

Massachusetts Institute of Technology

Summary

- A general approach to deriving tight certificates of robustness for randomly smoothed classifiers.
- We focus on ℓ_0 -robustness in discrete spaces.
- We show how certificates can be tightened with additional assumptions about the classifier.

Introduction

• Adversarial examples can be easily found on deep models $x + \Delta x$

Input

Accuracy can drop dramatically!

Predictions Rainbow Panda

- Ideally, we want a model without adversarial example.
- If a heuristic search algorithm fails, there may still be adversarial examples.
- We need a certificate to show that no such example exists around a specified radius of the input example.
- Finding certificates is particularly challenging in discrete spaces as the problem is combinatorial.

Set-up & background

- $\circ~$ Given an input $oldsymbol{x} \in \mathcal{X}$, a randomization scheme ϕ assigns a distribution $\Pr(\phi({m x})={m z})$ for each $\,{m z}\in {\mathcal X}$.
- We use a randomly smoothed classifier $f(\phi(\boldsymbol{x}))$.
- f is a base classifier (e.g., a deep net / decision tree).
- $\Pr(f(\phi(\boldsymbol{x})) = y)$ is abbreviated as p_{\perp}
- \circ Tight certificates exist with Gaussian randomization and ℓ_2 metric (Cohen et al., 19').

TIGHT CERTIFICATES OF ADVERSARIAL ROBUSTNESS FOR RANDOMLY SMOOTHED CLASSIFIERS Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi S. Jaakkola

Our framework

 \circ A tight point-wise robustness certificate for $ar{m{x}}$: $\Pr(\bar{f}(\phi(\bar{\boldsymbol{x}})) = y)$ $\rho_{\boldsymbol{x}, \bar{\boldsymbol{x}}}(p) \triangleq$ $\min_{\bar{f} \in \mathcal{F}: \Pr(\bar{f}(\phi(\boldsymbol{x})) = y) = p}$ $\leq \Pr(f(\phi(\bar{\boldsymbol{x}})) = y)$

It can be solved by Neyman-Pearson lemma

A regional certificate of robustness:

• Define $\mathcal{B}_{r,q}(\boldsymbol{x}) \triangleq \{ \bar{\boldsymbol{x}} \in \mathcal{X} : \| \boldsymbol{x} - \bar{\boldsymbol{x}} \|_q \leq r \}$ • $R(\boldsymbol{x}, p, q) \triangleq \sup r \ s.t. \min_{\bar{\boldsymbol{x}} \in \mathcal{B}_{r,q}(\boldsymbol{x})} \rho_{\boldsymbol{x}, \bar{\boldsymbol{x}}}(p) > 0.5$

• Implication: if $Pr(f(\phi(\boldsymbol{x})) = y) = p$, then $\forall \bar{\boldsymbol{x}} \in \mathcal{X} : \| \boldsymbol{x} - \bar{\boldsymbol{x}} \|_q < R(\boldsymbol{x}, p, q)$ $\Pr(f(\phi(\bar{\boldsymbol{x}})) = y) > 0.5$

A warm-up example

- A uniform randomization scheme: $\phi(\boldsymbol{x})_i = \boldsymbol{x}_i + \boldsymbol{\epsilon}_i, \boldsymbol{\epsilon}_i \stackrel{i.i.d.}{\sim} \text{Uniform}([-\gamma, \gamma])$ • Illustration:
- Randomization at x and \bar{x} divide the input space into non-overlapping regions $\mathcal{L}_1, \ldots, \mathcal{L}_4$ based on likelihood comparisons
- \circ For any f or f, only the integral over a region matters; we search for f that assigns prob. [0,1] (integral value) to each region.
- Worst case f assigns high values to \mathcal{L}_1 , low values to \mathcal{L}_2 and \mathcal{L}_3 , subject to the constraint that the aggregate = p across \mathcal{L}_1 and \mathcal{L}_2 .

$$\Rightarrow \begin{cases} \rho_{\boldsymbol{x},\bar{\boldsymbol{x}}}(p) = 0, & \text{if } 0 \le p \le (2\gamma)^{-d} |\mathcal{L}_1|, \\ \rho_{\boldsymbol{x},\bar{\boldsymbol{x}}}(p) = p - (2\gamma)^{-d} |\mathcal{L}_1|, & \text{otherwise.} \end{cases}$$

Regional certificate finds the worst $\bar{x} \in \mathcal{B}_{r,q}(x)$ such that $|\mathcal{L}_1|$ is maximized.

$$\begin{array}{l} R(\boldsymbol{x},p,q=1) = 2p\gamma - \gamma \\ R(\boldsymbol{x},p,q=\infty) = 2\gamma - 2\gamma(1.5-p)^{1/d}. \end{array} \end{array}$$

- $\int \Pr(\phi(\boldsymbol{x})_i = \boldsymbol{x}_i) = \alpha,$
- Key properties:

- Implications:

Discrete Discrete Gaussian

A discrete distribution for ℓ_0 robustness

• We consider the discrete space: $\mathcal{X} = \{0, \frac{1}{K}, \frac{2}{K}, \dots, 1\}^d$. • A discrete randomization scheme:

 $\left\{ \Pr(\phi(\boldsymbol{x})_i = z) = (1 - \alpha)/K \triangleq \beta \in (0, 1/K), \text{ if } z \in \left\{ 0, \frac{1}{K}, \frac{2}{K}, \dots, 1 \right\} \text{ and } z \neq \boldsymbol{x}_i \right\}$

1. for all x, \bar{x} such that $\|x - \bar{x}\|_0 = r$, we have $\rho_{x, \bar{x}} = \rho_r$ 2. $\rho_r: [0,1] \rightarrow [0,1]$ is an increasing bijection

• We can pre-compute $\rho_r^{-1}(0.5)$ (we have a $\Theta(d^3)$ algorithm). • If $p > \rho_r^{-1}(0.5)$, the prediction is robust within $\mathcal{B}_{r,0}(\boldsymbol{x})$. • R(x, p, q) is simply the maximum r s.t. $p > \rho_r^{-1}(0.5)$.

• Key steps for pre-computing $\rho_r^{-1}(0.5)$

Similar to the uniform distribution, we partition the space into regions with constant likelihood ratio to simplify the problem. • Likelihood ratio: $\Pr(\phi(\boldsymbol{x}) = \boldsymbol{z}) / \Pr(\phi(\bar{\boldsymbol{x}}) = \boldsymbol{z})$.

Assigning $\overline{f}(\boldsymbol{z})$ to y in \downarrow likelihood ratio computes $\rho_r^{-1}(0.5)$ (Neyman-Pearson lemma. It can be done in $\Theta(d^3)$).

A large integer algorithm is needed for high dimension setting.

Experiment (project page: http://people.csail.mit.edu/guanghe/randomized_smoothing)

• Evaluation metrics:

• $\mu(R)$: the average certified radius in testing set. • ACC@r: guaranteed accuracy within ℓ_0 radius r.

• Binarized MNIST (CNN model).

Certificate	$\mu(R)$	ACC@r						
			r = 2	r = 3	r = 4	r = 5	r = 6	r = 7
Discrete	3.456	0.921	0.774	0.539	0.524	0.357	0.202	0.097
Gaussian	1.799	0.830	0.557	0.272	0.119	0.021	0.000	0.000
Gaussian	2.378	0.884	0.701	0.464	0.252	0.078	0.000	0.000

• (Discrete) Exact ACC@1 = 0.954, ACC@2 = 0.926.

Towards tighter certification

• The certificates are tight w.r.t. measurable classifiers.

 \circ More characterization of f always improves the pointwise (and regional) certificates: if $f \in \mathcal{F}_{\zeta} \subset \mathcal{F}$,

 $\min_{\bar{f}\in\mathcal{F}_{\zeta}:\Pr(\bar{f}(\phi(\boldsymbol{x}))=y)=p}\Pr(\bar{f}(\phi(\bar{\boldsymbol{x}}))=y) \ge \min_{\bar{f}\in\mathcal{F}:\Pr(\bar{f}(\phi(\boldsymbol{x}))=y)=p}\Pr(\bar{f}(\phi(\bar{\boldsymbol{x}}))=y)$

• Example 1: when $\phi(\boldsymbol{x})_i = \boldsymbol{x}_i + \boldsymbol{\epsilon}_i, \boldsymbol{\epsilon}_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$ • If $\mathcal{X} = \{0, 1\}^d$, we can use (Cohen et al., 19) to derive ℓ_0 certificates due to the bijection to ℓ_2 . If we apply denoising before feeding to model:

 $\zeta(\phi(\boldsymbol{x}))_i = \mathbb{I}\{\phi(\boldsymbol{x})_i > 0.5\}, \forall i \in [d]$

• The resulting input is equivalent to our discrete randomization scheme.

 Our certificate is always tighter than using the one derived from the Gaussian distribution in this case.

 \circ Example 2: when *f* is a decision tree:

The randomization can be expressed as a probabilistic routing scheme for each decision node.

The exact certificate of robustness can be computed using dynamic programming over tree nodes.

ImageNet (ResNet50 model).