc.), but

with no known theoretical guarantees.

The computational model of ε-NN

•The precise underlying model of choosing x′ε in “real”
algorithms like LSH is not known. Empirically it seems
to be biased towards lower ‖x0 − x′ε‖.

A simplifying model used in our experiments:
•Let x′ be the exact NN of x0 in XN , and let L be the num-

ber of x ∈ X s.t. x ∈ B((1 + ε)ρ.
•We assume that the classifier selects one of them with

probability 1/L, and uses its label to predict y0.
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With prob. 1/7 x′ε = xi, for each

i = 1, . . . , 7.

Equivalently, with prob 6/7 x′ε ∼ f (x|R).

For our ongoing theoretical analysis, we use the following
“inverse” sampling model:
1. Draw test point (x0, y0) ∼ f (x, y)

2. Draw distance to NN ρ ∼ p(ρ|x0, N ; f ). This defines the
probability mass PB =

∫
Bx0

((1+ε)ρ) f (x)dx.

3. Draw L′ from Binomial (N − 1, PB). L = L′ + 1 would
be the number of ε-NN of x0 (including x′).

4. With probability 1/L the classifier sets x′ε = x′.
5. With probability 1− 1/L, x′ε is drawn from

f (x | x ∈ Bx0
((1 + ε)ρ) \ Bx0

(ρ)).
6. Draw ŷ0 from f (y|x′ε).

Asymptotic behavior of ε-NN

• If limN→∞ ρ = 0 then also limN→∞(1 + ε)ρ = 0 (by domi-
nated convergence theorem).

•Thus, we can extend Cover’s asymptotic result to ε-NN:

Rε
∞ = R∞.

Experiments

Gaussians: full covariance

•Both classes: fc(x) = N(x; µc, σ
2I).

•Bayes risk R∗ = 1
2

[
1− erf

(√
2‖µ1 − µ2‖/4σ

)]
.

•The mass of Bx0
((1 + ε)ρ) grows too fast:
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•Accuracy results (not shown) reflect this: even with ε =
0.1 and N = 500, most of the training set is included in
Bx0

((1 + ε)ρ), and the classifier is reduced to guessing.

Gaussians: low intrinsic dimension

•The protocol: embed 5-dimensional Gaussian in a linear
subspace of Rd, with Gaussian noise:

fc(x) = N

(
x; µc,

[
I5 0
0 0

])
+ N(x; 0, σnI).

• σn set to achieve desired SNR=10 log1 0(5/dσ2).

•More reasonable behavior of PB:

SNR=5dB
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SNR=12.5dB
4 32 256

0

0.25

0.75

1

 R∗=0.07, ε=0.10

PB

 d
4 32 256

0

0.25

0.75

1

ε=0.25

 d
4 32 256

0

0.25

0.75

1

ε=0.50

 d
4 32 256

0

0.25

0.75

1

ε=1.00

 d

 N=100
 N=500
 N=1000
 N=5000
 N=10000
 N=50000
 N=100000
 N=500000

•Accuracy of classification, N = 100000

5dB
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•A “fair” comparison (with equal computation):
ε = .25 ε = 1
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MNIST data

• 28×28 grayscale images of handwritten digits.
• 45 binary classification problems; N ≈ 12, 000
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• 10-class problem (does not
exactly comply with assump-
tions here); N = 60, 000.
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Conclusions

•When intrinsic dimension of data is high, ε-NN be-
comes meaningless even for small ε.

•When there is low dimensional structure in data, using
moderate values of ε incurs only limited loss in accuracy
for large N .

• For small ε there may be a small gain in performance,
(we conjecture it is due to reduced variance of the risk).

•Theoretical analysis (current work):
– Distribution-specific bounds on Rε

N , similar to [6, 7].
– Distribution-independent bounds. Quantities of inter-

est: Rε
N −RN ,Rε

N/RN , or (Rε
N −RN)/R∞like in [5].

– Adjustment of the overly pessimistic sampling model
to a particular search algorithm, e.g. LSH.
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