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Introduction

Nearest-neighbor (NN) classifiers are often accurate but
prohibitively expensive due to the cost of search. Re-
cently proposed algorithms allow for much faster search
at the cost of settling for an approximate, rather than ex-
act, NN. We investigate the effect such approximations
have on the classification error.

Problem definition

e We consider binary classification problems: data Xy =
{(x:,4:)}Y, drawn ii.d. from f(x,y) over R? x {1,2}.

e Priors: p. = Pr(y = ¢)

e Compound density: f(x) = p; fi(x)

p2.fa(x).

e Posterior: Pr(y = c|x) = n.(x); shorthand n = n(x) =
m(x).

e Test point (xg, yy) ~ f(x).

e NN classifier: find x’ € X such that

- . / — ; —_
p = llxo —x|| = min ixo — x|

and predict g := v/

e c-NN classifier: g, := y. where
[0 = %[l < (1 +€)p.

Note: the random variable p depends on f, N and x.

Known results

e Conditional Bayes risk: R*(xy) = min{n, 1 — n}.
e Bayes risk is R* = Fx, |R*(x9)]

e NN risk for N-sample: Ry = Ex, x [R(Xo; Xn)]
e Cover and Hart’s asymptotic bound [3]:

Ry <2R*(1— RY)

Key idea of the proof: limy_.. p(N) = 0, and so y' ~ n.
Then, R (xy) = 2n(1 — n), and the inequality follows
by taking the expectation (and considering the variance
term).

e Convergence of Ry to R, can be arbitrarily slow [2, 4];
no distribution-independent results for Ry are known.

The question we are interested in:

How much worse is RS, compared to Ry?

What is the accuracy/speed tradeoft between exact and
approximate NN classification?

Why use an e-NN classifier?

e In high dimensions exact NN search is reduced to brute
force (linear) search.

e Locality sensitive hashing: search in O(dN/!*),
e Newer algorithm [1]: O(N/ (e (1),

e Other algorithms exist (Best Bin First, ANN, etc.), but
with no known theoretical guarantees.

The computational model of e-NN

e The precise underlying model of choosing x_ in “real”
algorithms like LSH is not known. Empirically it seems
to be biased towards lower ||xy — x.||.

A simplifying model used in our experiments:

e Let X' be the exact NN of x;in Xy, and let L be the num-
ber of x € X s.t. x € B((1+ ¢€)p.

e We assume that the classifier selects one of them with
probability 1/L, and uses its label to predict .

° With prob. 1/7 x! = x;, for each
i=1,....7.
Equivalently, with prob 6/7 x. ~ f(x|R).

For our ongoing theoretical analysis, we use the following
“inverse” sampling model:

1. Draw test point (xg, y9) ~ f(x,9)

2. Draw distance to NN p ~ p(p|x¢, N; f). This defines the
probability mass Pz = Jp_((11c)) f (x)dx.

3.Draw L' from Binomial (N — 1, Pg). L = L' + 1 would
be the number of e-NN of x; (including x').

4. With probability 1/L the classifier sets x| = x’.

5. With probability 1 — 1/L, x! is drawn from
f(x|x € By((1+€)p) \ By (p)).
6. Draw g, from f(y|x)).

Asymptotic behavior of e-NN

o If limy_ p = 0 then also limy_(1 + €¢)p = 0 (by domi-
nated convergence theorem).

e Thus, we can extend Cover’s asymptotic result to e-NN:

R = R,

Experiments

Gaussians: full covariance

e Both classes: f.(x) = N(x; u., o*1).

e Bayes risk R* = } |1 — erf (V2| — o /40) .
e The mass of B, ((1 + €)p) grows too fast:
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e Accuracy results (not shown) reflect this: even with € =

0.1 and N = 500, most of the training set is included in
By, ((1 + €)p), and the classifier is reduced to guessing.

Gaussians: low intrinsic dimension

e The protocol: embed 5-dimensional Gaussian in a linear

subspace of R?, with Gaussian noise:

fe(x) =N <X3 ey % g ) + N(x; 0,0,1).

e 0, set to achieve desired SNR=101log, 0(5/dc?).

e More reasonable behavior of Pkx:
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e Accuracy of classification, N = 100000
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o A “fair” comparison (with equal computation):
€ = .20 e=1

00000

MNIST data

o 2828 grayscale images of handwritten digits.

e 45 binary classification problems; N ~ 12, 000

€ €
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e 10-class problem (does not
exactly comply with assump- - =
tions here); N = 60, 000. :

Conclusions

e When intrinsic dimension of data is high, e-NN be-
comes meaningless even for small e.

e When there is low dimensional structure in data, using
moderate values of e incurs only limited loss in accuracy
for large V.

e For small ¢ there may be a small gain in performance,
(we conjecture it is due to reduced variance of the risk).

e Theoretical analysis (current work):
— Distribution-specific bounds on RY;, similar to [6, 7].
— Distribution-independent bounds. Quantities of inter-
est: R?\f — RN,R%/RN, or (Rf\; — RN)/ROOhke in [5]
— Adjustment of the overly pessimistic sampling model
to a particular search algorithm, e.g. LSH.
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