
o The certificates are tight w.r.t. measurable classifiers.

o More characterization of    always improves the point-
wise (and regional) certificates: if                  ,

o Example 1: when
§ If                      , we can use (Cohen et al., 19) to 

derive      certificates due to the bijection to     .
§ If we apply denoising before feeding to model:

• The resulting input is equivalent to our discrete 
randomization scheme.

§ Our certificate is always tighter than using the one 
derived from the Gaussian distribution in this case.

o Example 2: when    is a decision tree:

§ The randomization can be expressed as a 
probabilistic routing scheme for each decision node.

§ The exact certificate of robustness can be computed 
using dynamic programming over tree nodes. 

o A uniform randomization scheme:

o Illustration:

o Randomization at    and    divide the input 
space into non-overlapping regions  let’s well 
based on likelihood comparisons

o For any    or    , only the integral over a region
matters; we search for    that assigns prob. 
[0,1] (integral value) to each region.

o Worst case    assigns high values to     , low 
values to      and     , subject to the constraint 
that the aggregate =     across      and     .

o Regional certificate finds the worst                    
such that        is maximized. 

o We consider the discrete space:                                .
o A discrete randomization scheme:

o Key properties:

o Implications:
• We can pre-compute                 (we have a          algorithm).
• If                         , the prediction is robust within              . 
• is simply the maximum    s.t. .

o Key steps for pre-computing
§ Similar to the uniform distribution, we partition the space into 

regions with constant likelihood ratio to simplify the problem.
• Likelihood ratio:                                               .

§ Assigning          to     in ↓ likelihood ratio computes              
(Neyman-Pearson lemma. It can be done in          ).

§ A large integer algorithm is needed for high dimension setting.

o Given an input              , a randomization scheme    assigns 
a distribution                           for each               .

o We use a randomly smoothed classifier               .

§ is a base classifier (e.g., a deep net / decision tree).

§ is abbreviated as    .

o Tight certificates exist with Gaussian randomization and l2 
metric (Cohen et al., 19’).
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Summary Our framework

Set-up & background

A discrete distribution for ℓ𝟎 robustness Towards tighter certification
o A general approach to deriving tight certificates of 

robustness for randomly smoothed classifiers.

o We focus on     -robustness in discrete spaces. 

o We show how certificates can be tightened with additional 
assumptions about the classifier.
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o Adversarial examples can be easily found on deep models

§ Ideally, we want a model without adversarial example.

o If a heuristic search algorithm fails, there may still be 
adversarial examples.

o We need a certificate to show that no such example exists 
around a specified radius of the input example. 

o Finding certificates is particularly challenging in discrete 
spaces as the problem is combinatorial.

Accuracy can drop 
dramatically!

o A tight point-wise robustness certificate for     : 

§ It can be solved by Neyman-Pearson lemma

o A regional certificate of robustness:
§ Define 
§

§ Implication: if                                     then

A warm-up example

Experiment (project page: http://people.csail.mit.edu/guanghe/randomized_smoothing)

1. 
2.  

o Evaluation metrics:
§ : the average certified radius in testing set.
§ : guaranteed accuracy within      radius    . 

o Binarized MNIST (CNN model).

o (Discrete) Exact ACC@1 = 0.954, ACC@2 = 0.926. 

o ImageNet (ResNet50 model).


