
The Parallel Persistent Memory Model
Guy E. Blelloch* Phillip B. Gibbons* Yan Gu* Charles McGuffey* Julian Shun†

*Carnegie Mellon University †MIT CSAIL

ABSTRACT
We consider a parallel computational model, the Parallel Persistent
Memory model, comprised of 𝑃 processors, each with a fast local
ephemeral memory of limited size, and sharing a large persistent
memory. The model allows for each processor to fault at any time
(with bounded probability), and possibly restart. When a processor
faults, all of its state and local ephemeral memory is lost, but the
persistent memory remains. This model is motivated by upcoming
non-volatile memories that are nearly as fast as existing random
access memory, are accessible at the granularity of cache lines, and
have the capability of surviving power outages. It is further motivated
by the observation that in large parallel systems, failure of processors
and their caches is not unusual.

We present several results for the model, using an approach that
breaks a computation into capsules, each of which can be safely run
multiple times. For the single-processor version we describe how to
simulate any program in the RAM, the external memory model, or
the ideal cache model with an expected constant factor overhead. For
the multiprocessor version we describe how to efficiently implement
a work-stealing scheduler within the model such that it handles
both soft faults, with the processor restarting, and hard faults, with
a processor permanently failing. For any fork-join program that
is race and write-after-read conflict free and has 𝑊 work and 𝐷
depth (in the absence of faults), the scheduler guarantees a time
bound of 𝑂

(︁
𝑊
𝑃𝐴

+ 𝐷𝑃
𝑃𝐴

⌈︁
log1/𝑓 𝑊

⌉︁)︁
in expectation, where 𝑃 is

the maximum number of processors, 𝑃𝐴 is the average number, and
𝑓 ≤ 1/2 is the probability that a capsule faults. Within the model,
and using the proposed methods, we develop efficient algorithms for
parallel prefix sums, merging, sorting, and matrix multiply.

ACM Reference Format:
Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian
Shun. 2018. The Parallel Persistent Memory Model. In SPAA ’18: 30th
ACM Symposium on Parallelism in Algorithms and Architectures, July 16–
18, 2018, Vienna, Austria. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3210377.3210381

1 INTRODUCTION
In this paper we consider a parallel computational model, the Par-
allel Persistent Memory (Parallel-PM) model, that consists of 𝑃
processors, each with a fast local ephemeral memory of limited size
𝑀 , and sharing a large slower persistent memory. As in the external

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA ’18, July 16–18, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5799-9/18/07. . . $15.00
https://doi.org/10.1145/3210377.3210381

memory model [4, 5] each processor runs a standard instruction set
from its ephemeral memory and has instructions for transferring
blocks of size 𝐵 to and from the persistent memory. The cost of
an algorithm is calculated based on the number of such transfers.
A key difference, however, is that the model allows for individual
processors to fault at any time. If a processor faults all its processor
state and local ephemeral memory is lost, but the persistent memory
remains. We consider both the case in which the processor restarts
(soft faults) and never restarts (hard faults).

The model is motivated by two complimentary trends. Firstly, it is
motivated by upcoming non-volatile memories that are nearly as fast
as existing random access memory (DRAM), are accessed via loads
and stores at the granularity of cache lines, have large capacity (more
bits per unit area than existing random access memory), and have
the capability of surviving power outages and other failures without
losing data (the memory is non-volatile or persistent). For example,
Intel’s 3D-Xpoint memory technology, currently available as an
SSD, is scheduled to be available as such a random access memory
in 2019. While such memories are expected to be the pervasive
type of memory [50, 52, 56], each processor will still have a small
amount of cache and other fast memory implemented with traditional
volatile memory technologies (SRAM or DRAM). Secondly, it is
motivated by the fact that in current and upcoming large parallel
systems the probability that an individual processor faults is not
negligible, requiring some form of fault tolerance [17].

In this paper we first consider a single processor version of the
model, the PM model, and give conditions under which programs
are robust against faults. In particular we identify that breaking a
computation into “capsules” that have no write-after-read conflicts
(writing a location that was read earlier within the same capsule) is
sufficient, when combined with our approach to restarting faulting
capsules from their beginning, due to its idempotent behavior. We
then show that RAM algorithms, external memory algorithms, and
cache-oblivious algorithms [31] can all be implemented efficiently,
asymptotically, on the model. This involves a simulation that breaks
the computations into capsules and buffers writes, which are handled
in the next capsule. It is likely not practical. We therefore consider
a programming methodology in which the algorithm designer can
identify capsule boundaries, and ensure the capsules are free of
write-after-read conflicts.

We then consider our multiprocessor counterpart, the Parallel-PM
described above, and consider conditions under which programs
are correct when the processors are interacting through the shared
memory. We identify that if capsules are free of write-after-read
conflicts and atomic, in a way we define, then each capsule acts as if
it ran once despite many possible restarts. Furthermore we identify
that a compare-and-swap (CAS) instruction is not safe in the PM
model, but that a compare-and-modify (CAM), which does not see
its result, is safe.

The most significant result in the paper is a work-stealing sched-
uler that can be used on the Parallel-PM. Our scheduler is based

https://doi.org/10.1145/3210377.3210381
https://doi.org/10.1145/3210377.3210381
https://doi.org/10.1145/3210377.3210381

on the scheduler of Arora, Blumofe and Plaxton (ABP) [5]. The
key challenges in adopting it to handle faults are (i) modifying it so
it only uses CAMs instead of CASs, (ii) ensuring that each stolen
task gets executed despite faults, (iii) properly handling hard faults,
and (iv) ensuring its efficiency in the presence of soft or hard faults.
Without a CAS, and to avoid blocking, handling faults requires that
processors help the processor that is part way through a steal. Han-
dling hard faults further requires being able to steal a thread from a
processor that was part way through executing the thread.

Based on the scheduler we show that any race-free, write-after-
read conflict free multithreaded fork-join program with work 𝑊 and
depth 𝐷 will run in expected time:

𝑂

(︂
𝑊

𝑃𝐴
+𝐷

(︂
𝑃

𝑃𝐴

)︂⌈︁
log1/𝑓 𝑊

⌉︁)︂
.

Here 𝑃 is the maximum number of processors, 𝑃𝐴 the average
number, and 𝑓 ≤ 1/2 an upper bound on a capsule’s probability of
a fault. This bound differs from the ABP result only in the log1/𝑓 𝑊
factor on the depth term, which is due to faults along the critical
path.

Finally, we present Parallel-PM algorithms for prefix-sums, merg-
ing, sorting, and matrix multiply that satisfy the required conditions.
The results for prefix-sums, merging, and sorting are work-optimal,
matching lower bounds for the external memory model. Importantly
these algorithms are only slight modifications from known parallel
I/O efficient algorithms [15]. The main change is ensuring that they
write their partial results to a separate location from where they read
them so they avoid write-after-read conflicts.

Related Work. Because of its importance to future computing,
the computer systems community (including companies such as
Intel and HP) have been hard at work trying to solve the issues
arising when fast nonvolatile memories (such as caches) sit be-
tween the processor and a large persistent memory [10, 11, 19–
21, 23, 28, 30, 32, 33, 36–39, 44–47, 51, 53, 55]. Standard caches
are write-back, meaning that a write to a memory location will make
it only as far as the cache, until at some later point the updated cache
line gets flushed out to the persistent memory. Thus, when a proces-
sor crashes, some writes (those still in the cache) are lost while other
writes are not. The above prior work includes schemes for encapsu-
lating updates to persistent memory in either transactions or lock-
protected failure atomic sections and using various forms of (undo,
redo, resume) logging to ensure correct recovery. The intermittent
computing community works on the related problem of small sys-
tems that will crash due to power loss [7, 16, 25, 26, 35, 48, 49, 54].
Lucia and Ransford [48] describes how faults and restarting lead
to errors that will not occur in a faultless setting. Several of these
works [25, 26, 48, 49, 54] break code into small chunks, referred to
as tasks, and work to ensure progress at that granularity. Avoiding
write-after-read conflicts is often key step towards ensuring tasks
are idempotent. Because these works target intermittent computing
systems, which are designed to be small and energy efficient, they
do not consider multithreaded programs, concurrency, or synchro-
nization. In contrast to this flurry of recent systems research, there is
relatively little work from the theory/algorithms community aimed at
this setting [27, 40, 41, 52]. David et al. [27] presents concurrent da-
ta structures (e.g., for skip-lists) that avoid the overheads of logging.
Izraelevitz et al. [40, 41] presents efficient techniques for ensuring

that the data in persistent memory captures a consistent cut in the
happens-before graph of the program’s execution, via the explicit
use of instructions that flush cache lines to persistent memory (such
as Intel’s CLFLUSH instruction [38]). Nawab et al. [52] defines pe-
riodically persistent data structures, which combine mechanisms for
tracking proper write ordering with a periodic flush of all cache lines
to persistent memory. None of this work defines an algorithmic cost
model, presents a work-stealing scheduler, or provides the provable
bounds in this paper.

There is a very large body of research on models and algorithms
where processors and/or memory can fault, but to our knowledge,
none of it (other than the works mentioned above) fits the setting
we study with its two classes of memory (local volatile and shared
nonvolatile). Papers focusing on memory faults (e.g., [1, 22, 29]
among a long list of such papers) consider models in which individ-
ual memory locations can fault. Papers focusing on processor faults
(e.g., [6] among an even longer list of such papers) either do not
consider memory faults or assume that all memory is volatile.

Note that while the PM models are defined using explicit external
read and external write instructions, they are also appropriate for
modeling the (write-back) cache setting described above, as follows.
Explicit instructions such as CLFLUSH are used to ensure that an
external write indeed writes to the persistent memory. Writes that
are intended to be solely in local memory, on the other hand, could
end up being evicted from the cache and written back to persistent
memory. However, for programs that are race-free and well-formed,
as defined in Section 3, our approach preserves its correctness prop-
erties.

2 THE PERSISTENT MEMORY MODEL
Single Processor. We assume a two-layer memory model with a s-
mall fast ephemeral memory of size 𝑀 (in words) and a large slower
persistent memory of size 𝑀𝑝 ≫ 𝑀 . The two memories are parti-
tioned into blocks of 𝐵 words. Instructions include standard RAM
instructions that work on single words within the processor registers
(a processor has 𝑂(1) registers) and ephemeral memory, as well as
two (external) memory transfer instructions: an external read that
transfers a block from persistent memory into ephemeral memory,
and an external write that transfers a block from ephemeral memory
to persistent memory. We assume the words contain Θ(log𝑀𝑝) bits.
These assumptions are effectively the same as in the (𝑀,𝐵) external
memory model [2].

We further assume the processor can fault between any two in-
structions, and that after faulting the processor restarts. On restart
the ephemeral memory and processor registers can be in an arbitrary
state, but the persistent memory is in the same state as immediately
before the fault. To enable forward progress, we assume there is
a fixed memory location in the persistent memory referred to as
the restart pointer location, which contains the restart pointer. On
restart the processor loads the restart pointer from the persistent
memory into a register, which we refer to as the base register, then
loads the location pointed to by the restart pointer (the restart in-
struction) and jumps to that location, i.e., sets it as the program
counter. The processor then proceeds as normal. As it executes, the
processor can update the restart pointer to be the current program
counter, at the cost of an external write, in order to limit how far

the processor will fall back on a fault. We refer to this model as the
(single processor) (𝑀,𝐵) persistent memory (PM) model.

The basic model can be parameterized based on the cost of the
various instructions. Throughout this paper, and in the spirit of the
external memory model [2] and the ideal cache model [31], we
assume that external reads and writes take unit cost and all other
instructions have no cost.1 We further assume the program is constant
size and that either the program is loaded from persistent memory
into ephemeral memory at restart, or that there is a small cache for
the program itself, which is also lost in the case of a fault. Thus,
faulting and restarting (loading the base register and jumping to the
restart instruction, and fetching the code) takes a constant number
of external memory transfers.

The processor’s computation can be viewed as partitioned into
capsules: Each capsule corresponds to a maximally contiguous se-
quence of instructions running on the processor while the restart
pointer location contains the same restart pointer, in the absence of
faults. The last instruction of every capsule is therefore a write of
a new restart pointer. We refer to writing a new restart pointer as
installing a capsule. We assume that the next instructions after this
write, which are at the start of the next capsule, do exactly the same
as a restart does—i.e. load the restart pointer into the base pointer,
load the start instruction pointed to by base pointer, and jump to it.
The capsule is active while its restart pointer is installed. Whenever
the processor faults, it will restart using the restart pointer of the
active capsule, i.e. the capsule will be restarted as it was the first
time. We define the capsule work to be the number of external reads
and writes in the capsule, assuming no faults. Note that, akin to
checkpointing, there is a tension between the desire for high work
capsules that amortize the capsule start/restart overheads and the
desire for low work capsules that lessen the repeated work on restart.

In our analysis we consider two ways to count the total cost.
We say the faultless work (or work), denoted as 𝑊 , is the number
of external memory transfers assuming no faults. We say that the
total work (or fault-tolerant work), denoted as 𝑊𝑓 , is the number of
external memory transfers for an actual run including all the transfers
due to having to restart. 𝑊𝑓 can only be defined with respect to an
assumed fault model. In this paper, we assume that for each capsule,
the probability of faulting is bounded by a constant 𝑓 < 1, and that
faults are independent events.2

Throughout we assume the processor instructions are determin-
istic, i.e. each instruction is a function from the values of register-
s/memory locations it reads to the registers/memory locations it
writes.
Multiple Processors. The Parallel-PM consists of 𝑃 processors
each with its own fast local ephemeral memory of size 𝑀 , but shar-
ing a single slower persistent memory of size 𝑀𝑝 (See Figure 1).
Each processor works as in the single processor PM, and the proces-
sors run asynchronously. Any processor can fault between two of
its instructions, and each has its own restart pointer location in the
persistent memory. When a processor faults, the processor restarts
like it would in the single processor case. We refer to this as a soft

1The results in this paper can be readily extended to a setting (an Asymmetric PM model)
where external writes are more costly than external reads, as in prior work on algorithms
for NVM [8, 9, 12, 13, 18, 42]; for simplicity, we study here the simpler PM model
because such asymmetry is not the focus of this paper.
2The results in this paper can be readily extended to a fault model where each instruction
faults with probability bounded by a constant.

Persistent Memory

Ephemeral
Memory

CPU

Ephemeral
Memory

CPU

Ephemeral
Memory

CPU

Ephemeral
Memory

CPU

Figure 1: The Parallel Persistent Memory Model

fault. We also allow for a hard fault, in which the processor faults
and then never restarts—we say that such a processor is dead. We
assume that other processors can detect when a processor has hard
faulted using a liveness oracle isLive(procId). We allow for
concurrent reads and writes to the shared persistent memory, and
assume that all instructions involving the persistent memory are
sequentially consistent.

The Parallel-PM includes a compare-and-swap (CAS) instruction.
The CAS takes a pointer to a location of a word in persistent memory
and two values in registers. If the first value equals the value at the
location, it atomically swaps the value at the location and the value in
the second register, and the CAS is successful. Otherwise, no swap
occurs and the CAS is unsuccessful. Even though the persistent
memory is organized in blocks, we assume that the CAS is on a
single word within a block.

The (faultless) work 𝑊 and the total work 𝑊𝑓 are as defined in
the sequential model but summed across all processors. The (fault-
less) time 𝑇 (and the fault-tolerant or total time 𝑇𝑓) is the maximum
faultless work (correspondingly, total work) done by any one proces-
sor. Without faults this is effectively the same as the parallel external
memory model [4]. In analyzing correctness we allow for arbitrary
delay of any processor at any time. However for our time bounds
and our results on work stealing we make similar assumptions as
made in [5]. These are described in Section 6.
Multithreaded Computations. Our aim is to support multithreaded
dynamic parallelism layered on top of Parallel-PM. We consider the
same form of multithreaded computations as considered by Arora,
Blumofe and Plaxton (ABP) [5]. In the model a computation starts
as a single thread. On each step a thread can run an instruction, fork
a new thread, or join with another thread. Such a computation can
be viewed as a DAG, with an edge between instructions, a pair of
out-edges at a fork, and a pair of in-edges at a join. As with ABP,
we assume the each node in the DAG has out degree at most 2. In
the multithreaded model the (faultless) work 𝑊 is the total work
summed across all threads not considering faults, and the total work
𝑊𝑓 including faults. In addition we define the (faultless) depth 𝐷
(and the fault-tolerant or total depth 𝐷𝑓) to be the maximum work
(correspondingly, faulty work) along any path in the DAG. The
goal of our work-stealing scheduler (Section 6) is to efficiently map
computations in the multithreaded model into Parallel-PM.

3 ROBUSTNESS ON A SINGLE PROCESSOR
In this section, we discuss how to run programs on the single proces-
sor PM model so they complete the computation properly.

Our goal is to structure the computation and its partitioning into
capsules in a way that is sufficient to ensure correctness regardless
of faults. Specifically, our goal is that each capsule is a sequence
of instructions that will look from an external view like it has been
run exactly once after its completion, regardless of the number of
times it was partially run due to faults and restarts. We say a capsule
is idempotent if, when it completes, regardless of how many times
it faults and restarts, all modifications to the persistent memory are
consistent with running once from the initial state (i.e. the state of
the persistent memory, the ephemeral memory and registers at the
start of the capsule).

There are various means to guarantee that a capsule is idempotent,
and here we consider a natural one. We say a capsule has a write-
after-read conflict if the first transfer from a block in persistent
memory is a read (called an “exposed” read), and later there is
a write to the same block. Avoiding such a conflict is important
because if a location in the persistent memory is read and later
written, then on restart the capsule would see the new value instead
of the old one. We say a capsule is well-formed if the first access to
each word in the registers or ephemeral memory is a write. Being
well formed means a capsule will not read the undefined values
from registers and ephemeral memory after a fault. We say that a
capsule is write-after-read conflict free if it is well-formed and had
no write-after-read conflicts.

THEOREM 3.1. With a single processor, all write-after-read con-
flict free capsules are idempotent.

PROOF. On restarting, the capsule cannot read any persistent
memory written by previous faults on the capsule, because we restart
from the beginning of the capsule and the exposed read locations
are disjoint from the write locations. Moreover, the capsule cannot
read the state of the ephemeral memory because a write is required
before a read (well-formedness). Therefore the first time a capsule
runs and every time a capsule restarts it has the same visible state,
and because the processor instructions are deterministic, will repeat
exactly the same instructions with same results. �

An immediate question is whether a standard processing model
such as the RAM can be simulated efficiently on the PM model.
The following theorem, whose proof is in the full version of the
paper [14], shows that the PM can simulate the RAM model with
only constant overheads:

THEOREM 3.2. Any RAM computation taking 𝑡 time can be
simulated on the (𝑂(1), 𝐵) PM model with expected total work
𝑂(𝑡), and 𝑂(1) maximum capsule work, for any 𝐵 (𝐵 = 1 is
sufficient).

Although the RAM simulation is linear in the number of instruc-
tions, our goal is to create algorithms that require asymptotically
fewer reads and writes to persistent memory. We therefore consider
efficiently simulating external memory algorithms in the model.

THEOREM 3.3. Any (𝑀,𝐵) external memory computation with
𝑡 external accesses can be simulated on the (𝑂(𝑀), 𝐵) PM model
with expected total work 𝑂(𝑡), and 𝑂(𝑀) maximum capsule work.

PROOF. The simulation consists of rounds each of which has a
simulation capsule and a commit capsule. It maps the ephemeral
memory of the source program to part of the ephemeral memory, and

the external memory to the persistent memory. It keep the registers
in the ephemeral memory, and keeps space for two copies of the
simulated ephemeral memory and the registers in the persistent
memory, which it swaps back and forth between.

The simulation capsule simulates some number of steps of the
source program. It starts by reading in one of the two copies of the
ephemeral memory and registers. Then during the simulation all
instructions are applied within their corresponding memories, except
for writes from the ephemeral memory to the persistent memory.
These writes, instead of being written immediately, are buffered
in the ephemeral memory. This means all reads from the external
memory have to first check the buffer. The simulation also maintains
a count of the number of reads and writes to the external memory
within a capsule. When this count reaches 𝑀/𝐵 the simulation
“closes” the capsule. The closing is done by writing out the simulated
ephemeral memory, the registers, and the write buffer to persistent
memory. For ephemeral memory and registers this is the other copy
from the one that is read. The capsule finishes by installing a commit
capsule.

The commit capsule reads in the write buffer from the closed
capsule to ephemeral memory, and applies all the writes to their
appropriate locations of the simulated external memory in the persis-
tent memory. When the commit capsule is done, it installs the next
simulation capsule.

This simulation is write-after-read conflict free because the only
writes during a simulation capsule are to the copy of ephemeral
memory, registers, and write buffer. The write buffer has no conflicts
since it is not read, and the ephemeral memory and registers have
no conflicts since they swap back and forth. There are no conflicts
in the commit capsules because they read from write buffer and
write to the simulated external memory. The simulation is therefore
write-after-read conflict free.

To see the claimed time and space bounds we note that the
ephemeral memory need only be a constant factor bigger than the
simulated ephemeral memory, because the write buffer can only
contain 𝑀 entries. Each round requires only 𝑂(𝑀/𝐵) reads and
writes to the persistent memory because the simulating capsules
only need the stored copy of the ephemeral memory, do at most
𝑀/𝐵 reads, and then at most 𝑂(𝑀/𝐵) writes to the other stored
copy. The commit capsule does at most 𝑀/𝐵 simulated writes, each
requiring a read from and write to the persistent memory. Because
each round simulates 𝑀/𝐵 reads and writes to external memory
at the cost of 𝑂(𝑀/𝐵) reads and writes to persistent memory, the
faultless work across all capsules is bounded by 𝑂(𝑡). Since the
probability of faulting is constant (𝑓 < 1), the expected total work
is at most a factor (1/(1− 𝑓)) greater than the faultless work, giving
the stated bounds. �

It is also possible to simulate the ideal cache model [31], in the
PM model. The ideal cache model is similar to the external memory
model but assumes the fast memory is managed as a fully associative
cache. It assumes a cache of size 𝑀 is organized in blocks of size
𝐵 and has an optimal replacement policy. The ideal cache model
makes it possible to design cache-oblivious algorithms [31]. Due
to the following result, whose proof is in the full version of the
paper [14], these algorithms are also efficient in the PM model.

THEOREM 3.4. Any (𝑀,𝐵) ideal cache computation with 𝑡
cache misses can be simulated on the (𝑂(𝑀), 𝐵) PM model with
expected total work 𝑂(𝑡), and with 𝑂(𝑀) maximum capsule work.

4 PROGRAMMING FOR ROBUSTNESS
This simulation of the external memory is not completely satisfactory
because its overhead, although constant, could be significant. It can
be more convenient and certainly more efficient to program directly
for the model. Here we describe one protocol for this purpose. It can
greatly reduce the overhead of using the PM model. It is also useful
in the context of the parallel model.

Our protocol is designed so capsules begin and end at the bound-
aries of certain function calls, which we refer to as persistent function
calls. Non-persistent calls are ephemeral. We assume function calls
can be marked as persistent or ephemeral, by the user or possibly
compiler. Once a persistent call is made, the callee will never revert
back further than the call itself, and after a return the caller will
never revert back further than the return. All persistent calls require
a constant number of external reads and writes on the call and on the
return. In an ephemeral function call a fault in a callee can roll back
to before the call, and similarly a fault after a return can roll back to
before the return. All ephemeral calls are handled completely in the
ephemeral memory and therefore by themselves do not require any
external reads or writes. In addition to the persistent function call
we assume a commit command that forces a capsule boundary at
that point. As with a persistent call, the commit requires a constant
number of external reads and writes.

We assume that all user code between persistent boundaries is
write-after-read conflict free, or otherwise idempotent. This requires
a style of programming in which results are copied instead of over-
written. For sequential programs, this increases the space require-
ments of an algorithm by at most a factor of two. Persistent counters
can be implemented by placing a commit between reading the old
value and writing the new. In the algorithms that we describe in
Section 7, this style is very natural.

Implementing persistent function calls requires some care with
a standard stack protocol. Here we outline one way to modify a
standard stack discipline to work. We describe how to do this is
some detail using closures [3] in the full paper [14].

The stack is organized in stack frames stored in the persistent
memory. The first location in each stack frame is a pointer to the
first instruction to run, and it is followed by slots for its arguments,
for values returned to it, a pointer to the parent frame, and a pointer
to code to execute for the parent when the function returns. When
making a call, the parent can fill in the frame of the child. In particu-
lar the instruction to start at (in the first location), the arguments, a
pointer to itself, and the instruction to run on return. As in standard
protocols it must also save local variables to its own frame it needs
on return. When making a call, the parent can install a pointer to the
child frame as the new restart pointer.

On return, the child can fill in the result in the parent frame, and
also fill in the instruction to run on return in the first slot of the parent
frame. It can then install a pointer to the parent frame as the new
restart pointer. Arguments should not be modified in place since this
would not be write-after-read conflict free. Local variable and return
results that are available when returning from a function call must
also not be modified for the same reason. A commit command can

be implemented by creating a function for the code after the commit,
and calling it. Standard tail-recursion optimizations can then return
directly to the parent of the caller. The main difference of this calling
convention from a standard one is keeping an instruction pointer
with each frame, and ensuring local variables do not have any write-
after-read conflicts. It also means the built in call/ret instruction on
certain architectures likely cannot be used.

Memory allocation can be implemented in various ways in a
write-after-read conflict free manner. One way is for the memory
for a capsule to be allocated starting at a base pointer that is stored
in the closure. Memory is allocated one after the other, using a
pointer kept in local memory (avoiding the need for a write-after-
read conflict to persistent memory in order to update it). In this
way, the allocations are the same addresses in memory each time
the capsule restarts. At the end of the capsule, the final value of
the pointer is stored in the closure for the next capsule. For the
Parallel-PM, each processor allocates from its own pool of persistent
memory, using this approach. In the case where a processor takes
over for a hard-faulting processor, any allocations while the taking-
over processor is executing on behalf of the faulted processor will
be from the pool of the faulted processor.

5 ROBUSTNESS ON MULTIPLE
PROCESSORS

With multiple processors our previous definition of idempotent is
inadequate since the other processors can read or write persistent
memory locations while a capsule is running. For example, even
though the final values written by a capsule 𝑐 might be idempotent,
other processors can observe intermediate values while 𝑐 is running
and therefore act differently than if 𝑐 was run just once. We there-
fore consider a stronger variant of idempotency that in addition to
requiring that its final effects on memory are if it ran once, requires
that it acts as if it ran atomically. The requirement of atomicity is not
necessary for correctness, but sufficient for what we need and allows
a simple definition. We give an example of how it can be relaxed at
the end of the section.

More formally we consider the history of a computation, which
is an interleaving of the persistent memory instructions from each
of the processors, and which abides by the sequential semantics of
the memory. The history includes the additional instructions due
to faults (i.e., it is a complete trace of instructions that actually
happened). A capsule within a history is invoked at the instruction
it is installed and responds at the instruction that installs the next
capsule on the processor. All instructions of a capsule, and possibly
other instructions from other processors, fall between the invocation
and response.

We say that a capsule in a history is atomically idempotent if

(1) (atomic) all its instructions can be moved in the history to
be adjacent somewhere between its invocation and response
without violating the memory semantics, and

(2) (idempotent) the instructions are idempotent at the spot they
are moved to—i.e., their effect on memory is as if the capsule
ran just once without fault.

As with a single processor, we now consider conditions under
which capsules are ensured to be idempotent, in this case atomically.
Akin to standard definitions of conflict, race, and race free, we

say that two persistent memory instructions on separate processors
conflict if they are on the same block and one is a write. For a capsule
within a history we say that one of its instructions has a race if it
conflicts with another instruction that is between the invocation and
response of that capsule. A capsule in a history is race free if none
of its instructions have a race.

THEOREM 5.1. Any capsule that is write-after-read conflict free
and race free in a history is atomically idempotent.

PROOF. Because the capsule is race free we can move its instruc-
tions to be adjacent at any point between the invocation and response
without affecting the memory semantics. Once moved to that point,
the idempotence follows from Theorem 3.1 because the capsule is
write-after-read conflict free. �

This property is useful for user code if one can ensure that the
capsules are race free via synchronization. We use this extensively
in our algorithms. However the requirement of being race free is
insufficient in general because synchronizations themselves require
races. In fact the only way to ensure race freedom throughout a
computation would be to have no processor ever write a location
that another processor ever reads or writes. We therefore consider
some other conditions that are sufficient for atomic idempotence.

Racy Read Capsule. We first consider a racy read capsule, which
reads one location from persistent memory and writes its value to
another location in persistent memory. The capsule can have other
instructions, but none of them can depend on the value that is read.
A racy read capsule is atomically idempotent if all its instructions
except for the read are race free. This is true because we can move
all instructions of the capsule, with possible repeats due to faults, to
the position of the last read. The capsule will then properly act like
the read and write happened just once. Because races are allowed on
the read location, there can be multiple writes by other processors of
different values to the read location, and different such values can
be read anytime the racy read capsule is restarted. However, because
the write location is race free, no other processor can “witness” these
possible writes of different values to the write location. Thus, the
copy capsule is atomically idempotent. A copy capsule is a useful
primitive for copying from a volatile location that could be written
at any point into a processor private location that will be stable once
copied. Then when the processor private location is used in a future
capsule, it will stay the same however many times the capsule faults
and restarts. We make significant use of this in the work-stealing
scheduler.

Racy Write Capsule. We also consider a racy write capsule, for
which the only instruction with a race is a write instruction to persis-
tent memory, and the instruction races only with either read instruc-
tions or other write instructions, but not both kinds. Such a capsule
can be shown to be atomically idempotent. In the former case (races
only with reads), then in any history, the value in the write location
during the capsule transitions from an old value to a new value exact-
ly once no matter how many times the capsule is restarted. Thus, for
the purposes of showing atomicity, we can move all the instructions
of the capsule to immediately before the first read that sees the new
value, or to the end of the capsule if there is no such read. Although
the first time the new value is written (and read by other processors)
may be part of a capsule execution that subsequently faulted, the

old new target 0xDEAD currjob

xxxx xxxx xxxx 0 xxxx

0

3

0xDEAD

0 → 3

0

3

0xDEAD

3

Processor 3

void claimOwnership(
int jobId, int style) {

int old = defaults[style];
int new = getProcNum();
int* target = &jobOwners[jobId];
CAM(target, old, new);
currentJob = jobId;

}

void claimOwnership(
int jobId, int style) {

int old = defaults[style];
int new = getProcNum();
int* target = &jobOwners[jobId];
CAM(target, old, new);
currentJob = jobId;

}

Figure 2: CAM Capsule Example. In CAM capsules, earlier
faulting runs of the capsule may perform work that is visible
to the rest of the system.

effect on memory is as if the capsule ran just once without fault
(idempotency). In the latter case (races only with other writes), then
if in the history the racy write capsule is the last writer before the
end of the capsule, we can move all the instructions of the capsule to
the end of the capsule, otherwise we can move all the instructions to
the beginning of the capsule, satisfying atomicity and idempotency.
Compare-and-Modify (CAM) Instruction. We now consider idem-
potency of the CAS instruction. Recall that we assume that a CAS
is part of the machine model. We cannot assume the CAS is race
free because the whole purpose of the operation is to act atomically
in the presence of a race. Unfortunately it seems hard to efficiently
simulate a CAS at the user level when there are faults. The problem
is that a CAS writes two locations, the two that it swaps. In the
standard non-faulty model one is local (a register) and therefore
the CAS involves a single shared memory modification and a local
register update. Unfortunately in the Parallel-PM model, the proces-
sor could fault immediately before or after the CAS instruction. On
restart the local register is lost and it is impossible, in general, to tell
whether the CAS happened, and if so whether it was successful. This
is because identical CAS instructions from other processors might
have been applied to the location, and the capsule cannot distinguish
its success from their success.

Instead of using a CAS, here we show how to use a weaker
instruction, a compare-and modify (CAM). A CAM is simply a CAS
for which no subsequent instruction in the capsule reads the local
result (i.e., the swapped value).3 Furthermore, we restrict the usage
of a CAM. For a capsule within a history we say a write 𝑤 (including
a CAS or CAM) to persistent memory is non-reverting if no other
conflicting write between 𝑤 and the capsule’s response changes the
value back to its value before 𝑤. We define a CAM capsule as a
capsule that contains one non-reverting CAM and may contain other
write-after-read conflict free and race free instructions.

THEOREM 5.2. A CAM capsule is atomically idempotent.

PROOF. Assume that the CAM is non-reverting and all other
instructions in the capsule are write-after-read conflict free and race
free. Due to faults the CAM can repeat multiple times, but it can only

3Some CAS instructions in practice return a boolean to indicate success; in such cases,
the boolean cannot be read either.

succeed in changing the target value at most once. This is because
the CAM is non-reverting so once the target value is changed, it
could not be changed back. Therefore if the CAM ever succeeds,
for the purpose of showing atomicity, in the history we move all the
instructions of the capsule (including the instructions from faulty
runs) to the point of the successful CAM. This does not affect the
memory semantics because none of the other instructions have races,
and any of the other CAMs were unsuccessful and therefore also
have no affect on memory. At the point of the successful CAM the
capsule acts like it ran once because it is write-after-read conflict
free—other than the CAM, which succeeded just once. If the CAM
never succeeds, the capsule is conflict free and race free because the
CAM did not do any writes, so Theorem 5.1 applies. �

The example CAM capsule in Figure 2 shows one of the interest-
ing properties of idempotence: unlike transactions or checkpointing,
earlier runs that faulted can make changes to the memory that are
seen or used by other processes. Similarly, these earlier runs can
affect the results of the successful run, as long as the result is equiv-
alent to a non-faulty run.

A CAM can be used to implement a form of test-and-set in a
constant number of instructions. In particular, we will assume a loca-
tion can either be unset, or the value of a process identifier or other
unique identifier. A process can then use a CAM to conditionally
swap such a location from unset to its unique identifier. The process
can then check if it “won” by seeing if its identifier is in the location.
We make heavy use of this in the work-stealing scheduler to atomi-
cally “steal” a job from another queue. It can also be used at the join
point of two threads in fork-join parallelism to determine who got
there last (the one whose CAM from unset was unsuccessful) and
hence needs to run the code after the join.

Racy Multiread Capsule. It is also possible to design capsules
that are idempotent without the requirement of atomicity. By way
of example, we discuss the racy multiread capsule. This capsule
consists of multiple racy read capsules that have been combined
together into a single capsule. Concurrent processes may write to
locations that the capsule is reading between reads, which violates
atomicity. Despite this, a racy multiread capsule is idempotent since
the results of the final successful run of the capsule will overwrite
any results of partial runs. We make use of the snapshot capsule
in the work-stealing scheduler to reduce the number of capsules
required. It is not needed for correctness.

6 WORK STEALING
We show how to implement an efficient version of work stealing
(WS) in the Parallel-PM model. Our results are based on the work-
stealing scheduler of Arora, Blumofe, and Plaxton (ABP) [5] and
therefore work in a multiprogrammed environment where the num-
ber of active processors can change. As in their work, we require
some assumptions about the machine, which we summarize here.

The schedule is a two-level scheduler in which the work-stealing
scheduler, under our control, maps threads to processes, and an
adversarial operating system scheduler maps processes to processors.
The OS scheduler can change the number of allocated processors
and which processes are scheduled on those processors during the
computation, perhaps giving processors to other users. The number

of processes and the maximum number of processors used is given
by 𝑃 . The average number that are allocated to the user is 𝑃𝐴.

The quanta for scheduling is at least the time for two scheduling
steps where each step takes a small constant number of instructions.
In our case we cannot guarantee that the quanta is big enough to
capture two steps since the processor could fault. However it is
sufficient to show that with constant probability two scheduling
steps complete within the quanta, which we can show.

The available instruction set contains a yield-to-all instruction.
This instruction tells the OS that it must schedule all other processes
that have not hard faulted before (or at the same time) as the process
that executes the instruction. It is used to ensure that processors that
are doing useful work have preference over ones who run out of
work and need to steal.

Our schedule differs from the ABP scheduler in some crucial ways
since our model allowing processors to fault. First, our scheduler
cannot use a CAS, for reasons described in Section 5, and instead
must use a CAM. ABP uses a CAS and we see no direct translation
to using a CAM. Second, our scheduler has to handle soft faults
anywhere in either the scheduler or the user program. This requires
some care to maintain idempotence. Third, our scheduler has to
handle hard faults. In particular it has to be able to steal from a
processor that hard faults while it is running a thread. It cannot
restart the thread from scratch, but needs to start from the previous
capsule boundary (a thread can consist of multiple capsules).

Our scheduler is also similar to the ABP scheduler in some crucial
ways. In particular it uses a work-stealing double ended work queue
and takes a constant number of instructions for the popTop, popBot-
tom, and pushBottom functions. This is important in proving the
performance bounds and allows us to leverage much of their analysis.
An important difference in the performance analysis is that faults can
increase both the work and the span (critical path/depth). Because
faults can happen anywhere this holds for the user work and for the
scheduler. The expected work is only increased by a constant factor,
which is not a serious issue. However, for span, expectations cannot
be carried through the maximum implied by parallel execution. We
therefore need to consider high probability bounds.

6.1 The Scheduler Interface
Because of the need to handle faults, and in particular hard faults,
the interaction of the scheduler and threads is slightly different from
that of ABP. We assume that when a thread finishes it jumps to the
scheduler.4 When a thread forks another thread, it calls a fork
function, which pushes the new thread on the bottom of the work
queue and returns to the calling thread. When the scheduler starts a
thread it jumps to it (actually a continuation representing the code
to run for the thread). Recall that when the thread is done it jumps
back to the scheduler. These are the only interactions of threads and
the scheduler—i.e. jumping to a thread from the scheduler, forking a
new thread within a thread, and jumping back to the scheduler from
a thread on completion. All of these occur at capsule boundaries, but
a thread itself can consist of many capsules. We assume that at a join
(synchronization) point of threads whichever one arrives last contin-
ues the code after the join and therefore that thread need not interact
with the scheduler. The other threads that arrive at the join earlier

4Note that jumping to a thread is the same as installing a capsule.

finish and jump to the scheduler. In our setup, therefore, a thread is
never blocked, assuming the fork function is non-blocking.

6.2 WS-Deque
A work-stealing deque (WS-deque) is a concurrent deque supporting
a limited interface. Here we used a similar interface to ABP. In par-
ticular the interface supports popTop, pushBottom, and popBottom.
Any number of concurrent processors can execute popTop, but only
one process can execute either pushBottom or popBottom. The idea
is only the process owning the deque will work on the bottom. The
deque is linearizable except that popTop can return empty even if
the deque is not-empty. However this can only happen if another
concurrent popTop succeeds with a linearization point when the
popTop is live, i.e., from invocation to response.

We provide an implementation of a idempotent WS-deque in
Figure 3. Our implementation maintains an array of tagged entries
that refer to threads that the processor has either enabled or stolen
while working on the computation. The tag is simply a counter that
is used to avoid the ABA problem [34]. An entry consists of one of
the following states:

∙ empty: An empty entry is one that has not been associated
with a thread yet. Newly created elements in the array are
initialized to empty.

∙ local: A local entry refers to a thread that is currently being
run by the processor that owns this WS-Deque. We need to
track local entries to deal with processors that have a hard
fault (i.e., never restart).

∙ job: A job entry is equivalent to the values found in the orig-
inal implementation of the WS-Deque. It contains a thread
(i.e., a continuation to jump to start the thread).

∙ taken: A taken entry refers to a thread that has already been
or is in the process of being stolen. It contains a pointer to the
entry that the thief is using to hold the stolen thread, and the
tag of that entry at the time of the steal.

The transition table for the entry states is shown in Figure 4.
In addition to this array of entries, we maintain pointers to the

top and the bottom of the deque, which is a contiguous region of the
array. As new threads are forked by the owner process, new entries
will be added to the bottom of the deque using the pushBottom
function. The bottom pointer will be updated to these new entries.
The top pointer will move down on the deque as threads are stolen.
This implementation does not delete elements at the top of the deque,
even after steals. This means that we do not need to worry about
entries being deleted in the process of a steal attempt, but does mean
that maintaining 𝑃 WS-Deques for a computation with span 𝑇∞
requires 𝑂(𝑃𝑇∞) storage space.

Our implementation of the WS-Deque maintains a consistent
structure that is useful for proving its correctness and efficiency. The
elements of our WS-Deque are always ordered from the beginning
to the end of the array as follows:

(1) A non-negative number of taken entries. These entries refer to
threads that have been stolen, or possibly in the case of the last
taken entry, to a thread that is in the process of being stolen.

(2) A non-negative number of job entries. These entries refer to
threads that the process has enabled that have not been stolen or
started since their enabling.

1 P = number of procs
2 S = stack size

4 struct procState {
5 union entry = empty
6 | local
7 | job of continuation
8 | taken of ⟨entry*,int⟩

10 ⟨int,entry⟩ stack[S];
11 int top;
12 int bot;
13 int ownerID;

15 inline int getStep(i) { return stack[i].first; }

17 inline void clearBottom() {
18 stack[bot] = ⟨getStep(bot)+1, empty⟩; }

20 void helpPopTop() {
21 int t = top;
22 switch(stack[t]) {
23 case ⟨_, taken(ps,i)⟩:
24 // Set thief state.
25 CAM(ps, ⟨i,empty⟩, ⟨i+1,local⟩);
26 CAM(&top, t, t+1); // Increment top.
27 } }

29 // Steal from current process, if possible.
30 // If a steal happens, location e is set to "local"
31 // & a job is returned. Otherwise NULL is returned.
32 continuation popTop(entry* e, int c) {
33 helpPopTop();
34 int i = top;
35 ⟨int, entry⟩ old = stack[i];
36 commit;
37 switch(old) {
38 // No jobs to steal and no ongoing local work.
39 case ⟨j, empty⟩: return NULL;
40 // Someone else stole in meantime. Help it.
41 case ⟨j, taken(_)⟩:
42 helpPopTop(); return NULL;
43 // Job available, try to steal it with a CAM.
44 case ⟨j, job(f)⟩:
45 ⟨int, entry⟩ new = ⟨j+1, taken(e,c)⟩;
46 CAM(&stack[i], old, new);
47 helpPopTop();
48 if (stack[i] != new) return NULL;
49 return f;
50 // No jobs to steal, but there is local work.
51 case ⟨j, local⟩:
52 // Try to steal local work if process is dead.
53 if (!isLive(ownerID) && stack[i] == old) {
54 commit;
55 ⟨int, entry⟩ new = ⟨j+1,taken(e,c)⟩;
56 stack[i+1] = ⟨getStep(i+1)+1, empty⟩;
57 CAM(&stack[i], old, new);
58 helpPopTop();
59 if (stack[i] != new) return NULL;
60 return getActiveCapsule(ownerID);
61 }
62 // Otherwise, return NULL.
63 return NULL;
64 } }

66 void pushBottom(continuation f) {
67 int b = bot;
68 int t1 = getStep(b+1);
69 int t2 = getStep(b);
70 commit;
71 if (stack[b] == ⟨t2, local⟩) {
72 stack[b+1] = ⟨t1+1, local⟩;
73 bot = b + 1;
74 CAM(&stack[b], ⟨t2, local⟩, ⟨t2+1, job(f)⟩
75 } else if (stack[b+1].second == empty) {
76 states[getProcNum()].pushBottom(f);
77 }
78 return;
79 }

80 continuation popBottom() {
81 int b = bot;
82 ⟨int, entry⟩ old = stack[b-1];
83 commit;
84 if (old == ⟨j, job(f)⟩) {
85 CAM(&stack[b-1], old, ⟨j+1,local⟩);
86 if (stack[b-1] == ⟨j+1, local⟩) {
87 bot = b-1;
88 return f;
89 } }
90 // If we fail to grab a job, return NULL.
91 return NULL;
92 }

94 ˆ findWork() {
95 // Try to take from local stack first.
96 continuation f = popBottom();
97 if (f) GOTO(f);
98 // If nothing locally, randomly steal.
99 while (true) {

100 yield();
101 int victim = rand(P);
102 int i = getStep(bot);
103 continuation g
104 = states[victim].popTop(&stack[bot],i);
105 if (g) GOTO(g);
106 }
107 }
108 }

110 procState states[P]; // Stack for each process.

112 // User call to fork.
113 void fork(continuation f) {
114 // Pushes job onto the correct stack.
115 states[getProcNum()].pushBottom(f);
116 }

118 // Return to scheduler when any job finishes.
119 ˆ scheduler() {
120 // Mark the completion of local thread.
121 states[getProcNum()].clearBottom();
122 // Find work on the correct stack.
123 GOTO(states[getProcNum()].findWork());
124 }

Figure 3: Fault-tolerant WS-Deque Implementation. Jumps are
marked as GOTO and functions that are jumped to and do not re-
turn (technically continuations) are marked with a ˆ. All CAM
instructions occur in separate capsules, similar to function calls.

New State
Empty Local Job Taken

Old State

Empty - X
Local X - X X
Job X - X

Taken -

Figure 4: Entry state transition diagram

(3) Zero, one, or two local entries. If a process has one local entry,
it is the entry that the process is currently working on. Processes
can momentarily have two local entries during the pushBottom
function, before the earlier one is changed to a job. If a process
has zero local entries, that means the process has completed the
execution of its local work and is in the process of acquiring
more work through popBottom or stealing, or it is dead.

(4) A non-negative number of empty entries. These entries are avail-
able to store new threads as they are forked during the computa-
tion.

We can also relate the top and bottom pointers of the WS-Deque
(i.e. the range of the deque) to this array structure. The top pointer
will point to the last taken entry in the array if a steal is in process.
Otherwise, it will point to the first entry after the taken entries. At the
end of a capsule, the bottom pointer will point to the local entry if it
exists, or the first empty entry after the jobs otherwise. The bottom
pointer can also point to the last job in the array or the earlier local
entry during a call to pushBottom.

6.3 Algorithm Overview and Rationale
We now give an overview and rationale of correctness of our work-
stealing scheduler under the Parallel-PM.

Each process is initialized with an empty WS-Deque containing
enough empty entries to complete the computation. The top and
bottom pointers of each WS-Deque are set to the first entry. One
process is assigned the root thread. This process installs the first
capsule of this thread, and sets its first entry to local. All other
processes install the findWork capsule.

Once computation begins, the adversary chooses processes to
schedule according to the rules of the yield instruction described
in ABP, with the additional restriction that dead processes cannot
be scheduled. When a process is scheduled, it continues running its
code. This code may be scheduler code or user code.

If the process is running user code, this continues until the code
calls fork or terminates. Calls to fork result in the newly en-
abled thread being pushed onto the bottom of the process’ WS-
Deque. When the user code terminates, the process returns to the
scheduler function.

The scheduler code works to find new threads for the process
to work on. It begins by calling the popBottom function to try
and find a thread on the owner’s WS-Deque. If popBottom finds a
thread, the process works on that thread as described above. Other-
wise, the process begins to make steal attempts using the popTop
function on random victim stacks.

In a faultless setting, our work-stealing scheduler fuctions like
that of ABP. We use the additional information stored in the WS-
Deques and the configuration of capsule boundaries to provide fault
tolerance.

We provide correctness in a setting with soft faults using idempo-
tent capsules. Each capsule in the scheduler is an instance of one of
the capsules discussed in Section 5. This means that processes can
fault and restart without affecting the correctness of the scheduler.

Providing correctness in a setting with hard faults is more chal-
lenging. This requires the scheduler to ensure that work being done
by processes that hard fault is picked up in the same capsule that the
fault ocurred during by exactly one other process. We handle this
by allowing thieves to steal local entries from dead processes. A
process can check whether another process is dead using a liveness
oracle isLive(procId).

The liveness oracle might be constructed by implementing a
counter and a flag for each process. Each process updates its counter
after a constant number of steps (this does not have to be synchro-
nized). If the time since a counter has last updated passes some
threshold, the process is considered dead and its flag is set. If the

process restarts, it can notice that it was marked as dead, clear its flag,
and enter the system with a new empty WS-Deque. Constructing
such an oracle does not require a global clock or tight synchroniza-
tion.

By handling these high level challenges, along with some of the
more subtle challenges that occur when trying to provide exactly-
once semantics in the face of both soft and hard faults, we reach the
following result.

THEOREM 6.1. The implementation of work stealing provided in
Figure 3 correctly schedules work according to the specification in
Section 6.

The proof, appearing in the full version of the paper [14], deals
with the many possible code interleavings that arise when consid-
ering combinations of faulting and concurrency. We discuss our
methods for ensuring that work is neither duplicated during capsule
retries after soft faults or dropped due to hard faults. In particu-
lar, we spend considerable time ensuring that recovery from hard
faults during interaction with the bottom of the WS-Deque happens
correctly.

6.4 Time Bounds
We now analyze bounds on runtime based on the work-stealing
scheduler under the assumptions mentioned at the start of the section
(scheduled in fixed quanta, and supporting a yield-to-all instruction).

As with ABP, we consider the total amount of work done by
a computation, and the depth of the computation, also called the
critical path length. In our case we have 𝑊 , the work assuming no
faults, and 𝑊𝑓 , the work including faults. In algorithm analysis the
user analyzes the first, but in determining the runtime we care about
the second. Similarly we have both 𝐷, a depth assuming no faults,
and 𝐷𝑓 , a depth with faults.

For the time bounds we can leverage the proof of ABP. In particu-
lar as in their algorithm our popTop, popBottom, and pushBottom
functions all take 𝑂(1) work without faults. With our deque, op-
erations take expected 𝑂(1) work. Also as with their version, our
popTop is unsuccessful (returns Null when there is work) only if
another popTop is successful during the attempt. The one place
where their proof breaks down in our setup is the assumption that a
constant sized quanta can always capture two steal attempts. Since
our processors can fault multiple times, we cannot guarantee this.
However in their proof this is needed to show that for every 𝑃 steal
attempts, with probability at least 1/4, at least 1/4 of the non-empty
deques are successfully stolen from ([5], Lemma 8). In our case a
constant fraction (1 − 𝑓)2 of adjacent pairs of steal attempts will
not fault at all and therefore count as a steal attempt. For analysis
we can assume that if either steals in a pair faults, then the steal is
unsuccessful. This gives a similar result, only with a different con-
stant, i.e., with probability at least 1/4, at least 1/4(1− 𝑓)2 of the
non-empty deques are successfully stolen from. We note that hard
faults affect the the average number of active processors 𝑃𝐴. How-
ever they otherwise have have no asymptotic affect in our bounds
since a hard fault in our scheduler is effectively the same as forking
a thread onto the bottom of a work-queue and then finishing.

ABP show that their work-stealing scheduler runs in expected
time 𝑂(𝑊/𝑃𝐴 +𝐷𝑃/𝑃𝐴). To apply their results we need to plug
in 𝑊𝑓 for 𝑊 since that is the actual work done, and 𝐷𝑓 for 𝐷

since that is actual depth. Since the assumed probability of fault
is upper bounded by 𝑓 < 1, we have that the expected work is
𝑊𝑓 ≤ (1/(1−𝑓))𝑊 . Bounding 𝐷𝑓 is trickier since we cannot sum
expectations to get the depth bound (the depth is a maximum over
paths lengths). Instead we show that with some high probability no
capsule faults more than some number of times 𝑙. We then simply
multiply the depth by 𝑙. By making the probability sufficiently high,
we can pessimistically assume that in the unlikely even that any
capsule faults more than 𝑙 times then, the depth is as large as the
work. This idea leads to the following theorem.

THEOREM 6.2. Consider any multithreaded computation with
work 𝑊 and depth 𝐷 (assuming no faults) for which all capsules
are atomically idempotent, and being run on the Parallel-PM model
with fault rate 𝑓 ≤ 1/2, 𝑃 processors, and average number of
active processors 𝑃𝐴. Then the expected total time 𝑇𝑓 is

𝑂

(︂
𝑊

𝑃𝐴
+𝐷

(︂
𝑃

𝑃𝐴

)︂⌈︁
log1/𝑓 𝑊

⌉︁)︂
.

PROOF. Since we assume the faults are independent with prob-
ability at most 𝑓 , the probability that a capsule will run 𝑙 or more
times is upper bounded by 𝑓 𝑙. Therefore if there are 𝐶 capsules
in the computation, the probability than any one runs more than 𝑙
times is upper bounded by 𝐶𝑓 𝑙 (by the union bound). If we want to
bound this probability by some 𝜖, we have 𝐶𝑓 𝑙 ≤ 𝜖. Solving for 𝑙
and since 𝐶 ≤ 𝑊 gives 𝑙 ≤ ⌈log1/𝑓 (𝑊/𝜖)⌉. This means that with
probability at most 𝜖, 𝐷𝑓 ≤ 𝐷 log1/𝑓 (𝑊/𝜖). If we set 𝜖 = 1/𝑊
then 𝐷𝑓 ≤ 2𝐷 log1/𝑓 𝑊 . Now we assume that if any capsule faults
𝑙 times or more that the depth of the computation equals the work.
This gives (𝑃/𝑃𝐴)(1/𝑊)𝑊 + (1− 1/𝑊)2𝐷⌈log1/𝑓 𝑊 ⌉) as the
expected value of the second term of the ABP bound, which is
bounded by 𝑂((𝑃/𝑃𝐴)𝐷⌈log1/𝑓 𝑊 ⌉). Since for the first term the
expected faulty work is 𝑊𝑓 ≤ (1/(1− 𝑓))𝑊 , and given 𝑓 ≤ 1/2,
the theorem follows. �

This only differs from the ABP bound in the log1/𝑓 𝑊 factor. If
we assume 𝑃𝐴 is a constant fraction of 𝑃 then the expected time
simplifies to 𝑂(𝑊/𝑃 +𝐷⌈log1/𝑓 𝑊 ⌉).

7 FAULT-TOLERANT ALGORITHMS
In this section, we outline how to implement several algorithms for
the Parallel-PM model. The algorithms are all based on binary fork-
join parallelism (i.e., nested parallelism), and hence fit within the
multithreaded model. We state all results in terms of faultless work
and depth. The results can be used with Theorem 6.2 to derive bounds
on time for the Parallel-PM. Recall that in the Parallel-PM model,
external reads and writes are unit cost, and all other instructions have
no cost (accounting for other instructions would not be hard). The
algorithms that we use are already race-free. Making them write-
after-read conflict free simply involves ensuring that reads and writes
are to different locations. All capsules of the algorithms are therefore
atomically idempodent. The base case for each of our variants of the
algorithms is done sequentially within the ephemeral memory.
Prefix Sum. Given 𝑛 elements {𝑎1, · · · , 𝑎𝑛} and an associative
operator “+”, the prefix sum algorithm computes a list of prefix
sums {𝑝1, · · · , 𝑝𝑛} such that 𝑝𝑖 =

∑︀𝑖
𝑗=1 𝑎𝑗 . Prefix sum is one of

the most commonly-used algorithmic building blocks in parallel
algorithm design [43].

We note that the standard prefix sum algorithm [43] works well
in our setting. The algorithm consists of two phases—the up-sweep
phase and the down-sweep phase, both based on divide-and-conquer.
The up-sweep phase bisects the list, computes the sum of each
sublist recursively, adds the two partial sums as the sum of the
overall list, and stores the sum in the persistent memory. After the
up-sweep phase finishes, we run the down-sweep phase with the
same bisection of the list and recursion. Each recursive call in this
phase has a temporary parameter 𝑡, which is initiated as 0 for the
initial call. Then within each function, we pass 𝑡 to the left recursive
call and 𝑡 + LeftSum for the right recursive call, where LeftSum is
the sum of the left sublist computed from the up-sweep phase. In
both sweeps the recursion stops when the sublist has no more than
𝐵 elements, and we sequentially process it using 𝑂(1) memory
transfers. For the base case in the down-sweep phase, we set the first
element 𝑝𝑖 to be 𝑡+ 𝑎𝑖, and then sequentially compute the rest of
the prefix sums for this block. The correctness of 𝑝𝑖 follows from
how 𝑡 is computed along the path to 𝑎𝑖.

This algorithm fits into the Parallel-PM model in a straightforward
manner. We can place the computation in each function call (without
the recursive calls) in an individual capsule. In the up-sweep phase,
a capsule reads from two memory locations and stores the sum back
to another location. In the down-sweep phase, it reads from at most
one memory location, updates 𝑡, and passes 𝑡 to the recursive calls.
Defining capsules in this way provides write-after-read conflict-
freedom and limits the maximum capsule work (and therefore the
extra work due to a restart) to a constant.

THEOREM 7.1. The prefix sum of an array of size 𝑛 can be
computed in 𝑂(𝑛/𝐵) work and 𝑂(log𝑛) depth, with maximum
capsule work 𝑂(1) in the Parallel-PM.

Merging. A merging algorithm takes the input of two sorted arrays
𝐴 and 𝐵 of size 𝑙𝐴 and 𝑙𝐵 (𝑙𝐴 + 𝑙𝐵 = 𝑛), and returns a sorted array
containing the elements in both input lists. We use an algorithm
on the Parallel-PM model based on the classic divide-and-conquer
algorithm [15].

The first step of the algorithm is to allocate the output array of size
𝑛. Then the algorithm conducts dual binary searches of the arrays in
parallel to find the elements ranked {𝑛2/3, 2𝑛2/3, 3𝑛2/3, . . . , (𝑛1/3−
1)𝑛2/3} among the set of keys from both arrays, and recurses on
each pair of subarrays until the base case when there are no more
than 𝐵 elements left (and we switch to a sequential version). We put
each of the binary searches into a capsule, as well as each base case.
These capsules are write-after-read conflict free since the output
of each capsule are written to a different subarray. Based on the
analysis in [15] we have the following theorem.

THEOREM 7.2. Merging two sorted arrays of overall size 𝑛
can be done in 𝑂(𝑛/𝐵) work and 𝑂(log𝑛) depth, with maximum
capsule work 𝑂(log𝑛) in the Parallel-PM.

Sorting. Using the merging algorithm in Section 7, we can imple-
ment a fault-tolerant mergesort with 𝑂((𝑛/𝐵) log(𝑛/𝑀)) work
and maximum capsule work 𝑂(log𝑛). However, this is not opti-
mal. We now outline a samplesort algorithm with improved work
𝑂(𝑛/𝐵 · log𝑀 𝑛), based on the algorithm in [15].

The sorting algorithm first splits the set of elements into
√
𝑛

subarrays of size
√
𝑛 and recursively sorts each of the subarrays. The

recursion terminates when the subarray size is less than 𝑀 , and the
algorithm then sequentially sorts within a single capsule. Then the
algorithm samples every log𝑛’th element from each subarray. These
samples are sorted using mergesort, and

√
𝑛 pivots are picked from

the result using a fixed stride. The next step is to merge each
√
𝑛-

size subarray with the sorted pivots to determine bucket boundaries
within each subarray. Once the subarrays have been split, prefix sums
and matrix transpose operations can be used to determine the precise
location in the buckets where each segment of the subarray is to be
sent. After that, the keys need to be transferred to the buckets, using
a bucket transpose algorithm. We can use our prefix sum algorithm
and the divide-and-conquer bucket transpose algorithm from [15],
where the base case is a matrix of size less than 𝑀 , and in the
base case the transpose is done sequentially within a single capsule
(note that this assumes 𝑀 > 𝐵2 to be efficient). The last step is to
recursively sort the elements within each bucket. All steps can be
made write-after-read conflict free by writing to locations separate
than those being read. By applying the analysis in [15] with the
change that the base cases (for the recursive sort and the transpose)
are when the size fits in the ephemeral memory, and that the base
case is done sequentially, we obtain the following theorem.

THEOREM 7.3. Sorting 𝑛 elements can be done in 𝑂(𝑛/𝐵 ·
log𝑀 𝑛) work and 𝑂((𝑀/𝐵 + log𝑛) log𝑀 𝑛) depth, with maxi-
mum capsule work 𝑂(𝑀/𝐵) in the Parallel-PM.

It is possible that the log𝑛 term in the depth could be reduced
using a sort by Cole and Ramachandran [24].
Matrix Multiplication. Due to space constraints, our Parallel-PM
algorithm for matrix multiply are given in the full version of this
paper, and here we only introduce our result.

As another fundamental algorithmic building block, the matrix
multiplication algorithm on the Parallel-PM model does not re-
quire significant modifications from the classic approach. Given two
square matrices 𝐴 and 𝐵 of size 𝑛 × 𝑛 (assuming 𝑛2 > 𝑀), and
we can extend the classic 8-way divide-and conquer approach [31].
The computation is race-free by setting correct capsule boundaries,
which leads to the following result.

THEOREM 7.4. Multiplying two square matrices of size 𝑛 can
be done in 𝑂(𝑛3/𝐵

√
𝑀) work and 𝑂(𝑀/𝐵+ log2 𝑛) depth, with

maximum capsule work 𝑂(𝑀/𝐵) in the Parallel-PM.

The full details and discussions of this algorithm can be found in
the full version of this paper [14].

8 CONCLUSION
In this paper, we investigate how processor and memory faults affect
computer systems. We provide the Parallel Persistent Memory model,
which characterizes faults as loss of data in individual processors
and their associated volatile memory. For this paper, we consider
an external memory model view of algorithm cost, but the model
could easily be adapted to support other traditional cost models. We
also provide a general strategy for designing programs that perform
well in the case of faults through the use of capsules. As long as all
capsules in a program have the property of idempotence, the program
maintains its correctness despite faults. Furthermore, the maximum
capsule work bounds the amount of additional work that must be
performed due to a single fault. We provide several examples of

idempotent capsules that can be used as building blocks to generate
more complex programs. We use these capsules to build a work-
stealing scheduler that can run programs in a parallel system while
tolerating both hard and soft faults with only a modest increase in
the total cost of the computation. We also provide several algorithms
designed to support fault tolerance using our capsule methodology.

Current trends in computing suggest that providing fault-tolerant
software will be increasingly important. As new non-volatile memo-
ry technologies become more prevalent and improve in performance,
persistence becomes easier and more affordable to achieve. At the
same time, machines and computations are becoming larger and
more distributed, which increases their fault potential. We believe
that the techniques in this paper will provide a practical way to
provide the desirable quality of fault tolerance without requiring
significant changes to hardware or software.

ACKNOWLEDGEMENTS
This work was supported in part by NSF grants CCF-1408940, CCF-
1533858, and CCF-1629444.

REFERENCES
[1] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld. Computing with faulty

shared memory. In PODC, 1992.
[2] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9), 1988.
[3] A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In POPL,

1989.
[4] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental parallel

algorithms for private-cache chip multiprocessors. In SPAA, 2008.
[5] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multipro-

grammed multiprocessors. Theory of Computing Systems, 34(2), Apr 2001.
[6] Y. Aumann and M. Ben-Or. Asymptotically optimal PRAM emulation on faulty

hypercubes. In FOCS, 1991.
[7] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and

L. Benini. Hibernus: Sustaining computation during intermittent supply for energy-
harvesting systems. IEEE Embedded Systems Letters, 7(1), 2015.

[8] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,
and J. Shun. Parallel algorithms for asymmetric read-write costs. In SPAA, 2016.

[9] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,
and J. Shun. Implicit decomposition for write-efficient connectivity algorithms.
In IPDPS, 2018.

[10] R. Berryhill, W. Golab, and M. Tripunitara. Robust shared objects for non-
volatile main memory. In Conf. on Principles of Distributed Systems (OPODIS),
volume 46, 2016.

[11] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Makalu: Fast recoverable
allocation of non-volatile memory. In OOPSLA, 2016.

[12] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Sorting with
asymmetric read and write costs. In SPAA, 2015.

[13] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Efficient
algorithms with asymmetric read and write costs. In ESA, 2016.

[14] G. E. Blelloch, P. B. Gibbons, Y. Gu, C. McGuffey, and J. Shun. The parallel
persistent memory model. arXiv preprint:1805.05580, 2018.

[15] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious
algorithms. In SPAA, 2010.

[16] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: an energy-aware runtime
for computational RFID. In NSDI, 2011.

[17] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward exascale
resilience: 2014 update. Supercomput. Front. Innov.: Int. J., 1(1), Apr. 2014.

[18] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and
H. V. Simhadri. Write-avoiding algorithms. In IPDPS, 2016.

[19] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas: Leveraging locks for
non-volatile memory consistency. In OOPSLA, 2014.

[20] H. Chauhan, I. Calciu, V. Chidambaram, E. Schkufza, O. Mutlu, and P. Subrah-
manyam. NVMove: Helping programmers move to byte-based persistence. In
INFLOW, 2016.

[21] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory. Proceedings
of the VLDB Endowment, 8(7), 2015.

[22] B. S. Chlebus, A. Gambin, and P. Indyk. PRAM computations resilient to memory
faults. In ESA, 1994.

[23] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and
S. Swanson. NV-Heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories. In ASPLOS, 2011.

[24] R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. ACM
Transactions on Parallel Computing (TOPC), 3(4), 2017.

[25] A. Colin and B. Lucia. Chain: tasks and channels for reliable intermittent programs.
OOPSLA, 2016.

[26] A. Colin and B. Lucia. Termination checking and task decomposition for task-
based intermittent programs. In International Conference on Compiler Construc-
tion, 2018.

[27] T. David, A. Dragojevic, R. Guerraoui, and I. Zablotchi. Log-free concurrent data
structures. EPFL Technical Report, 2017.

[28] M. A. de Kruijf, K. Sankaralingam, and S. Jha. Static analysis and compiler design
for idempotent processing. In PLDI, 2012.

[29] I. Finocchi and G. F. Italiano. Sorting and searching in the presence of memory
faults (without redundancy). In STOC, 2004.

[30] M. Friedman, M. Herlihy, V. J. Marathe, and E. Petrank. A persistent lock-free
queue for non-volatile memory. In ACM Symposium on Principles and Practice
of Parallel Programming (PPOPP), 2018.

[31] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In FOCS, 1999.

[32] D. Grove, S. S. Hamouda, B. Herta, A. Iyengar, K. Kawachiya, J. Milthorpe,
V. Saraswat, A. Shinnar, M. Takeuchi, and O. Tardieu. Failure recovery in resilient
X10. Technical Report RC25660 (WAT1707-028), IBM Research, Computer
Science, 2017.

[33] R. Guerraoui and R. R. Levy. Robust emulations of shared memory in a crash-
recovery model. In Inter. Conference on Distributed Computing Systems (ICDCS).
IEEE, 2004.

[34] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2012.

[35] J. Hester, K. Storer, and J. Sorber. Timely execution on intermittently powered
batteryless sensors. In Proc. ACM Conference on Embedded Network Sensor
Systems, 2017.

[36] T. C.-H. Hsu, H. Bruegner, I. Roy, K. Keeton, and P. Eugster. NVthreads: Practical
persistence for multi-threaded applications. In EuroSys, 2017.

[37] Intel. Intel NVM library. https://github.com/pmem/nvml/.
[38] Intel. Intel architecture instruction set extensions programming reference. Techni-

cal Report 3319433-029, Intel Corporation, April 2017.
[39] J. Izraelevitz, T. Kelly, and A. Kolli. Failure-atomic persistent memory updates

via JUSTDO logging. In ASPLOS, 2016.
[40] J. Izraelevitz, H. Mendes, and M. L. Scott. Brief announcement: Preserving

happens-before in persistent memory. In SPAA, 2016.
[41] J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent memory

objects under a full-system-crash failure model. In DISC, 2016.
[42] R. Jacob and N. Sitchinava. Lower bounds in the asymmetric external memory

model. In SPAA, 2017.
[43] J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.
[44] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won. NVWAL: exploiting NVRAM

in write-ahead logging. In ASPLOS, 2016.
[45] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch. High-performance

transactions for persistent memories. In ASPLOS, 2016.
[46] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh. Wort: Write optimal radix

tree for persistent memory storage systems. In USENIX Conference on File and
Storage Technologies (FAST), 2017.

[47] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren. DudeTM:
Building durable transactions with decoupling for persistent memory. In ASPLOS,
2017.

[48] B. Lucia and B. Ransford. A simpler, safer programming and execution model for
intermittent systems. PLDI, 2015.

[49] K. Maeng, A. Colin, and B. Lucia. Alpaca: intermittent execution without check-
points. OOPSLA, 2017.

[50] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng. Overview of emerging
nonvolatile memory technologies. Nanoscale Research Letters, 9, 2014.

[51] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan, K. Strauss,
and S. Swanson. Atomic in-place updates for non-volatile main memories with
Kamino-Tx. In EuroSys, 2017.

[52] F. Nawab, J. Izraelevitz, T. Kelly, C. B. Morrey III, and D. R. C. amd Michael
L. Scott. Dali: A periodically persistent hash map. In DISC, 2017.

[53] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In ISCA, 2014.
[54] J. Van Der Woude and M. Hicks. Intermittent computation without hardware

support or programmer intervention. In OSDI, 2016.
[55] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight persistent

memory. In ASPLOS, 2011.
[56] Yole Developpement. Emerging non-volatile memory technologies, 2013.

	Abstract
	1 Introduction
	2 The Persistent Memory Model
	3 Robustness on a Single Processor
	4 Programming for Robustness
	5 Robustness on Multiple Processors
	6 Work Stealing
	6.1 The Scheduler Interface
	6.2 WS-Deque
	6.3 Algorithm Overview and Rationale
	6.4 Time Bounds

	7 Fault-Tolerant Algorithms
	8 Conclusion
	References

