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Abstract

In this paper, we study the problem of moving n sensors on a line to form a barrier coverage
of a specified segment of the line such that the maximum moving distance of the sensors is
minimized. Previously, it was an open question whether this problem on sensors with arbitrary
sensing ranges is solvable in polynomial time. We settle this open question positively by giving
an O(n2 log n log log n) time algorithm. For the special case when all sensors have the same-size
sensing range, the previously best solution takes O(n2) time. We present an O(n log n) time
algorithm for this case; further, if all sensors are initially located on the coverage segment, our
algorithm takes O(n) time. Also, we extend our techniques to the cycle version of the problem
where the barrier coverage is for a simple cycle and the sensors are allowed to move only along
the cycle. For sensors with the same-size sensing range, we solve the cycle version in O(n) time.

1 Introduction

A Wireless Sensor Network (WSN) uses a large number of sensors to monitor some surrounding
environmental phenomena [1]. Intrusion detection and border surveillance constitute a major appli-
cation category for WSNs. A main goal of these applications is to detect intruders as they cross the
boundary of a region or domain. For example, research efforts were made to extend the scalability
of WSNs to the monitoring of international borders [10, 11]. Unlike the traditional full coverage
[13, 18, 19] which requires an entire target region to be covered by the sensors, the barrier coverage
[2, 3, 8, 9, 11] only seeks to cover the perimeter of the region to ensure that any intruders are
detected as they cross the region border. Since barrier coverage requires fewer sensors, it is often
preferable to full coverage. Because sensors have limited battery-supplied energy, it is desired to
minimize their movements. In this paper, we study a one-dimensional barrier coverage problem
where the barrier is for a (finite) line segment and the sensors are initially located on the line
containing the barrier segment and allowed to move on the line. As discussed in the previous work
[8, 9, 15] and shown in this paper, barrier coverage even for 1-D domains poses some challenging
algorithmic issues. Also, our 1-D solutions may be used in solving more general problems. For
example, if the barrier is sought for a simple polygon, then we may consider each of its edges
separately and apply our algorithms to each edge.

In our problem, each sensor has a sensing range (or range for short) and we want to move the
sensors to form a coverage for the barrier such that the maximum sensor movement is minimized.
We present efficient algorithms for this problem, improving the previous work and settling an open
question. Also, we extend our techniques to the cycle version where the barrier is for a simple cycle
and the sensors are allowed to move only along the cycle.
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1.1 Problem Definitions, Previous Work, and Our Results

Denote by B = [0, L] the barrier that is a line segment from x = 0 to x = L > 0 on the x-axis. A
set S = {s1, s2, . . . , sn} of n mobile sensors is initially located on the x-axis. Each sensor si ∈ S has
a range ri > 0 and is located at the coordinate xi of the x-axis. We assume x1 ≤ x2 ≤ · · · ≤ xn. If a
sensor si is at the position x′, then we say si covers the interval [x′− ri, x

′+ ri], called the covering
interval of si. Our problem is to find a set of destinations on the x-axis, {y1, y2, . . . , yn}, for the
sensors (i.e., for each si ∈ S, move si from xi to yi) such that each point on the barrier B is covered
by at least one sensor and the maximum moving distance of the sensors (i.e., max1≤i≤n{|xi − yi|})
is minimized. We call this problem the barrier coverage on a line segment, denoted by BCLS. We
assume 2 ·∑n

i=1 ri ≥ L (otherwise, a barrier coverage for B is not possible).
The decision version of BCLS is defined as follows. Given a value λ ≥ 0, determine whether

there is a feasible solution in which the moving distance of each sensor is at most λ. The decision
version characterizes a problem model in which the sensors have a limited energy and we want to
know whether their energy is sufficient to move and form a barrier coverage.

If the ranges of all sensors are the same (i.e., the ri’s are all equal), then we call it the uniform
case of BCLS. When the sensors have arbitrary ranges, we call it the general case.

The BCLS problem has been studied before. The uniform case has been solved in O(n2) time [8].
An O(n) time algorithm is also given in [8] for the decision version of the uniform case. However,
it has been open whether the general case is solvable in polynomial time [8].

In this paper, we settle the open problem on the general BCLS, presenting an O(n2 log n log log n)
time algorithm for it. We also solve the decision version of the general BCLS in O(n log n) time.
Since this is a basic problem on sensors and intervals and our algorithm is the first-known poly-
nomial time solution for it, we expect our results and techniques to be useful for other related
problems. Further, for the uniform case, we derive an O(n log n) time algorithm, improving the
previous O(n2) time solution [8]; if all sensors are initially on B, our algorithm runs in O(n) time.

In addition, we consider the simple cycle barrier coverage where the barrier is represented as
a simple cycle and the n sensors are initially on the cycle and are allowed to move only along the
cycle. The goal is to move the sensors to form a barrier coverage and minimize the maximum sensor
movement. To our best knowledge, we are not aware of any previous work on this problem. If all
sensors have the same range, we solve the cycle version in O(n) time.

1.2 Related Work

Besides the results mentioned above, an O(n) time 2-approximation algorithm for the uniform
BCLS was also given in [8] and a variation of the decision version of the general BCLS is shown to
be NP-hard [8]. Additional results were also given in [8] for the case 2 ·∑n

i=1 ri < L (although in
this case, B cannot be entirely covered).

Mehrandish et al. [15] also considered the line segment barrier, but unlike the BCLS problem,
they intended to use the minimum number of sensors to form a barrier coverage, which they proved
to be NP-hard. But, if all sensors have the same range, polynomial time algorithms were possible
[15]. Another study of the line segment barrier [9] aimed to minimize the sum of the moving
distances of all sensors; this problem is NP-hard [9], but is solvable in polynomial time when all
sensors have the same range [9]. In addition, Li et al. [12] considers the linear coverage problem
which aims to set an energy for each sensor to form a coverage such that the cost of all sensors is
minimized. There [12], the sensors are not allowed to move, and the more energy a sensor has, the
larger the covering range of the sensor and the larger the cost of the sensor.
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Bhattacharya et al. [2] studied a 2-D barrier coverage problem in which the barrier is a circle and
the sensors, initially located inside the circle, are moved to the circle to form a coverage such that
the maximum sensor movement is minimized; the ranges of the sensors are not explicitly specified
but the destinations of the sensors are required to form a regular n-gon on the circle. Subsequent
improvements of the results in [2] have been made [4, 16]. In addition, Bhattacharya et al. [2]
presented some results on the corresponding min-sum problem version (minimizing the sum of the
moving distances of all sensors); further improvement was also given in [4, 16].

Some other barrier coverage problems have been studied. For example, Kumar et al. [11] pro-
posed algorithms for determining whether a region is barrier covered after the sensors are deployed.
They considered both the deterministic version (the sensors are deployed deterministically) and
the randomized version (the sensors are deployed randomly), and aimed to determine a barrier
coverage with high probability. Chen et al. [3] introduced a local barrier coverage problem in which
individual sensors determine the barrier coverage locally.

1.3 An Overview of Our Approaches

For any problem we consider, let λ∗ denote the maximum sensor movement in an optimal solution.
For the uniform BCLS, as shown in [8], a useful property is that there always exists an order

preserving optimal solution, i.e., the order of the sensors in the optimal solution is the same as that
in the input. Based on this property, the previous O(n2) time algorithm [8] covers B from left to
right; in each step, it picks the next sensor and re-balances the current maximum sensor movement.
In this paper, we take a very different approach. With the order preserving property, we determine
a set Λ of candidate values for λ∗ with λ∗ ∈ Λ. Consequently, by using the decision algorithm, we
can find λ∗ in Λ. But, this approach may be inefficient since |Λ| = Θ(n2). To reduce the running
time, our strategy is not to compute the set Λ explicitly. Instead, we compute an element in Λ
whenever we need it. A possible attempt would be to first find a sorted order for the elements of Λ
or (implicitly) sort the elements of Λ, and then obtain λ∗ by binary search. However, it seems not
easy to (implicitly) sort the elements of Λ. Instead, based on several new observations, we manage
to find a way to partition the elements of Λ into n sorted lists, each list containing O(n) elements.
Next, by using a technique called binary search on sorted arrays [5], we are able to find λ∗ in Λ in
O(n log n) time. For the special case when all sensors are initially located on B, a key observation
we make is that λ∗ is precisely the maximum value of the candidate set Λ. Although Λ = Θ(n2),
based on new observations, we show that its maximum value can be computed in O(n) time.

For the general BCLS, as indicated in [8], the order preserving property no longer holds. Con-
sequently, our approach for the uniform case does not work. The main difficulty of this case is that
we do not know the order of the sensors appeared in an optimal solution. Due to this difficulty, no
polynomial time algorithm was known before for the general BCLS. To solve this problem, we first
develop a greedy algorithm for the decision version of the general BCLS. After an O(n log n) time
preprocessing, our decision algorithm takes O(n log log n) time for any value λ. If λ ≥ λ∗, implying
that there exists a feasible solution, then our decision algorithm can determine the order of sensors
in a feasible solution for covering B. For the general BCLS, we seek to simulate the behavior of the
decision algorithm on λ = λ∗. Although we do not know the value λ∗, our algorithm determines
the same sensor order as it would be obtained by the decision algorithm on the value λ = λ∗.
To this end, each step of the algorithm uses our decision algorithm as a decision procedure. The
idea is somewhat similar to parametric search [6, 14], and here we “parameterize” our decision
algorithm. However, we should point out a few differences. First, unlike the typical parametric
search [6, 14], our approach does not involve any parallel scheme and is practical. Second, normally,
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if a problem can be solved by parametric search, then there also exist other (simpler) polynomial
time algorithms for the problem although they might be less efficient than the parametric search
solution (e.g., the slope selection problem [7]). In contrast, for our general BCLS problem, so far
we have not found any other (even straightforward) polynomial time algorithm.

In addition, our O(n) time algorithm for the simple cycle barrier coverage is a generalization of
our approach for the special case of the uniform BCLS when all sensors are initially located on B.

For ease of exposition, we assume that initially no two sensors are located at the same position
(i.e., xi 6= xj for any i 6= j), and the covering intervals of any two different sensors do not share a
common endpoint. Our algorithms can be easily generalized to the general situation.

The rest of the paper is organized as follows. In Section 2, we describe our algorithms for the
general BCLS. In Section 3, we present our algorithms for the uniform BCLS. Our results for the
simple cycle barrier coverage are discussed in Section 4.

2 The General Case of BCLS

In this section, we present our algorithms for the general BCLS problem. Previously, it was an
open problem whether the general BCLS can be solved in polynomial time. The main difficulty is
that we do not know the order of the sensors in an optimal solution. Our main effort is for resolving
this difficulty, and we derive an O(n2 log n log log n) time algorithm for the general BCLS.

We first give our algorithm for the decision version (in Section 2.1), which is crucial for solving
the general BCLS (in Section 2.2) that we refer to as the optimization version of the problem.

For each sensor si ∈ S, we call the right (resp., left) endpoint of the covering interval of si the
right (resp., left) extension of si. Each of the right and left extensions of si is an extension of si.
Denote by p(x′) the point on the x-axis whose coordinate is x′, and denote by p+(x′) (resp., p−(x′))
a point to the right (resp., left) of p(x′) and infinitely close to p(x′). The concept of p+(x′) and
p−(x′) is only used to explain the algorithms, and we never need to find such a point explicitly.
Let λ∗ denote the maximum sensor moving distance in an optimal solution for the optimization
version of the general BCLS problem. Note that we can easily determine whether λ∗ = 0, say, in
O(n log n) time. Henceforth, we assume λ∗ > 0.

2.1 The Decision Version of the General BCLS

Given any value λ, the decision version is to determine whether there is a feasible solution in which
the maximum sensor movement is at most λ. Clearly, there is a feasible solution if and only if
λ ≥ λ∗. We show that after an O(n log n) time preprocessing, for any λ, we can determine whether
λ ≥ λ∗ in O(n log log n) time. We explore some properties of a feasible solution in Section 2.1.1,
describe our decision algorithm in Section 2.1.2, argue its correctness in Section 2.1.3, and discuss
its implementation in Section 2.1.4. In Section 2.1.5, we show that by extending the algorithm,
we can also determine whether λ > λ∗ in the same time bound; this is particularly useful to our
optimization algorithm in Section 2.2.

2.1.1 Preliminaries

By a sensor configuration, we refer to a specification of where each sensor si ∈ S is located. By this
definition, the input is a configuration in which each sensor si is located at xi. The displacement of
a sensor in a configuration C is the distance between the position of the sensor in C and its original
position in the input. A configuration C is a feasible solution for the distance λ if the sensors in C
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form a barrier coverage of B (i.e., the union of the covering intervals of the sensors in C contains
B) and the displacement of each sensor is at most λ. In a feasible solution, a subset S′ ⊆ S is
called a solution set if the sensors in S′ form a barrier coverage; of course, S itself is also a solution
set. A feasible solution may have multiple solution sets. A sensor si in a solution set S′ is said to
be critical with respect to S′ if si covers a point on B that is not covered by any other sensor in
S′. If every sensor in S′ is critical, then S′ is called a critical set.

Given any value λ, if λ ≥ λ∗, then our decision algorithm will find a critical set and determine
the order in which the sensors of the critical set will appear in a feasible solution for λ. For the
purpose of giving some intuition and later showing the correctness of our algorithm, we first explore
some properties of a critical set.

Consider a critical set Sc. For each sensor s ∈ Sc, we call the set of points on B that are covered
by s but not covered by any other sensor in Sc the exclusive coverage of s.

Observation 1 The exclusive coverage of each sensor in a critical set Sc is a continuous portion
of the barrier B.

Proof: Assume to the contrary the exclusive coverage of a sensor s ∈ Sc is not a continuous
portion of B. Then there must be at least one sensor s′ ∈ Sc whose covering interval is between
two consecutive continuous portions of the exclusive coverage of s. But that would mean s′ is not
critical since the covering interval of s′ is contained in that of s. Hence, the observation holds. 2

For a critical set Sc in a feasible solution SOL, we define the cover order of the sensors in Sc

as the order of these sensors in SOL such that their exclusive coverages are from left to right.

Observation 2 The cover order of the sensors of a critical set Sc in a feasible solution SOL is
consistent with the left-to-right order of the positions of these sensors in SOL. Further, the cover
order is also consistent with the order of the right (resp., left) extensions of these sensors in SOL.

Proof: Consider any two sensors si and sj in Sc with ranges ri and rj , respectively. Without loss
of generality, assume si is to the left of sj in the cover order, i.e., the exclusive coverage of si is to
the left of that of sj in SOL. Let yi and yj be the positions of si and sj in SOL, respectively. To
prove the observation, it suffices to show yi < yj , yi + ri < yj + rj , and yi − ri < yj − rj .

Let p be a point in the exclusive coverage of sj . We also use p to denote its coordinate on the
x-axis. Then p is not covered by si, implying either p > yi + ri or p < yi − ri. But, the latter case
cannot hold (otherwise, the exclusive coverage of si would be to the right of that of sj). Since p

is covered by sj , we have p ≤ yj + rj . Therefore, yi + ri < p ≤ yj + rj . By using a symmetric
argument, we can also prove yi − ri < yj − rj (we omit the details). Clearly, the two inequalities
yi + ri < yj + rj and yi − ri < yj − rj imply yi < yj . The observation thus holds. 2

An interval I of B is called a left-aligned interval if the left endpoint of I is at 0 (i.e., I is of
the form [0, x′] or [0, x′)). A set of sensors is said to be in attached positions if the union of their
covering intervals is a continuous interval of the x-axis whose length is equal to the sum of the
lengths of these covering intervals. Two intervals of the x-axis overlap if they intersect each other
(even at only one point).

2.1.2 The Algorithm Description

Initially, we move all sensors of S to the right by the distance λ, i.e., for each 1 ≤ i ≤ n, we move
si to the position x′i = xi +λ. Let C0 denote the resulting configuration. Clearly, there is a feasible
solution for λ if and only if we can move the sensors in C0 to the left by at most 2λ to form a
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Figure 1: The set S11 consists of the three sensors whose
covering intervals are shown, and sg(1) is si.

si

x 
L0 2λ

Figure 2: The set S12 consists of the three sensors whose
covering intervals are shown, and sg(1) is si if S11 = ∅.

coverage of B. Thus, henceforth we only need to consider moving the sensors to the left. Recall
that we have assumed that the extensions of any two distinct sensors are different; hence in C0, the
extensions of all sensors are also different.

Our algorithm takes a greedy approach. It seeks to find sensors to cover B from left to right,
in at most n steps. If λ ≥ λ∗, the algorithm will end up with a critical set Sc of sensors along with
the destinations for all these sensors. In theory, the other sensors in S \ Sc can be anywhere such
that their displacements are at most λ; but in the solution found by our algorithm, they are at the
same positions as in C0. If a sensor is at the same position as in C0, we say it stands still.

In step i (initially, i = 1), using the configuration Ci−1 produced in step i − 1 and based on
certain criteria, we find a sensor sg(i) and determine its destination yg(i), where g(i) is the index of
the sensor in S and yg(i) ∈ [x′g(i)− 2λ, x′g(i)]. We then move the sensor sg(i) to yg(i) to obtain a new
configuration Ci from Ci−1 (if yg(i) = x′g(i), then we need not move sg(i), and Ci is simply Ci−1).
Let Ri = yg(i) +rg(i) (i.e., the right extension of sg(i) in Ci). Assume R0 = 0. Let Si = Si−1∪{sg(i)}
(S0 = ∅ initially). We will show that the sensors in Si together cover the left-aligned interval [0, Ri].
If Ri ≥ L, we have found a feasible solution with a critical set Sc = Si, and terminate the algorithm.
Otherwise, we proceed to step i + 1. Further, it is possible that a desired sensor sg(i) cannot be
found, in which case we terminate the algorithm and report λ < λ∗. Below we give the details, and
in particular, discuss how to determine the sensor sg(i) in each step.

Before discussing the first step, we provide some intuition. Let Sl consist of the sensors whose
right extensions are at most 0 in C0. We claim that since L > 0, no sensor in Sl can be in a critical
set of a feasible solution if λ∗ ≤ λ. Indeed, because all sensors have been moved to their rightmost
possible positions in C0, if no sensor in Sl has a right extension at 0 in C0, then the claim trivially
holds; otherwise, suppose st is such a sensor. Assume to the contrary that st is in a critical set Sc.
Then p(0) is the only point on B that can be covered by st. Since L > 0, there must be another
sensor in Sc that also covers p(0) (otherwise, no sensor in Sc would cover the point p+(0)). Hence,
st is not critical with respect to Sc, a contradiction. The claim thus follows. Therefore, we need
not consider the sensors in Sl since they do not help in forming a feasible solution.

In step 1, we determine the sensor sg(1), as follows. Define S11 = {sj | x′j − rj ≤ 0 < x′j + rj}
(see Fig. 1), i.e., S11 consists of all sensors covering the point p(0) in C0 except any sensor whose
right extension is 0 (but if the left extension of a sensor is 0, the sensor is included in S11). In other
words, S11 consists of all sensors covering the point p+(0) in C0. If S11 6= ∅, then we choose the
sensor in S11 whose right extension is the largest as sg(1) (e.g., si in Fig. 1), and let yg(1) = x′g(1).
Note that since the extensions of all sensors in C0 are different, the sensor sg(1) is unique. If S11 = ∅,
then define S12 as the set of sensors whose left extensions are larger than 0 and at most 2λ (e.g., see
Fig. 2). If S12 = ∅, then we terminate the algorithm and report λ < λ∗. Otherwise, we choose the
sensor in S12 whose right extension is the smallest as sg(1) (e.g., si in Fig. 2), and let yg(1) = rg(1)

(i.e., the left extension of sg(1) is at 0 after it is moved to the destination yg(1)).
If the algorithm is not terminated, then we move sg(1) to yg(1), yielding a new configuration C1.

Let S1 = {sg(1)}, and R1 be the right extension of sg(1) in C1. If R1 ≥ L, we have found a feasible
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solution C1 with the critical set S1, and terminate the algorithm. Otherwise, we proceed to step 2.
The general step is very similar to step 1. Consider step i for i > 1. We determine the sensor

sg(i), as follows. Let Si1 be the set of sensors covering the point p+(Ri−1) in the configuration Ci−1.
If Si1 6= ∅, we choose the sensor in Si1 with the largest right extension as sg(i) and let yg(i) = x′g(i).
Otherwise, let Si2 be the set of sensors whose left extensions are larger than Ri−1 and at most
Ri−1 + 2λ. If Si2 = ∅, we terminate the algorithm and report λ < λ∗. Otherwise, we choose the
sensor in Si2 with the smallest right extension as sg(i) and let yg(i) = Ri−1 + rg(i). If the algorithm
is not terminated, we move sg(i) to yg(i) and obtain a new configuration Ci. Let Si = Si−1∪{sg(i)}.
Let Ri be the right extension of sg(i) in Ci. If Ri ≥ L, we have found a feasible solution Ci with
the critical set Si and terminate the algorithm. Otherwise, we proceed to step i + 1. If the sensor
sg(i) is from Si1 (resp., Si2), then we call it the type I (resp., type II) sensor.

Since there are n sensors in S, the algorithm is terminated in at most n steps. This finishes the
description of our algorithm.

2.1.3 The Correctness of the Algorithm

Based on the description of our algorithm, we have the following lemma.

Lemma 1 At the end of step i, suppose the algorithm produces the set Si and the configuration
Ci; then Si and Ci have the following properties.

(a) Si consists of sensors that are type I or type II.

(b) For each sensor sg(j) ∈ Si with 1 ≤ j ≤ i, if sg(j) is of type I, then it stands still (i.e., its
position in Ci is the same as that in C0); otherwise, its left extension is at Rj−1, and sg(j)

and sg(j−1) are in attached positions if j > 1.

(c) The interval on B covered by the sensors in Si is [0, Ri].

(d) For each 1 < j ≤ i, the right extension of sg(j) is larger than that of sg(j−1).

(e) For each 1 ≤ j ≤ i, sg(j) is the only sensor in Si that covers the point p+(Rj−1) (with R0 = 0).

Proof: The first three properties are trivially true according to the algorithm description.
For property (d), note that the right extension of sg(j) (resp., sg(j−1)) is Rj (resp., Rj−1).

According to our algorithm, the sensor sg(j) covers the point p+(Rj−1), implying that Rj > Rj−1.
Hence, property (d) holds.

For property (e), note that the sensor sg(j) (which is determined in step j) always covers
p+(Rj−1). Consider any other sensor sg(t) ∈ Si. If t < j, then the right extension of sg(t) is at most
Rj−1, and thus sg(t) cannot cover p+(Rj−1). If t > j, then depending on whether sg(t) ∈ St1 or
sg(t) ∈ St2, there are two cases. If sg(t) ∈ St2, then the left extension of sg(t) is Rt−1, which is larger
than Rj−1, and thus sg(t) cannot cover p+(Rj−1) in Ci. Otherwise (i.e., sg(t) ∈ St1), sg(t) stands
still. Assume to the contrary that sg(t) covers p+(Rj−1) in Ci. Then sg(t) must have been in Sj1 in
step j within the configuration Cj−1. This implies Sj1 6= ∅, sg(j) ∈ Sj1, and sg(j) stands still. Since
Rt is the right extension of sg(t) and Rj is the right extension of sg(j), by property (d), for t > j,
we have Rt > Rj . Since Rt > Rj (i.e., the right extension of sg(j) is smaller than that of sg(t)), the
algorithm cannot choose sg(j) from Sj1 in step j, which is a contradiction. Therefore, sg(t) cannot
cover the point p+(Rj−1). Property (e) thus holds. 2
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At its termination, our algorithm either reports λ ≥ λ∗ or λ < λ∗. To argue the correctness
of the algorithm, below we will show that if the algorithm reports λ ≥ λ∗, then indeed there is a
feasible solution for λ and our algorithm finds one; otherwise, there is no feasible solution for λ.

Suppose in step i, our algorithm reports λ ≥ λ∗. Then according to the algorithm, it must be
Ri ≥ L. By Lemma 1(c) and 1(e), Ci is a feasible solution and Si is a critical set. Further, by
Lemma 1(d) and Observation 2, the cover order of the sensors in Si is sg(1), sg(2), . . . , sg(i).

Next, we show that if the algorithm reports λ < λ∗, then certainly there is no feasible solution
for λ. This is almost an immediate consequence of the following lemma.

Lemma 2 Suppose S′i is the set of sensors in the configuration Ci whose right extensions are at
most Ri. Then the interval [0, Ri] is the largest possible left-aligned interval that can be covered by
the sensors of S′i such that the displacement of each sensor in S′i is at most λ.

Proof: In this proof, when we say an interval is covered by the sensors of S′i, we mean (without
explicitly stating) that the displacement of each sensor in S′i is at most λ.

We first prove a key claim: If C is a configuration for the sensors of S′i such that a left-aligned
interval [0, x′] is covered by the sensors of S′i, then there always exists a configuration C∗ for S′i in
which the interval [0, x′] is still covered by the sensors of S′i and for each 1 ≤ j ≤ i, the position of
the sensor sg(j) in C∗ is yg(j), where g(j) and yg(j) are the values computed by our algorithm.

As similar to our discussion in Section 2.1.1, the configuration C for S′i always has a critical set
for covering the interval [0, x′]. Let SC be such a critical set of C.

We prove the claim by induction. We first show the base case: Suppose there is a configuration
C for the sensors of S′i in which a left-aligned interval [0, x′] is covered by the sensors of S′i; then
there is a configuration C ′

1 for the sensors of S′i in which the interval [0, x′] is still covered by the
sensors of S′i and the position of the sensor sg(1) in C ′

1 is yg(1).
Let t = g(1). If the position of st in C is yt, then we are done (with C ′

1 = C). Otherwise, let y′t
be the position of st in C, with y′t 6= yt. Depending on st ∈ S11 or st ∈ S12, there are two cases.

• If st ∈ S11, then yt = x′t. Since yt is the rightmost position to which the sensor st is allowed
to move and y′t 6= yt, we have y′t < yt. Depending on whether st is in the critical set SC , there
further are two subcases.

If st 6∈ SC , then by the definition of a critical set, the sensors in SC form a coverage of [0, x′]
regardless of where st is. If we move st to yt (and other sensors keep the same positions as in
C) to obtain a new configuration C ′

1, then the sensors of S′i still form a coverage of [0, x′].

If st ∈ SC , then because yt > y′t, if we move st from y′t to yt, st is moved to the right. Since
st ∈ S11, when st is at yt, st still covers the point p(0). Thus, moving st from y′t to yt does
not cause st to cover a smaller sub-interval of [0, x′]. Hence, by moving st to yt, we obtain a
new configuration C ′

1 in which the sensors of S′i still form a coverage of [0, x′].

• If st ∈ S12, then according to our algorithm, S11 = ∅ in this case, and st is the sensor in S12

with the smallest right extension in C0. If st 6∈ SC , then by the same argument as above, we
can obtain a configuration C ′

1 in which the interval [0, x′] is still covered by the sensors of S′i
and the position of the sensor st in C ′

1 is yt. Below, we discuss the case when st ∈ SC .

In SC , some sensors must cover the point p(0) in C. Let S′ be the set of sensors in SC that
cover p(0) in C. If st ∈ S′, then it is easy to see that y′t < yt since yt is the rightmost position
for st to cover p(0). In this case, again, by the same argument as above, we can always move
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Figure 3: Illustrating the switch operation on st and sh: The left figure is before the switch and the right one is
after the switch.

st to the right from y′t to yt to obtain a configuration C ′
1 in which the interval [0, x′] is still

covered by the sensors of S′i. Otherwise (i.e., st 6∈ S′), we show below that we can always
move st to yt by switching the relative positions of st and some other sensors in SC .

An easy observation is that each sensor in S′ must be in S12. Consider an arbitrary sensor
sh ∈ S′. Since st is the sensor in S12 with the smallest right extension in C0, the right
extension of sh is larger than that of st in C0. Depending on whether the covering intervals
of st and sh overlap in C, there are two subcases.

If the covering intervals of st and sh overlap in C, then let [0, x′′] be the left-aligned interval
that is covered by st and sh in C (see Fig. 3). If we switch their relative positions by moving
st to yt and moving yh to x′′ − rh (i.e., the left extension of st is at 0 and the right extension
of sh is at x′′), then these two sensors still cover [0, x′′] (see Fig. 3), and thus the sensors in S′i
still form a coverage of [0, x′′]. Further, after the above switch operation, the displacements of
these two sensors are no bigger than λ. To see this, clearly, the displacement of st is at most
λ. For the sensor sh, it is easy to see that the switch operation moves sh to the right. Since
st covers p(x′′) in C, x′′ is no larger than the right extension of st in C0, which is smaller than
that of sh in C0. Thus, x′′ is smaller than x′h + rh, implying that the position of sh after the
switch operation is still to the left of its position in C0. Hence, after the switch operation, the
displacement of sh is no bigger than λ. In summary, after the switch operation, we obtain a
new configuration C ′

1 in which the interval [0, x′] is still covered by the sensors of S′i and the
position of the sensor st in C ′

1 is yt.

If the covering intervals of st and sh do not overlap in C, then suppose the sensors in the
critical set SC between sh and st are sh, sf(1), sf(2), . . . , sf(m), st, in the cover order. Clearly,
the covering intervals of any two consecutive sensors in this list overlap in C. Below we show
that we can switch the relative positions of st and sf(m) such that we still form a coverage
of [0, x′], and then we continue this switch procedure until st is switched with sh. Note that
since S11 = ∅, the right extension of sf(j) for any 1 ≤ j ≤ m is larger than that of st in C0.

Let x′′1 be the maximum of 0 and the left extension of sf(m) in C, and x′′2 be the minimum of
x′ and the right extension of st in C (see Fig. 4). Clearly, x′′1 < x′′2. Thus, the sub-interval of
[0, x′] covered by st and sf(m) in C is [x′′1, x

′′
2]. We perform a switch operation on st and sf(m)

by moving st to the left and moving sf(m) to the right such that the left extension of st is at
x′′1 and the right extension of sf(m) is at x′′2 (see Fig. 4). It is easy to see that after this switch
operation, the sensors in SC still form a coverage of [0, x′]. Since the right extension of sf(m)

is larger than that of st in C0, by a similar argument as above, we can also prove that after
this switch, the displacements of both st and sf(m) are no bigger than λ. Then, we continue
this switch process on st and sf(m−1), sf(m−2), . . ., until st is switched with sh, after which st

is at yt, and we obtain a new configuration C ′
1 in which the interval [0, x′] is still covered by

the sensors in SC ⊆ S′i and the position of the sensor st in C ′
1 is yt.
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Figure 4: Illustrating the switch between st and sf(m).

This completes the proof of the base case, i.e., there is always a configuration C ′
1 in which the

interval [0, x′] is covered by the sensors of S′i and the position of the sensor sg(1) in C ′
1 is yg(1).

We assume inductively that the claim holds for each k − 1 with 2 ≤ k ≤ i, i.e., there is a
configuration C ′

k−1 in which the interval [0, x′] is covered by the sensors of S′i and the position of
the sensor sg(j) for each 1 ≤ j ≤ k − 1 in C ′

k−1 is yg(j). In the following, we show that the claim
holds for k, i.e., there is a configuration C ′

k in which the interval [0, x′] is still covered by the sensors
of S′i and the position of the sensor sg(j) for each 1 ≤ j ≤ k in C ′

k is yg(j). The proof is quite similar
to that for the base case and we only discuss it briefly below.

Let t = g(k). If the position of st in C ′
k−1 is yt, then we are done (with C ′

k = C ′
k−1). Otherwise,

let y′t be the position of st in C ′
k−1, with y′t 6= yt. Depending on st ∈ Sk1 or st ∈ Sk2, there are two

cases.

• If st ∈ Sk1, then yt = x′t. Since yt is the rightmost position to which st is allowed to move
and y′t 6= yt, we have y′t < yt. Depending on whether st is in the critical set SC , there further
are two subcases.

If st 6∈ SC , then the sensors in SC always form a coverage of [0, x′] regardless of where st is.
Thus, if we move st to yt, we obtain a new configuration C ′

k from C ′
k−1 in which the sensors

of S′i still form a coverage of [0, x′] and the position of the sensor sg(j) for each 1 ≤ j ≤ k in
C ′

k is yg(j).

If st ∈ SC , then since yt > y′t, if we move st from y′t to yt, st is moved to the right. By Lemma
1(c), the interval [0, Rk−1] is covered by the sensors of Sk−1 = {sg(1), sg(2), . . . , sg(k−1)} in
C ′

k−1 (since they are in positions yg(1), yg(2), . . . , yg(k−1), respectively). When st is at yt, st

still covers the point p+(Rk−1). Thus, after moving st to yt, we obtain a new configuration
C ′

k from C ′
k−1 in which the sensors of S′i still form a coverage of [0, x′].

• If st ∈ Sk2, then Sk1 = ∅ in this case, and st is the sensor in Sk2 with the smallest right
extension. If st 6∈ SC , then by the same argument as above, we can obtain a configuration C ′

k

from C ′
k−1 in which the interval [0, x′] is still covered by the sensors of S′i and the position of

the sensor sg(j) for each 1 ≤ j ≤ k in C ′
k is yg(j). Below, we discuss the case when st ∈ SC .

In SC , some sensors must cover the point p+(Rk−1) in C. Let S′ be the set of sensors in SC

that cover p+(Rk−1) in C. If st ∈ S′, then y′t < yt since yt is the rightmost position for st

to cover p+(Rk−1). In this case, again, by the same argument as above, we can move st to
the right from y′t to yt to obtain a configuration C ′

k from C ′
k−1 in which the interval [0, x′] is

still covered by the sensors of S′i. Otherwise (i.e., st 6∈ S′), consider a sensor sh in S′. Let
the sensors in SC between sh and st in the cover order be sh, sf(1), sf(2), . . . , sf(m), st (this
sequence may contain only sh and st). Note that for each 1 ≤ j ≤ k − 1, the sensor sg(j) is
not in this sequence. Then by using a similar sequence of switch operations as for the base
case, we can obtain a new configuration C ′

k from C ′
k−1 such that the sensors of S′i still form

a coverage of [0, x′]. Again, the position of the sensor sg(j) for each 1 ≤ j ≤ k in C ′
k is yg(j).

10



This proves that the claim holds for k. Therefore, the claim is true. The lemma can then be
easily proved by using this claim, as follows.

Suppose the largest left-aligned interval that can be covered by the sensors of S′i is [0, x′]. Then
by the above claim, there always exists a configuration C∗ for S′i in which the interval [0, x′] is also
covered by the sensors of S′i and for each 1 ≤ j ≤ i, the position of the sensor sg(j) in C∗ is yg(j).
Recall that Si = {sg(1), sg(2), . . . , sg(i)}. Then for each sensor st ∈ S′i \ Si, the rightmost point that
can be covered by st is x′t + rt. Recall that in the configuration Ci, for each 1 ≤ j ≤ i, the position
of the sensor sg(j) is yg(j), and for each sensor st ∈ S′i \ Si, the position of st is x′t. Further, by the
definition of S′i, the right extensions of all sensors in S′i are at most Ri in Ci. Therefore, the right
extensions of all sensors in S′i are also at most Ri in C∗, implying that x′ ≤ Ri. On the other hand,
by Lemma 1(c), the sensors of Si form a coverage of [0, Ri] in C∗. Thus, [0, x′] = [0, Ri], and the
lemma follows. 2

Finally, we prove the correctness of our algorithm based on Lemma 2. Suppose our algorithm
reports λ < λ∗ in step i. Then according to the algorithm, Ri−1 < L and both Si1 and Si2 are ∅.
Let S′i−1 be the set of sensors whose right extensions are at most Ri−1 in Ci−1. Since both Si1 and
Si2 are ∅, no sensor in S \S′i−1 can cover any point to the left of the point p+(Ri−1) (and including
p+(Ri−1)). By Lemma 2, [0, Ri−1] is the largest left-aligned interval that can be covered by the
sensors of S′i−1. Hence, the sensors in S cannot cover the interval [0, p+(Ri−1)]. Due to Ri−1 < L,
we have [0, p+(Ri−1)] ⊆ [0, L]; thus the sensors of S cannot cover B = [0, L]. In other words, there
is no feasible solution for the distance λ. This establishes the correctness of our algorithm.

2.1.4 The Algorithm Implementation

For the implementation details of the algorithm, in step i, we need to maintain two sets of sensors,
Si1 and Si2, as defined earlier. For this purpose, in the preprocessing, we sort the 2n extensions of all
sensors by the x-coordinate, and move each sensor si ∈ S to x′i to produce the initial configuration
C0. During the algorithm, we sweep along the x-axis and maintain Si1 and Si2, using two sweeping
points p1 and p2, respectively. Specifically, the point p1 follows the positions R0 (= 0), R1, R2, . . .,
and p2 follows the positions R0 + 2λ, R1 + 2λ,R2 + 2λ, . . .. Thus, p2 is kept always by a distance
of 2λ to the right of p1. To maintain the set Si1, when the sweeping point p1 encounters the left
extension of a sensor, we insert the sensor into Si1; when p1 encounters the right extension of a
sensor, we delete the sensor from Si1. In this way, when the sweeping point p1 is at Ri−1, we have
the set Si1 ready. To maintain the set Si2, the situation is slightly more subtle. First, whenever the
sweeping point p2 encounters the left extension of a sensor, we insert the sensor into Si2. The subtle
part is at the deletion operation. By the definition of Si2, if the left extension of any sensor is less
than or equal to Ri−1, then it should not be in Si2. Since eventually the first sweeping point p1 is
at Ri−1 in step i, whenever a sensor is inserted into the first set Si1, we need to delete that sensor
from Si2 (note that this sensor must be in Si2 since p2 is to the right of p1). Thus, a deletion on Si2

happens only when the same sensor is inserted into Si1. In addition, we need a search operation
on Si1 for finding the sensor in Si1 with the largest right extension, and a search operation on Si2

for finding the sensor in Si2 with the smallest right extension.
It is easy to see that there are O(n) insertions and deletions in the entire algorithm. Further,

the search operations on both Si1 and Si2 are dependent on the right extensions of the senors. If we
use a balanced binary search tree to represent each of these two sets in which the right extensions
of the sensors are used as keys, then the algorithm takes O(n log n) time. Another way is to use
an integer data structure (e.g., van Emde Boas tree [17]), as follows. In the preprocessing, we also
sort the sensors by their right extensions, and for each sensor, assign the integer k to it as its key
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if the sensor is the k-th one in the above sorted order. Thus, all such keys form an integer set
{1, 2, . . . , n}. By using the van Emde Boas tree [17], each insertion, deletion, or search operation
takes only O(log log n) time. Thus, after an O(n log n) time preprocessing, the algorithm takes
O(n log log n) time for each value λ. Although using the integer data structure does not change the
overall running time of our decision algorithm, it helps our optimization algorithm in Section 2.2
to run faster.

Theorem 1 After O(n log n) time preprocessing, for any λ, we can determine whether λ∗ ≤ λ in
O(n log log n) time; further, if λ∗ ≤ λ, we can compute a feasible solution in O(n log log n) time.

2.1.5 Another Decision Version

Our optimization algorithm in Section 2.2 also needs to determine whether λ∗ is strictly less than
λ (i.e., λ∗ < λ) for any λ. By modifying our algorithm for Theorem 1, we have the following result.

Theorem 2 After O(n log n) time preprocessing, for any value λ, we can determine whether λ∗ < λ

in O(n log log n) time.

Proof: We first apply the algorithm for Theorem 1 on the value λ. If the algorithm reports λ∗ > λ,
then we know λ∗ < λ is false. Otherwise, we have λ∗ ≤ λ. In the following, we modify the algorithm
for Theorem 1 to determine whether λ∗ < λ, i.e., λ∗ is strictly smaller than λ. Note that this is
equivalent to deciding whether λ∗ ≤ λ − ε for any arbitrarily small constant ε > 0. Of course, we
cannot enumerate all such small values ε. Instead, we add a new mechanism to the algorithm for
Theorem 1 such that the resulting displacement of each sensor is strictly smaller than λ.

At the start of the algorithm, we move all sensors to the right by a distance λ to obtain the
configuration C0. But, the displacement of each sensor should be strictly less than λ. To ensure
this, later in the algorithm, if the destination of a sensor si is set as yi = x′i, then we adjust this
destination of si by moving it to the left slightly such that si’s displacement is strictly less than λ.

Consider a general step i of the algorithm. We define the set Si1 in the same way as before, i.e.,
it consists of all sensors covering the point p+(Ri−1) in Ci−1. If Si1 6= ∅, then the algorithm is the
same as before. In this case, the sensor sg(i) chosen in this step has a displacement of exactly λ,
which is actually “illegal” since the displacement of each sensor should be strictly less than λ. We
will address this issue later. However, if Si1 = ∅, then the set Si2 is defined slightly different from
before. Here, since Si1 = ∅, we have to use a sensor to the right of Ri−1 in Ci−1 to cover p+(Ri−1).
Since the displacement of each sensor should be strictly less than λ, we do not allow any sensor
to move to the left by exactly the distance 2λ. To reflect this difference, we define Si2 as the set
of sensors in Ci−1 each of which has its left extension larger than Ri−1 and strictly smaller than
Ri−1 +2λ (previously, it was “at most”). In this way, if we move a sensor in Si2 to the left to cover
p+(Ri−1), then the displacement of that sensor is strictly less than λ. The rest of the algorithm is
the same as before. We define the type I and type II sensors in the same way as before.

If the algorithm terminates without finding a feasible solution, then it must be λ∗ ≥ λ; otherwise,
the algorithm finds a “feasible” solution SOL with a critical set Sc = {sg(1), sg(2), . . . , sg(m)}. But,
this does not necessarily mean λ∗ < λ since in SOL, the displacements of some sensors in Sc may
be exactly λ. Specifically, all type I sensors in Sc are in the same positions as they are in C0 and
thus their displacements are exactly λ. In contrast, during the algorithm, the type II sensors in Sc

have been moved strictly to the left with respect to their positions in C0; further, due to our new
definition of the set Si2, the displacements of all type II sensors are strictly less than λ. Therefore,
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if there is no type I sensor in Sc, then the displacement of each sensor in Sc is strictly less than λ

and thus we have λ∗ < λ. Below we assume Sc contains at least one type I sensor. To make sure
that λ∗ < λ holds, we need to find a real feasible solution in which the displacement of each sensor
in S is strictly less than λ. On the other hand, to make sure that λ∗ ≥ λ holds, we must show that
there is no real feasible solution. For this, we apply the following algorithmic procedure.

We seek to adjust the solution SOL to produce a real feasible solution. According to our
algorithm, for each sensor si ∈ Sc, if it is a type I sensor, then yi = x′i and thus its displacement
is exactly λ; otherwise, its displacement is less than λ. The purpose of our adjustment of SOL is
to move all type I sensors slightly to the left so that (1) their displacements are strictly less than
λ, and (2) we can still form a coverage of B. In certain cases, we may need to use some sensors in
S \ Sc as well. Also, we may end up with the conclusion that no real feasible solution exists.

According to our algorithm, after finding the last sensor sg(m) in Sc, we have Rm ≥ L. If
Rm > L, then we can always adjust SOL to obtain a real feasible solution by shifting each sensor
in Sc to the left by a very small value ε such that (1) the resulting displacement of each sensor in
Sc is less than λ, and (2) the sensors of Sc still form a coverage of B. Note that there always exists
such a small value ε such that the above adjustment is possible. Therefore, if Rm > L, then we
have λ∗ < λ.

If Rm = L, however, then the above strategy does not work. There are two cases. If there is a
sensor st ∈ S \ Sc such that xt ∈ (L − λ − rt, L + λ + rt), then we can also obtain a real feasible
solution by shifting the sensors of Sc slightly to the left as above and using the sensor st to cover
the remaining part of B around L that is no longer covered by the shifted sensors of Sc; thus we
also have λ∗ < λ. Otherwise, we claim that it must be λ∗ ≥ λ. Below we prove this claim.

Consider the rightmost Type I sensor si in Sc. Suppose si = sg(j), i.e., si is determined in step
j. Thus, si is at x′i in SOL. Let ε > 0 be an arbitrarily small value (we will determine below
how small it should be). Since we have assumed that the extensions of all sensors are different, the
value ε can be made small enough such that by moving si to x′i − ε in C0, the relative order of the
extensions of all sensors remains the same as before. Further, according to our algorithm above,
the value ε can also be small enough such that the behavior of the algorithm is the same as before,
i.e., the algorithm finds the same critical set Sc with the same cover order as before. It is easy to
see that such a small value ε always exists. Note that our task here is to prove our claim λ∗ ≥ λ is
true, and knowing that such a value ε exists is sufficient for our purpose and we need not actually
find such a value ε in our algorithm.

Now, in step j, the new value Rj , which is the right extension of si, is ε smaller than its value
before since si was at x′i in C0. Because si is the rightmost type I sensor in Sc, after step j, all
sensors in Sc determined after si (if any) are of type II and thus are moved to the left such that they
are all in attached positions along with si, which implies that the right extension of the last sensor
sg(m) in Sc is also ε smaller than its previous value (which was L). Hence, after step m, the sensors
in Sm covers [0, L− ε]. As discussed above, if ε is made small enough, the behavior of the algorithm
is the same as before. By a similar analysis, we can also establish a result similar to Lemma 2.
Namely, [0, L− ε] is the largest left-aligned interval that can be covered by the sensors in S′m in this
setting (here, S′m is the set of sensors whose right extensions are at most L− ε in the configuration
after step m). We omit the detailed analysis for this, which is very similar to that for Lemma 2.
Note that Sc = Sm. Since there is no sensor st ∈ S \ Sc such that xt ∈ (L− λ− rt, L + λ + rt), the
interval (L − ε, L] cannot be fully covered by the sensors in S. The above discussion implies that
if we do not allow the displacement of si to be larger than λ − ε, then there would be no feasible
solution even if we allow the displacements of some other sensors (i.e., those type I sensors in Sc
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before si, if any) to be larger than λ− ε (but at most λ). Thus, λ∗ ≤ λ− ε cannot be true. That is,
λ∗ > λ− ε holds. Further, it is easy to see that, by a similar argument, for any fixed value ε′ > 0
with ε′ < ε, we also have λ∗ > λ− ε′. Hence, we obtain λ∗ ≥ λ.

This finishes the discussion on how to determine whether λ∗ < λ. It is easy to see that the
above algorithm can also be implemented in O(n log log n) time for each value λ, after O(n log n)
time preprocessing. The theorem thus follows. 2

Theorems 1 and 2 together lead to the following corollary.

Corollary 1 After O(n log n) time preprocessing, for any value λ, we can determine whether λ∗ =
λ in O(n log log n) time.

2.2 The Optimization Version of the General BCLS

In this section, we discuss the optimization version of the general BCLS problem. We show that it
is solvable in O(n2 log n log log n) time, thus settling the open problem in [8].

The main difficulty is that we do not know the order of the critical sensors in an optimal
solution. Our strategy is to determine a critical set of sensors and their cover order in a feasible
solution for the (unknown) optimal value λ∗. The idea is somewhat similar to parametric search
[6, 14] and here we “parameterize” our algorithm for Theorem 1. But, unlike the typical parametric
search [6, 14], our approach does not involve any parallel scheme and thus is practical. We first
give an overview of this algorithm. In the following discussion, the “decision algorithm” refers to
our algorithm for Theorem 1 unless otherwise stated.

Recall that given any value λ, step i of our decision algorithm determines the sensor sg(i) and
obtains the set Si = {sg(1), sg(2), . . . , sg(i)}, in this order, which we also call the cover order of the
sensors in Si. In our optimization algorithm, we often use λ as a variable. Thus, Si(λ) (resp., Ri(λ),
sg(i)(λ), and Ci(λ)) refers to the corresponding Si (resp., Ri, sg(i), and Ci) obtained by running
our decision algorithm on the specific value λ. Denote by CI the configuration of the input.

Our optimization algorithm takes at most n steps. Step i receives an interval (λ1
i−1, λ

2
i−1) and

a sensor set Si−1(λ∗), with the algorithm invariants that λ∗ ∈ (λ1
i−1, λ

2
i−1) (although we do not

know the value λ∗) and for any value λ ∈ (λ1
i−1, λ

2
i−1), we have Si−1(λ) = Si−1(λ∗) and their

cover orders are the same. Step i either finds the value λ∗ or determines a sensor sg(i)(λ∗). The
interval (λ1

i−1, λ
2
i−1) will shrink to a new interval (λ1

i , λ
2
i ) ⊆ (λ1

i−1, λ
2
i−1) and we also obtain the

set Si(λ∗) = Si−1(λ∗) ∪ {sg(i)(λ∗)}. Each step can be performed in O(n log n log log n) time. The
details of the algorithm are given below.

Initially, let S0(λ∗) = ∅, R0(λ∗) = 0, λ1
0 = 0, and λ2

0 = +∞.
Consider a general step i for i ≥ 1 and we have the interval (λ1

i−1, λ
2
i−1) and the set Si−1(λ∗).

While discussing the algorithm, we will also prove inductively the following lemma about the
function Ri(λ) with variable λ ∈ (λ1

i , λ
2
i ).

Lemma 3 (a) The function Ri(λ) for λ ∈ (λ1
i , λ

2
i ) is a line segment of slope 1 or 0. (b) We

can compute the function Ri(λ) for λ ∈ (λ1
i , λ

2
i ) explicitly in O(n) time. (c) Ri(λ) < L for any

λ ∈ (λ1
i , λ

2
i ).

In the base case for i = 0, the statement of Lemma 3 obviously holds. We assume the lemma
statement holds for i− 1. We will show that after step i with i ≥ 1, the lemma statement holds for
i, and thus the lemma will be proved.

Again, in step i, we need to determine the sensor sg(i)(λ∗) and let Si(λ∗) = Si−1(λ∗)∪{sg(i)(λ∗)}.
We will also obtain an interval (λ1

i , λ
2
i ) such that λ∗ ∈ (λ1

i , λ
2
i ) ⊆ (λ1

i−1, λ
2
i−1) and for any λ ∈
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(λ1
i , λ

2
i ), Si(λ) = Si(λ∗) holds (with the same cover order). The details are given below. We

assume that we already compute explicitly the function Ri−1(λ) for λ ∈ (λ1
i−1, λ

2
i−1), which takes

O(n) time by our assumption that the statement of Lemma 3 holds for i− 1.
To find the sensor sg(i)(λ∗), we first determine the set Si1(λ∗). Recall that Si1(λ∗) consists

of all sensors covering the point p+(Ri−1(λ∗)) in the configuration Ci−1(λ∗). For each sensor in
S \Si−1(λ∗), its position in the configuration Ci−1(λ) with respect to λ ∈ (λ1

i−1, λ
2
i−1) is a function

of slope 1. As λ increases in (λ1
i−1, λ

2
i−1), by our assumption that Lemma 3(a) holds for i − 1,

the function Ri−1(λ) is a line segment of slope 1 or 0. If Ri−1(λ) is of slope 1, then the relative
position of Ri−1(λ) in Ci−1(λ) does not change and thus the set Si1(λ) does not change; if the
function Ri−1(λ) is of slope 0, then the relative position of Ri−1(λ) in Ci−1(λ) is monotonically
moving to the left. Hence, there are O(n) values for λ in (λ1

i−1, λ
2
i−1) that can incur some changes

to the set Si1(λ) and each such value corresponds to a sensor extension; further, these values can
be easily determined in O(n log n) time by a simple sweeping process (we omit the discussion of
it). Let Λi1 be the set of all these λ values. Let Λi1 also contain both λ1

i−1 and λ2
i−1, and thus,

λ1
i−1 and λ2

i−1 are the smallest and largest values in Λi1, respectively. We sort the values in Λi1.
For any two consecutive values λ1 < λ2 in the sorted Λi1, the set Si1(λ) for any λ ∈ (λ1, λ2) is
the same. By using binary search on the sorted Λi1 and our decision algorithm, we determine (in
O(n log n log log n) time) the two consecutive values λ1 and λ2 in Λi1 such that λ1 < λ∗ ≤ λ2.
Further, by Corollary 1, we determine whether λ∗ = λ2. If λ∗ = λ2, then we are done. Otherwise,
based on our discussion above, Si1(λ∗) = Si1(λ) for any λ ∈ (λ1, λ2). Thus, to compute Si1(λ∗),
we can pick an arbitrary λ in (λ1, λ2) and find Si1(λ) in the same way as in our decision algorithm.
Hence, Si1(λ∗) can be easily found in O(n log n) time. Note that λ∗ ∈ (λ1, λ2) ⊆ (λ1

i−1, λ
2
i−1).

If Si1(λ∗) 6= ∅, then sg(i)(λ∗) is the sensor in Si1(λ∗) with the largest right extension. An obvious
observation is that for any λ ∈ (λ1, λ2), the sensor in Si1(λ∗) with the largest right extension is the
same, which can be easily found. We let λ1

i = λ1 and λ2
i = λ2. Let Si(λ∗) = Si−1(λ∗)∪ {sg(i)(λ∗)}.

The algorithm invariants hold. Further, as λ increases in (λ1, λ2), the right extension of sg(i)(λ),
which is Ri(λ), increases by the same amount. That is, the function Ri(λ) on (λ1, λ2) is a line
segment of slope 1. Therefore, we can compute Ri(λ) on (λ1, λ2) explicitly in constant time. This
also shows Lemma 3(a) and (b) hold for i.

Because the function Ri(λ) on (λ1, λ2) is a line segment of slope 1, there are three cases de-
pending on the values Ri(λ) and L: (1) Ri(λ) < L for any λ ∈ (λ1, λ2), (2) Ri(λ) > L for any
λ ∈ (λ1, λ2), and (3) there exists a unique value λ′ ∈ (λ1, λ2) such that Ri(λ′) = L. For Case (1),
we proceed to the next step, along with the interval (λ1

i , λ
2
i ). Clearly, the algorithm invariants hold

and Lemma 3(c) holds for i. For Case (2), the next lemma shows that it actually cannot happen
due to λ∗ ∈ (λ1, λ2).

Lemma 4 It is not possible that Ri(λ) > L for any λ ∈ (λ1, λ2).

Proof: Assume to the contrary that Ri(λ) > L for any λ ∈ (λ1, λ2). Since λ∗ ∈ (λ1, λ2), let λ′′ be
any value in (λ1, λ

∗). Due to λ′′ ∈ (λ1, λ2), we have Ri(λ′′) > L. But this would implies that we
have found a feasible solution where the displacement of each sensor is at most λ′′, which is smaller
than λ∗, incurring contradiction. 2

For the Case (3), since Ri(λ) on (λ1, λ2) is a line segment of slope 1, we can determine in
constant time the unique value λ′ ∈ (λ1, λ2) such that Ri(λ′) = L. Clearly, λ∗ ≤ λ′. By Corollary
1, we determine whether λ∗ = λ′. If λ∗ = λ′, then we are done; otherwise, we have λ∗ ∈ (λ1, λ

′)
and update λ2

i to λ′. We proceed to the next step, along with the interval (λ1
i , λ

2
i ). Again, the

algorithm invariants hold and Lemma 3(c) holds for i.
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If Si1(λ∗) = ∅, then we need to compute Si2(λ∗). For any λ ∈ (λ1, λ2), the set Si2(λ) consists
of all sensors whose left extensions are larger than Ri−1(λ) and at most Ri−1(λ) + 2λ in the
configuration Ci−1(λ). Recall that the function Ri−1(λ) on (λ1

i−1, λ
2
i−1) is linear with slope 1 or

0. Due to (λ1, λ2) ⊆ (λ1
i−1, λ

2
i−1), the linear function Ri−1(λ) + 2λ on (λ1, λ2) is of slope 3 or 2.

Again, as λ increases, the position of each sensor in S \ Si−1(λ∗) in Ci−1(λ) is a linear function of
slope 1. Therefore, there are O(n) λ values in (λ1, λ2) each of which incurs some change to the set
Si2(λ) and each such λ value corresponds to a sensor extension. Further, these values can be easily
determined in O(n log n) time by a sweeping process (we omit the discussion for this). (Actually, as
λ increases, the size of the set Si2(λ) is monotonically increasing.) Let Λi2 denote the set of these λ

values, and let Λi2 contain both λ1 and λ2. Again, |Λi2| = O(n). We sort the values in Λi2. Using
binary search on the sorted Λi2 and our decision algorithm, we determine (in O(n log n log log n)
time) the two consecutive values λ′1 and λ′2 in Λi2 such that λ′1 < λ∗ ≤ λ′2. Further, by Corollary
1, we determine whether λ∗ = λ′2. If λ∗ = λ′2, then we are done. Otherwise, Si2(λ∗) = Si2(λ) for
any λ ∈ (λ′1, λ

′
2), which can be easily found. Note that λ∗ ∈ (λ′1, λ

′
2) ⊆ (λ1, λ2).

After obtaining Si2(λ∗), sg(i)(λ∗) is the sensor in Si2(λ∗) with the smallest right extension. As
before, the sensor in Si2(λ) with the smallest right extension is the same for any λ ∈ (λ′1, λ

′
2). Thus,

sg(i)(λ∗) can be easily determined. We let λ1
i = λ′1 and λ2

i = λ′2. Let Si(λ∗) = Si−1(λ∗)∪{sg(i)(λ∗)}.
The algorithm invariants hold. Further, we examine the function Ri(λ), i.e., the right extension
of sg(i)(λ) in the configuration Ci(λ), as λ increases in (λ′1, λ

′
2). Since sg(i−1)(λ∗) and sg(i)(λ∗) are

always in attached positions in this case, for any λ ∈ (λ′1, λ
′
2), we have Ri(λ) = Ri−1(λ) + 2rg(i).

Thus, the function Ri(λ) is a vertical shift of Ri−1(λ) by the distance 2rg(i). Because we already
know explicitly the function Ri−1(λ) for λ ∈ (λ′1, λ

′
2), which is a line segment of slope 1 or 0, the

function Ri(λ) can be computed in constant time, which is also a line segment of slope 1 or 0. Note
that this shows that Lemma 3(a) and (b) hold for i.

Similarly to the case when Si1(λ∗) 6= ∅, since the function Ri(λ) in (λ′1, λ
′
2) is a line segment

of slope 1 or 0, there are three cases depending on the values Ri(λ) and L: (1) Ri(λ) < L for any
λ ∈ (λ′1, λ

′
2), (2) Ri(λ) > L for any λ ∈ (λ′1, λ

′
2), and (3) there exists a unique value λ′′ ∈ (λ′1, λ

′
2)

such that Ri(λ′′) = L. For Case (1), we proceed to the next step, along with the interval (λ1
i , λ

2
i ).

Clearly, the algorithm invariants hold and Lemma 3(c) holds for i. Similarly to Lemma 4, Case (2)
cannot happen due to λ∗ ∈ (λ′1, λ

′
2). For the Case (3), since Ri(λ) in (λ′1, λ

′
2) is a line segment of

slope 1 or 0, we can compute in constant time the unique value λ′′ ∈ (λ′1, λ
′
2) such that Ri(λ′′) = L.

Clearly, λ∗ ≤ λ′′. By Corollary 1, we determine whether λ∗ = λ′′. If λ∗ = λ′′, we are done;
otherwise, we have λ∗ ∈ (λ′1, λ

′′) and update λ2
i to λ′′. We proceed to the next step, along with the

interval (λ1
i , λ

2
i ). Again, the algorithm invariants and Lemma 3(c) hold for i.

This finishes the discussion of step i of our algorithm. Note that in each case where we proceed
to the next step, Lemma 3 holds for i, and thus Lemma 3 has been proved. The running time of
step i is clearly bounded by O(n log n log log n).

In at most n steps, the algorithm will stop and find the value λ∗. Then by applying our decision
algorithm on λ = λ∗, we finally produce an optimal solution in which the displacement of every
sensor is at most λ∗. Since each step takes O(n log n log log n) time, the total time of the algorithm
is O(n2 log n log log n).

Theorem 3 The general BCLS problem is solvable in O(n2 log n log log n) time.

We shall make a technical remark. The typical parametric search [6, 14] usually returns with
an interval containing the optimal value and then uses an additional step to find the optimal value.
In contrast, our algorithm is guaranteed to find the optimal value λ∗ directly. This is due to the
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mechanism in our algorithm that requires Ri(λ) < L for any λ ∈ (λ1
i , λ

2
i ) after each step i if the

algorithm is not terminated. This mechanism actually plays the role of the additional step used in
the typical parametric search.

3 The Uniform Case of BCLS

In this section, we present an O(n log n) time algorithm for the uniform case of BCLS. Previously,
the best known algorithm for it takes O(n2) time [8]. Further, for the special uniform case when
all sensors are initially located on the barrier B, we solve it in O(n) time.

3.1 Preliminaries

Recall that in the input, all sensors are ordered from left to right by their initial positions, i.e.,
x1 ≤ x2 ≤ · · · ≤ xn. Suppose in a solution, the destination of each sensor si is yi (1 ≤ i ≤ n); then
we say that the solution is order preserving if y1 ≤ y2 ≤ · · · ≤ yn. In the uniform case, since all
sensors have the same range, we let r denote the sensor range. The next lemma was known [8].

Lemma 5 (Czyzowicz et al. [8]) For the uniform case, there is always an optimal solution that is
order preserving.

As discussed in [8], Lemma 5 is not applicable to the general BCLS. Consequently, the approach
in this section does not work for the general BCLS.

Based on the order preserving property in Lemma 5, the previous O(n2) time algorithm [8] tries
to cover B from left to right; each step picks the next sensor and re-balances the current maximum
sensor movement. Here, we take a completely different approach.

Denote by λ∗ the maximum sensor movement in an optimal solution. We use OPT to denote
an optimal order preserving solution in which the destination for each sensor si is yi (1 ≤ i ≤ n).
For each sensor si, if xi > yi (resp., xi < yi), then we say si is moved to the left (resp., right) by a
distance |xi − yi|. A set of sensors is said to be in attached positions if the union of their covering
intervals is a continuous interval on the x-axis whose length is equal to the sum of the lengths of
the covering intervals of these sensors. A single sensor is always in attached position. The following
lemma was proved in [8].

Lemma 6 (Czyzowicz et al. [8]) If λ∗ > 0, then in OPT , there exist a sequence of consecutive
sensors si, si+1, . . . , sj with i ≤ j such that they are in attached positions and one of the following
three cases is true. (a) The sensor sj is moved to the left by the distance λ∗ and yi = r (i.e., the
sensors si, si+1, . . . , sj together cover exactly the interval [0, 2r(j − i + 1)]). (b) The sensor si is
moved to the right by the distance λ∗ and yj = L− rj. (c) For i 6= j (i.e., i < j), the sensor si is
moved to the right by the distance λ∗ and the sensor sj is moved to the left by the distance λ∗.

Cases (a) and (b) in Lemma 6 are symmetric. By Lemma 6, for each pair of sensors si and sj

with i ≤ j, we can compute three distances λ1(i, j), λ2(i, j), and λ3(i, j) corresponding to the three
cases in Lemma 6 as candidates for the optimal distance λ∗. Specifically, λ1(i, j) = xj−[2r(j−i)+r],
where the value 2r(j − i) + r is supposed to be the destination of the sensor sj in OPT if case (a)
holds. Symmetrically, λ2(i, j) = [L − 2r(j − i) − r] − xi. Let λ3(i, j) = [xj − xi − 2r(j − i)]/2 for
i < j. Let Λ be the set of all λ1(i, j), λ2(i, j), and λ3(i, j) values. Clearly, λ∗ ∈ Λ and |Λ| = Θ(n2).
By using an algorithm for the decision version of the uniform case to search in Λ, one can find
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the value λ∗. Recall that the decision problem is that given any value λ, determine whether there
exists a feasible solution for covering B such that the moving distances of all sensors are at most
λ. Thus, λ∗ is the smallest value in Λ such that the answer to the decision problem on that value
is “yes”. A simple greedy O(n) time algorithm was given in [8] for the decision problem.

Lemma 7 (Czyzowicz et al. [8]) The decision version of the uniform case is solvable in O(n) time.

But, the above approach would take Ω(n2) time due to |Λ| = Θ(n2). To reduce the running
time, we cannot compute the set Λ explicitly. In general, our O(n log n) time algorithm uses the
following idea. First, instead of computing all elements of Λ explicitly, we compute one element
of Λ whenever we need it (we may do some preprocessing for this). Second, suppose we already
know (implicitly) a sorted order of all values in Λ; then we can use binary search and the decision
algorithm for Lemma 7 to find λ∗. However, we are not able to order the values of Λ into a single
sorted list; instead, we order them (implicitly) in O(n) sorted lists and each list has O(n) values.
Consequently, by a technique called binary search in sorted arrays [5], we compute λ∗ in O(n log n)
time. The details of our algorithm are given in the next subsection.

3.2 Our Algorithm for the Uniform Case

Due to the order preserving property, it is easy to check whether λ∗ = 0 in O(n) time. In the
following, we assume λ∗ > 0.

We focus on how to order (implicitly) the elements of Λ into O(n) sorted lists and each list
contains O(n) elements. We also show that after preprocessing, each element in any sorted list can
be computed in O(1) time using the index of the element. We aim to prove the next lemma.

Lemma 8 In O(n log n) time, the elements of Λ can be ordered (implicitly) into O(n) sorted lists
such that each list contains O(n) elements and each element in any list can be computed in constant
time by giving the index of the list and the index of the element in the list.

The following technique, called binary search on sorted arrays [5], will be applied. Suppose there
is a “black-box” decision procedure Π available such that given any value a, Π can report whether
a is a feasible value to a certain problem in O(T ) time, and further, if a is a feasible value, then any
value larger than a is also feasible. Given a set of m arrays Ai, 1 ≤ i ≤ m, each containing O(n)
elements in sorted order, the goal is to find the smallest feasible value δ in A = ∪m

i=1Ai. Suppose
each element of any array can be obtained in constant time by giving its indices. An algorithm for
the following result was presented by Chen et al. in [5].

Lemma 9 (Chen et al. [5]) The value δ in A can be computed in O((m + T ) log(nm)) time.

If we use the algorithm for Lemma 7 as the decision procedure Π, then by Lemmas 8 and 9, we
can find λ∗ in Λ in O(n log n) time. After λ∗ is found, we can apply the algorithm for Lemma 7 to
compute the destinations of all sensors, in O(n) time. Hence, we have the following result.

Theorem 4 The uniform case of the BCLS problem is solvable in O(n log n) time.

In the rest of this subsection, we focus on proving Lemma 8.
For each 1 ≤ t ≤ 3, let Λt denote the set of all λt(i, j) values. Clearly, Λ = Λ1 ∪ Λ2 ∪ Λ3. We

seek to order each of the three sets Λ1, Λ2, and Λ3 into sorted lists.
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We discuss Λ1 first. This case is trivial. It is easy to see that for each given value j, we
have λ1(i1, j) ≤ λ1(i2, j) for any i1 ≤ i2 ≤ j. Thus, for every value j, we have a sorted list
λ1(1, j), λ1(2, j), . . . , λ1(j, j) of j elements, and each element can be computed in constant time by
using the index of the element in the list. Therefore, we have n sorted lists, and clearly, the set of
elements in all these lists is exactly Λ1. Hence we have the following lemma.

Lemma 10 In O(n log n) time, the elements of Λ1 can be ordered (implicitly) into O(n) sorted
lists such that each list contains O(n) elements and each element in any list can be computed in
constant time by giving the index of the list and the index of the element in the list.

The set Λ2 can be processed in a symmetric manner as Λ1, and we omit the details.

Lemma 11 In O(n log n) time, the elements of Λ2 can be ordered (implicitly) into O(n) sorted
lists such that each list contains O(n) elements and each element in any list can be computed in
constant time by giving the index of the list and the index of the element in the list.

In the following, we focus on ordering (implicitly) the set Λ3 and showing the following lemma,
which, together with Lemmas 10 and 11, proves Lemma 8.

Lemma 12 In O(n log n) time, the elements of Λ3 can be ordered (implicitly) into O(n) sorted
lists such that each list contains O(n) elements and each element in any list can be computed in
constant time by giving the index of the list and the index of the element in the list.

Proving Lemma 12 is a main challenge to our uniform case algorithm. The reason is that, unlike
Λ1 and Λ2, for a given j, for any 1 ≤ i1 ≤ i2 ≤ j, either λ3(i1, j) ≤ λ3(i2, j) or λ3(i1, j) ≥ λ3(i2, j)
is possible. Hence, to prove Lemma 12, we have to find another way to order the elements of Λ3.

Our approach is to first remove some elements from Λ3 that are surely not λ∗ (for example,
negative values cannot be λ∗). We begin with some intuitions. We say two intervals on the x-axis
are strictly overlapped if they contain more than one common point. In the following discussion,
the sensors are always at their input positions unless otherwise stated. We define two subsets
of sensors, Sa and Sb, as follows. A sensor sj is in Sa if and only if there is no sensor si with
i < j such that their covering intervals are strictly overlapped (e.g., see Fig. 5). A sensor si is
in Sb if and only if there is no sensor sj with i < j such that their covering intervals are strictly
overlapped. Let the indices of sensors in Sa be a1, a2, . . . , an1 and the indices of sensors in Sb be
b1, b2, . . . , bn2 , from left to right. We claim n1 = n2. To see this, consider the interval graph G in
which the covering interval of each sensor is a vertex and two vertices are connected by an edge if
their corresponding intervals are strictly overlapped. Observe that in each connected component
of G, there is exactly one interval whose corresponding sensor is in Sa and there is exactly one
interval whose corresponding sensor is in Sb, and vice versa. Thus, n1 = n2, which is the number
of connected components of G. Let m = n1 = n2 ≤ n. Further, it is easy to see that the covering
intervals of both ai and bi must be in the same connected component of G and ai ≤ bi. Indeed, ai

(resp., bi) is the leftmost (resp., rightmost) sensor in the subset of sensors whose covering intervals
are in the same connected component of G (see Fig. 5). Note that ai = bi is possible. Hence, G

has m connected components.
For each 1 ≤ i ≤ m, let Gi denote the connected component containing the covering intervals

of ai and bi; with a little abuse of notation, we also use Gi to denote the subset of sensors whose
covering intervals are in the connected component Gi. Clearly, Gi = {sj | ai ≤ j ≤ bi} (e.g., see
Fig. 5). We also call Gi a group of sensors. The groups G1, G2, . . . , Gm form a partition of S. The
sensor sai (resp., sbi) is the leftmost (resp., rightmost) sensor in Gi.
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Figure 5: Illustrating three groups of sensors: Gi−1, Gi, and Gi+1. The sensors with indices ai−1, ai, and ai+1

(resp., bi−1, bi, and bi+1) are in Sa (resp., Sb), which are indicated by thick segments.

Lemma 13 For any two sensors si and sj with i < j, if si 6∈ Sb or sj 6∈ Sa, then λ3(i, j) 6= λ∗.

Proof: Assume si 6∈ Sb. In the following, we prove that λ3(i, j) cannot be λ∗ for any i < j.
Suppose si is in the group Gk. Then i < bk due to si 6∈ Sb. Further, the covering intervals of

si and si+1 must be strictly overlapped (otherwise, si would be in Sb). Assume to the contrary
λ3(i, j) = λ∗, which implies that case (c) in Lemma 6 holds. Thus, in the corresponding OPT , si

is moved to the right by the distance λ3(i, j) and all sensors si, si+1, . . . , sj must be in attached
positions. It is easy to see that the sensor si+1 must move to the right by the distance λ3(i, j)+2r−
(xi+1−xi). Since the covering intervals of si and si+1 are strictly overlapped, 2r− (xi+1−xi) > 0.
Therefore, the moving distance of si+1 must be larger than that of si. Since the moving distance
of si is λ3(i, j) = λ∗, we have contradiction. Hence, λ3(i, j) cannot be λ∗.

Assume sj 6∈ Sa. Then by a symmetric argument, we can prove λ3(i, j) 6= λ∗ for any i < j. 2

By Lemma 13, if λ∗ ∈ Λ3, then it can only be in the set Λ′3 = {λ3(i, j) | i < j, i ∈ Sb, j ∈ Sa},
and |Λ′3| = O(m2). Thus, we seek to order the elements of Λ′3 into O(m) sorted lists and each
list contains O(m) elements. One might be tempting to use the following way. Clearly, for each
1 ≤ k ≤ m−1, Λ′3 contains λ3(sbk

, sah
) for all h = k+1, k+2, . . . , m, and hence one may simply put

them into a list. However, such a list is not necessarily sorted. Specifically, for any two indices h1

and h2 with k+1 ≤ h1 < h2 ≤ m, either λ3(sbk
, sah1

) ≤ λ3(sbk
, sah2

) or λ3(sbk
, sah1

) > λ3(sbk
, sah2

)
is possible. Our approach relies on additional observations. Below, for simplicity of notation, we
use λ3(bk, ah) to refer to λ3(sbk

, sah
). We first examine the value of each λ3(bk, ah) in Λ′3.

By definition, we have λ3(bk, ak+1) = (xak+1
− xbk

− 2r)/2, and this is equal to half the length
of the interval between the right extension of sbk

and the left extension of sak+1
, which we call a

gap. Note that this gap is ∅ when the two sensors sbk
and sak+1

are in attached positions. For
each 1 ≤ k ≤ m − 1, define gk = xak+1

− xbk
− 2r, which is the length of the corresponding gap.

Hence, λ3(bk, ak+1) = gk/2. Further, for each 1 ≤ k ≤ m, we define the width of the group Gk as
the length of the union interval of the covering intervals of the sensors in Gk, and define lk as the
sum of the lengths of the covering intervals of the sensors in Gk minus the width of Gk, i.e., lk is
equal to 2r(bk − ak + 1) minus the width of Gk. We then have the following observation.

Observation 3 For every k with 1 ≤ k ≤ m − 2, we have λ3(bk, ah) = (
∑h−1

t=k gt −
∑h−1

t=k+1 lt)/2
for each h with k + 2 ≤ h ≤ m.

Proof: By definition, λ3(bk, ah) = [(xah
−xbk

−2r)−2r(ah−bk−1)]/2. It is easy to see that the value
xah

−xbk
−2r is equal to

∑h−1
t=k gt plus the sum of the widths of all groups Gk+1, Gk+2, . . . , Gh−1, and

the value 2r(ah−bk−1) is equal to the sum of the lengths of the covering intervals of the sensors in
the union of the groups Gk+1, Gk+2, . . . , Gh−1. According to definitions of lt for k + 1 ≤ t ≤ h− 1,
the observation follows. 2

The following lemma will be useful later.
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Lemma 14 For four indices k1, k2, h1, and h2, suppose max{k1, k2} < min{h1, h2}; then λ3(bk1 , ah1)
−λ3(bk1 , ah2) = λ3(bk2 , ah1)− λ3(bk2 , ah2), and consequently, λ3(bk1 , ah1) ≤ λ3(bk1 , ah2) if and only
if λ3(bk2 , ah1) ≤ λ3(bk2 , ah2).

Proof: Note that for every 1 ≤ k ≤ m − 2, we have λ3(bk, ah) = (
∑h−1

t=k gt −
∑h−1

t=k+1 lt)/2 for
k + 2 ≤ h ≤ m, and λ3(bk, ah) = gk/2 for h = k + 1.

If h1 = h2, then the lemma trivially follows since λ3(bk1 , ah1) = λ3(bk1 , ah2) and λ3(bk2 , ah1) =
λ3(bk2 , ah2). Thus we consider h1 6= h2, and only show the case with h1 < h2 (the case with h1 > h2

is similar). By their definitions, we have λ3(bk1 , ah1) − λ3(bk1 , ah2) = (−∑h2−1
t=h1

gt +
∑h2−1

t=h1
lt)/2.

Similarly, λ3(bk2 , ah1)− λ3(bk2 , ah2) = (−∑h2−1
t=h1

gt +
∑h2−1

t=h1
lt)/2. Hence, the lemma follows. 2

Lemma 14 implies that for any k1 and k2 with 1 ≤ k1 < k2 ≤ m−1, the sorted order of λ3(bk1 , at)
for all t = k2 +1, k2 +2, . . . ,m is the same as that of the list λ3(bk2 , at) for t = k2 +1, k2 +2, . . . , m

in terms of the indices of at. This means that if we sort the values in the list λ3(b1, at) for all
t = 2, 3, . . . , m, then for any 1 < k ≤ m − 1, the sorted order of the list λ3(bk, at) with all
t = k + 1, k + 2, . . . ,m is also obtained implicitly. Our “ordering” algorithm works as follows.

We first explicitly compute the values λ3(b1, at) for all t = 2, 3, . . . ,m, which takes O(m) time,
and then sort them in O(m log m) time. Let p be the permutation of 2, 3, . . . , m such that the
increasing sorted list of these λ3(b1, at) values is λ3(b1, ap(1)), λ3(b1, ap(2)), . . . , λ3(b1, ap(m−1)). Note
that the permutation p is immediately available once we obtain the above sorted list. For any
1 < k < m, we say the element λ3(bk, ah) is valid if k + 1 ≤ h ≤ m and is undefined otherwise.
By Lemma 14, the valid elements in each list λ3(bk, ap(1)), λ3(bk, ap(2)), . . . , λ3(bk, ap(m−1)) are also
sorted increasingly. Further, if we compute g1, g2, . . . , gm−1 and l1, l2, . . . , lm as well as their prefix
sums in the preprocessing, then given the index of any valid element in the list, we can obtain its
actual value in O(1) time. Clearly, the preprocessing takes O(n log n) time. Thus, we have ordered
(implicitly) the elements of Λ′3 into O(m) sorted lists and each list has O(m) elements.

However, we are not done yet. Since eventually we will apply the binary search technique of
Lemma 9 to these sorted lists and the lists contain undefined elements, the algorithm may take
an undefined element in such a list and use it in the decision procedure which is the algorithm for
Lemma 7. But, the undefined elements do not have meaningful values. To resolve this, we assign
(implicitly) to each undefined element an “appropriate” value, as follows. For each 1 ≤ k < m, let
L(k) denote the list λ3(bk, ap(1)), λ3(bk, ap(2)), . . . , λ3(bk, ap(m−1)). If 1 < k < m, then the list L(k)
has some undefined elements. For each undefined element, we (implicitly) assign an actual value
to it such that the resulting new list is still sorted. The idea is inspired by Lemma 14. We use the
list L(1) as the reference list since all its elements are valid. Every other list L(k) has at least one
valid element, for example, the element λ3(bk, ak+1). We compute explicitly the value λ3(bk, ak+1)
for each 1 < k < m, in O(m) time. For a list L(k) with 1 < k < m and any undefined element
λ3(bk, ap(i)) in L(k), we assign to it (implicitly) the value λ3(bk, ak+1) + λ3(b1, ap(i))− λ3(b1, ak+1)
(note that all these three values have already been computed explicitly). The lemma below shows
that the resulting new list L(k) is still sorted increasingly with this value assignment scheme.

Lemma 15 For any 1 < k < m, the list L(k) is still sorted increasingly after all its undefined
elements are assigned values implicitly.

Proof: Consider any k with 1 < k < m, and any two indices i and j with 1 ≤ i < j ≤ m− 1. It is
sufficient to prove λ3(bk, ap(i)) ≤ λ3(bk, ap(j)).

If both values are valid, then by Lemma 14, the inequality holds. Otherwise, we assume
λ3(bk, ap(i)) is undefined. After our value assignment, λ3(bk, ap(i)) = λ3(bk, ak+1) + λ3(b1, ap(i)) −
λ3(b1, ak+1). Depending on whether λ3(b1, ap(j)) is undefined, there are two cases.
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If λ3(b1, ap(j)) is undefined, then we have λ3(bk, ap(j)) = λ3(bk, ak+1)+λ3(b1, ap(j))−λ3(b1, ak+1).
Hence, λ3(bk, ap(j)) − λ3(bk, ap(i)) = λ3(b1, ap(j)) − λ3(b1, ap(i)) ≥ 0 due to j > i. If λ3(bk, ap(j)) is
valid, then by Lemma 14, we have λ3(bk, ap(j)) = λ3(bk, ak+1) + λ3(b1, ap(j)) − λ3(b1, ak+1). Thus,
λ3(bk, ap(j))− λ3(bk, ap(i)) = λ3(b1, ap(j))− λ3(b1, ap(i)) ≥ 0.

Therefore, in both cases, we have λ3(bk, ap(i)) ≤ λ3(b1, ap(j)), which proves the lemma. 2

In summary, in O(n log n) time, we have (implicitly) ordered the elements of Λ′3 into O(m) sorted
lists and each list has O(m) elements such that every element in any list can be obtained in O(1)
time. Hence, Lemma 12 is proved. We remark that assigning values to the undefined elements in
Λ′3 as above does no affect the correctness of our algorithm. Assigning values to undefined elements
only makes our candidate set Λ for λ∗ a little larger (by a constant factor), which obviously does
not affect the algorithm correctness because the larger candidate set still contains λ∗. One might
also see that the statement of Lemma 12 (and thus Lemma 8) is a little imprecise since we actually
ordered only the elements in a subset Λ′3 of Λ3 (not the entire set Λ3).

3.3 The Special Uniform Case

In this subsection, we consider the special uniform case in which all sensors are initially located on
the barrier B = [0, L], i.e., 0 ≤ xi ≤ L for each 1 ≤ i ≤ n. We give an O(n) time algorithm for it.
Again, we assume λ∗ > 0.

Clearly, Lemmas 5 and 6 still hold. Further, since all sensors are initially on B, in case (a) of
Lemma 6, si must be s1. To see this, since s1 is initially located on B = [0, L], it is always the best
to use s1 to cover the beginning portion of B due to the order preserving property. We omit the
formal proof of this. Similarly, in case (b) of Lemma 6, sj must be sn. We restate Lemma 6 below
as a corollary for this special case.

Corollary 2 If λ∗ > 0, then in OPT , there exist a sequence of consecutive sensors si, si+1, . . . , sj

with i ≤ j such that they are in attached positions and one of the following three cases is true. (a)
The sensor sj is moved to the left by the distance λ∗, i = 1, and y1 = r. (b) The sensor si is moved
to the right by the distance λ∗, j = n, and yn = L− r. (c) For i 6= j (i.e., i < j), the sensor si is
moved to the right by the distance λ∗ and the sensor sj is moved to the left by the distance λ∗.

For any 1 ≤ i < j ≤ n, we define λ3(i, j) in the same way as before, i.e., λ3(i, j) = [xj−xi−2r(j−
i)]/2, which corresponds to case (c) of Corollary 2. For each 1 ≤ j ≤ n, define λ′1(j) = xj + r−2rj,
which corresponds to case (a). Similarly, for each 1 ≤ i ≤ n, define λ′2(i) = L− 2r(n− i)− (xi + r),
which corresponds to case (b). We still use Λ3 to denote the set of all λ3(i, j) values. Define
Λ′1 = {λ′1(j) | 1 ≤ j ≤ n} and Λ′2 = {λ′2(i) | 1 ≤ i ≤ n}. Let Λ′ = Λ′1 ∪Λ′2 ∪Λ3. By Corollary 2, we
have λ∗ ∈ Λ′. The following lemma is crucial to our algorithm.

Lemma 16 The optimal value λ∗ is the maximum value in Λ′.

Proof: Let λ′ be the maximum value in Λ′. It suffices to show λ∗ ≤ λ′ and λ′ ≤ λ∗. Since λ∗ ∈ Λ′,
λ∗ ≤ λ′ trivially holds. Below, we focus on proving λ′ ≤ λ∗.

Since λ∗ > 0, λ′ > 0 holds. Clearly, either λ′ ∈ Λ′1, or λ′ ∈ Λ′2, or λ′ ∈ Λ3. Below we analyze
these three cases.

If λ′ ∈ Λ′1, then suppose λ′ = λ′1(j) for some j. Since λ′ > 0, we have 0 < λ′ = λ′1(j) =
xj + r − 2rj, and thus xj − r > 2r(j − 1). Since all sensors are initially on the barrier B, xj ≤ L

holds. Hence, even if all sensors s1, s2, . . . , sj−1 are somehow moved such that they are in attached
positions to cover the sub-interval [0, 2r(j− 1)] of B, the sub-interval [2r(j− 1), xj − r] of B is still
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not covered by any of the sensors s1, s2, . . . , sj−1. By the order preserving property, to cover the
sub-interval [2r(j − 1), xj − r], the best way is to move sj to the left such that the new position of
sj is at 2r(j− 1)+ r (i.e., the sensors s1, s2, . . . , sj are in attached positions), for which the moving
distance of sj is exactly λ′1(j). Therefore, the maximum sensor movement in any optimal solution
has to be at least λ′1(j). Thus, λ′ = λ′1(j) ≤ λ∗.

If λ′ ∈ Λ′2, then the analysis is symmetric to the above case and we omit the details.
When λ′ ∈ Λ3, the analysis has a similar spirit and we briefly discuss it. Suppose λ′ = λ3(i, j) =

[xj − xi − 2r(j − i)]/2 for some i < j. Since all sensors are initially on the barrier B, we have
0 ≤ xi < xj ≤ L. Consider the sub-interval [xi + r, xj − r] of B. Because λ′ > 0, we have
xj−xi−2r(j−i) > 0, and thus (xj−r)−(xi+r) > 2r(j−i−1). This implies that even if we somehow
move the sensors si+1, si+2, . . . , sj−1 such that they are in attached positions inside [xi + r, xj − r],
there are still points in [xi + r, xj − r] that are not covered by the sensors si+1, si+2, . . . , sj−1. By
the order preserving property, to cover the interval [xi + r, xj − r], we have to use both si and sj

and the best way is to move si to the right and move sj to the left by an equal distance so that
all sensors si, si+1, . . . , sj are in attached positions, for which the moving distances of si and sj are
both λ3(i, j) exactly. Therefore, the maximum sensor movement in any optimal solution has to be
at least λ3(i, j). Thus, λ′ = λ3(i, j) ≤ λ∗.

In summary, in any case, λ′ ≤ λ∗ holds. The lemma thus follows. 2

Base on Lemma 16, to compute λ∗, we only need to find the maximum value in Λ′, which can
be easily obtained in O(n2) time by computing the set Λ′ explicitly (note that |Λ′| = Θ(n2)). Yet,
we show below that we can find its maximum value in O(n) time without computing Λ′ explicitly.

Lemma 17 The maximum value in Λ′ can be computed in O(n) time.

Proof: Let λ1, λ2, and λ3 be the maximum values in the three sets Λ′1, Λ′2, and Λ3, respectively.
It is sufficient to show how to compute λ1, λ2, and λ3 in O(n) time.

Both the sets Λ′1 and Λ′2 can be computed explicitly in O(n) time. Thus, we can find λ1 and
λ2 in O(n) time. Below, we focus on computing λ3.

Note that for each value λ3(i, j) ∈ Λ3 with i < j, we have λ3(i, j) = [xj − xi − 2r(j − i)]/2. For
each 1 ≤ t ≤ n−1, define zt = xt+1−xt−2r. Hence, λ3(i, j) = (

∑j−1
t=i zt)/2. This implies that find-

ing the maximum value in Λ3 is equivalent to finding a consecutive subsequence of z1, z2, . . . , zn−1

such that the sum of the subsequence is the maximum among all possible consecutive subsequences,
which is an instance of the well studied maximum subsequence sum problem. This problem can be
solved easily in O(n) time. Specifically, we first compute all values z1, z2, . . . , zn−1, in O(n) time. If
all values are negative, then λ3 is the maximum value divided by 2. Otherwise, we let z′0 = 0, and for
each 1 ≤ t ≤ n−1, let z′t = max{z′t−1, 0}+zt. It is not difficult to see that λ3 = 1

2 ·max1≤t≤n−1{z′t}.
Hence, λ3 can be computed in O(n) time. The lemma thus follows. 2

After λ∗ is computed, we use the linear time decision algorithm for Lemma 7 to compute the
destinations of all sensors such that the maximum sensor movement is at most λ∗.

Theorem 5 The special uniform case of the BCLS problem is solvable in O(n) time.

4 The Simple Cycle Barrier Coverage

In this section, we discuss the simple cycle barrier coverage problem and present an O(n) time
algorithm for it. In this problem, the target region R is on the plane enclosed by a simple cycle
B that is the barrier we aim to cover. The sensors in S = {s1, s2, . . . , sn} are initially located
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on B and each sensor is allowed to move only on B (e.g., not allowed to move inside or outside
R). All sensors in S have the same range r. Here, the distance between any two points on B is
not measured by their Euclidean distance in the plane but by their shortest distance along B. If
a sensor is at a point p on B, then it covers all points of B whose distances to p are at most r.
Suppose all sensors in S are initially ordered clockwise on B as specified by their indices. Our goal
is to move the sensors along B to form a coverage of B such that the maximum sensor movement
is minimized. To our best knowledge, we are not aware of any previous solution for this problem.

Since B is a cycle here, a sensor is said to move clockwise or counterclockwise (instead of right
or left). Let L be the length of B. Again, we assume L ≤ 2nr (otherwise, it would not be possible
to form a coverage of B). Since B is a cycle, if L ≤ 2r, then every sensor by itself forms a coverage
of B. Below, we assume L > 2r. Imagine that we pick a point p0 on the interval of B from sn

clockwise to s1 as the origin of B, and define the coordinate of each point p ∈ B as the distance
traversed as we move from p0 to p clockwise along B. Let the input coordinate of each sensor
si ∈ S be xi. Thus, we have 0 < x1 ≤ x2 ≤ · · · ≤ xn < L. Further, for each 1 ≤ i ≤ n, we let si+n

denote a duplication of the sensor si with a coordinate xi+n = xi + L, which actually refers to the
position on B with the coordinate xi.

Since all sensors have the same range, it is easy to see that there always exists an order preserving
optimal solution OPT in which the sensors are ordered clockwise along B in the same order as that
of their input indices. Again, let λ∗ be the optimal moving distance. We can check whether λ∗ = 0
in O(n) time. Below, we assume λ∗ > 0.

Actually, our algorithm considers a set of 2n sensors, S′ = {s1, s2, . . . , s2n}. Specifically, the
algorithm determines a consecutive sequence of sensors, S′ij = {si, si+1, . . . , sj} ⊂ S′ with 1 ≤ i <

j < i + n, and moves the sensors of S′ij to form a barrier coverage of B such that the maximum
sensor movement is minimized. Clearly, for each sensor sk ∈ S, at most one of sk and its duplication
sk+n is in S′ij . In this simple cycle case, the definition of attached positions of the sensors is slightly
different from that in the line segment case. In this case, we call the two endpoints of the covering
interval of a sensor si its counterclockwise and clockwise extensions, such that when going clockwise
from the counterclockwise extension to the clockwise extension, we move along the covering interval
of si. One sensor is always in attached position by itself. Two sensors are in attached positions if
the clockwise extension of one sensor is at the same position as the counterclockwise extension of
the other sensor. Note that unlike in the line segment case, if two sensors si and sj are in attached
positions, say, the clockwise extension of si is at the same position as the counterclockwise extension
of sj , then since the sensors are on the cycle, it is possible that the clockwise extension of sj is
in the interior of the covering interval of si (e.g., when L < 4r). Similarly, a sequence of sensors
si, si+1, . . . , sj (with 1 ≤ i < j < i + n) are in attached positions if the clockwise extension of st

is at the same position as the counterclockwise extension of st+1 for each i ≤ t ≤ j − 1 (and the
clockwise extension of sj may be in the interior of the covering interval of si). The next result is a
corollary of Lemma 6.

Corollary 3 If λ∗ > 0, then in OPT , there exist a sequence of sensors si, si+1, . . . , sj in S′ with
1 ≤ i < j < i + n such that they are in attached positions and the sensor si is moved clockwise by
the distance λ∗ and the sensor sj is moved counterclockwise by the distance λ∗.

For each pair of i and j with 1 ≤ i < j < i+n, we define λ(i, j) = [xj −xi− 2r(j− i)]/2. Let Λ
be the set of all such λ(i, j) values. By Corollary 3, λ∗ ∈ Λ. The following result is similar to that
of Lemma 16.

Lemma 18 The optimal value λ∗ is the maximum value in Λ.

24



Proof: The proof is very similar to that for Lemma 16 and we briefly discuss it below.
Let λ′ be the maximum value in Λ. It is sufficient to show λ∗ ≤ λ′ and λ′ ≤ λ∗. Due to λ∗ ∈ Λ,

λ∗ ≤ λ′ trivially holds. Hence, we focus on proving λ′ ≤ λ∗. Since λ∗ > 0, we have λ′ > 0.
Suppose λ′ = λ(i, j) = [xj − xi− 2r(j − i)]/2 for some i and j with 1 ≤ i < j < i + n. Consider

the clockwise interval [xi + r, xj − r] on B, i.e., the union of the points on B from xi + r to xj − r

clockwise. Since λ′ > 0, we have xj −xi− 2r(j− i) > 0, and thus (xj − r)− (xi + r) > 2r(j− i− 1).
This implies that even if we somehow move the sensors si+1, si+2, . . . , sj−1 such that they are in
attached positions inside [xi+r, xj−r], there are still points in [xi+r, xj−r] that are not covered by
the sensors si+1, si+2, . . . , sj−1. By the order preserving property, to cover the interval [xi+r, xj−r]
on B, the best way is to move si clockwise and move sj counterclockwise by the same distance, for
which the moving distances of si and sj are both λ(i, j) exactly. Therefore, the maximum sensor
movement in any optimal solution has to be at least λ(i, j). Thus, λ′ = λ(i, j) ≤ λ∗.

The lemma thus follows. 2

By using the same algorithm for Lemma 17, we can find λ∗ in Λ in O(n) time. With the value
λ∗, we can then easily compute an optimal solution (i.e., compute the destinations of all sensors)
in O(n) time, as follows.

Suppose λ∗ = λ(i, j) ∈ Λ for some i and j with 1 ≤ i < j < i + n. In the case of i > n, we have
j > n and let i = i−n and j = j−n. Thus, we still have λ∗ = λ(i, j) since λ(i, j) = λ(i−n, j−n)
when i > n and j > n. Below, we assume 1 ≤ i ≤ n. Note that j > n is possible.

First, we move si clockwise by the distance λ∗ and move sj counterclockwise by the same
distance λ∗. Next, move all sensors si+1, si+2, . . . , sj−1 such that the sensors si, si+1, . . . , sj are in
attached positions. Since λ∗ is the maximum value in Λ by Lemma 18, the above movements of
the sensors si+1, si+2, . . . , sj−1 are at most λ∗. Then, starting at the sensor sj+1, we consider the
other sensors sj+1, sj+2, . . . , si−1 of S clockwise along B, and move them to cover the portion of B

that is not covered by the sensors si, si+1, . . . , sj . For this, we can view the remaining uncovered
portion of B as a line segment and apply the linear time greedy algorithm for Lemma 7 with the
value λ∗. The overall running time is O(n).

Theorem 6 The simple cycle barrier coverage problem is solvable in O(n) time.
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