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A discrete distribution for £, robustness

o A general approach to deriving tight certificates of o Atight point-wise robustness certificate for £: | o We consider the discrete space: * = {0, L, 2,...,1}". o The certificates are tight w.r.t. measurable classifiers.
robustness for randomly smoothed classifiers. pzz(p) = b min Pr(f(¢(x)) =y) | o Adiscrete randomization scheme: o More characterization of J always improves the point-
o We focus on £p-robustness in discrete spaces. o r(ﬂ?(w))__y)_p Pr(o(@); = =) = a, | wise (and regional) certificates: if f € 7¢ ¢ 7,
< Pr(f(¢(w)) — y) {Pr(gf)(a})z =2)=(1-a)/K=5€(0,1/K), ifz€{0,%+,%,...,1} and z # x; min Pr(f(6(Z)) = y) > min Pr(f(4(z)) = v)
o We shovy how certificates can be tightened with additional « It can be solved by Neyman-Pearson lemma | o Key properties: feFc:Pr(f(¢(x))=y)=p "~ FeFPr(f(¢()=y)=p
assumptions about the classifier. ' .
o Aregional certificate of robustness: 1. forall x,x such that ||x — x||o = r, we have py.z = pr o Example 1: when ¢(x); = x; + €;, €; S (0,07°)
. 2 ' ) derive £ certificates due to the bijection to £s.
o Adversarial examples canAbe easily found on deep models R(@,p,q) = supr s.t. jeg{?@) Pz (p) > 0.5 o Implications: 1 . Ifwe apr())ly denoising before feedijng o modeQI:
S = |mplication: if Pr(f(¢(x)) = y) = p, then + We can pr?-compute pr(0.5) (we have a ©(d*)algorithm). ((p(x)); = {p(x); > 0.5}, Vi € |d]
Accuracy can drop Ve e X : ||z — |, < R(x,p,q), » ltp>pp (05) the prediction is robust Withi”_lfr,o(w)- - The resulting input is equivalent to our discrete
> dramatically! Pr(f($(&)) = ) > 0.5 + R(x,p,q) is simply the maximum 7 s.t. p > p, ~(0.5). randomization scheme.

_ . = Qur certificate is always tighter than using the one
o Key steps for pre-computing p,. ~ (0.5) derived from the Gaussian distribution in this case.
= Similar to the uniform distribution, we partition the space into | —
regions with constant likelihood ratio to simplify the problem. | © Example 2: when f is a decision tree:

Predictions Rainbow Panda
= |deally, we want a model without adversarial example.

A warm-up example

o A uniform randomization scheme:
1.1.d. .
o If a heuristic search algorithm fails, there may still be ¢(x); = x; + €;,€; "~ Uniform([—y,7]) » Likelihood ratio: Pr(¢(x) = z)/ Pr(¢(x) = 2z). = The randomization can be expressed as a

i lllustration: ~ ., . e . .
adversarial examples. O LE ] . Assigning f(2) to ¥ in | likelihood ratio computes ,0;1(0.5) probabilistic routing scheme for each decision node.

(Neyman-Pearson lemma. It can be done in ©(d?)). * The exact certificate of robustness can be computed
using dynamic programming over tree nodes.

xr
Ly

o We need a certificate to show that no such example exists
around a specified radius of the input example.

o Randomization at x and @ divide the input

space into non-overlapping regions £L1,..., Ly
O Flndlng certificates is partiCUIarly Challenging In discrete based on likelihood Comparisons

spaces as the problem is combinatorial.

= Alarge integer algorithm is needed for high dimension setting.

Experiment (project page: http://people.csail.mit.edu/guanghe/randomized smoothing)

o Forany f or f, only the integral over a region

matters; we search for f that assigns prob. . .
- . . o Evaluation metrics: o ImageNet (ResNet50 model).
Set-up & background [0,1] (integral value) to each region. . . _ J ( )
g . » u(R): the average certified radius in testing set. v
o Given aninput € € X, a randomization scheme ¢ assigns| © VVorst case f assigns high values to L1, low e - ¢ and certificate
cehant ’ - - » ACC@r: guaranteed accuracy within £ radius 7. —1 s —9 -3 r—4 +—5 -6 r_-
a distribution Pr(¢(x) = z)foreach z € X values to L2 and L3, subject to the constraint
that the aaareqate = across £+ and £- . . _ Discrete 0.538 0.394 0338 0.274 0.234 0.190 0.176
o We use a randomly smoothed classifier f(¢(a:)) 99rey P | ! ’ ; o Binarized MNIST (CNN model). Gaussian 0372 0292 0226 0.194 0.170 0.154 0.138
— {pm,z(p) =0, if 0 <p < (29)7°IL4], —— —
= { is a base classifier (e.g., a deep net / decision tree). pzz(P) =p— (2y)"¢ L], otherwise. ¢ Certificate  p1(R) : ; - 4T . - - Tos. -
. Pr(f (¢(m )) — ?/) is abbreviated as P . o Regional certificate finds the worst x € B?",q(m) Discrete ~ Discrete  3.456 0.921 0.774 0.539 0.524 0.357  0.202  0.097 io7 T amoo gzj:ﬁ ~ s
| 5 S | o such that |£1| is maximized. Discrete  Gaussian 1,799 0.830 0557 0272 0.19 0021  0.000 0.000 0 Dapy £°21
O T|ght Cert|f|CateS eX|St Wlth Gauss|an random|zat|on and 62 — — Gaussian  Gaussian  2.378 0.884 0.701 0464 0.252 0.078 0.000  0.000 os¥ —— =05 0:1— | |
metric (Cohen et al., 19’) > R(@,p,q=1) =207 N Rradesr ] T e
v R(x,p,q = 00) = 2y—27y(1.5 — p)'/¢ o (Discrete) Exact ACC@1 = 0.954, ACC@2 = 0.926. »=1(0.5) for an o The certified accuracy for an o




