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Abstract

New non-volatile memory (NVM) technologies are projected to become
the dominant type of main memory in the near future. They promise byte-
addressability, good read latencies, and signi�cantly lower energy and higher
density compared to DRAM. However, a key property of NVMs is the asym-
metric read and write cost: write operations are much more expensive than
reads regarding energy, bandwidth, and latency. This property contradicts
�fty years of classic algorithms research that has focused on the setting in
which reads and writes have similar cost, and poses the need to develop
write-e�cient algorithms that use fewer writes than the classic approaches.

This thesis provides a comprehensive study of the design and analysis
of write-e�cient algorithms, which includes computational models, lower
bounds, algorithms, and experimental validations. More speci�cally, this
thesis �rst presents and studies several models that account for read-write
asymmetry in di�erent settings (sequential, parallel, I/O models, etc.). Then,
a number of lower bounds are shown, which indicate the hardness of asymp-
totically improving some classic algorithms under certain assumptions.

The main contribution of this thesis consists of new write-e�cient al-
gorithms for fundamental algorithms in Computer Science, from basic al-
gorithmic building blocks (sorting, reduce, �lter, etc.), to graph algorithms
((bi)connectivity, shortest paths, MST, BFS, etc.), geometric algorithms and
data structures (convex hull, Delaunay triangulation, k-d trees, augmented
trees, etc.), as well as many cache-oblivious algorithms for dynamic program-
ming and linear algebra problems. The numbers of writes in all algorithms
studied in this thesis are signi�cantly reduced asymptotically. Furthermore,
most of these algorithms are also highly parallel. Many techniques used to
obtain these results are of independent interest, since they are applicable to
many other problems outside those studied in this thesis, and lead to improved
algorithms in the classic setting without read-write asymmetry.

This thesis also proposes the �rst experimental framework to analyze
the performance of write-e�cient algorithms in practice, and conducts ex-
periments on a variety of algorithms. The experimental results show the
e�ectiveness of write-e�cient algorithms, and suggest that the algorithms
developed in this thesis may be of both theoretical and practical interest.
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Chapter 1

Introduction

Striving for the e�cient performance of algorithms, both in theory and in practice, is
one of the ultimate goals in computer science. Since people started writing computer
programs, the cost of memory accesses has always been one of the major determining
factors of the e�ciency of an algorithm (the other factor being the number of algorithmic
operations). Optimizing the memory access costs in practice, however, is highly dependent
on the storage medium. For example, B-trees [38] and their variants with larger branching
factors were widely used when the storage medium was magnetic tapes in the early years
of computing, and hard disks later, because of the expensive random-access cost on these
devices and the mechanism of the data storage incorporated into the computer system. On
the other hand, if the data are stored and organized on a DRAM, which supports relatively
cheap-random access cost, then usually a B-tree with a small constant branching factor,
or even a binary tree is preferred for better practical performance.

To formally conduct a scienti�c study regarding the e�ciency of an algorithm, mathe-
matical tools are required for capturing the performance measurement in various settings.
Computer scientists use di�erent computational models to measure the costs of algo-
rithms, show lower and upper bounds on the algorithmic costs of problems, and engineer
implementations of e�cient algorithms based on the models. In addition to basic models
like the random-access machine (RAM) model, many models have also been proposed to
optimize memory-access cost (e.g., the external-memory or I/O model [7] and the ideal-
cache model [131]), based on which a great number of practically e�cient algorithms
have been designed and engineered.

Almost all previous models and research have focused on settings in which reads
and writes (to the memory) have similar (symmetric) cost. This symmetric assumption
simpli�es the model, and roughly �ts the current architecture. However, is the assump-
tion always valid? Or, what if reads and writes to memory have signi�cantly di�erent
(asymmetric) costs? This challenge of asymmetric read and write costs has been posed re-
cently due to the arrival of non-volatile memory (NVM) technologies that are projected to
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become the dominant type of main memory in the near future [171, 177, 210, 283]. These
memories o�er the promise of signi�cantly lower energy and higher density (bits per area)
than DRAM, with byte-addressability and read latencies approaching or improving on
DRAM speeds. Despite these useful properties, one characteristic of these new memory
technologies is that reading from memory is signi�cantly cheaper than writing to it, with
regards to latency, memory bandwidth, and especially energy consumption. Roughly
speaking, the reason for this asymmetry is that writing to memory requires a change to
the state of the material, while reading only requires detecting the current state. Based
on the information currently available to us, the cost ratio between writes and reads is
between 5 to 40 for the next-generation memories. This asymmetry poses the need to
develop write-e�cient algorithms that use signi�cantly fewer writes than their classic
counterparts.

The sequential read/write cost happens to be roughly symmetric for DRAMs and hard
disks, but this symmetry is not intrinsic and does not hold for many other cases (e.g.,
solid-state disks, or concurrent accesses to shared memory). As a result, it is fundamental
to understand such asymmetry in algorithm design. Studying the read-write asymmetry is
not only motivated by the new hardware technologies, but also out of intellectual curiosity.
More motivation for studying read-write asymmetry is discussed in Section 1.1.

The motivations and challenges of asymmetric read and write costs inevitably lead
to the following new questions in algorithm design, which are crucial for understanding
both the theory and practice in the asymmetric setting.

• How should existing computational models be modi�ed to account for asymmetry
between reads and writes, and how should such new memory be modeled?

• How does this asymmetry impact the design of algorithms?
• What new techniques are useful for trading o� expensive operations (fewer writes)

for cheap operations (more reads)?
• What are the fundamental limitations on such trade-o�s (lower bounds)?
• Can write-e�cient algorithms also be parallel?
• Do new algorithms actually reduce the number of writes in practice, and if so, by

how much?
The aim of this thesis is to provide a comprehensive study of the read-write asymmetry

in response to these questions.
The �rst contribution of this thesis is to introduce several computation and cost models

to address read-write asymmetry. These models represent the asymmetry with a parameter
ω, indicating the cost of a write relative to a read. They consider various settings including
sequential vs. parallel, explicit vs. implicit memory management, etc. System-level support
for these models has also been discussed in this thesis (e.g., asymmetry-aware cache-
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replacement policies and scheduling parallel algorithms in asymmetric memory). More
detailed results about these models are provided in Section 1.2 and Chapter 2.

Based on the models, the second contribution of this thesis is lower bounds for
many fundamental problems (e.g., sorting, fast Fourier transform, and many dynamic
programming and linear algebra problems), indicating the (asymptotical) required number
of writes under certain assumptions. These results are summarized in Section 1.3, and
discussed in detail in Chapter 3.

The third and main contribution of this thesis is a wide range of write-e�cient al-
gorithms and data structures for many fundamental problems, including sorting, graph
processing, computational geometry, dynamic programming, linear algebra, etc. Each
algorithm performs (asymptotically) fewer writes to memory than the best algorithm
classic algorithm for the problem. Furthermore, most of these algorithms are highly
parallel. This is because new NVMs provides a much larger (terabyte-level) capacity
than the systems they replace, so good parallelism is necessary to process data with such
sizes in a timely manner. The algorithms are introduced in categories in Chapters 4-7. A
high-level overview of the results is listed here, and a more detailed summary is provided
in Section 1.4.

• Algorithmic building blocks (Chapter 4) include reduce, �lter, list/tree contraction,
sorting, matrix multiplications, etc. These algorithms are fundamental and widely
used in designing other algorithms in the later chapters of this thesis.

• Graph algorithms (Chapter 5) are further categorized into connectivity algorithms
(connectivity and biconnectivity) and distance-based algorithms (single-source
shortest-paths, minimum spanning trees, breadth-�rst search, etc.). For the connec-
tivity problems, this thesis proposes a new graph partitioning methodology as a
subroutine, referred to as the implicit decomposition of a graph. This decomposition
is the �rst approach that can preserve the (bi)connectivity information of a graph
with a sub-linear size (thus requires fewer writes to generate). (Bi)connectivity
queries can be answered from this representation with a small extra cost. This thesis
also discusses sequential or parallel distance-based algorithms for single-source
shortest-paths, minimum spanning tree, and breadth-�rst search.

• Geometry algorithms (Chapter 6) include convex hull, planar Delaunay triangu-
lation, low-dimensional LP-style algorithms, etc., as well as algorithms for data
structures including k-d trees and augmented trees (e.g., interval trees, priority
search trees). Here, write optimality indicates that the number of writes the algo-
rithm or data structure construction performs asymptotically equals the output size.
The algorithmic technique in many of these algorithms is to use randomized incre-
mental algorithms to achieve write-e�ciency. Unfortunately, theoretically-e�cient
parallel algorithms for many problems were unknown, even in the symmetric
setting. To solve this problem, this thesis �rst describes a generic framework to
analyze the parallelism of the incremental algorithms, and shows new algorithms
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with improved parallelism. For example, this thesis shows the �rst work-e�cient
polylogarithmic-depth algorithms for planar Delaunay triangulation, which has
been open for 25 years. Then the write optimality of many algorithms in this frame-
work can be achieved using another generic approach. This framework is used
to generate many write-optimal parallel geometric algorithms. Another general
technique in these algorithms is the α-labeling with reconstruction-based updates
for augmented trees, which trades o� extra reads during queries for fewer writes
during updates.

• Cache-oblivious algorithms for dynamic programming include LWS/GAP/RNA/-
Parenthesis and other recurrences, and linear algebra problems include matrix
multiplication, Gaussian elimination, and triangular system solver (Chapter 7).
Classic solutions to these problems are based on divide-and-conquer schemes, and
use asymptotically the same numbers of reads and writes to the main memory.
Meanwhile, given the varied combinations of computations and data dependen-
cies, designing individual algorithms for each speci�c problem can take signi�cant
e�ort. To overcome these challenges, this thesis proposes a level of abstraction
for such problems, which is referred to as the k-d grid computation structure. By
analyzing the lower and upper bounds of the cost to compute such grids, not only
can the write-e�ciency (write-optimality) of these algorithms be achieved under
certain assumptions, but the sequential cost and parallelism of many problems in
the symmetric setting can also be improved.

The last contribution of this thesis is the �rst experimental framework to evaluate
and analyze the performance of write-e�cient algorithms in practice. This framework is
simple, clean and hardware-independent. Within the framework, a variety of di�erent
algorithms and data structures and their write-e�cient implementations are discussed
in this thesis. Many of them are non-trivial and require careful algorithmic design,
analysis, and coding. Under the new asymmetric cost measure, this thesis proposes better
implementations on all problems that were evaluated, compared to their traditional and
commonly-used counterparts in the symmetric setting. This thesis summarizes many
interesting algorithmic techniques, which can be useful in designing and engineering
write-e�cient algorithms in the future. More results are summarized in Section 1.5 and
the full experimental evaluation is presented in Chapter 8.

1.1 Motivations for Write-E�cient Algorithms

This section discusses the motivations for write-e�cient algorithms in greater depth,
and argues that there is a timely need and importance of studying them. The motivations
are presented below in three categories.
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1.1.1 Read-WriteAsymmetry inEmergingNon-VolatileMemories

Emerging non-volatile/persistent memory (NVM) technologies o�er the promise of
signi�cantly lower energy and higher density (bits per area) than DRAM. With byte-
addressability and read latencies approaching or improving on DRAM speeds, these NVM
technologies are projected to become the dominant memory within the decade [171, 177,
210, 283], as manufacturing improves and costs decrease.

Despite the advantages of the new memory as compared to DRAM, there is an
important distinction: writes are signi�cantly more costly than reads, su�ering from
higher latency, lower per-chip bandwidth, higher energy costs, and endurance prob-
lems (a cell wears out after 108–1012 writes [210]). Thus, unlike DRAM, there is a
signi�cant (often an order of magnitude or more) asymmetry between read and write
costs [14, 32, 117, 118, 176, 187, 234, 280], for which more technical details are provided in
Appendix A. Motivated by these techniques, the study of write-e�cient algorithms, which
reduce the number of writes relative to existing algorithms, is of signi�cant and lasting
importance.

Read-write asymmetry has been the focus of many system e�orts [91, 196, 281, 284].
Reducing the number of writes has long been a goal in disk arrays, distributed systems,
cache-coherent multiprocessors, and the like. However, these works do not focus on
NVMs and the solutions are not suitable for the properties of the new NVMs. Several
papers [41, 123, 133, 220, 226, 273] have looked at read-write asymmetries in the context
of �ash memory. However, due to the di�erent physical properties between main memory
and �ash memory (large block vs. byte addressability), these results cannot directly be
applied to designing faster algorithms for new NVMs. Some prior work [90, 272, 273]
has also looked at algorithms for asymmetric read-write costs in emerging NVMs, in the
context of databases. However, these papers are focused on the empirical performance of
speci�c algorithms. The new results in this thesis extend far beyond these papers, and
lay the foundation for studying write-e�cient algorithms both in theory and practice. In
particular, this thesis provides a systematic and comprehensive study of models, lower
bounds, dozens of new write-e�cient algorithms, and runtime systems considering the
asymmetric read-write costs. Furthermore, this thesis also conducts thorough experiments
on new NVMs.

The work of Carson et al. [84] also considers asymmetric costs in reads and writes,
and presents upper and lower bounds for various linear algebra problems and direct
N -body methods under a similar model with read-write asymmetry. However, their focus
is restricted to the class of “communication-avoiding” algorithms, i.e., parallel algorithms
that minimize the (unweighted) sum of reads and writes, instead of the overall cost. Their
results are more useful in the distributed or external memory setting, while this thesis
focuses on sequential and shared-memory parallel algorithms. Further discussion is
provided in Section 7.2.
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1.1.2 Persistency and Other System-Level Considerations

The previous section introduced the hardware-level asymmetry between read and
write costs. Another major property of these new main memories are their non-volatility,
or persistency: unlike DRAM, they have the capability of surviving power outages and
other failures without losing data. As a result, it is possible to design programming models
and algorithms that are resilient to either processor faults or power outages. Persistence
can be useful since in current and upcoming large parallel systems, the probability that
an individual processor faults is not negligible [83].

To achieve fault-tolerant programming, one has to guarantee that at some certain
stages in the execution of the program, the intermediate data stored in the persistent
main memory are in some consistent states, such that either the computation of a single
processor or the entire program can be restarted from these states. This step is achieved by
either marking check pointers or encapsulating updates (via transactions, various atomic
sections, etc.). On the other hand, standard caches are write-back (write-behind), meaning
that a write to a memory location will make it as far as the cache, until at some later point
the updated cache line gets �ushed out to the persistent memory. Programmers usually
have no control of this process.

A simple algorithmic solution to this problem is to explicitly �ush the cache lines
immediately for writes to the persistent memory. This can guarantee the desired states
of the data in the persistent memory (more details discussed in Chapter 9.2), using
instructions (such as Intel’s CLFLUSH instruction) supported by various programming
models (e.g., [178, 240, 241]). Compared to more general system-level support, such an
algorithmic solution can be easier to implement (by simply adding a few lines in the code)
and can handle multiple types of faults.

On the other hand, the �ush instructions require memory barriers to enforce the
ordering in the execution, and may also cost extra to interfere the system bu�ers or
synchronize the processors. As a result, the drawback of this simple solution for fault-
tolerance is the additional cost for the writes.

Write-e�cient algorithms can be useful in this solution. At a high level, a write-
e�cient algorithm generally requires fewer writes to the main memory. Since these write
operations are now �ushed explicitly and are expensive, either the reduced number of
writes can make such bottleneck less severe, or the cost of these operations will not
dominate the overall cost. In either case, write-e�cient algorithms alleviate or diminish
the extra cost of making the algorithms or programs fault-tolerant.

There are other system-level or architecture-level considerations that cause writes to
be more expensive than reads. For example, in general multicore programming, algorithms
can make concurrent reads and writes to memory locations. In practice, concurrent reads
do not have much overhead, but concurrent writes are more costly due to the cache
coherency tra�c over a shared bus [140, 166]. Another example can be a cloud computing
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framework, where the read-only data is kept in DRAM, but intermediate results need to
be written to disk for reliability [84, 237].

1.1.3 Intellectual Curiosity

Many architecture-related and system-related considerations that cause an asymmetry
between reads and writes have been discussed in previous sections. At a high level,
these reasons all produce asymmetry because of di�erent mechanisms between load and
store data: reads only check the data, but writes change the data. The reason symmetric
algorithms worked well is that the read and write costs happen to be roughly the same on
DRAM and hard disks (but they do not have to always be in other cases). As mentioned
in previous sections, there are many scenarios where read-write asymmetry exists. It
is intellectually interesting to understand how such asymmetry can impact algorithm
design.

There are two possibilities for such asymmetry: reads are more expensive, or writes
are more expensive. The �rst case does not make much sense for an algorithm since
utilizing cheaper writes indicates that many intermediate results are written out and
never read back again.1 The second case, which is the setting discussed in this thesis,
is more general and shares a high-level similarity to many other settings, such as the
streaming setting (space-limited computations) or the distributed setting. These settings
study whether less communication to the data carrier for certain algorithms is possible,
at the cost of possible extra reads or lower accuracy of the solutions.

For example, the streaming model [19] usually assumes a memory size that is a
(poly)logarithmic function of the input stream size. In practice, caches in this day and age
can hold dozens of megabytes of data, but the results under this model show many intrinsic
properties of the problems that would not be considered in other settings. (Of course, there
are other assumptions and special applications for streaming algorithms.) Similarly, many
distributed algorithms are designed based on a message-passing model that synchronizes
at every single round [228]. Although this assumption is less practical, these results can
usually be used in designing practical distributed algorithms, or demonstrate lower and
upper bounds of many other problems in other settings as long as the problems can be
modeled similarly.

Therefore, we argue that the study of write-e�cient algorithms is bene�cial even
without considering the emerging hardware technologies, since it provides a new angle
to rethink whether the operations in previous approaches are necessary or not. In many
cases, such studies help us �nd bottlenecks in the algorithms which were hidden or have
previously gone unnoticed. Furthermore, this thesis also contains many results that are
interesting even without considering the read-write asymmetry, and some of these results

1It may facilitate some applications that require preprocessing and each query only reads a small portion
of the computed values.
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were obtained by designing algorithms in the context of write-e�ciency. Two examples
are shown here.

• Chapter 7 studies cache-oblivious dynamic programming algorithms, including
both lower and upper bounds. When studying the lower bounds, we observed
that some commonly-seen recurrences which were previously believed to have the
same complexity [92, 94, 263, 270] appear to be di�erent in the asymmetric setting.
By checking the results carefully, we found that these recurrences have di�erent
asymptotical complexities even in the classical (symmetric) setting, and that it is
too subtle to be noticed in the classic setting. To address such relationship, we
propose the k-d grid computation structure, which abstracts these computations.
By showing both computational lower bounds and e�cient parallel algorithms for
computing k-d grids, we improved the results for dozens of problems on both the
asymmetric setting and the classic symmetric setting.

• In designing write-e�cient planar Delaunay triangulation, the most promising
candidate is the incremental construction algorithm, which also runs faster than
other approaches in practice (in parallel) [60, 150]. However, all algorithms of the
incremental construction do not have polylogarithmic depth for the worst-cases
and are not write-e�cient. After thoroughly investigating this algorithm, a new
algorithm is designed which is highly parallel and write-optimal, and at the same
time it is still work-optimal. As a result, we believe that the new algorithm in this
thesis has the potential to outperform the existing state-of-the-art implementations
even on the symmetric memories, because of the better parallelism and reduced
writes. This approach is abstracted as a framework which is applied to many other
incremental algorithms, and these parallel write-e�cient algorithms are introduced
in Chapter 6.

In conclusion, the write-e�cient algorithms in this thesis can improve the existing
results in the symmetric setting, and we believe there can be more in the future. The
outcome of such study is beyond the boundary of e�cient algorithms on the future NVMs,
and the techniques proposed in thesis can be generalized to a broader extent.

1.2 Computational Models

To systematically study algorithms under asymmetric read and write cost, computa-
tional models are needed to measure the runtime of algorithm in di�erent settings. The
full details of the models considered in this thesis are shown in Chapter 2. They are brie�y
summarized here for the convenience of overviewing the results of the write-e�cient
algorithms in this thesis later in this chapter.

(M,ω)-ARAM: the sequential model.

The simplest model considered in this thesis consists of an asymmetric random-access
memory such that reads cost 1 and writes cost ω > 1, as well as a small number of
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symmetric “registers” that can be read or written at unit cost. These registers are crucial,
since otherwise the computed result of any operation needs to be written out.

More generally, this thesis considers settings in which the size of the symmetric
memory is M � n, where n is the input size. This de�nes the (M,ω)-Asymmetric RAM
((M,ω)-ARAM), comprised of a symmetric small-memory of size M , an asymmetric large-
memory of unbounded size, and an integer ω representing the relative cost of a write to
a read. Note that the use of small amounts of symmetric memory along with the large
asymmetric memory matches the expected reality of real machines.

The ARAM costQ is the number of reads from large-memory plus ω times the number
of writes to large-memory. The workW is Q plus the number of reads and writes to
small-memory. Ideally, a write-e�cient algorithm is also work-e�cient ifW = Q +WOPT ,
where WOPT is the optimal time complexity of this algorithm on the RAM model (i.e.,
without considering the I/O issues).

In most of the cases in this thesis, the block size B for each memory access is ignored
for the sake of simplicity in algorithm designs. If necessary, it can be considered straight-
forwardly and in this case each read (write) loads (stores) a memory block of B words.
This variant is referred to as the (M,B,ω)-ARAM, which can be viewed as the extension of
the external-memory model [7] on the asymmetric setting. We only measure the ARAM
cost Q on this model since it seems unreasonable to de�ne the corresponding work when
considering this block size.

Asymmetric NP model: the parallel model, and the scheduling theorem.

The next step is to consider modeling parallel computations with asymmetric read
and write costs. To address the read-write asymmetry, this thesis de�nes the Asymmet-
ric Nested-Parallel (NP) model, which combines the features of the sequential (M,ω)-
Asymmetric RAM model and the popular nested-parallel model but with a distinctive
memory allocation scheme. Such a scheme is necessary in order to allow the computations
to be scheduled e�ectively on asymmetric memories.

Speci�cally, the Asymmetric NP model is comprised of small stack-allocated memories
with symmetric read-write costs, and an unbounded heap-allocated shared memory with
asymmetric read-write costs. Stack-allocated memory is allocated by a task, available
to the task and any children it forks, but becomes invalid when the task �nishes. This
thesis shows that the model, with its costs analyzed based on the computation DAG (with
no notions of processors or scheduling) maps e�ciently onto a more concrete machine
model, when using a work-stealing scheduler [73]. In particular, the model’s careful
accounting for task memory usage yields good bounds on the number of writes incurred
during a steal, because it can accurately capture the true working set sizes that need to be
transferred.

More accurately, in this model, the cost measures of a computation are the depth D
which is the length of the longest (unweighted) path in the DAG, and the workW which
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is the sum of the (weighted) costs of all operations in its DAG. When the algorithm is
executed sequentially, the workW in Asymmetric NP model matches the workW in the
(M,ω)-ARAM model. This thesis shows that under mild assumptions, a work-stealing
scheduler can execute an algorithm with workW and depth D in O(W /P +ωD) expected
time on P processors. This bound indicates that the classic nested-parallel computation
can be scheduled e�ciently on the asymmetric memory when P = O(W /(ωD)), which
holds for the parallel algorithms in this thesis under most practical situations.

The asymmetric ideal-cache model and cache-oblivious paradigm.

The ideal-cache model [131] is widely used in designing algorithms that optimize the
communication between the CPU and the memory. Similar to the external-memory model,
the ideal-cache model is comprised of an unbounded large-memory and a small-memory
(cache) of size M . Data are transferred between the two levels using cache lines of size B,
and all computation occurs on the data in the cache. An algorithm is cache-oblivious if
it is unaware of both M and B. The goal in designing these algorithms is to reduce the
cache complexity of an algorithm, which is the number of cache lines transferred between
the cache and the main memory, assuming an optimal (o�ine) cache replacement policy.
This optimal replacement means that the analysis of algorithm cost may assume any
replacement policy, even de�ning an arbitrary strategy for selecting which blocks to load
or evict. The optimal cache replacement strategy always requires no more than such
cost, and a more practical LRU policy uses no more than twice of this (ideal) cost. The
advantage of cache-oblivious algorithms is that they are �exible and portable, and adapt
to all cache parameters and all levels of a multi-level memory hierarchy.

The asymmetric variant of this model distinguishes reads from writes as follows. A
cache block is dirty if the version in the cache has been modi�ed since it was brought
into the cache, and clean otherwise. When a cache miss evicts a clean block the cost is
1, but when evicting a dirty block the cost is 1 + ω, where 1 for the read and ω for the
write. Again, an ideal o�ine cache replacement policy is assumed—i.e., minimizing the
total cache complexity. The cost of an algorithm Q or QI is the overall cost for moving the
cache lines. Under this model however, the LRU policy is no longer 2-competitive, and
can be as worse as a factor ω. To overcome it, this thesis discusses a variant of the LRU
policy (the read-write LRU policy), which is competitive within a constant factor. That
is, for any sequence S of instructions, if it has cost QI (S) on the asymmetric ideal-cache
model with cache size MI , then it will have cost

QL(S) ≤
ML

ML − 2MI
QI (S) + (1 + ω)MI/B

on an asymmetric cache with read-write LRU policy and cache size ML > 2MI .
To read the result, the last term (1 + ω)MI/B accounts for some initialization of the

cache, which can be ignored asymptotically. Assuming that ML = 3MI , the multiplicative
term before QI is three, which indicates that the read-write LRU policy requires no more
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than three times more memory transfers than the optimal o�ine policy when the cache
size of the LRU policy is three times larger. More details about this cache policy and the
proof can be found in Section 2.3.4.

Regarding designing parallel cache-oblivious algorithms, known scheduling results [59]
indicate that the depth, D, and the sequential cache complexity of a computation, Q1, are
su�cient for deriving bounds on parallel cache complexity [59]. Let D and Q1 be given.
Then for a p-processor shared-memory machine with private caches (each processor has
its own cache) using a work-stealing scheduler, the total number of misses Qp across all
processors is at most Q1 +O(pDM/B) with high probability [2]. For a p-processor shared-
memory machine with a shared cache of size M + pBD using a parallel-depth-�rst (PDF)
scheduler, Qp ≤ Q1 [50]. These bounds can also be extended to multi-level hierarchies of
private or shared caches respectively [59].

1.3 Overview of Lower Bounds

This thesis shows a variety of lower bounds of the ARAM cost Q of some fundamen-
tal problems including Fast Fourier Transform (FFT), sorting network, diamond DAGs,
permuting, and sorting. From a theoretical view, these lower bounds indicate the amount
of improvement that can be made to classic algorithms when considering the asymmetry
between reads and writes. The lower bounds lead us to design algorithms that are asymp-
totically optimal on (M,ω)-ARAM and close the gaps. On the other hand, these lower
bounds show the hardness of these problems, indicating that practically (i.e., consider-
ing the actual values of ω and M), we can only achieve a constant improvement unless
M = o(ω), which seems to be unrealistic. A list of results is shown in Table 1.1.

To interpret the results, for FFT and sorting network that have a �xed computational
DAG, the improvement is limited to log(ωM)/logM (the bounds in the symmetric setting
are listed in Table 2.1 and B = 1). The result for Diamond DAG is interesting: there is no
asymptotic improvement without allowing redundant computation, even if the reads are
free! The general proof techniques are partitioning a computation into subcomputations
that each have a lower bound on cost but an upper bound on the number of inputs and
outputs, which lower bound the costs to �nish the computations of these problems.

Based on the model proposed in this thesis, Jacob and Sitchinava [182] recently show
lower bounds on permuting, sorting and sparse-matrix vector multiplication. These results
are also summarized in Table 1.1(b). In this case, the block size B is also considered since
the bounds are trivial otherwise.
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(a). The results in this thesis based on the (M,ω)-ARAM.

Problems ARAM Cost (Q) Work (W ) Remarks

FFT Q(n) = Ω

(
ωn logn
log(ωM)

)
W (n) = Q(n) + Ω(n logn) Section 3.2

Sorting Network Q(n) = Ω

(
ωn logn
log(ωM)

)
W (n) = Q(n) + Ω(n logn) Section 3.3

Diamond DAG Q(n) = Ω

(
ωn2

M

)
W (n) = Q(n) + Ω(n2) Section 3.4

(b). Later results from Jacob and Sitchinava’s 2017 SPAA paper based on the (M,ω)-ARAM. On
these problems, the block size B (full de�nition given in Section 2.1.2) is considered since the

bounds are trivial otherwise.

Problems ARAM Cost (Q) Remarks

Permuting and sorting Q(n) = Ω

(
min

{
n,

ωn log(n/B)
B log(ωM/B)

})
Section 3.5

SparseMxV Q(n) = Ω

(
min

{
h,
ωh log(n /max{h/n,M})

B log(ωM/B)

})
Section 3.5

Table 1.1: Summary of lower bounds on the (M,ω)-ARAM. In all cases n is the input size. In
sparse-matrix vector multiplication (referred to as “SparseMxV” in the table), h is the number of
non-zero elements in the matrix.

1.4 Overview of Write-E�cient Algorithms

1.4.1 Basic Algorithmic Building Blocks

To start the discussion of write-e�cient algorithms, this thesis �rst introduces the
basic building blocks in Chapter 4 that are widely used in designing other algorithms.
Therefore, when designing more complicated and advanced algorithms, these building
blocks can be directly used, just like in the symmetric setting.

Most of the building blocks can be write-e�cient sequentially using some known tech-
niques. Their cost bounds on (M,ω)-ARAM are listed on the top part in Table 1.2, which
include search tree and priority queue, FFT, and some simple computational geometry
and graph algorithms. The exception is algorithm for edit distance (or LCS, in Section 4.5),
which requires delicate design and improves the ARAM cost by a factor of Ω(ω1/3) at the
cost of a factor of O(ω2/3) work. It remains an interesting open problem on whether such
tradeo� is optimal.
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Problem ARAM Cost (Q(n) orQ(n,m)) Work (W (n) orW (n,m))

Search Tree, Priority Queue O(ω + logn) per update O(ω + logn) per update

FFT Θ(ωn logn/log(ωM)) Θ(Q(n) + n logn)

Diamond DAG Θ(n2ω/M) Θ(Q(n) + n2)

Longest Common Subsequence,
O

(
ωn2

min(ω1/3M,M3/2)

)
O

(
n2 +

ωn2

min(ω1/3M2/3,M3/2)

)
Edit Distance

Planar Convex Hull, Triangulation O(n(logn + ω)) Θ(n(logn + ω))

BFS, DFS, Topological Sort, SCC Θ(ωn +m) Θ(ωn +m)

Minimum Spanning Tree O(m min(n/M, logn) + ωn) O(Q(n,m) + n logn)

Single-source Shortest Paths
O(min(ω(m + n logn),

O(Q(n,m) + n logn)
m(ω + logn),n(ω +m/M)))

Table 1.2: Summary of the upper bounds on the (M,ω)-ARAM. For all cases, n is the input size.
For graph algorithms, m is the number of edges in the graph (n is the number of vertices). All
algorithms with parallel versions are later shown in Table 1.3.

Then the thesis focuses on the parallel primitives, which are more challenging in
general. Parallel algorithms on reduce (generalized sum), ordered �lter, and list and tree
contraction are discussed in Section 4.2 and 4.3, and summarized in Table 1.3. All of
these algorithms have low depth and are optimal in terms of both I/Os and the number of
arithmetic operations. Particularly, for list and tree contraction, the parallel write-e�cient
algorithms reduce the number of writes by a factor ω for any value of ω, and remain
highly parallel. This approach is discussed in Section 4.3.

Sorting is one of the most important algorithmic primitives and is extensively applied
in other algorithms in this thesis. Write-e�cient algorithms for sorting are discussed in
Section 4.4. These algorithms have optimal bounds on (M,ω)-ARAM, (M,B,ω)-ARAM,
and the asymmetric ideal-cache model.

1.4.2 Graph Algorithms

This thesis also introduces several write-e�cient graph algorithms. Many previous
algorithms partition the computations so that each piece can �t into the small-memory to
avoid reading and writing to the large-memory. However, due to the lack of e�cient graph
partitioners for general graphs, designing write-e�cient graph algorithms is generally
hard. In most cases, our goal is to fundamentally change the algorithmic design in order
to trade fewer writes from more reads (and other operations).
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Problems WorkW Depth D

Primitives

Reduce Θ(n + ω) Θ(logn)
Ordered Filter Θ(n + ωk)† O(logn)†

List Contraction Θ(n) O(ω logn)†

Tree Contraction Θ(n) O(ω logn)†

Comparison Sort Θ(n logn + nω) O(logn)†

Graph Algorithms

Construction of O(m + ωn)∗ O(ω log2 n)†

(bi)connectivity oracles O(
√
ωm)∗ O(ω3/2 log3 n)†

MST O(α(n)m + ωn log(min(m/n,ω))) O(ω polylog(n))†

Breadth-�rst search O(m + ωn)∗ O(∆ log2 n)†

Geometric Algorithms

Planar convex hull and O(n logn + ωn)∗ Õ(log2 n)†

Delaunay triangulation
The construction of
k-d tree, interval tree, O(n logn + ωn)∗ O(log2 n)†

priority search tree
Output-sensitive planar O(n(logk + ω log logk))∗ Õ(log2 n logk)†
convex hull O(n(min(k, logn) + ω))∗ Õ(log2 n logk)†

Table 1.3: The work and depth of some write-e�cient algorithms in this thesis on the Asymmetric
NP Model. For graph algorithms, n and m are the number of vertices and edges. In all other cases,
n is the input size. ∆ is the diameter of a graph. polylog means polylogarithmic. k is the output
size. (∗) indicates in expectation; (†) indicates with high probability.

This thesis �rst studies undirected graph connectivity and biconnectivity in Section 5.3.
The proposed sequential and parallel algorithms solve these connectivity problems using
signi�cantly fewer writes than the conventional algorithms.

There are two key techniques in these algorithms to achieve write-e�ciency. The �rst
technique is the parallel algorithms to generate the (bi)connectivity oracles using linear
writes proportional to the number of vertices, which further consists of two components.
The �rst component is the BC (biconnected-component) labeling of a graph, which
is a compact representation of the biconnectivity information of a graph using O(n)
space, where n is the number of vertices. Then a query for biconnected component,
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Connectivity Biconnectivity Best choice

Sequential Parallel Sequential Parallel when

Best prior results O(m + ωn) O(ωm)∗ O(ωm) O(ωm)∗ –
This thesis

O(m + ωn)∗ O(m + ωn)∗ O(m + ωn)∗ O(m + ωn)∗ m ∈ Ω(
√
ωn)

(§5.3.4.2,§5.3.5.2)
This thesis

§5.3.4.3,§5.3.5.3 O(
√
ωm)∗ O(

√
ωm)∗ O(

√
ωm)∗ O(

√
ωm)∗ m ∈ o(

√
ωn)

Table 1.4: Summary of main results for constructing connectivity oracles (n nodes, m edges,
∗=expected), where ω > 1 is the cost of writes to the asymmetric memory. Here “Sequential”
indicates the ARAM work, and “Parallel” indicates the work on Asymmetric NP. All parallel
algorithms have depth polynomial in ω logn. For prior results, this table shows the work of the
best prior sequential algorithm and parallel algorithm respectively. Compared to prior work,
asymmetric memory writes are reduced by up to a factor of ω, yielding improvements in both
sequential and parallel settings. Query times are O(

√
ω)∗ (connectivity) and O(ω)∗ (biconnectivity)

for the last row and O(1) for the rest. For all algorithms the small symmetric memory is only
O(ω logn) words.

which originally requires an output size of O(m) wherem is the number of edges, can be
answered in constant time from the BC labeling. Such representations have been adopted
in future research work [112]. The second component is the approach to compute the
connectivity and biconnectivity labeling using O(m) work and polylogarithmic depth.

The second and primary technique is the construction of an o(n)-sized implicit de-
composition of a sparse graph G on n nodes, which partitions the graph into connected
clusters with sub-linear space to be stored. Using an implicit decomposition, a connec-
tivity or biconnectivity query only requires read-only access to G and a small cost. The
construction breaks the linear-write “barrier”, resulting in costs that are asymptotically
lower than conventional algorithms while adding only a modest cost to the querying time.

To be more speci�c, the new results are summarized in Table 1.4. Denote n to be the
number of vertices andm to be the number of edges. This thesis provides (bi)connectivity
oracles that can be preprocessed in either O(m + ωn) or O(

√
ωm) work with small depth.

Then each connectivity query can be answered in O(1) or O(
√
ω) work, and each bicon-

nectivity query can be answered in O(1) or O(ω) work, respectively.

Another important class of graph algorithms are distance-based graph algorithms,
which are considered in this thesis in Section 5.4. Since most of these distance-based
problems are notoriously hard to solve in parallel, they are mainly studied in the sequential
setting based on (M,ω)-ARAM model. This thesis covers single source shortest paths
(SSSP) using Dijkstra in Section 5.4.1 and minimum spanning trees (MST) in Section 5.4.2,
and their costs are summarized in Table 5.2. In the parallel setting, this thesis also discusses
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the minimum spanning trees in Section 5.4.2.2, and BFS in Section 5.4.3. The bounds of
these algorithms are summarized in Table 5.3. The improvements of these algorithms are
decided by the numbers of vertices and edges of the input instance, and the hardware
parameters M (symmetric memory size) and ω (read-write asymmetry).

1.4.3 Geometric Algorithms

Achieving parallelism (polylogarithmic depth) and optimal write-e�ciency simultane-
ously seems generally hard for many algorithms and data structures in computational
geometry. Here, optimal write-e�ciency means that the number of writes that the al-
gorithm or data structure construction performs is asymptotically equal to the output
size.

This thesis mainly consists of two general frameworks and shows how they can be
used to design algorithms and data structures from geometry with high parallelism as well
as optimal write-e�ciency. The �rst framework is designed for randomized incremental
algorithms. Randomized incremental algorithms are relatively easy to implement in
practice, and the challenge is in simultaneously achieving high parallelism and write-
e�ciency. There are several technical parts in this framework. The �rst part includes
several new incremental algorithms, which is the �rst step of the parallel and write-
e�cient algorithms. The di�culty of this step is usually in showing the parallelism, and
in this approach the new results are based on analyzing the dependence graph of these
algorithms. This technique is used in other problems in [61, 164, 225, 254]. The second
part is for the write-e�ciency (while maintaining parallelism), which further consists
of two components: a DAG-tracing algorithm and a pre�x doubling technique. The
write-e�ciency is from the DAG-tracing algorithm, that given a current con�guration of
a set of objects and a new object, �nds the part of the con�guration that “con�icts” with
the new object. Finding n objects in a con�guration of size n requires O(n logn) reads
but only O(n) writes. Once the con�icts have been found, then previous and new parallel
incremental algorithms can be used to resolve the con�icts among objects taking linear
reads and writes. This allows for a pre�x doubling approach in which the number of
objects inserted in each round is doubled until all objects are inserted.

This framework obtains parallel write-e�cient algorithms for comparison sort, planar
Delaunay triangulation, and k-d trees, all requiring optimal work, linear writes, and
polylogarithmic depth. The most interesting result is for Delaunay triangulation (DT).
Although DT can be solved in optimal time and linear writes sequentially using the plane
sweep method, previous parallel DT algorithms seem hard to make write e�cient. Most
are based on divide-and-conquer, and seem to inherently require Θ(n logn) writes. The
DT algorithm in this thesis requires delicate above-mentioned design and analysis in
order to achieve parallelism and write-e�ciency. For k-d trees, the p-batched incremen-
tal construction technique is introduced that maintains the balance of the tree while
asymptotically reducing the number of writes.
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Construction Query Update

Classic interval tree O(ωn logn) O(ωk + logn) O(ω logn)
WE interval tree O(ωn + n logn) O(ωk + α logα n) O((ω + α) logα n)

Classic priority search tree O(ωn logn) O(ωk + logn) O(ω logn)
WE priority search tree O(ωn + n logn) O(ωk + α logα n) O((ω + α) logα n)

Classic range Tree O(ωn logn) O(ωk + log2 n) O((logn + ω) logn)
WE range tree O((α + ω)n logα n) O(ωk + α logα n logn) O((α logn + ω) logα n)

Table 1.5: A summary of the work cost of the data structures discussed in Section 6.7. In all cases,
it is assumed that the tree contains n objects (intervals or points). For interval trees and priority
search trees, the number of writes in the construction can be reduced fromO(logn) per element to
O(1). For dynamic updates, the number of writes per update can be reduced by a factor of Θ(logα)
at the cost of increasing the number of reads in update and queries by a factor of α for any α ≥ 2.

The second framework is designed for augmented trees, including interval trees, range
trees, and priority search trees. The goal is to achieve write-e�ciency for both the initial
construction as well as future dynamic updates. The framework consists of two techniques.
The �rst technique is to decouple the tree construction from sorting, and introduce parallel
algorithms to construct the trees in linear reads and writes after the objects are sorted
(the sorting can be done with linear writes). Such algorithms provide write-e�cient
constructions of these data structures, but can also be applied in the rebalancing scheme
for dynamic updates—once a subtree is reconstructed once it is unbalanced. The second
technique is the α-labeling. Some tree nodes are subselected as critical nodes, and the
augmentation is only maintained on these nodes. By doing so the number of tree nodes
that need to be written on each update is limited, at the cost of having to read more nodes.

This framework obtains e�cient augmented trees in the asymmetric setting. In
particular, the trees can be constructed in optimal work and writes, and polylogarithmic
depth. For dynamic updates, a trade-o� is provided between performing extra reads in
queries and updates, while doing fewer writes on updates. A standard algorithm uses
O(logn) reads and writes per update (O(log2 n) reads on a 2D range tree). The number
of writes can be reduced by a factor of Θ(logα) for α ≥ 2, at a cost of increasing reads
by at most a factor of O(α) in the worst case. These results are shown in Table 1.5. For
example, when the number of queries and updates are about equal, we can improve the
work by a factor of Θ(logω), which is signi�cant given that the update and query costs
are only logarithmic.

The previous two frameworks introduce new parallel write-e�cient algorithms for
comparison sorting, planar Delaunay triangulation, k-d trees, and static and dynamic
augmented trees (including interval trees, range trees and priority search trees). We
believe the techniques in these frameworks will be useful for designing other algorithms
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in both the symmetric and asymmetric settings. Also, new parallel write-e�cient algo-
rithms for write-sensitive hash tables, and sequential write-e�cient algorithms for linear
programming-style algorithms are also discussed in this thesis.

1.4.4 Cache-ObliviousAlgorithms forDynamic Programming and

Linear Algebra

Cache-oblivious algorithms [131] are widely used in designing algorithms that opti-
mize the communication between CPU and memory. They are �exible and portable, and
adapt to all levels of a multi-level memory hierarchy. As a result, cache-oblivious algo-
rithms are used for engineering e�cient implementations [245], especially for applications
in linear algebra and dynamic programming.

This thesis focuses on a class of cache-oblivious algorithms that have a similar compu-
tation structure as matrix multiplication and can be coded up as nested for-loops. Such
algorithms are in the scope of dynamic programming (e.g., the LWS/GAP/RNA/Parenthsis
problems, and de�nitions given in Section 7.8) and linear algebra (e.g., matrix multiplica-
tion, Gaussian elimination, LU decomposition) [59, 92, 94, 96, 131, 181, 263, 270, 271, 279].

To improve the performance of these algorithms in the asymmetric setting, this thesis
proposes a level of abstraction of the computation in these cache-oblivious algorithms.
This abstraction is referred to as the k-d grid computation structure (short for the k-d grid).
Unlike previous methods that consider the number of nested loops, we observe that the
key underlying factor in determining the cache complexity of these computations is the
number of input entries involved in each basic computation cell (e.g., two input values
for the multiplication in matrix product), which is captured by the k-d grid. Interestingly,
this observation and the associated solution also improves the bounds of these algorithms
in the symmetric setting.

Then this thesis discusses the lower bounds to compute these k-d grids with and
without considering the asymmetric cost between writes and reads. Based on the analysis
of the lower bounds, highly-parallelized algorithms with the matching bound are also
proposed to compute a k-d grid assuming no data dependency within it.

All the cache-oblivious computations considered in this thesis can all be abstracted
as or decomposed into multiple k-d grids without any local dependencies within each of
them. Due to this reason, the analysis of the lower and upper bounds on the k-d grid can
be applied to these computations, yielding the new results as shown in Table 1.6. For the
same reason, the better parallelism in computing k-d grid can also be applied to all these
computations.

We believe that the framework for analyzing cache-oblivious algorithms based on k-d
grids provides a better understanding of these algorithms. In particular, the contributions
include:
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Dimension Problems

Cache Complexity

Symmetric Asymmetric

k = 2 LWS/GAP*/RNA/knapsack recurrences Θ

(
C

BM

)
Θ

(
ω1/2C

BM

)
k = 3

Combinatorial matmul, LU-decomp, Kleene’s
Θ

(
C

B
√
M

)
Θ

(
ω1/3C

B
√
M

)
algorithm, Parenthesis recurrence

Table 1.6: I/O costs of cache-oblivious algorithms based on the k-d grid computation structures.
Here C is the number of algorithmic instructions in the corresponding computation. (*) For the
GAP recurrence, the upper bounds have addition terms that can be found in Section 7.8.2.

• Algorithms with improved cache complexity on many problems in the symmetric
setting (without considering more expensive writes), including the GAP recurrence,
protein accordion folding, and RNA recurrence.

• Improved cache-oblivious algorithms with linear parallel depth for solving all-pair
shortest-paths, Gaussian elimination, triangular system solver, LWS recurrences
and protein accordion folding.

• Write-e�cient cache-oblivious algorithms, including problems in matrix multipli-
cation, many linear algebra algorithms, all-pair shortest-paths, and a number of
dynamic programming recurrences. The asymmetric cache complexity is improved
by a factor of Θ(ω1/2) or Θ(ω2/3) on each problem compared to the previous re-
sults [66]. This improvement is optimal under certain assumptions (the CBCO
paradigm, de�ned in Section 7.4.2).

• The analytical framework is concise and includes about a dozen algorithms, while
each is discussed about its lower and upper cost bound and parallelism in both the
symmetric and the asymmetric settings.

1.5 Experimental Validation

This thesis also conducts experiments to analyze whether the theoretically write-
e�cient algorithms can lead to good performance in practice, and which algorithmic
techniques are useful. As the �rst research of this kind, the experiment section focuses
more on the experimental framework. Then several of the most commonly-used algo-
rithmic building blocks in modern programming are tested in this framework, which
includes: unordered set/map implemented using hash tables, set/map implemented us-
ing balanced binary search trees, comparison sort, and graph traversal algorithms:
breadth-�rst search for unweighted graphs and Dijkstra’s algorithm for weighted
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graphs. An interesting direction for future work is to examine other algorithms proposed
in this thesis using the experimental framework.

At this moment, no non-volatile main memory is currently available, making it im-
possible to get real timings. Since the details about the parameters of the memory re-
main unknown, performing detailed cycle-level simulation (by using e.g., PTLsim [232],
MARSSx86 [214] or ZSim [244]) is of questionable utility. Hence, our framework is based
on a software simulator that can e�ciently and precisely measure the number of read
and write transfers of an algorithm using di�erent caching policies. These numbers can
be used as reasonable proxies for both runtime (especially when implemented in parallel)
and energy consumption for I/O-bounded algorithms. Moreover, conclusions drawn from
these numbers can likely give insights into tradeo�s between reads and writes among
di�erent algorithms.

We also note that designing write-e�cient algorithms falls in a multi-dimensional
parameter space since the asymmetries on latency, bandwidth, and energy consumption
between reads and writes are di�erent. In our experimental framework, the cost of these
di�erent asymmetries is abstracted as a single value, ω. This value together with the cache
size M and cache-line size B (set to be 64 bytes in this paper) form the parameter space of
an algorithm.

Our framework provides a simple and hardware-independent method to analyze and
experiment the performance on the asymmetric memory. We investigate the algorithmic
techniques and learn lessons from the experiments that generally apply for a reasonably
large parameter space of ω, M , and B. This framework also allows monitoring, reasoning,
and debugging the code easily, and it can remain useful even after the new hardware is
available.

Along with the framework, many di�erent algorithms and data structures and their
write-e�cient implementations are designed, implemented, and discussed in this thesis.
Many of them are non-trivial and require careful algorithmic design, analysis, and imple-
mentation. Under our cost measure, which is the asymmetric I/O cost, this thesis shows
better approaches on all problems that are studied in this chapter, compared to the most
basic and commonly-used ones on symmetric memories.

Also, it is interesting to point out that in the experiments, many interesting algorithmic
strategies that improve the performance are unintuitive in the symmetric setting. For
example, indirect addressing should be avoided in the symmetric setting if possible, but
this cost is less problematic in the asymmetric setting. Similarly, strict balancing (e.g., in
AVL or red-black trees) is less critical in the asymmetric setting because they only lead to
more reads, which is a small cost compared to the costly writes. More details about our
experiment are elaborated in Chapter 8, and we believe that these results can be valuable
in designing and engineering write-e�cient algorithms in the future.
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1.6 Organization of this Thesis

The results in this thesis are primarily based on several previous publications. They
are listed here for reference and are the result of the collaboration with my co-authors.
In this thesis, most chapters are notably rewritten and more detailed than the original
papers. Also, there are several new results in this thesis (mostly in Chapter 2, 4, and 7),
which may show up in the future publications.

• Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun.
“Sorting with asymmetric read and write costs.” In Proceedings of the 27th ACM sym-
posium on Parallelism in Algorithms and Architectures (SPAA), 2015, [64]. (Chapter 2
and 4.)

• Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun.
“E�cient Algorithms with asymmetric read and write costs.” In Proceedings of the
24th Annual European Symposium on Algorithms (ESA), 2016, [67]. (Chapter 2, 3, 4
and 5.)

• Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu,
Charles McGu�ey, and Julian Shun. “Parallel algorithms for asymmetric read and
write costs.” In Proceedings of the 28th ACM symposium on Parallelism in Algorithms
and Architectures (SPAA), 2016, [42]. (Chapter 2, 4, 5 and 6.)

• Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan
Gu, Charles McGu�ey, and Julian Shun. “Implicit decomposition for write-e�cient
connectivity algorithms.” In Proceedings of the 32nd IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2018, [43]. (Chapter 5.)

• Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. “Parallelism in randomized
incremental algorithms.” In Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2016, [68]. (Chapter 6.)

• Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. “Parallel Write-E�cient
Algorithms and Data Structures for Computational Geometry.” In Proceedings of
the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2018, [72]. (Chapter 6.)

• Yan Gu. “Improved parallel cache-oblivious algorithms for dynamic programming
and linear algebra.” ArXiv:1809.09330, [151]. (Chapter 7.)

• Yan Gu, Guy E. Blelloch, and Yihan Sun. “Algorithmic building blocks for asymmetric
memories.” In Proceedings of the 26th Annual European Symposium on Algorithms
(ESA), 2018, [155]. (Chapter 8.)

As mentioned in Section 1.1.2, the persistency property of the new non-volatile main
memory is one of the motivation to investigate write-e�cient algorithms. The following
paper de�nes a programming model or an algorithmic cost model that ensures fault-
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tolerant programming and algorithm design on the new persistent main memories, or
provides machanism to support parallel algorithms to be resilient to faults. Based on this
model, we can design write-e�cient fault-tolerant algorithms.

• Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Charles McGu�ey,
and Julian Shun. “The Parallel Persistent Memory Model.” In Proceedings of the 30th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2018, [71].

Since the content of this paper does not completely overlap with the main theme of this
thesis, the summary of this paper is shown in Section 9.2 as for future work.

Many other papers by the thesis author in graduate school are not included in this
thesis, They include distance-based graph algorithms [69, 70], parallel sorting and other
basic building blocks [154, 254], e�cient low-dimension search structures, and other
graphics applications [152, 153, 165].

1.7 Related Work

The related work of this thesis are spread out in di�erent places. Previous work on
hardware-related read-write asymmetry is discussed in Section 1.1. Existing computational
models are reviewed in Section 2.1 and 2.2. Related papers for each new algorithm in this
thesis are provided in each associated chapters and sections for easier referencing.
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Chapter 2

Models of Computation

To study algorithms systematically with asymmetric read and write cost we need compu-
tation models to measure the running time of an algorithm on di�erent settings.

In this chapter, we �rst review some existing models that are most commonly-used in
analyzing the performance of an algorithm in the real world. These models consider the
number of CPU operations and memory accesses, parallelism, etc.

We then discuss how to extend the existing models with the asymmetry in read and
write costs in the next section (Section 2.3). Some of the extensions are straightforward,
but others require careful designing and analysis.

Lastly, some related issues about cache policies and parallel scheduler, are also dis-
cussed, which guarantee the performance of an algorithm in a real machine. Directly
applying the classic approaches in the symmetric setting may lead to signi�cant ine�cient.

To be more speci�c, a machine model is the set of allowable operations used in com-
putation and their respective costs. A programming model de�nes the basic primitives
to form the computation. A cost model or a cost measure is an objective function that is
based on a speci�c machine model, and takes input as an algorithm.

2.1 Existing Sequential Computational Models

2.1.1 Random-Access Machine Model and Time Complexity

A random-access machine (RAM) is an abstract machine model. Each memory location
holds a w-bit word, and usually w = Θ(logn). These words can be operated as a whole by
the CPU instructions. The cost under this model of computation is as follows.

1. Each basic operation takes exactly one step.
2. Loops and subroutines are not considered simple operations. Instead, they are the

composition of many single-step operations.
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3. Each memory access takes exactly one step, and there is an in�nite amount of
memory space.

For the third point, the RAM model takes no distinguish of whether an item is in the
cache, in the main memory or on the disk, which largely simpli�es the analysis.

The time complexity is the cost measure on the RAM model. It is measured by
counting up the number of time steps it takes on a given problem instance on the RAM
model. The worst-case, average, expected or high-probability cost bound can be analyzed
on a given set of input instances (and their distribution).

The most signi�cant advantages and disadvantages of RAM are its simplicity. The
cost measurement enables analyzing algorithms in a machine-independent way, and thus
time complexity is extensively used and taught in the computer-science world. However,
the main concern of RAM model and time complexity is the cost of memory access. The
latency of memory access di�ers signi�cantly depending on whether data sits in the cache,
in the main memory or on the disk, thus violating the third assumption. For example,
accessing a memory location in the main memory is two orders of magnitude slower than
a normal CPU operation. This gap is increasing in the modern multi-core era: with the
increasing of parallel processing units, basic operations become cheaper and the resource
(bandwidth) of each CPU processor to access the memory is even more limited. As a
result, the time complexity on RAM model can provide a relatively good estimation of the
execution time of an algorithm when the cost of computation is the bottleneck. However
when an algorithm intensively accesses the memory, we need the following models to get
a more accurate estimation of running time.

2.1.2 External-Memory (EM) Model and I/O Complexity

The external-memory (EM) model is a machine model introduced by Aggarwal and
Vitter in 1988 [7] (aka. the “I/O model” or the “disk access model”). The external-memory
model simpli�es the memory hierarchy to just two levels.

1. The CPU is connected to a small-memory (e.g., cache) of size M ; this small-memory
in turn is connected to a large-memory of e�ectively in�nite size.

2. Both small-memory and large-memory are divided into blocks of size B, so there
are M/B blocks in the small-memory.

3. The CPU can only access the memory on blocks resident in the small-memory and
it is free of charge.

4. Transferring one block between the small-memory and the large-memory of a block
with size B costs 1 unit.

Thus, the natural goal is to minimize the number of transfers between two memories. The
I/O complexity of an algorithm on the EM model is de�ned as the minimum amount of
memory transfers that are required to �nish the computation on a given input instance.
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The reason that a 2-level hierarchy is su�cient for analyzing the performance of an
algorithm is because: (1) it is simpler than considering the multilevel hierarchy; (2) a single
level may dominate the runtime of the application, so designing an algorithm for that
level may be su�cient; (3) considering a single level exposes the algorithmic di�culties
and generalizing to a multilevel is often straightforward.

The I/O complexity can usually provide a reasonable estimation of the running time of
an algorithm when the algorithm is I/O bottlenecked. It can also be used as guidance for
algorithm design and a cost measure to optimize. An algorithm with low or asymptotically
optimal cost on I/O complexity is called an I/O-e�cient algorithm. A list of cost bounds
of the problems can be found in Table 2.1.

2.1.3 Ideal-Cache Model, Cache-Oblivious (CO) Algorithms, and

Cache Complexity

Although the EM model and I/O complexity is a useful measurement of the cost of
memory access, the model itself is low-level and machine-centric, requiring the algorithm
to be implemented in a careful way such that the I/O complexity matches the theoretical
analysis.1 The parameter M and B usually show up in the algorithms, so that the imple-
mentation for a speci�c machine may require signi�cant e�ort to run on other machines,
or the performance can signi�cantly deteriorate.

In 1999, Frigo, Leiserson, Prokop and Ramachandran [131] proposed concepts of
ideal-cache model, which is a variation of the EM model, and cache-oblivious (CO)
algorithms that are algorithms designed based on the model. In this model, the cache-
oblivious algorithm is unaware of the block size B or the fast memory size M . In particular,
cache-oblivious algorithms will look like normal RAM algorithms, but the cost is measured
by the number of memory transfers between the fast and slow memories.

The ideal-cache model is the same as the EM model expect that it assumes an optimal
replacement policy between the two memories (in the o�ine sense), and the caching is
done automatically. This optimal replacement means proofs of the algorithm cost may
posit any replacement policy, even de�ning an arbitrary strategy for selecting which
blocks to load or evict. The optimal cache replacement always requires no more than
the cost analyzed in this way. The cache complexity of an algorithm is the number of
memory transfers of a cache-oblivious algorithm required on the ideal-cache model.

In practice, the block replacement can be achieved with either LRU (Least-Recently
Used) or FIFO (First-In First-Out) strategy since they areO(1)-competitive with the optimal
o�ine algorithm if they have a cache with twice the size. Since the cost of none of the
existing CO algorithms changes by replacing the cache size of M with 2M , this does not
change the asymptotic bounds of the algorithms.

1In most programming languages, programmers cannot explicitly control the cache and memory trans-
fers.
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Table 2.1: Summary of some basic results on various existing models (CO algorithms requires
M = Ω(B2))

Problems Classic RAM algorithms I/O-e�cient algorithms Cache-oblivious algorithms

Scanning Θ(n) Θ(n/B) Θ(n/B)

Sorting, FFT Θ(n log2 n) Θ((n/B) logM/B(n/B)) O((n/B) logM n)

Searching Θ(log2 n) Θ(logB n) Θ(logB n)
Matrix multiply Θ(n3) Θ(n3/B

√
M) Θ(n3/B

√
M)

Diamond DAG Θ(n2) Θ(n2/M) Θ(n2/M)

There are many advantages of cache-oblivious algorithms. First, cache-oblivious
algorithms do not depend on memory parameters, so that the cost bounds generalize to
multilevel hierarchies. Algorithms are platform independent (i.e., one algorithm works on
all di�erent machines or architectures). Lastly, algorithms are e�cient even when B and
M are not static in some runtime environments.

A list of existing results of cache-oblivious algorithms are generalized in Table 2.1.

2.2 Existing Models for Parallel Algorithms

2.2.1 Parallel Random-Access Machine (PRAM) Model

A parallel random-access machine (PRAM) is a shared-memory abstract machine.
As its name indicates, the PRAM is viewed as the parallel analogy to the random-access
machine (RAM). On this model, there are a problem-size-dependent number of processors,
and each can run a basic operation or read and write to a speci�c memory location with
unit cost. All processors are synchronized, which means that in every time stamp, every
processor proceeds one unit of work simultaneously. The cost of an algorithm is estimated
using two parameters: the overall time to �nish, and the product of this time and the
number of processors.

Since multiple processors may access the same memory location, there are several
assumptions to handle contentions: (1) the exclusive-read exclusive-write (EREW) model,
which does not allow for concurrent reads or writes; (2) the concurrent-read exclusive-
write (CREW) model, which allows for concurrent reads but not concurrent writes; (3) the
concurrent-read concurrent-write (CRCW) model, which allows for both concurrent reads
and writes. For the CRCW model, concurrent writes to a shared location results in either
an arbitrary write being recorded (arbitrary CRCW), or the minimum (or maximum) value
being recorded (priority CRCW).

Despite the simplicity of PRAM, several practical issues prevent the actual imple-
mentation of PRAM algorithms. The largest concern is the cost of synchronization and
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communication, which is neglected in the model. For example, PRAM does not distinguish
the time for accessing the data at di�erent levels of the memory hierarchy on real-world
machines, as well as a basic algebraic operation. The latencies among these operations
can di�er by up to a few hundred, so the synchronization after each step can therefore
lead to signi�cant overhead. Also in practice, explicitly controlling the operations on each
physical core on most nowadays programming languages is messy and tedious. As a result,
although abundant prior research on PRAM algorithms provides insightful inspiration on
designing practical parallel algorithms, more recent parallel algorithm research is mostly
based on the following programming and cost models, which narrow the gap between
theory and practice (programming), and at the same time remain to be simple.

2.2.2 Nested-Parallel Model

The nested-parallel (NP) model (or nested fork-join parallelism) is a programming
model of shared-memory parallel algorithms, in which a FORK speci�es procedures that
can be called in parallel, and a JOIN speci�es a synchronization point among procedures.
The FORK and JOIN constructs can be nested.

More formally, nested parallel computations can be de�ned inductively in terms of the
composition of sequential and parallel components. A strand is a sequential computation
at the base case. A task is then a sequential composition of strands and parallel blocks,
where a parallel block is a parallel composition of tasks starting with a FORK and ending
with a JOIN. The FORK instruction takes an integer n and creates n child tasks, which
can run in parallel. Child tasks get a copy of the parent’s register values, with one special
register getting an integer from 1 ton indicating which child it is. The parent task suspends
until all its children �nish at the point of JOIN, and it continues with the registers in the
same state as when it suspended, except the program counter advanced by one. We say
that a computation has binary branching if n = 2.

A nested parallel computation can be viewed as a series-parallel computation DAG
over the operations of the computation: the tasks in a parallel block are composed in
parallel, and the operations within a strand as well as the strands and parallel blocks of a
task are composed in series in the order they are executed.

Nested parallelism is supported by many parallel languages including NESL [52],
Cilk [130], the Java fork-join framework [184], OpenMP [223], X10 [87], Habanero [80],
Intel Threading Building Blocks [179], and the Task Parallel Library [268].

The theoretical and practical advantages of nested parallelism including: simple
schedulers for dynamically allocating tasks to cores, compositional analysis of work and
depth, and good space and cache behavior, which will be discussed in the next sections.
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2.2.3 Work-Depth Model

The work-depth model is a cost model to analyze the cost of an algorithm on the
nested-parallel (NP) model. As just described, the computation of an algorithm on the NP
model can be viewed as a computation DAG.

• The workW of this algorithm is equal to the number of operations the algorithm
performs, or the costs of all tasks in the computation DAG. This workW can be
(asymptotically) viewed as the time complexity of running this algorithm on the
RAM model.

• The depth D of this algorithm is equal to the maximum sum of costs of tasks over
all directed paths in the computation DAG. It can also be viewed as the length of
the longest series of operations that have to be performed sequentially due to data
dependencies (the critical path). The depth may also be called the critical path
length or the span of the computation.

2.2.4 Scheduling the Computation of Nested Parallelism

Brent’s scheduling theorem [78, 183] indicate that using a greedy o�ine scheduler
with p cores, the running time is bounded betweenW /p andW /p + D. When D �W /p,
this running time is almost optimal. However, the o�ine scheduler has to be aware of the
computation DAG, which is impossible in most algorithms.

In practice, the languages and libraries that support nested parallelism use the ran-
domized work-stealing scheduler to actually schedule the computation. The scheduler
assigns one double-ended queue (dequeue) for each thread. The root node is assigned to
one of the queues. Each processor then proceeds as follows:

• If a processor spawns tasks at a FORK, it continues execution with one of the
spawned subtasks (continuation), and queues the rest at the front of the queue
(spawned child).

• If a processor completes a task, it tries to pull a task from the front of its own queue.
• If a processor �nishes all tasks in its own queue, it randomly selects a victim queue

from other processors, and steals a task from the end of the victim queue. If that
fails, it retries till it succeeds.

More details of the work-stealing scheduler can be found in [54].
Work-stealing schedules are very good at load balancing because they are greedy.

It can guarantee the running time to beW /p +O(D) with high probability on a PRAM
model with p cores [74]. Again when D �W /p, this running time is almost as good as
the greedy o�ine scheduler. Here we will show yet another proof of this theorem, which
we believe is much simpler, and we will adapt the proof to the asymmetric setting in
Section 2.3.3 to show the schedule guarantee.
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Theorem 2.2.1. A work-stealing schedule with p processors on a binary DAG of sizeW and
depth D will take at mostW /p +O(D) time on a CRCW PRAM whp2.

The main step to prove the theorem is show that the overall number of steals for the
entire computation is upper bounded by O(pD) whp. This result is of an independent
interest as a step in the proof of Theorem 2.2.1, since such steals are the only scheduling
overhead other than the necessary computation which is captured by the work termW
that we have to pay even sequentially. When a parallel algorithm has a small depth D
(e.g., O(polylog(n))), such overhead is always negligible.

To prove the theorem, we �rst show the following lemma.

Lemma 2.2.2. It takes O((p − 1)(D + log(1/ϵ)) steals from p − 1 processors to steal D tasks
from one queue with probability at least 1 − ϵ .

Proof. The most optimistic situation is that, no two steals process in the same timestep
(i.e., each steal does not a�ect each other). In this case, each steal has 1/(p − 1) probability
to hit the queue and steal one task. The probability that S = 2(p − 1)(D + log(1/ϵ)) steals
incur less than D hits is no more than e−δ

2µ/2 by Cherno� bound where µ = 2D+2 log(1/ϵ)
and δ = (D + log(1 − ϵ))/µ. Plugging in the values leads to the probability to be less than
ϵ .

However, it is possible that multiple steals occur simultaneously in one timestep and
only one of them succeeds while others fail even though they hit the queue. The most
pessimistic situation is that p − 1 steals always happen together, which maximize the
chance that a steal hits the queue but fails to get the task since it is taken by another
simultaneous steal. The possibility that at least one of the p − 1 steals hit the queue in one
timestep (so that at least one of the task is stolen) is at least 1− (1− 1/(p − 1))p−1 > 1− 1/e .

We can then apply a similar analysis to show that the probability that less than D tasks
are stolen after S′ = 2(D + log(1/ϵ))/(1 − 1/e) steps is small. Similar to the previous case,
such probability is no more than e−δ

2µ/2 by Cherno� bound where µ = 2D + 2 log(1/ϵ)
and δ = (D + log(1−ϵ))/µ. This gives the same probability of less than ϵ , and S′ timesteps
contain (p − 1)S′ = O(p(D + log(1/ϵ))) steals. �

With Lemma 2.2.2, we now prove Theorem 2.2.1.
Proof of Theorem 2.2.1. We consider each path in the DAG, and show that it can be �nished
with O(pD) steals whp. For each speci�c path, the length is no more than D. Each node
on this path is either a spawned child or executed directly after the previous node by the
same processor. We now show that this path can be �nished using no more than O(pD)
steals. It is easy to see that the later case (i.e., the next node will always be executed in
the next timestep) is strictly better than the �rst case when a steal is required to continue

2We say a result holds with high probability (whp) for an input of size n if it holds with probability at
least 1 − n−c , for any constant c > 0, over all possible random choices made by the algorithm.
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the execution of this path. It is possible that the spawned child is not stolen until the
continuation �nishes and the processor takes over this branch, but this will only help.

As a result, the worst case is when all nodes on the path are spawned children. In this
case, since we assume that a FORK spawns a task in a unit time, at any synchronized step
there is always a task available to be stolen. Since the length of the path is no more than
D, Lemma 2.2.2 can upper bound the number of steals to �nish the execution of this path
(here the D tasks waiting to be stolen may not necessarily in the same queue, but this
does not a�ect the analysis). Given a DAG with depth D, there are at most 2D paths in the
DAG, so if we set ϵ = 2D · nc for any constant c ≥ 1, O(p(D + logn)) steals are su�cient
for executing all existing paths. We note that since the input size is at least n and the
DAG needs to have D = Ω(logn) depth to contains Ω(n) nodes, the logn term will not
dominate.

In every timestep, each processor is either making some progress on processing a node,
or trying for a steal attempt. The DAG containsW nodes and we have upper bounded
the number of steal attempts. Since we have p processors, the entire computation can
be executed in (W +O(pD))/p =W /p +O(D) time. Namely, other than theW /p term to
actually execute the computations in the DAG, O(pD) steals are the upper bound for the
additional cost for the work-stealing scheduler, which is an additional O(D) cost when
executing on a p-processor machine. �

This proof can be viewed as a simpli�ed version of the previous proofs in [2, 30, 54, 74],
and we show how it can be adapted into the asymmetric setting in Section 2.3.2.

Meanwhile, since the scheduler di�erentiates between “local” and “remote” work based
on queues, it also preserves locality well, especially if the depth of the program is small.
Intuitively, a low-depth program does not present many opportunities for stealing [74]. If
the sequential I/O or cache complexity is Q1(n;M,B) with private caches, then the total
number of cache misses for all caches Qp(n;M,B) is bounded by Q1(n;M,B) +O(pDM/B)
in expectation [2]. On a parallel machine with a share cache, using the parallel depth-�rst
(PDF) scheduler [57], then Qp(n;M + pMB,B) ≤ Q1(n;M,B). Most parallel algorithms
throughout this thesis have only polylogarithmic depth, so that the parallel I/O or cache
complexity is asymptotically bounded by Q1, when plugging in the parameters from the
real-world settings. As a result, it is usually enough to just analyze the sequential I/O or
cache complexity, and the overhead caused by parallelism is negligible.

2.3 Models Accounting for Asymmetry

In Section 2.1 we reviewed the existing computational models that not only measure
the costs of computations, memory access, and parallelism of an algorithm, but also
provide an objective to optimize when designing algorithms for a speci�c problem. These
cost models are therefore heavily used in algorithm research and conducting practical
implementations. Unfortunately, none of these models have considered the asymmetric
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cost between reads and writes, so directly applying algorithms designed to optimize
the existing measurements may not be e�cient on the future hardware. We will now
introduce how these models can be extended to the asymmetric setting.

2.3.1 (M,ω)-Asymmetric RAM: the Sequential Model

To start with, the �rst machine model that will be introduced is the (M,ω)-Asymmetric
RAM, which is used to analyze the sequential costs of computations, memory access.

Similar to the external-memory and cache-oblivious model, (M,ω)-ARAM assumes a
symmetric small-memory of size M ≥ 1 3, an asymmetric large-memory of unbounded
size, and a write cost ω ≥ 1, which is assumed to be an integer without loss of generality.
Typically, we are interested in the setting where n � M , where n is the input size, and
ω � 1.

Table 2.2: The cost of a single access to the two memories for ARAM cost and work on (M,ω)-
ARAM.

Measure small-memory large-memory

ARAM cost Q 0 read: 1, write: ω
workW 1 read: 1, write: ω

The model assumes standard random access machine (RAM) instructions. Two cost
measures for computations are considered in the model. The (asymmetric) ARAM cost Q
is de�ned as the total number of reads from large-memory plus ω times the number of
writes to large-memory. The (asymmetric) workW is de�ned as the ARAM cost plus the
number of reads from and writes to small-memory.4 Because all instructions are from
memory, this includes any cost of computation. In the thesis, the results are presented
using both cost measures.

The model contrasts with the external-memory model [7] in the asymmetry of the
read and write costs. For simplicity, as the very �rst research on write-e�cient algorithms,
the simple version of the memory is not partitioned into blocks of size B to keep the
algorithms simpler. It is worth to mention that even the case of M = O(1) is interesting.
An example of this is the asymmetric sorting algorithms introduced in Section 4.4.1.

This blocking can easily be considered if necessary. In this case each read/write
loads/stores a memory block of B words. This is referred to the (M,B,ω)-ARAM. We
only measure the ARAM cost Q on this model since it seems unreasonable to de�ne the

3The small-memory contains M words, each of size Θ(logn) for input size n.
4The work metric models the fact that reads to certain emerging asymmetric memories are projected to

be roughly as fast as reads to symmetric memory (DRAM). The ARAM cost metric Q does not make this
assumption and hence is more generally applicable.

31



corresponding work when considering this block size. An example of algorithms analyzed
using the (M,B,ω)-ARAM is given in Section 4.4.3.

The workW in the (M,ω)-ARAM is the analogy of the time complexity of the sym-
metric case. Each basic operation or a read is also counted as a unit cost, and a write to
the large-memory costs ω. Since there is usually a return value for each operation, the
small-memory is necessary in the asymmetric setting (otherwise each operation will cost
ω). Here the reason we use the word “work” instead of “time” is to be consistent with the
parallel setting.

2.3.2 Asymmetric NP Model: the Parallel Model

We now introduce the cost model of nested-parallel computations. The model is named
as the Asymmetric Nested-Parallel (NP) model and can be viewed as the asymmetric
extension of the nested-parallel model.

The Asymmetric Nested-Parallel (NP) model assumes a stack allocated symmetric
small-memory, and a heap allocated asymmetric large-memory. Stack allocated memory
is memory allocated by a task, available to the task and its children, but invalid when
the task �nishes. Heap allocated memory is allocated by a task and can be accessed
by any other task, including ancestor tasks (it is completely shared memory). Each
instruction has weight one, except a write to the heap memory, which has weight ω ≥ 1
(in practice, ω � 1). When analyzing an algorithm, the term “writes” will be used to
refer to the number of writes to heap allocated memory. We assume the amount of stack
memory allocated by all but the leaf tasks (tasks with no forks) is constant. The amount
of symmetric stack memory a leaf task can allocate is bounded by a parameter Ml . This
separation into stack and heap allocated memory, and the distinction between leaf and
non-leaf tasks for stack memory size, is made both because it is a convenient model for
using the di�erent memories, and also because it enables an e�cient mapping onto a �xed
number of processors, as justi�ed below.

Note that the Asymmetric NP is an algorithmic cost model, as opposed to a machine
model, enabling reasoning about nested-parallel computations without worrying about
mapping the computation to machines. We address this scheduling issue next.

2.3.3 Scheduling Asymmetric NP Computations

This section shows that the algorithmic cost metrics of Asymmetric NP are su�ciently
descriptive to capture the performance of Asymmetric NP computations when using good
schedulers.

The Asymmetric NP model has been designed in a manner that yields an e�cient
mapping to an (M,ω)-Asymmetric PRAM machine model. In this model, there are p
processors, each running its own instructions using a small symmetric local memory
of size M . The processors share an unbounded asymmetric global memory, to which
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concurrent reads and writes are allowed. We also allow any processor to read the local
memory of another processor (concurrently), but not to write to it. A request to read
the local memory of another processor is viewed as requiring a write out to the global
memory in order to enable the read, and hence is charged ω. On each processor any
write to the global memory also takes ω time. All other instructions take unit time. For
synchronizing we assume an atomic fetch-and-add to the global memory that can be
performed in constant depth and work linear in the number of processors.

The challenge with Asymmetric NP computations is that stack variables must be
written out to global memory before tasks can be migrated to a di�erent processor from
the one that forked it. The naïve approach would forego the stack and instead write all
O(1) stack variables for non-leaf tasks directly to global memory, making each FORK
cost Θ(ω). For �ne-grained parallelism especially, where the number of FORKs for an
algorithm with workW is Ω(W ), this approach would yield running time no better than
Ω(ωW /p). In other words, one may as well consider every instruction a write if adopting
the naïve scheduler.

Here we show that a variant of a work-stealing scheduler [74] achievesW /p +O(ωD)
expected time when limited to binary forking. As discussed in Section 2.2.4, in standard
(symmetric-memory) work stealing, each worker (or processor) maintains a double-ended
queue called a deque of tasks that are ready to execute. Whenever a worker executes
a (binary) FORK instruction, the processor continues working on the “left” child task
and places the “right” child on the bottom of its deque. When a worker completes a
task by executing its FINISH instruction, there are two options. If that task enabled
another one, i.e., the completed task was the last outstanding child of its parent, then the
worker continues working on the now-enabled parent. Otherwise, the worker removes
the bottom task from its deque and executes it. If the deque is empty, the worker instead
steals, meaning that it chooses a random victim processor and takes the task from the
top of that processor’s deque if the deque is non-empty. In the event that the steal is
unsuccessful, the worker will continue to attempt to steal until it successfully steals a task
or the computation is �nished.

In the Asymmetric NP model, working locally on a deque is cheap, and in general stack
frames need not be written out. For example, if the entire computation runs sequentially
on one processor, then no stack-related writes occur (assuming that the local memory is
large enough to hold the stack depth).

There are still some challenges, however, most notably on steals. Because a task has
access to any stack variables of its ancestor tasks, any unwritten stacks of ancestor tasks
must be written out to global memory when a steal occurs. This situation is particularly
challenging to analyze as it may cause steals to take time proportional to ω times the
nesting depth. To cope with this challenge, Lemma 2.3.1 shows that a simple modi�cation
to work stealing results in at most a constant number of frames needing to be written. We
assume that a steal request somehow interrupts its target task (e.g., all tasks can regularly
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poll to check if there are any outstanding steal requests), and if work is available, the
registers for the stolen task and relevant ancestors are written to the asymmetric global
memory. There is a similar potential issue when a task completes: its return value must
be written to its parent task, which may no longer be local, and hence a write to global
memory could be required.

Lemma 2.3.1. There exists a variant of work stealing such that on each steal (or steal
attempt), only O(1) stack frames are written to global memory.

Proof. The lemma can be achieved either by modifying work stealing or by an equivalent
program transformation. The program transformation is as follows. Transform every
FORK into two FORKs as follows. First FORK two tasks: the left child performs the
intended FORK, which we call a forking task, and the right child is a dummy task that
does nothing. The dummy task is inserted onto the deque, whereas the worker continues
to execute the forking task. (In Cilk-like work-stealing, e.g., [74], expressing the FORK as
two “spawns” followed by a “sync” would automatically create a similar dummy task as a
continuation from the second spawn.)

We claim that for the topmost task on the deque (i.e., the one that can be stolen), at
most its parent and grandparent have not already been written out to global memory.
In order for a task to be on the deque and hence stealable, it must be the right child of
its parent. A simple induction shows that for any task on a deque, all right children of
ancestors have either been stolen already or are on the same deque. (A similar claim is
proven as Lemma 3 in [30].) Thus, a steal need only write-out the frames corresponding to
the longest right-only path in the computation graph. The longest is three nodes, which
we can show by cases. A forking task is always the left child and hence not stealable. A
real task (i.e., one existing before the transformation) is always the child of a forking task,
so it can have at most one unwritten ancestor frame: the parent forking task. A dummy
task is always the right child of a real task, so stealing a dummy task could entail writing
out three frames. �

Theorem2.3.2. Consider a computation in the Asymmetric NPmodel with binary branching
factor,W work, D unweighted depth, δ nesting depth, andMl leaf stack memory. There exists
a work-stealing scheduler that executes the computation inW /p +O(ωD) expected time on
a p-processor (O(δ ) +Ml ,ω)-Asymmetric PRAM.

Proof. Our analysis is based on the proof of Theorem 2.2.1. But we need to account for
the fact that (1) steals involve writing out to global memory, and (2) �nishing tasks may
also entail writing out to global memory, i.e., if the parent frame is in global memory.

We will use the similar argument from Section 2.2.4 that at most O(pD) steals are
su�cient for the entire computation. Note that based on our assumption and Lemma 2.3.1,
each successful steal occupies two processors for at most O(ω) timesteps during the steal
process and the join part, since a constant stack frames are required to communicate via
the global memory.
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To adapt the analysis for Lemma 2.2.2 and Theorem 2.2.1, we now require a processor
to idle for t = Θ(ω) timesteps after each unsuccessful steal, before the next steal attempt.
By making this change, each successful steal can only “block” at most O(p) simultaneous
steal attempts instead of O(ωp) steal attemps. Therefore, the proof of Lemma 2.2.2 and
Theorem 2.2.1 with minor modi�cations can adapt to here.

For a path in this setting, each node is either a FORK operation, which is local and
assumed to use unit time, or a regular instruction which requires either unit time or ω
time when it is write to the shared asymmetric large-memory. The path can always make
progress on the same processor, unless the nodes that are spawn children that need to be
stolen. Since the (unweighted) length of the path is upper bounded by D and the steal
attempts from one processor appear at most once in every O(ω) timesteps, we can show
that for every O(ω) timesteps, we can either proceed at least one step further on the
path (corresponding to nodes that are not spawn children), or there is at least an task
corresponding to a spawn children available to be stolen in the deque. Since there are at
most D spawn children on one path, O(pD) steals are su�cient to �nish the computation
on all paths in the DAG. The analysis in Lemma 2.2.2 and Theorem 2.2.1 can directly go
through and the only di�erence is that at most O(p) instead of p − 1 steals can a�ect each
other, but such di�erence only in�uence the constant in the big-O. Other than the writes
to the asymmetric large-memory during the steal, assuming local small-memory is large
enough to hold the entire stack (i.e., O(δ ) +Ml )), the only additional writes that occur are
when a child returns to a parent task that resides in large-memory, i.e., it has been stolen.
This event also requires writes to the asymmetric large-memory, but the number of these
writes is bounded by the number of steals.

Since we can bound the number of steals to be O(pD) and each steal costs O(ω), we
thus have a total running time that isW /p +O(ωS/p) =W /p +O(ωD). �

In a very high level, each steal attempt is slowed down and charged for O(ω) time
instead of a unit time. Despite that a steal is more expensive, less frequent steal is overall
bene�cial (each processor can execute more work) and will not increase the number of
steals.

The above theorem provides justi�cation for charging only unit cost for FORK, and
for example, means that the standard reduce via a binary tree incurs only Θ(n + ω) work
instead of Θ(ωn) work on the Asymmetric NP, as discussed in Section 4.2. Note also that
our separate accounting for leaf stack memory in the Asymmetric NP model, and the
observation that the non-leaf tasks of all the algorithms in this thesis each allocate only
O(1) stack memory, means that the bound in the lemma is only a constant number of
writes per steal, whereas without the separate accounting, it would be O(Ml ) writes per
steal.

Bulk-Synchronous Computations.
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Many of the algorithms in this thesis are bulk-synchronous algorithms for which
there is only one level of nesting (δ = 1). The root task proceeds in a sequence of R rounds.
In each round i it forks ni child tasks (each a leaf) and waits for them to �nish. The root
task can run arbitrary computation between such rounds. We de�ne the iteration count I
as

∑R
i=1 ni . The following lemma for scheduling bulk-synchronous algorithms provides

additional support for the model.

Lemma 2.3.3. A bulk-synchronous computation with arbitrary branching on the Asym-
metric NP model with W work, D (unweighted) depth, I iteration count, and Ml leaf
stack memory, can be simulated on an (O(Ml ),ω)-Asymmetric PRAM with P processors
in O((W + ωI )/p + ωD) time.

Proof. The idea is that the root task runs on some processor and when it gets to a fork,
it sets up the registers for the children and sets a count to n. The processors then grab
tasks by decrementing this count (using the fetch-and-add). When the count reaches zero
idle processors quit for that round and wait for a later round when it is again set to some
non-zero number. A separate counter can be used to detect when all processors are done,
and the processor that detects termination can continue with the root task. The additional
work done for accessing the counter is O(ωI ) and most pessimistically the charge to the
weighted depth is O(ωD) so using Brent’s scheduling principle [78], (T ≤W /p + D), we
have the given time bounds.

Each child task takes O(Ml ) local memory. Since the nesting depth is one, the total
memory needed by a child task is O(Ml + 1). This gives the memory bound. �

We note that in the realistic cases, each leaf task needs at least a write after the
computation, so the ωI term will not dominate. As a result, even with a slightly di�erent
de�nitions for workW and depth D in the bulk-synchronous computation, we do not
speci�cally identify this case in the rest of this thesis since the simulated running time is
the same as O(W /p + ωD).

2.3.4 Asymmetric Ideal-Cache Model and Cache Policy

Recall from Section 2.1.3 the Ideal-Cache model [131] is a variant of the external-
memory model. The machine model is organized in the same way with two memories
each partitioned into blocks, but there are no explicit memory transfer instructions. Instead
all addressable memory is in the large-memory, but any subset of up to M/B of the blocks
can have a copy resident in the small-memory (cache). Any reference to a resident block
is a cache hit and is free. Any reference to a word in a block that is not resident is a
cache miss and requires a memory transfer from the large-memory. The cache miss can
replace a block in the cache with the loaded block, which might require evicting a cache
block. The model makes the tall cache assumption where M = Ω(B2), which is easily met
in practice. The I/O or cache complexity of an algorithm is the number of cache misses.
An optimal (o�ine) cache eviction policy is assumed—i.e., one that minimizes the I/O

36



complexity. It is well known that the optimal policy can be approximated using the online
least recently used (LRU) policy at a cost of at most doubling the number of misses, and
doubling the cache size [257].

The main purpose of the Ideal-Cache model is for the design of cache-oblivious algo-
rithms. These are algorithms that do not use the parameters M and B in their design, but
for which one can still derive e�ective bounds on I/O complexity. This has the advantage
that the algorithms work well for any cache sizes on any cache hierarchies. The I/O
complexity of cache-oblivious sorting is asymptotically the same as for the EM model.

In order to distinguish the extra cost of writes from reads, the Asymmetric Ideal-
Cache model is de�ned as follows. A cache block is dirty if the version in the cache has
been modi�ed since it was brought into the cache, and clean otherwise. When a cache
miss evicts a clean block the cost is 1, but when evicting a dirty block the cost is 1 + ω,
1 for the read and ω for the write. Again, we assume an ideal o�ine cache replacement
policy—i.e., minimizing the total I/O cost.

Under this model however, we note that the LRU policy is no longer 2-competitive
comparing to the optimal o�ine policy. Consider a cache with k = M/B blocks and a
memory access pattern that repeatedly and sequentially writes to k − 1 blocks and read
from other k − 1 blocks. An ideal cache policy will keep all k − 1 blocks associated to
writes, so the I/O cost of each round is k − 1 for k − 1 read misses. An LRU policy however
causes a cache miss for every single memory access, leading the I/O cost of each round to
ω(k − 1)+k − 1. This approximation is proportional to ω, which is problematic. Therefore
a new variant of the cache replacement policy is required, which needs to be competitive
within a constant factor.

The idea is to separately maintain two equal-sized pools of blocks in the cache (primary
memory), a read pool and a write pool. When reading a location, (i) if its block is in the
read pool we just read the value; (ii) if it is in the write pool we copy the block to the read
pool; or (iii) if it is in neither, we read the block from secondary memory into the read
pool. In the latter two cases we evict the LRU block from the read pool if it is full, with
cost 1. The rules for the write pool are symmetric when writing to a memory location,
but the eviction has cost ω + 1 because the block is dirty. We call this the read-write LRU
policy. This policy is competitive with the optimal o�ine policy:

Lemma 2.3.4. For any sequence S of instructions, if it has cost QI (S) on the Asymmetric
Ideal-Cache model with cache sizeMI , then it will have cost

QL(S) ≤
ML

ML −MI
QI (S) + (1 + ω)MI/B

on an asymmetric cache with read-write LRU policy and cache sizes (read and write pools)
ML.

Proof. Partition the sequence of instructions into regions that contain memory reads to
exactly ML/B distinct memory blocks each (except perhaps the last). Each region will

37



require at most ML/B misses under LRU. Each will also require at least (ML −MI )/B cache
misses on the ideal cache since at most MI/B blocks can be in the cache at the start of
the region. The same argument can be made for writes, but in this case each operation
involves evicting a dirty block. The (1 + ω)MI/B is for the last region. To account for the
last region, in the worst case at the start of the last write region the ideal cache starts with
MI/B blocks which get written to, while the LRU starts with none of those blocks. The
LRU therefore invokes an addition MI/B write misses each costing 1 + ω (1 for the load
and ω for the eviction). Note that if the cache starts empty then we do not have to add
this term since an equal amount will be saved in the �rst round. �

We de�ne the asymmetric I/O cost or asymmetric cache complexity to be the cost
of an algorithm on the asymmetric ideal-cache model.

2.3.5 Asymmetric Low-depth Cache-Oblivious Paradigm

The last model considered in this thesis is based on developing low-depth cache-
oblivious algorithms [58]. As discussed in Section 2.1.3, the cache complexity can be
analyzed on the Ideal-Cache model under this sequential order.

Using known scheduling results the depth and sequential cache complexity of a
computation are su�cient for deriving bounds on parallel cache complexity. In particular,
let D be the depth and Q1 be the sequential cache complexity. Then for a p-processor
shared-memory machine with private caches (each processor has its own cache) using a
work-stealing scheduler, the total number of misses Qp across all processors is at most
Q1+O(pDM/B)with high probability [2]. For ap-processor shared-memory machine with
a shared cache of size M + pBD using a parallel-depth-�rst (PDF) scheduler, Qp ≤ Q1 [50].
These bounds can be extended to multi-level hierarchies of private or shared caches,
respectively [58]. Thus, algorithms with low depth have good parallel cache complexity.

The asymmetric variant of the low-depth cache-oblivious paradigm simply accounts
for ω in the depth and uses the Asymmetric Ideal-Cache model for sequential cache
complexity. We observe that the above scheduler bounds readily extend to this asymmetric
setting. The O(pDM/B) bound on the additional cache misses under work-stealing arises
from anO(pD) bound on the number of steals and the observation that each steal requires
the stealer to incur O(M/B) misses to “warm up” its cache. Pessimistically, we will charge
2M/B writes (and reads) for each steal, because each line may be dirty and need writing
back before the stealer can read it into its cache and, once the stealer has completed the
stolen work (reached the join corresponding to the fork that spawned the stolen work),
the contents of its cache may need to be written back. Therefore for private caches we
have QP ≤ Q1 +O(ωpDM/B). The PDF bounds extend because there are no additional
cache misses and hence no additional reads or writes.
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Chapter 3

Lower Bounds

We start by showing a variety of lower bounds on (M,ω)-ARAM of some fundamen-
tal problems including Fast Fourier Transform (FFT), sorting network, diamond DAGs,
permuting and sorting. These lower bounds mainly focus on the number of I/Os to the
large-memory (i.e., the ARAM cost). From a theoretical point of view, these lower bounds
indicate the amount of improvement that can be made to the classic algorithms without
considering the asymmetry between reads and writes. That further leads us to design
algorithms that are asymptotically optimal on (M,ω)-ARAM and close the gaps. On the
other hand, these lower bounds show the hardness of these problems, indicating that
practically (i.e., considering the actual values of ω and M), we can only achieve a constant
improvement unless M = o(ω), which seems to be unrealistic. A list of results are shown
in Table 3.1.

In a high-level overview, we show that FFT and sorting network that have �xed com-
putational DAG, the amount of improvement is limited to log(ωM)/logM (the previous
bounds are listed in Table 2.1 and B = 1). For Diamond DAG the result is interesting: we
show that there is no asymptotic improvement without allowing redundant computation,
even if the reads are free! The proof techniques are to partition a computation into sub-
computations that each have a lower bound on cost, but an upper bound on the number
of inputs and outputs, which lower bound the costs to �nish the computations of these
problems.

Based on the model proposed in this thesis, Jacob and Sitchinava [182] recently show
the lower bounds on permuting, sorting and sparse-matrix vector multiplication, and the
results are also summarized in Table 3.1. In this case the block size B is also considered
since the bounds are trivial otherwise. The outline of these results are overviewed in
Section 3.5.

39



(a). The results in this thesis based on the (M,ω)-ARAM.

Problems ARAM Cost (Q) Work (W ) Remarks

FFT Q(n) = Ω

(
ωn logn
log(ωM)

)
W (n) = Q(n) + Ω(n logn) Section 3.2

Sorting Network Q(n) = Ω

(
ωn logn
log(ωM)

)
W (n) = Q(n) + Ω(n logn) Section 3.3

Diamond DAG Q(n) = Ω

(
ωn2

M

)
W (n) = Q(n) + Ω(n2) Section 3.4

(b). Later results from Jacob and Sitchinava’s 2017 SPAA paper based on the (M,B,ω)-ARAM. On
these problems, the block size B (full de�nition given in Section 2.1.2) is considered since the

bounds are trivial otherwise.

Problems ARAM Cost (Q) Remarks

Permuting and sorting Q(n) = Ω

(
min

{
n,

ωn log(n/B)
B log(ωM/B)

})
Section 3.5

SparseMxV Q(n) = Ω

(
min

{
h,
ωh log(n /max{h/n,M})

B log(ωM/B)

})
Section 3.5

Table 3.1: Summary of lower bounds on the (M,ω)-ARAM. In all cases n is the input size. In
sparse-matrix vector multiplication (referred to as “SparseMxV” in the table), h is the number of
non-zero elements in the matrix.

3.1 General Technique in the Proofs

To start with, we show the general techniques to show the lower bounds for Fast
Fourier Transform (FFT) DAGs, sorting networks and diamond DAGs. The idea in showing
the lower bounds is to partition a computation into subcomputations that each have a
lower bound on cost, but an upper bound on the number of inputs and outputs they can
use. Our lower bound for FFT DAGs then uses an interesting accounting technique that
gives every node in the DAG a unit weight, and fractionally assigns this weight across
the subcomputations. In the special case ω = 1, this leads to a simpler proof for the lower
bound on the I/O complexity of FFT DAGs than the well-known bound by Hong and
Kung [170].

We refer to a subcomputation as any contiguous sequence of instructions. The outputs
of a subcomputation are the values written by the subcomputation that are either an
output of the full computation or read by a later subcomputation. Symmetrically, the
inputs of a subcomputation are the values read by the subcomputation that are either
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Figure 3.1: An example of the com-
putational DAG of a FFT DAG (aka.
butter�y networks) of size 8. The ver-
tices in top row are the input and the
bottom row is the output. This net-
work has 3 levels, and in each level
each vertex depends on the its own
value in the previous level, as well as
the vertex with index that reverses the
i-th bit, where i is the number of level.

an input of the full computation or written by a previous subcomputation. The space
of a computation or subcomputation is the number of memory locations both read and
written. An (l,m)-partitioning of a computation is a partitioning of instructions into
subcomputations such that each has at most l inputs and at mostm outputs. We allow for
recomputation—instructions in di�erent subcomputations might compute the same value.

Lemma 3.1.1. Any computation in the (M,ω)-ARAM has an ((ω + 1)M, 2M)-partitioning
such that at most one of the subcomputations has ARAM cost Q < ωM .

Proof. We generate the partitioning constructively. Starting at the beginning, partition
the instructions into contiguous blocks such that all but possibly the last block has cost
Q ≥ ωM , but removing the last instruction from the block would have cost Q < ωM . To
remain within the cost bound each such subcomputation can read at mostωM values from
large-memory. It can also read the at most M values that are in the small-memory when
the subcomputation starts. Therefore it can read at most (ω + 1)M distinct values from
the input or from previous subcomputations. Similarly, each subcomputation can write
at most M values to large-memory, and an additional M that remain in small-memory
when the subcomputation ends. Therefore it can write at most 2M distinct values that are
available to later subcomputations or the output. �

3.2 Fast Fourier Transform (FFT)

We now consider lower bounds for the DAG computation problem for the family of
FFT DAGs (also called FFT networks, or butter�y networks). The FFT DAG of input size
n = 2k consists of k + 1 levels each with n vertices (total of n log 2n vertices). Each vertex
(i, j) at level i ∈ 0, . . . ,k − 1 and row j has two out edges, which go to vertices (i + 1, j)
and (i + 1, j ⊕ 2i) (⊕ is the exclusive-or of the bit representation). An example of such
DAG with n = 8 is shown in Figure 3.1. This is the DAG used by the standard FFT (Fast
Fourier Transform) computation. We note that in the FFT DAG there is at most a single
path from any vertex to another.
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Lemma 3.2.1. Any (l,m)-partitioning of a computation for simulating an n input FFT DAG
has at least n logn/(m log l) subcomputations.

Proof. We refer to all vertices whose values are outputs of any subcomputation, as partition
output vertices. We assign each such vertex arbitrarily to one of the subcomputations for
which it is an output.

Consider the following accounting scheme for fractionally assigning a unit weight for
each non-input vertex to some set of partition output vertices. If a vertex is a partition
output vertex, then assign the weight to itself. Otherwise take the weight, divide it evenly
between its two immediate descendants (out edges) in the FFT DAG, and recursively
assign that weight to each. For example, for a vertex x that is not a partition output
vertex, if an immediate descendant y is a partition output vertex, then y gets a weight of
1/2 from x , but if not and one of y’s immediate descendants z is, then z gets a weight of
1/4 from x . Since each non-input vertex is fully assigned across some partition output
vertices, the sum of the weights assigned across the partition output vertices exactly
equals |V | − n = n logn. We now argue that every partition output vertex can have at
most log l weight assigned to it. Looking back from an output vertex we see a binary
tree rooted at the output. If we follow each branch of the tree until we reach an input
for the subcomputation, we get a tree with at most l leaves, since there are at most l
inputs and at most a single path from every vertex to the output. The contribution of
each vertex in the tree to the output is 1/2i , where i is its depth (the root is depth 0). The
leaves (subcomputation inputs) are not included since they are partition output vertices
themselves, or inputs to the whole computation, which we have excluded. By induction
on the tree structure, the weight of that tree is maximized when it is perfectly balanced,
which gives a total weight of log l .

Therefore since every subcomputation can have at mostm outputs, the total weight
assigned to each subcomputation is at most m log l . Since the total weight across all
subcomputations isn logn, the total number of subcomputations is at leastn logn/(m log l).

�

Theorem 3.2.2 (FFT Lower Bound). Any solution to the DAG computation problem on

the family of FFT DAGs parametrized by input size n has costs Q(n) = Ω

(
ωn logn
log(ωM)

)
and

W (n) = Ω(Q(n) + n logn) on the (M,ω)-ARAM.

Proof. By Lemma 3.1.1 every computation must have an ((ω + 1)M, 2M)-partitioning with
subcomputation cost Q ≥ ωM (except perhaps one). Plugging in Lemma 3.2.1 we have
Q(n) ≥ ωMn logn/(2M log((ω + 1)M)), which gives our bound on Q(n). ForW (n) we just
add in the cost of the computation of each vertex. �

Note that whichever of ω and M is larger will dominate in the denominator of Q(n).
Whenω ≤ M , these lower bounds match those for the standard external memory model [7,
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170] assuming both reads and writes have cost ω. This implies that cheaper reads do not
help asymptotically in this case. When ω > M , however, there is a potential asymptotic
advantage for the cheaper reads.

3.3 Sorting Networks

A sorting network is a acyclic network of comparators, each of which takes two input
keys and returns the minimum of the keys on one output, and the maximum on the other.
For a family of sorting networks parametrized by n, each network takes n inputs, has n
ordered outputs, and when propagating the inputs to the outputs must place the keys in
sorted order on the outputs. A sorting network can be modeled as a DAG in the obvious
way. Ajtai, Komlós and Szemerédi [12] described a family of sorting networks that have
size O(n logn) and depth O(logn). Their algorithm is complicated and the constants are
very large. Many simpli�cations and constant factor improvements have been made,
including the well known Patterson variant [227] and a simpli�cation by Seiferas [250].
Recently Goodrich [148] gave a much simpler construction of an O(n logn) size network,
but it requires polynomial depth. Here we show lower bounds of simulating any sorting
network on the (M,ω)-ARAM.

Theorem3.3.1 (Sorting Lower Bound). Simulating any family of sorting networks parametrized

on input sizen hasQ(n) = Ω

(
ωn logn
log(ωM)

)
andW (n) = Ω(Q(n)+n logn) on the (M,ω)-ARAM.

Proof. Consider an (l,m)-partitioning of the computation. Each subcomputation has at
most l inputs from the network, and m outputs for the network. The computation is
oblivious to the values in the network (it can only place the min and max on the outputs
of each comparator). Therefore locations of the inputs and outputs are �xed independent
of input values. The total number of choices the subcomputation has is therefore

( l
m

)
m! =

l !/(l −m)! < lm. Since there are n! possible permutations, we have that the number of
subcomputations k must satisfy (lm)k ≥ n!. Taking logs of both sides, rearranging, and
using Stirling’s formula we have k > log(n!)/(m log l) > 1

2n logn/(m log l) (for n > e2). By
Lemma 3.1.1 we have Q(n) > ωM 1

2n logn/(2M log((1+ω)M)) = 1
4ωn logn/log((1+ω)M)

(for n > e2). �

These bounds are the same as for simulating an FFT DAG, and, as with FFTs, they
indicate that faster reads do not asymptotically a�ect the lower bound unless ω > M .
These lower bounds rely on the sort being done on a network, and in particular that the
location of all read and writes are oblivious to the data itself. As discussed in the next
section, for general comparison sorting algorithms, we can get better upper bounds than
indicated by these lower bounds.
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Figure 3.2: An example of the computational
DAG of a diamond DAG in a 5×5 grid. The values
in the circles need to be computed. The values
in the left column and top row can be directly
computed from the input, and each other value
depends on its top, left, and top-left neighbors.
The bottom-right value is the output.

3.4 Diamond DAG

We consider the family of diamond DAGs parametrized on size n. Each DAG has n2

vertices arranged in a n×n grid such that every vertex (i, j), 0 ≤ i < (n−1), 0 ≤ j < (n−1)
has two out-edges to (i + 1, j) and (i, j + 1). The DAG has one input at (0, 0) and one
output at (n − 1,n − 1). The family of 3-diamond DAGs additionally have edges from (i, j)
to (i + 1, j + 1). An example of such diamond DAG is given in Figure 3.2 as an example.
Diamond DAGs have many applications in dynamic programs, such as for the edit distance
(ED), longest common subsequence (LCS), and optimal sequence alignment problems.

Lemma 3.4.1 (Cook and Sethi, 1976). Solving the DAG computation problem on the family
of diamond DAGs of input parameter n (size n × n) requires n space to store vertex values
from the DAG.

Proof. Cook and Sethi [106] show that evaluating the top half of a diamond DAG (i + j ≥
n − 1) , which they call a pyramid DAG, requires n space to store partial results. Since
all paths of the diamond DAG must go through the top half, it follows for the diamond
DAG. �

Theorem 3.4.2 (Diamond DAG Lower Bound). The family of diamond DAGs parametrized

on input size n has Q(n) = Ω

(
ωn2

M

)
andW (n) = Ω(Q(n) + n2) on the (M,ω)-ARAM.

Proof. Consider the sub-DAG induced by a 2M × 2M diamond (a ≤ i < a + 2M,b ≤ j <
b + 2M) of vertices. By Lemma 3.4.1 any subcomputation that computes the last output
vertex of the sub-DAG requires 2M memory to store values from the diamond. The extra
in-edges along two sides and out-edges along the other two can only make the problem
harder. Half of the 2M required memory can be from small-memory, so the remaining M
must require writing those values to large-memory. Therefore every 2M × 2M diamond
requires M writes of values within the diamond. Partitioning the full diamond DAG into
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2M × 2M sub-diamonds, gives us n2/(2M)2 partitions. Therefore the total number of

writes is at least M ×
n2

(2M)2
=

n2

4M
, each with cost ω. For the work we need to add the n2

calculations for all vertex values. �

This lower bound is asymptotically tight since a diamond DAG can be evaluated with
matching upper bounds by evaluating each M/2 ×M/2 diamond sub-DAG as a subcom-
putation with M inputs, outputs and memory.

These bounds show that for the DAG computation problem on the family of diamond
DAGs there is no asymptotic advantage of having cheaper reads. In Section 4.5 we show
that for the ED and LCS problems (normally thought of as a diamond DAG computation), it
is possible to do better than the lower bounds. This requires breaking the DAG computation
rule by partially computing the values of each vertex before all inputs are ready. The
lower bounds are interesting since they show that improving asymptotic performance
with cheaper reads requires breaking the DAG computation rules.

3.5 Results from Jacob and Sitchinava

Jacob and Sitchinava [182] recently show the lower bounds on permuting, sorting
and sparse-matrix vector multiplication, and the results are summarized in Table 3.1. In
this series of work, the block size B is considered as a non-constant since the bounds are
trivial otherwise. Here we brie�y overview the outline of their proofs.

The key challenges here is that we no longer have a �xed computational DAG. Also,
the same cost can be incurred by di�erent combinations of reads and writes. To solve this,
the proof analyzes batch reads or writes (referred to a “round”) such that the total ARAM
cost of each round is at least ωM/B, and the small-memory needs to be emptied between
rounds.

The proof on permuting is based on a counting argument. This also gives the a lower
bound on sorting consequently since sorting is strictly harder.

Assume any algorithm requires R rounds to �nish. The algorithm must distinguish all
n! possible inputs, leading to

n!
B!n/B

≤ P(R) ≤

((
n

ωM/B

) (
ωM

M

)
2M

M!
B!M/B

(3N )M/B
)R

P(R) represents the number of “block-wise” permutations that can be generated after
R rounds. On the right of the inequality,

( n
ωM/B

)
is the number of choices of ωM/B blocks

to read out of the inputs.
(ωM
M

)
2M is the number of ways to choose up to M items to keep in

the memory out of the ωM reads from previous. Then block-wisely permuting M items in
the small-memory has M!/(B!M/B) cases. Finally since the memory are emptied between
rounds, we can write back the M/B blocks into the large-memory with cost ωM/B, and
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the number of options is no more than (3N )M/B . The whole term on the right side upper
bounds the number of permutations that can be identi�ed after R rounds.

For the left term, n! is the number of inputs that the algorithm needs to identify, while
B!n/B is the number of permutations that one block can add up to. This lower bounds
the number of the block-wise permutations that have to be distinguished by a permuting
algorithm.

Solving this inequation gives the lower bound of R. Since the ARAM cost of each round
is at leastωM/B, the lower bound of permuting and sorting is thus Ω(min{n,ωn/B logωM/B n/B}).

A lower bound on computing the product of a sparse matrix by a dense vector can
be analyzed similarly, using the round-based computation and counting argument. The
bound is listed in Table 3.1. The full details of the proof techniques in this section are
referred to [182].
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Chapter 4

Basic Algorithmic Building Blocks

To start the write-e�cient algorithms, we �rst introduce the basic building blocks that are
widely used in designing other algorithms. Therefore, when designing more complicated
and advanced algorithms, these building blocks can be directly used, just like in the
symmetric setting.

We start by showing that a variety of algorithms that are reasonably easy and optimal
in Section 4.1. These algorithms include fast Fourier transform (FFT), search trees and
priority queues, and sorting. Some other algorithms like BFS/DFS or planar convex hull
and Delaunay triangulation will be described later in the corresponding chapters.

Then later in Section 4.2 and 4.3, we discuss four commonly-used parallel primitives,
i.e., reduce, �lter, list and tree contractions, and their upper bounds on the Asymmetric
NP model. They are intensively used in the rest of the thesis to design more advanced
parallel write-e�cient algorithms.

Sorting, as one of the most important algorithmic primitives, are discussed separately
in Section 4.4. We show various algorithms with optimal bounds on (M,ω)-ARAM,
(M,B,ω)-ARAM, and the asymmetric ideal-cache model.

Lastly, we discuss an interesting dynamic programming algorithm to compute edit
distance and longest common subsequence of two input strings. In Section 3.4 we show
that without any redundant computation, we cannot decrease the number of writes. Here
we show that the ARAM cost can be improved by a factor of ω1/3, if we are willing to pay
a factor of O(ω2/3) extra work. It is an interesting open problem on whether this ARAM
cost is optimal, if work T remains polynomial.

4.1 Primitives on (M,ω)-ARAMModel

Search Trees and Priority Queues. We now consider algorithms for some problems
that can be implemented e�ciently using balanced binary search trees. In the following
discussion we assume M = O(1). Red-black trees with appropriate rebalancing rules
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require only O(1) amortized work per update (insertion or deletion) once the location
for the key is found [267]. For a tree of size n �nding a key’s location uses O(logn)
reads but no writes, so the total amortized cost Q =W = O(ω + logn) per update in the
(M,ω)-ARAM. For arbitrary sequences of searches and updates, Ω(ω+ logn) is a matching
lower bound on the amortized cost per operation when M = O(1). Since priority queues
can be implemented with a binary search tree, insertion and delete-min have the same
bounds. It seems more di�cult, however, to reduce the number of writes for priority
queues that support e�cient melding or decrease-key.

Sorting. Sorting can be implemented with Q =W = O(n(logn +ω)) by inserting all keys
into a red-black tree and then reading them o� in priority order. We note that this bound
on work is better than the sorting network lower bound (Theorem 3.3.1). For example,
when ω = M = logn it gives a factor of logn/log logn improvement. The additional
power is a consequence of being able to randomly write to one of n locations at the leaves
of the tree for each insertion. The bound is optimal forW since n writes are required for
the output and comparison-based sorting requires O(n logn) operations.

FFT. For the FFT, the idea is to �rst split the butter�y DAG into layers of log(ωM) levels.
Then divide each layer so that the last logM levels are partitioned into FFT networks of
output size M . Attach to each partition all needed inputs from the layer and the vertices
needed to reach them (note that these vertices will overlap among partitions). Each
extended partition will have ωM inputs and M outputs, and can be computed in M small-
memory with Q = O(ωM), andW = O((ω + logM)M). This gives a total upper bound
Q = O(ωM · n logn/(M log(ωM))) = O(ωn logn/log(ωM)), and W = O(Q(n) + n logn),
which matches the lower bound (asymptotically). All computations are done within the
DAG model.

4.2 Parallel primitives on Asymmetric NP Model

In this section we consider several basic parallel primitives on the Asymmetric NP
model. We note that some primitives inherently require as many writes as reads. For
example, all pre�x sums needs to write out all the sums. However, when they are used as
a step for some other purpose, then the �nal generation of the values can be folded into
whatever needs the values. This idea is used in the output sensitive �lter described below.

4.2.1 Reduce

Summing a sequence of values with respect to an associative function f (x,y) is surely
the most common parallel function. Of course it only requires a single result so it should
be possible to make it write e�cient. In the Asymmetric NP there are two methods to
do this. The �rst is simply to use a divide-and-conquer algorithm that recurses on the
two halves in parallel, and when they return add the two results. The base case can either
be a single element or O(logn) elements, and then sum those elements sequentially. A
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fork can be used to generate two child tasks for the calls. The interesting feature of our
model is that this will only require a single write, which is to write the �nal answer. All
other computation can be done in the constant space per task stack space. This may seem
impossible since the processors need to communicate. Recall, however, that when we
simulate the Asymmetric NP (with binary branching) on a machine, we account for the
steals in the cost. These steals are communicating the values among processors. The
divide-and-conquer algorithm leads to the following result.

Lemma 4.2.1. The reduction of n elements can be done in Θ(n+ω) work and Θ(logn) depth
using Θ(1) writes on the Asymmetric NP model.

A second way to do a reduce is with bulk-synchronous steps. The �rst step forks
n/ω tasks, each of which sums ω values and writes its sum to large memory. This can be
repeated logω n times to get the sum. The resulting algorithm does Θ(n + ω) work and
has Θ(ω logω n) depth.

4.2.2 Output-Sensitive Ordered Filter

Given an array A of size n and a predicate ρ on the elements of A, we want to �lter
out the entries x ∈ A for which ρ(x) = 0, and get a new array A′ of size k ≤ n, where k is
the number of elements x ∈ A for which ρ(x) = 1 and A′ preserves the relative order of
the elements in A. In the classic nested-parallel model, this is easily done in linear work
and logarithmic depth by �rst creating a new array that holds the result of applying ρ to
each element, computing a pre�x sum on that array to determine the position in A′ of
each element to be moved, and then moving those elements. However, this requires Θ(n)
writes. In the Asymmetric NP model, this number of writes can be problematic; there
exist algorithms where the number of writes depends on k rather than n except for the
�ltering step.

Our goal is an (output-sensitive) ordered �lter algorithm whose writes are proportional
to the output size rather than the input size, thereby matching the lower bound on writes.
We show the following result:

Lemma 4.2.2. Ordered �lter on an array of size n such that k elements satisfy the given
predicate can be done in Θ(n + ωk) work and O(logn) depth using Θ(k) writes whp on the
Asymmetric NP model.

Our algorithm proceeds as follows: we �rst apply a reduce operation with ρ to �nd k ,
and allocate an array B of size O(k). Recall that in our model, a reduce operation takes
only O(1) writes.

If k ≤ n/log2 n, then we hash the k entries, along with their indices in A into B.
This takes only O(k) writes and can be done e�ciently in parallel, since we expect few
collisions. We then sort the array by the original indices to get an array A′ of size k that
preserves the elements’ relative order in the input array. Because there are less than

49



n/log2 n entries, we can sort them in O(n + ωk) work and O(logn) depth whp, using a
write-e�cient parallel sorting algorithm (Section 4.4.1).

If k > n/log2 n, we divide the array into k equal parts, and then in parallel process each
part sequentially. This sequential �ltering need only write each non-�ltered element once,
and it takes O(logn) depth since each part is small. Finally, we concatenate the results
to get our output array. This concatenation can be done in O(logn) depth by counting
the elements in each part and using a pre�x sum to �nd starting indices for each part’s
output in the �nal array. Since the pre�x sum is only applied to the set of k parts, it uses
only O(k) writes.

4.3 List andTreeContraction onAsymmetricNPModel

In this section we introduce e�cient parallel algorithms for list and tree contraction
on the Asymmetric NP Model that reduce the number of writes without increasing the
reads. In both problems, our goal is to divide up the problem into sub-problems that
can be processed in parallel. We say that an equal partition of a structure of size n is a
partition into O(s) contiguous parts, each of which is of size O(n/s) for some s ≤ n. For
example, the partition based onm-critical nodes in [138] is an equal partition.

The list contraction algorithm we present is relatively simple, and uses a common
approach to partition the problem size using random samples. Tree contraction however,
becomes more challenging when we limit the writes to main memory. We are not aware
of any existing tree contraction algorithms (even sequential ones) that solve the problem
using bounded local memory. Furthermore, designing a parallel version is hard because
we cannot explicitly record information on the tree nodes (this would require too many
writes).

Previous parallel tree contraction algorithms use either a top-down approach [183, 215,
217, 254] or a bottom-up approach [138]. All of them require a linear number of writes,
and we are unaware of any non-trivial modi�cations to these algorithms that can reduce
the number of writes to o(n). To solve this problem, our algorithm a uses a bottom-up
approach. It is based on a new tree-partition algorithm that, instead of partitioning the
tree based on sub-tree sizes as done in [138], uses the Euler tour as a tool to re�ne our
partition after randomly selecting sample nodes. Then we prove that the partition we
get is an equal partition using a surprisingly simple argument. With this partitioning of
the tree, we can combine a sequential space-bounded tree contraction algorithm that we
describe with any of the existing tree contraction algorithms to obtain a write-e�cient
parallel tree contraction algorithm in the Asymmetric NP model.

4.3.1 List Contraction

A linked list is a list of nodes in which each node has a pointer to the next node in the
list. A segment on the linked list is de�ned as the elements between two given nodes. The
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Figure 4.1: The Euler tour of this rooted binary tree is (1, 2, 3, 2, 5, 2, 1, 4, 1), obtained by following
the arrows on the edges starting at the root node 1.

list contraction problem is to contract a linked list of length n into a single node (possibly
combining values). It has many applications, including list ranking and Euler tours [183].
Sequentially, we can just loop over all nodes by following the pointers which takes a
linear number of reads and work, and a constant number of writes to main memory. In
the symmetric setting (ω = 1), the standard parallel approach using random mate [21]
requires O(logn) depth and linear reads and writes.

Our algorithm partitions the list in two steps. In the �rst step, each element in the
list is randomly marked with probability s/n for some parameter s . Then in the second
step, we start with each marked node, and in parallel, follow the list with the pointers
and mark every bn/sc’th element. The longest chain we have to follow here has length
O((n logn)/s) whp, which can be shown using a Cherno� bound. Now clearly all segments
between two consecutively marked nodes have size no more than bn/sc. With the marked
nodes, we contract all segments in parallel, with each one done sequentially (terminating
when the next marked node is encountered). After that, a standard symmetric version
of parallel list contraction is applied on the marked nodes. Each step of the algorithm
performs O(s) writes.

The new list contraction algorithm takes linear work, O((n logn)/s) depth, and O(s)
writes in the Asymmetric NP model. This algorithm is e�cient when running on a share-
memory machine with p = O(n/(ω logn)) cores. In this case we can just plug in s = n/ω
and get the bounds shown in the theorem. The list partition routine described above is
used as a subroutine in our tree contraction algorithm described next.

Theorem 4.3.1. List contraction of size n can be computed using O(n) work, O(ω logn)
depth and O(n/ω) writes with O(1) local memory in the Asymmetric NP model.

4.3.2 Tree Contraction

The tree contraction problem is to contract a tree with n nodes into a single node
(possibly combining node values), and has many applications in parallel computing [183,
215, 217]. We assume that the input is a rooted binary tree and each tree node has pointers
to its parent, left child, and right child (if they exist). When the tree is viewed as a directed
graph that contains two directed edges for each edge in the tree, the Euler tour [265] of
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Algorithm 1: A parallel tree partitioning algorithm
Input: A rooted binary tree T
Output: O(s) partition nodes

1 Apply the parallel list partitioning algorithm on the Euler tour of tree T and mark
no more than O(s) tree nodes such that each sublist has length less than n/s

2 foreach marked node v do

3 Traverse the Euler tour from the position of v’s last appearance to the next
marked node v′, and mark the highest node in this range

4 return all marked nodes

the tree is an Eulerian circuit of the directed graph (see Figure 5.2 for an example). It can
be constructed implicitly: given the current node and the previous edge, we can check
whether the previous edge is from the parent or child of the current node, and according
to this information, decide which edge to take next. We de�ne a component of a tree to
be a set of tree nodes that are connected. A subtree is a component, but not vice versa.

In the symmetric setting (ω = 1) doing tree contraction sequentially in linear work is
trivial, and classic parallel tree contraction algorithms [138, 183, 215, 217] take O(logn)
depth and O(n) writes. However, many applications, such as arithmetic expression evalu-
ation and subtree size queries on a set of tree nodes, have a sublinear output size. Thus, a
natural question to ask is whether we can design a parallel tree contraction algorithm
with a sublinear number of writes. We describe such an algorithm in this section.

A new tree partitioning algorithm.

The goal of this algorithm is to �ndO(s) partition nodes such that each tree component
has size at most n/s . The high-level idea of the algorithm is to compute an equal partition
of the Euler tour and mark the lowest common ancestor of each component as a partition
node. The pseudocode is provided in Algorithm 1, and we explain the details below.

Since we cannot a�ord to store information per node, our solution is to run the parallel
list partitioning algorithm described in Section 4.3.1 on the Euler tour of the tree. However,
generating the Euler tour is too expensive, as it would require a linear number of writes.
Thus, we need to simulate the parallel list partitioning algorithm. We do so as follows.
First, we randomly sample O(s) nodes on the tree. Then, from each sampled tree node,
we follow the Euler tour in every direction in parallel. In each direction, we mark every
bn/(3s)c’th element along the path, until we reach the next sampled node on the Euler
tour. This step is similar in the list partitioning algorithm, but each node may correspond
to multiple (up to three) di�erent locations in the Euler tour, so we traverse the list from
all di�erent locations. In expectation, the distance between two samples will be at most
O((n/s) logn) whp. We will mark anotherO(s) nodes during the second step. This process
corresponds to Line 1 of the pseudocode.
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Figure 4.2: An example of how the tree is partitioned into components. A component consists of
tree nodes from at most three segments of the Euler tour.

With the O(s) marked nodes, the algorithm now �nds and marks O(s) partition
nodes, which corresponds to Lines 2–4 of Algorithm 1. A partition node is the highest
node (closest to the root) in a tree component consisting of tree nodes in a segment of
the Euler tour. For every segment that starts with the �rst or second appearance of a
marked interior node v , the partition node is just the �rst node in the segment, because
the segment cannot go beyond the subtree of v and it terminates no later than the next
appearance of v in the Euler tour. Hence, we need to do nothing for these segments since
the partition nodes are already marked. We only consider the segments that start with
the last appearances of marked nodes. The partition node of each such segment can be
computed with constant space by traversing through the segment: we always maintain
a pointer p to the highest node so far in the traversal. We start by pointing at the �rst
node in the segment, and whenever we go from our current top node to its parent in the
traversal, we update p to point to its parent as well. When the traversal �nishes, the node
pointed by p is marked. It is easy to see that this marked node is the highest node in the
segment.

The partition nodes provide a partitioned tree with O(s) components if we form the
tree components by ignoring edges from all partition nodes to their parents. We now
show that this partition is an equal partition.

Lemma 4.3.2. The marked nodes generated in Algorithm 1 partition the tree such that each
tree component contains at most n/s tree nodes.

Proof. We prove this by showing that each component consists of tree nodes from at
most three segments of the Euler tour, which is shown in Figure 4.2. Recall that in the
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algorithm, we marked every bn/3sc’th element in the Euler tour, so showing this su�ces
to prove our claim.

In Figure 4.2, nodes marked by the list partitioning algorithm are shown with the
letter “X”, and the newly-added partition nodes corresponding to the highest nodes in
each segment are marked with “Y”. Both types of nodes are considered marked nodes. We
claim that for each tree component rooted by either an X node or a Y node (e.g., the blue
region in Figure 4.2), there exist at most two subtrees (e.g., the two yellow regions in
Figure 4.2) that contain marked nodes and are rooted at nodes that are direct children of
this component. More speci�cally, there will be at most one such subtree in each of the
left and right subtrees of the root node (we will refer to these two subtrees as left-side
and right-side marked subtrees). The segment from the last X node in the left subtree (if it
exists) on the Euler tour to the �rst X node in the right subtree (if it exists) marks the root
of this component. To see that there is at most one subtree on each side, assume for the
sake of contradiction that there are two marked nodes on the same side of the root but
not in the same marked subtree (yellow region). Then the lowest common ancestor of
these two nodes will be marked as a Y node. This node is assumed to be in this component
(the blue region) but actually it will be marked and removed from this component, which
leads to a contradiction.

Hence, each component only consists of nodes from at most three segments from
the Euler tour. The �rst segment is the one that enters this component in the Euler tour,
and ends at the �rst X node (based on the Euler tour) in the left-side marked subtree,
which is shown as the red arrows in Figure 4.2. The second segment is illustrated as the
orange arrows, starting from the last X node in the left-side marked subtree and ending
in the �rst X node in the right-side marked subtree. The last segment, shown as the green
arrows, is symmetric to the �rst segment and leaves this part from the last X node. If
there are no marked node in the left side, then the �rst and second segments are merged
into one, and similarly on the right side. Thus each component consists of vertices from
at most three segments of the Euler tour.

Since we can guarantee that each segment has size no more than n/3s , each tree
component contains no more than n/s nodes. �

The overall cost is the sum of the cost of partitioning the Euler tour and the cost of
traversing a subset of the segments (starting for the up-edge of each X node). This takes
linear work, O(s) writes and O((n/s) logn) depth whp.

Remark: Notice that our tree partition is done by removing (actually ignoring) edges
but not vertices (as done in [138]) since this is more e�cient on both work and writes in
practice. This algorithm also works on all constant-degree trees. However, for an arbitrary
tree our algorithm would not work. In fact, if the given tree is a star, then there does
not exist any equal partition of non-constant (ω(1)) size, which means that no top-down
approaches by tree partitioning will give a write-e�cient solution in this case. Therefore,
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a preprocessing step that converts the input to a binary tree with linear writes is required
before running our algorithm, but if the tree contraction is run multiple times on a given
tree, there is still an advantage in using this algorithm.

A sequential algorithm.

We now discuss a sequential and space-bounded tree contraction algorithm that will be
used as a subroutine in our parallel algorithm. Previous tree contraction algorithms [138,
215, 217, 254] take either linear space or linear writes to the main memory, which is too
costly in the asymmetric setting. Instead we would like to design an algorithm that uses a
small amount of local (small) memory and performs no writes to main memory. The tool
we use is the tree partitioning algorithm discussed in the previous section, which can be
used to partition a tree into components of size no more than n/s using O(s) writes. Our
algorithm then contracts each tree component down to a single node, and after that we
apply a standard tree contraction algorithm on the marked nodes. To restrict the number
of components as well as the size of the components so that all intermediate results �t
into a small memory and require no writes, the we recursively apply the tree partitioning
algorithm until each component �ts in small memory. Suppose that the cuto� size for the
base case of the recursion is c . Then the required small memory size is O(s logs(n/c) + c),
and the work and number of reads is O(n logs(n/c)). By setting s to either O(ϵnϵ ) or some
constant greater than 1, we obtain the following lemma.

Lemma 4.3.3. The sequential algorithm presented above contracts a tree of size n requiring
O(1) writes, and using a small memory of size O(nϵ ) and linear work, where 0 < ϵ < 1, or a
small memory of size O(logn) and O(n logn) work and reads.

A parallel algorithm.

We now describe a parallel tree-contraction algorithm that uses the tree partitioning
algorithm and sequential tree contraction algorithm as subroutines.

The high-level idea for the parallel algorithm is to �rst partition the tree into small,
almost equal-sized components using the tree partitioning algorithm, and then contract
each component independently in parallel using the sequential contraction algorithm.
Finally, we use a standard parallel tree contraction algorithm to contract the remaining
nodes. This step requires a number of writes proportional to the number of remaining
nodes, which is much smaller than the original tree size. The algorithm takes s as a
parameter and consists of three steps as described below.

Step 1: Tree Partitioning. The �rst part of the algorithm computes a tree partition
such that each component has size O(n/s), where s is a parameter of the algorithm. This
step requires O(n) work, O((n logn)/s) depth whp and O(s) writes, if implemented by
Algorithm 1.

Step 2: Tree Contraction on Components. With the partition nodes computed in
Step 1, we now have a set of components each with size at most O(n/s). Since the
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tree components are themselves trees, we can apply our sequential tree contraction
algorithm on each of them. The contraction is restricted to be inside each component
by not contracting any partition node. Also, we leave the root node of each component
uncontracted. After contraction, each component’s root has at most one left and one right
child, which is either the marked child (the Y nodes in the yellow regions in Figure 4.2)
or the a descendant of the root that is in the component (if no marked child on the side).
Hence, if the local memory has sizeO((n/s)ϵ ), this step takes linear time andO(n/s) depth,
and yields an intermediate contracted tree with no more than O(s) nodes.

Step 3: Contraction of Remaining Nodes. In the last step, we apply any existing
parallel tree contraction algorithm with linear work and logarithmic depth to contract
the tree generated from the last step to a single node. This step costs O(s) reads, writes
and work, and O(logn) depth.

To reduce the number of writes without increasing the asymptotic work complexity,
we choose s = n/ω. Hence, the size of the components is at most ω. The following
theorem gives the cost of our parallel tree contraction algorithm.
Theorem 4.3.4. Algorithm 1 can be used to contract a tree with size n using O(n) work,
O(ω logn) depth and O(n/ω) writes with O(ωϵ ) local memory in the Asymmetric NP model.

4.4 Sorting

For sorting algorithm, we �rst observe that in the RAM model, it is well known that
sorting by inserting each key into a balanced search tree requires only O(n) writes with
no increase in reads (O(n logn)). However, applying the idea to the Asymmetric NP model
is non-trivial, since the well-known parallel sorting algorithms with O(logn) depth, like
Cole’s mergesort [102], do not �t into the two framework we discussed in Section 2.3.2.
Instead, we extend the parallel sorting algorithm in [68] into a write-e�cient manner, and
yield an algorithm with O(n) writes, O(n logn) reads and O(logn) depth whp assuming
priority writes (Section 4.4.2).

Since sorting is one of the most fundamental algorithm and widely used as a subroutine
in many other algorithms and frameworks, we also consider it on the (M,B,ω)-ARAM
(considering the block size B). We show that three asymptotically-optimal sorting al-
gorithms can each be adapted to the (M,B,ω)-ARAM with reduced write costs. First,
following [226, 273], we adapt multi-way mergesort by merging ωM/B sorted runs at a
time (instead of M/B as in the original EM version). This change saves writes by reducing
the depth of the recursion. Each merge makesω passes over the runs, using an in-memory
heap to extract values for the output run for the pass. Our algorithm and analysis is
somewhat simpler than [226, 273]. Second, we present a sample sort algorithm that uses
ωM/B splitters at each level of recursion (instead of M/B in the original EM version).
Again, the challenge is to both �nd the splitters and partition using them while incurring
onlyO(N /B) writes across each level of recursion. Finally, our third sorting algorithm is a
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Algorithm 2: Asymmetric-NP Sort
Input: An array of records A of length n
Output: The sorted array

1 Select a sample S from A independently at random with per-record probability
1/logn, and sort the sample

2 Use every (logn)-th element in the sorted S as splitters, and for each of the about
n/log2 n buckets de�ned by the splitters allocate an array of size c log2 n

3 In parallel locate each record’s bucket using a binary search on the splitters
4 In parallel insert the records into their buckets by repeatedly trying a random

position within the associated array and attempting to insert if empty
5 Pack out all empty cells in the arrays and concatenate all arrays
// Step 6 is an optional step used to obtain O(ω logn) depth

6 for round r ← 1 to 2 do

7 foreach array A′ generated in previous round (in parallel) do
8 Deterministically select |A′|1/3 − 1 samples as splitters and apply integer

sort on the bucket number to partition A′ into |A′|1/3 sub-arrays
9 foreach subarray from the previous round do

10 Apply the (M,ω)-ARAM sort
11 return the sorted array

heapsort using a bu�er-tree-based priority queue. Compared to the original EM algorithm,
both our bu�er-tree nodes and the number of elements stored outside the bu�er tree are
larger by a factor of ω, which adds nontrivial changes to the data structure. All three
sorting algorithms have the same asymptotic complexity on the (M,B,ω)-ARAM.

4.4.1 Sorting on (M,ω)-ARAM

The number of writes on an (M,ω)-ARAM can be bound for a variety of algorithms and
data structures using known techniques. For example, based on the analysis of balanced
binary search trees in the previous sections, many trees only require a constant number
of rotations per insertion and deletion. Sorting can be done by inserting n records into
a balanced search tree data structure, and then reading them o� in order. This requires
O(n logn) reads andO(n) writes, for total costO(n(ω + logn)). Similarly, we can maintain
priority queues (insert and delete-min) and comparison-based dictionaries (insert, delete
and search) in O(1) writes per operation.

4.4.2 Sorting on Asymmetric NP Model

We now consider how to sort on the Asymmetric NP model allowing arbitrary write.
Algorithm 2 outlines a sample sort (with over-sampling) that does O(n logn + ωn) work
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(O(n logn) reads and O(n) writes) and has depth O
(
log2 n

)
. It is similar to other sample

sorts [56, 127, 183]. We consider each step in more detail and analyze its cost.
Step 1 can use Cole’s parallel mergesort [102] requiring O(n) reads and writes whp

(because the sample is size Θ(n/logn) whp), andO(ω logn) depth. In step 2 for su�ciently
large c , whp all arrays will have at least twice as many slots as there are records belonging
to the associated bucket [56]. The cost of step 2 is a lower-order term. Step 3 requires
O(n logn) reads, O(n) writes and O(logn) depth for the binary searches and writing the
resulting bucket numbers. Step 4 is an instance of the so-called placement problem
(see [236, 239]). This can be implementing by having each record select a random location
within the array associated with its bucket and if empty, attempting to insert the record
at that location. This is repeated if unsuccessful. Since multiple records might try the
same location at the same time, each record needs to check if it was successfully inserted.
The expected number of tries per record is constant. Also, if the records are partitioned
into groups of size logn and processed sequentially within the group and in parallel
across groups, then whp no group will require more than O(logn) tries across all of its
records [236]. Therefore, whp the number of reads and writes for this step are O(n) and
the depth is O(logn). Step 5 can be done with a pre�x sum, requiring a linear number
of reads and writes, and O(logn) depth. At this point we could apply the asymmetric
RAM sort to each bucket giving a total of O(n logn) reads, O(n) writes and a depth of
O

(
log2 n log logn

)
whp.

We can reduce the depth to O(logn) by further deterministically sampling inside each
bucket (step 6) using the following lemma:

Lemma 4.4.1. We can partitionm records intom1/3 buckets M1, . . . ,Mm1/3 such that for
any i and j where i < j all records in Mi are less than all records in Mj , and for all i ,
|Mi | < m

2/3 logm. The process requires O(m logm) reads, O(m) writes, and O
(
ω
√
m

)
depth.

Proof. We �rst split them records into groups of sizem1/3 and sort each group with the
RAM sort. This takes O(m logm) reads, O(m) writes and O

(
m1/3 logm

)
depth. Then for

each sorted group, we place every logm’th record into a sample. Now we sort the sample
of size m/logm using Cole’s mergesort, and use the result as splitters to partition the
remaining records into buckets. Finally, we place the records into their respective buckets
by integer sorting the records based on their bucket number. This can be done with a
parallel radix sort in a linear number of reads/writes and O

(√
m

)
depth [236].

To show that the largest bucket has size at mostm2/3 logm, note that in each bucket, we
can pick at most logm consecutive records from each of the m2/3 groups without picking
a splitter. Otherwise there will be a splitter in the bucket, which is a contradiction. �

Step 6 applies two iterations of Lemma 4.4.1 to each bucket to partition it into sub-
buckets. For an initial bucket of size m, this process will create sub-buckets of at most
sizeO

(
m4/9 log5/3m

)
. Plugging inm = O

(
log2 n

)
gives us that the largest sub-bucket is of
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size O
(
log8/9 n(log logn)5/3

)
. We can now apply the RAM sort to each bucket in O(logn)

depth. This gives us the following theorem.

Theorem 4.4.2. Sorting n records can be performed usingO(n logn +ωn) work (O(n logn)
reads and O(n) writes), and in O

(
log2 n

)
depth whp on the Asymmetric NP model allowing

concurrent writes.

Reducing the depth toO(logn). The depth can be reduced toO(logn) by combining the
result of the sorting algorithm by Jeremy Fineman, which can sort n elements inO(n logn)
reads and writes and O(logn) depth on the nested-parallel model. The algorithm is
recursive. In each level, we assume the problem size is m. We pick s =

√
m/logn samples,

using a O(s2) algorithm to sort them in O(log s) time, and then subselect p = s/logn as
pivots. Then by using the solution for placement problems to put every element into
the correct bucket. This algorithm stops when there is less than O(log6 n) elements in
each bucket. Then elements within each bucket can be sorted using any polylog-depth
algorithm. This algorithm is not write-e�cient, but can be used to replace Cole’s mergesort
in Step 1 to achieve O(logn) depth whp.

4.4.3 Sorting on (M,B,ω)-ARAMModel

In this section, we present sorting algorithms for the (M,B,ω)-ARAM model. We
show how the three approaches for external-memory sorting—mergesort, sample sort,
and heapsort (using bu�er trees)—can each be adapted to this asymmetric case.

In each case we trade o� a factor of ω additional reads for a larger branching factor
(ωM/B instead of M/B), hence reducing the number of rounds. The ARAM cost of each
algorithm matches the non-trivial lower bound given in Section 3.5. It is interesting that
the same general approach works for all three types of sorting. The �rst algorithm, the
mergesort, has been described elsewhere [226] although in a di�erent model (their model
is speci�c to NAND �ash memory and has di�erent sized blocks for reading and writing,
among other di�erences). Our parameters are therefore di�erent, and our analysis is new.
//about Nodari. To the best of our knowledge, our other two algorithms are new.

4.4.3.1 Mergesort

We use an l-way mergesort—i.e., a balanced tree of merges with each merge taking in
l sorted arrays and outputting one sorted array consisting of all records from the input.
We assume that once the input is small enough a di�erent sort (the base case) is applied.
For l = M/B and a base case of n ≤ M (using any sort since it �ts in memory), we have
the standard EM mergesort. With these settings there are logM/B(n/M) levels of recursion,
plus the base case, each costing O(n/B) memory operations. This gives the well-known
overall bound of Θ((n/B) logM/B(n/B)) [7].

To modify the algorithm for the asymmetric case, we increase the branching factor and
the base case by a factor ofω, i.e., l = ωM/B and a base case of n ≤ ωM . This means that it
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Algorithm 3: AEM-Mergesort
Input: An array of records A of length n
Output: The sorted array

1 if |A| ≤ ωM then

2 Sort A using ω |A|/B reads and |A|/B writes, and return

3 Evenly partition A into l = ωM/B subarrays A1, . . . ,Al (at the granularity of blocks)
and recursively apply AEM-Mergesort to each.

4 Initialize Merge. Initialize an empty output array O , a load bu�er and an empty
store bu�er each of size B, an empty priority queue Q of size M , an array of pointers
I1, . . . , Il that point to the start of each sorted subarray, c = 0, and lastV = −∞.
Associated with Q is Q .max, which holds the maximum element in Q if Q is full,
and +∞ otherwise.

5 while c < |A| do
6 for i ← 1 to l do
7 Process-Block(i)
8 while Q is not empty do

9 e ← Q .deleteMin
10 Write e to the store bu�er, c ← c + 1
11 If the store bu�er is full, �ush it to O and update lastV
12 if e is marked as last record in its subarray block then

13 i = e .subarray
14 Increment Ii to point to next block in subarray i
15 Process-Block(i)
16 A← O // Logically, don’t actually copy

17 Function Process-Block(subarray i)
18 if Ii points to the end of the subarray then return

19 Read the block Ii into the load bu�er
20 forall records e in the block do

21 if e .key is in the range (lastV ,Q .max) then
22 If Q is full, eject Q .max
23 Insert e into Q , and mark if last record in block

is no longer possible to keep the base case in the primary memory, nor one block for each
of the input arrays during a merge. The modi�ed algorithm is described in Algorithm 3.

Each merge proceeds in a sequence of rounds, where a round is one iteration of the
while loop starting on line 5. During each round we maintain a priority queue within
the primary memory. Because operations within the primary memory are free in the
model, this can just be kept as a sorted array of records, or even unsorted, although a
balanced search tree can be a feasible solution in practice. Each round consists of two
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phases. The �rst phase (the for loop on line 6) considers each of the l input subarrays in
turn, loading the current block for the subarray into the load bu�er, and then inserting
each record e from the block into the priority queue if not already written to the output
(i.e., e .key > lastV ), and if smaller than the maximum in the queue (i.e., e .key < Q .max).
This might bump an existing element out of the queue. Also, if a record is the last in its
block then it is marked and tagged with its subarray number.

The second phase (the while loop starting on line 8) starts writing the priority queue
to the output one block at a time. Whenever reaching a record that is marked as the
last in its block, the algorithm increments the pointer to the corresponding subarray and
processes the next block in the subarray. We repeat the rounds until all records from all
subarrays have been processed.

To account for the space for the pointers I = I1, . . . , Il , let α = (logn)/s , where s is the
size of a record in bits, and n is the total number of records being merged. The cost of the
merge is bounded as follows:

Lemma 4.4.3. l = ωM/B sorted sequences with total size n (stored in dn/Be blocks, and
block aligned) can be merged using at most (ω + 1)dn/Be reads and dn/Be writes, on the
(M,B,ω)-ARAM model with primary memory size (M + 2B + 2αωM/B).

Proof. Each round (except perhaps the last) outputs at least M records, and hence the total
number of rounds is at most dn/Me. The �rst phase of each round requires at most ωM/B
reads, so the total number of reads across all the �rst phases is at most ω dn/Be (the last
round can be included in this since it only loads as many blocks as are output). For the
second phase, a block is only read when incrementing its pointer, therefore every block is
only read once in the second phase. Also every record is only written once. This gives the
stated bounds on the number of reads and writes. The space includes the space for the
in-memory heap (M), the load and store bu�ers, the pointers I (αωM/B), and pointers to
maintain the last-record in block information (αωM/B). �

We note that it is also possible to keep I in secondary memory. This will double the
number of writes because every time the algorithm moves to a new block in an input
array i , it would need to write out the updated Ii . The increase in reads is small. Also, if
one uses a balanced search tree to implement the priority queue Q then the size increases
by < M(logM)/s in order to store the pointers in the tree.

For the base case when n ≤ ωM we use the following lemma.

Lemma 4.4.4. n ≤ ωM records stored in dn/Be blocks can be sorted using at most ω dn/Be
reads and dn/Be writes, on the (M,B,ω)-ARAM model with primary memory sizeM + B.

Proof. We sort the elements using a variant of selection sort, scanning the input list a
total of at most ω times. In the �rst scan, store in memory the M smallest elements seen
so far, performing no writes and dn/Be reads. After completing the scan, output all the
min(M,n) elements in sorted order using dmin(M,n)/Be writes. Record the maximum
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element written so far. In each subsequent phase (if not �nished), store in memory the M
smallest records larger than the maximum written so far, then output as before. The cost
is dn/Be reads and M/B writes per phase (except perhaps the last phase). We need one
extra block to hold the input. The largest output can be stored in the O(logM) locations
we have allowed for in the model. This gives the stated bounds because every element is
written out once and the input is scanned at most ω times. �

Together we have:

Theorem 4.4.5. Algorithm 3 sorts n records using

R(n) ≤ (ω + 1)
⌈n
B

⌉⌈
logωM

B

(n
B

)⌉
reads, and

W (n) ≤
⌈n
B

⌉⌈
logωM

B

(n
B

)⌉
writes on an (M,B,ω)-ARAM with primary memory size (M + 2B + 2αωM/B).

Proof. The number of recursive levels of merging is bounded by
⌈
logωM

B

( n
ωM

)⌉
, and when

we add the additional base round we have 1 +
⌈
logωM

B

( n
ωM

)⌉
=

⌈
logωM

B

( n
ωM

ωM
B

)⌉
=⌈

logωM
B

( n
B

)⌉
. The cost for each level is at most (ω + 1)dn/Be reads and dn/Be writes

(only one block on each level might not be full). �

4.4.3.2 Sample Sort

We now describe an l-way randomized sample sort [56, 127] (also called distribution
sort), which asymptotically matches the I/O bounds of the mergesort. The idea of sample
sort is to partition n records into l approximately equally sized buckets based on a sample
of the keys within the records, and then recurse on each bucket until an appropriately-
sized base case is reached. As with the mergesort, here we will use a branching factor
l = ωM/B. Again this branching factor will reduce the number of levels of recursion
relative to the standard EM sample sort which uses l = M/B [7]. We describe how to
process each partition and the base case.

The partitioning starts by selecting a set of splitters. This can be done using standard
techniques, which we review later. The splitters partition the input into buckets that whp
are within a constant factor of the average size n/l . The algorithm now needs to bucket
the input based on the splitters. The algorithm processes the splitters in ω rounds of size
M/B each, starting with the �rst M/B splitters. For each round the algorithm scans the
whole input array, partitioning each value into the one of M/B buckets associated with
the splitters, or skipping a record if its key does not belong in the current buckets. One
block for each bucket is kept in memory. Whenever a block for one of the buckets is full,
it is written out to memory and the next block is started for that bucket. Each ω rounds
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reads all of the input and writes out only the elements associated with these buckets
(roughly a 1/ω fraction of the input).

The base case occurs when n ≤ ωM , at which point we apply the selection sort from
Lemma 4.4.4.

Let n0 be the original input size. The splitters can be chosen by randomly picking
a sample of keys of size m = Θ(l logn0), sorting them, and then sub-selecting the keys
at positions m/l, 2m/l, . . . , (l − 1)m/l . By selecting the constant in the Θ su�ciently
large, this process ensures that, whp every bucket is within a constant factor of the
average size [56]. To sort the samples apply a RAM mergesort, which requires at most
O(((l logn0)/B) log(l logn0/M)) reads and writes. This is a lower-order term when l =
O(n /log2 n), but unfortunately this bound on l may not hold for small subproblems. There
is a simple solution—when n ≤ ω2M2/B, instead use l = n/(ωM). With this modi�cation,
we always have l ≤

√
n/B.

It is likely that the splitters could also be selected deterministically using an approach
used in the original I/O-e�cient distribution sort [7].
Theorem 4.4.6. The kM/B-way sample sort sorts n records using, whp,

R(n) = O
(ωn
B

⌈
logωM

B

(n
B

)⌉)
reads, and

W (n) = O
(n
B

⌈
logωM

B

(n
B

)⌉)
writes on an (M,B,ω)-ARAM with primary memory size (M + B +M/B).

Proof. (Sketch) The primary-memory size allows one block from each bucket as well as the
M/B splitters to remain in memory. Each partitioning step thus requires dn/Be + ωM/B
writes, where the second term arises from the fact that each bucket may use a partial block.
Since n ≥ ωM (this is not a base case), the cost of each partitioning step becomes O(n/B)
writes and O(kn/B) reads. Because the number of splitters is at most

√
n = O(n/log2 n),

choosing and sorting the splitters takesO(n/B) reads and writes. Observe that the recursive
structure matches that of a sample sort with an e�ective memory of size ωM , and that
there will be at most two rounds at the end where l = n/(ωM). As in standard sample
sort, the number of writes is linear with the size of the subproblem, but here the number
of reads is multiplied by a factor of ω. The standard samplesort analysis thus applies,
implying the bound stated.

It remains only to consider the base case. Because all buckets are approximately the
same size, the total number of leaves is O(n/B)—during the recursion, a size n > ωM
problem is split into subproblems whose sizes are Ω(B). Applying Lemma 4.4.4 to all
leaves, we get a cost of O(ωn/B) reads and O(n/B) writes for all base cases. �

Extensions for the Private-Cache Model. The above can be readily parallelized. Here
we outline the approach. We assume that there arep = n/M processors. We use parallelism
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both within each partition, and across the recursive partitions. Within a partition we �rst
�nd the l splitters in parallel. (As above, l = ωM/B except for the at most two rounds prior
to the base case where l = n/(ωM).) This can be done on a sample that is a logarithmic
factor smaller than the partition size, using a less e�cient sorting algorithm such as
parallel mergesort, and then sub-selecting l splitters from the sorted order. This requires
O(ω(M/B + log2 n)) time, where the second term (O(ω log2 n)) is the depth of the parallel
mergesort, and the �rst term is the work term O((ω/B)((n/logn) logn)/P) = O(ωM/B).

The algorithm groups the input into n/(ωM) chunks of size ωM each. As before we
also group the splitters into ω rounds of size M/B each. Now in parallel across all chunks
and across all rounds, partition the chunk based on the round. We have n/(ωM)×ω = n/M
processors so we can do them all in parallel. Each will require ωM reads and M writes.
To ensure that the chunks write their buckets to adjacent locations (so that the output of
each bucket is contiguous) we will need to do a pass over the input to count the size of
each bucket for each chunk, followed by a pre�x sum. This can be done before processing
the chunks and is a lower-order term. The time for the computation is O(ωM/B).

The processors are then divided among the sub-problems proportional to the size of
the sub-problem, and we repeat. The work at each level of recursion remains the same, so
the time at each level remains the same. For the base case of size ≤ ωM , instead of using a
selection sort across all keys, which is sequential, we �nd ω splitters and divide the work
among ω processors to sub-select their part of the input, each by reading the whole input,
and then sorting their part of size O(M) using a selection sort on those keys. This again
takes O(ωM/B) time. The total time for the algorithm is therefore:

O

(
ω

(
M

B
+ log2 n

)⌈
1 + logωM

B

( n

ωM

)⌉)
with high probability. This is linear speedup assuming M

B ≥ log2 n. Otherwise the number
of processors can be reduced to maintain linear speedup.

4.4.3.3 I/O Bu�er Trees

This section describes how to augment the basic bu�er tree [25] to build a priority
queue that supports n Insert and Delete-Min operations with an amortized cost of
O((ω/B)(1 + logωM/B n)) reads and O((1/B)(1 + logωM/B n)) writes per operation. Using
the priority queue to implement a sorting algorithm trivially results in a sort costing a
total ofO((ωn/B)(1+ logωM/B n)) reads andO((n/B)(1+ logωM/B n)) writes. These bounds
asymptotically match the preceding sorting algorithms, but some additional constant
factors are introduced because a bu�er tree is a dynamic data structure.

Our bu�er tree-based priority queue for the (M,B,ω)-ARAM contains a few di�erences
from the regular EM bu�er tree [25]: (1) the bu�er tree nodes are larger by a factor ω,
(2) consequently, the “bu�er-emptying” process uses an e�cient sort on ωM elements
instead of an in-memory sort on M elements, and (3) to support the priority queue,O(ωM)
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elements are stored outside the bu�er tree instead ofO(M), which adds nontrivial changes
to the data structure.

Overview of a bu�er tree.

A bu�er tree [25] is an augmented version of an (a,b)-tree [175], where a = l/4 and
b = l for large branching factor l . In the original bu�er tree l = M/B, but to reduce the
number of writes we instead set l = ωM/B. As an (a,b) tree, all leaves are at the same
depth in the tree, and all internal nodes have between l/4 and l children (except the root,
which may have fewer). Thus the height of the tree is O(1 + logl n). An internal node
with c children contains c − 1 keys, stored in sorted order, that partition the elements
in the subtrees. The structure of a bu�er tree di�ers from that of an (a,b) tree in two
ways. Firstly, each leaf of the bu�er tree contains between lB/4 and lB elements stored in
l blocks.1 Secondly, each node in the bu�er tree also contains a dense unsorted list, called
a bu�er, of partially inserted elements that belong in that subtree.

We next summarize the basic bu�er tree insertion process [25]. Supporting general
deletions is not much harder, but to implement a priority queue we only need to support
deleting an entire leaf. The insertion algorithm proceeds in two phases: the �rst phase
moves elements down the tree through bu�ers, and the second phase performs the (a,b)-
tree rebalance operations (i.e., splitting nodes that are too big). The �rst phase begins by
appending the new element to the end of the root’s bu�er. We say that a node is full if
its bu�er contains at least lB elements. If the insert causes the root to become full, then a
bu�er-emptying process commences, whereby all of the elements in the node’s bu�er
are sorted then distributed to the children (appended to the ends of their bu�ers). This
distribution process may cause children to become full, in which case they must also be
emptied. More precisely, the algorithm maintains a list of internal nodes with full bu�ers
(initially the root) and a separate list of leaves with full bu�ers. The �rst phase operates
by repeatedly extracting a full internal node from the list, emptying its bu�er, and adding
any full children to the list of full internal or leaf nodes, until there are no full internal
nodes.

Note that during the �rst phase, the bu�ers of full nodes may far exceed lB, e.g., if all
of the ancestors’ bu�er elements are distributed to a single descendant. Sorting the bu�er
from scratch would therefore be too expensive. Fortunately, each distribution process
writes elements to the child bu�ers in sorted order, so all elements after the lB’th element
(i.e., those written in the most recent emptying of the parent) are sorted. It thus su�ces
to split the bu�er at the lB’th element and sort the �rst lB elements, resulting in a bu�er
that consists of two sorted lists. These two lists can trivially be merged as they are being
distributed to the sorted list of children in a linear number of I/O’s.

1Arge [25] de�nes the “leaves” of a bu�er tree to contain Θ(B) elements instead of Θ(lB) elements. Since
the algorithm only operates on the parents of those “leaves”, we �nd the terminology more convenient when
�attening the bottom two levels of the tree. Our leaves thus correspond to what Arge terms “leaf nodes” [25]
(not to be confused with leaves) or equivalently what Sitchinava and Zeh call “fringe nodes” [256].
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When the �rst phase completes, there may be full leaves but no full internal nodes.
Moreover, all ancestors of each full leaf have empty bu�ers. The second phase operates
on each full leaf one at a time. First, the bu�er is sorted as above and then merged with
the elements stored in the leaf. If the leaf contains X > lB elements, then a sequence of
(a,b)-tree rebalance operations occur whereby the leaf may be split into Θ(X/(lB)) new
nodes. These splits cascade up the tree as in a typical (a,b)-tree insert.

Bu�er tree with fewer writes.

To reduce the number of writes, we set the branching factor of the bu�er tree to
l = ωM/B instead of l = M/B. The consequence of this increase is that the bu�er
emptying process needs to sort lB = ωM elements, which cannot be done with an in-
memory sort. The advantage is that the height of the tree reduces to O(1 + logωM/B n).

Lemma 4.4.7. It costs O(ωX/B) reads and O(X/B) writes to empty a full bu�er containing
X elements using Θ(M) memory.

Proof. By Lemma 4.4.4, the cost of sorting the �rst ωM elements is O(ω2M/B) reads and
O(ωM/B) writes. The distribute step can be performed by simultaneously scanning the
sorted list of children along with the two sorted pieces of the bu�er, and outputting to the
end of the appropriate child bu�er. A write occurs only when either �nishing with a child
or closing out a block. The distribute step thus uses O(ωM/B + X/B) reads and writes,
giving a total of O(ω2M/B + X/B) reads and O(ωM/B + X/B) writes including the sort
step. Observing that full means X > ωM completes the proof. �

Theorem 4.4.8. Suppose that the partially empty block belonging to the root’s bu�er is
kept in memory. Then the amortized cost of each insert into an n-element bu�er tree is
O((ω/B)(1 + logωM/B n)) reads and O((1/B)(1 + logωM/B n)) writes.

Proof. This proof follows from Arge’s bu�er tree performance proofs [25], augmented
with the above lemma. We �rst consider the cost of reading and writing the bu�ers. The
last block of the root bu�er need only be written when it becomes full, at which point the
next block must be read, giving O(1/B) reads and writes per insert. Each element moves
through bu�ers on a root-to-leaf path, so it may belong to O(1 + logωM/B n) emptying
processes. According to Lemma 4.4.7, emptying a full bu�er costs O(ω/B) reads and
O(1/B) writes per element. Multiplying these two gives an amortized cost per element
matching the theorem.

We next consider the cost of rebalancing operations. Given the choice of (a,b)-tree pa-
rameters, the total number of node splits isO(n/(lB)) [25, Theorem 1] which isO(n/(ωM)).
Each split is performed by scanning a constant number of nodes, yielding a cost of
O(ωM/B) reads and write per split, or O(n/(ωM) · ωM/B) = O(n/B) reads and writes in
total or O(1/B) per insert. �

An e�cient priority queue with fewer writes.
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The main idea of Arge’s bu�er tree-based priority queue [25] is to store a working
set of the O(lB) smallest elements resident in memory. When inserting an element, �rst
add it to the working set, then evict the largest element from the working set (perhaps
the one just inserted) and insert it into the bu�er tree. To extract the minimum, �nd it in
the working set. If the working set is empty, remove the Θ(lB) smallest elements from
the bu�er tree and add them to the working set. In the standard bu�er tree, l = M/B and
hence operating on the working set is free because it �ts entirely in memory. In our case,
however, extra care is necessary to maintain a working set that has size roughly ω times
larger.

Our (M,B,ω)-ARAM priority queue follows the same idea except the working set
is partitioned into two pieces, the alpha working set and beta working set. The alpha
working set, which is always resident in memory, contains at most M/4 of the smallest
elements in the priority queue. The beta working set contains at most 2ωM of the next
smallest elements in the data structure, stored in O(ωM/B) blocks. The motivation for
having a beta working set is that during Delete-Min operations, emptying elements
directly from the bu�er tree whenever the alpha working set is empty would be too
expensive—having a beta working set to stage larger batches of such elements leads to
better amortized bounds. Coping with the interaction between the alpha working set, the
beta working set, and the bu�er tree, is the main complexity of our priority queue. The
beta working set does not �t in memory, but we keep a constant number of blocks from
the beta working set and the bu�er tree (speci�cally, the last block of the root bu�er) in
memory.

We begin with a high-level description of the priority-queue operations, with details
of the beta working set deferred until later. For now, it su�ces to know that we keep
the maximum key in the beta working set in memory. To insert a new element, �rst
compare its key against the maximums in the alpha and beta working set. Then insert
it into either the alpha working set, the beta working set, or the bu�er tree depending
on the key comparisons. If the alpha working set exceeds maximum capacity of M/4
elements, move the largest element to the beta working set. If the beta working set hits
its maximum capacity of 2ωM elements, remove the largest ωM elements and insert them
into the bu�er tree.

To delete the minimum from the priority queue, remove the smallest element from the
alpha working set. If the alpha working set is empty, extract the M/4 smallest elements
from the beta working set (details to follow) and move them to the alpha working set. If the
beta working set is empty, perform a bu�er emptying process on the root-to-leftmost-leaf
path in the bu�er tree. Then delete the leftmost leaf and move its contents to the beta
working set.

The beta working set. The main challenge is in implementing the beta working set.
An unsorted list or bu�er allows for e�cient inserts by appending to the last block. The
challenge, however, is to extract the Θ(M) smallest elements with O(M/B) writes—if
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ω > B, each element may reside in a separate block, and we thus cannot a�ord to update
those blocks when extracting the elements. Instead, we perform the deletions implicitly.

To facilitate implicit deletions, we maintain a list of ordered pairs (i1, x1), (i2, x2), (i3, x3), . . .,
where (i, x) indicates that all elements with index at most i and key at most x are in-
valid. Our algorithm maintains the invariant that for consecutive list elements (ij, xj) and
(ij+1, xj+1), we have ij < ij+1 and xj > xj+1 (recall that all keys are distinct).

To insert an element to the beta working set, simply append it to the end. The invariant
is maintained because its index is larger than any pair in the list.

To extract the minimum M/4 elements, scan from index 0 to i1 in the beta working
set, ignoring any elements with key at most x1. Then scan from i1 + 1 to i2, ignoring any
element with key at most x2. And so on. While scanning, record in memory the M/4
smallest valid elements seen so far. When �nished, let x be the largest key and let i be
the length of the beta working set. All elements with key at most x have been removed
from the full beta working set, so they should be implicitly marked as invalid. To restore
the invariant, truncate the list until the last pair (ij, xj) has xj > x , then append (i, x) to
the list. Because the size of the beta working set is growing, ij < i . It should be clear that
truncation does not discard any information as (i, x) subsumes any of the truncated pairs.

Whenever the beta working set grows too large (2ωM valid elements) or becomes too
sparse (ω extractions of M/4 elements each have occurred), we �rst rebuild it. Rebuilding
scans the elements in order, removing the invalid elements by packing the valid ones
densely into blocks. Testing for validity is done as above. When done, the list of ordered
pairs to test invalidity is cleared.

Finally, when the beta working set grows too large, we extract the largestωM elements
by sorting it (using the selection sort of Lemma 4.4.4).

Analyzing the priority queue.

We begin with some lemmas about the beta working set.
Lemma 4.4.9. Extracting theM/4 smallest valid elements from the beta working set and
storing them in memory costs O(ωM/B) reads and amortized O(1) writes.

Proof. The extraction involves �rst performing read-only passes over the beta working
set and list of pairs, keeping one block from the working set and one pair in memory
at a time. Because the working set is rebuilt after ω extractions, the list of pairs can
have at most ω entries. Even if the list is not I/O e�cient, the cost of scanning both is
O(ωM/B + ω) = O(ωM/B) reads. Next the list of pairs indicating invalid elements is
updated. Appending one new entry requires O(1) writes. Truncating and deleting any old
entries can be charged against their insertions. �

The proof of the following lemma is similar to the preceding one, with the only
di�erence being that the valid elements must be moved and written as they are read.
Lemma 4.4.10. Rebuilding the beta working set costs O(ωM/B) reads and writes. �
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Theorem 4.4.11. Our priority queue, if initially empty, supports n Insert and Delete-
Min operations with an amortized cost of O((ω/B)(1 + logωM/B n)) reads and O((1/B)(1 +
logωM/B n)) writes per operation.

Proof. Inserts are the easier case. Inserting into the alpha working set is free. The
amortized cost of inserting directly into the beta working set (a simple append) is O(1/B)
reads and writes, assuming the last block stays in memory. The cost of inserting directly
into the bu�er tree matches the theorem. Occasionally, the beta working set over�ows, in
which case we rebuild it, sort it, and insert elements into the bu�er tree. The rebuild costs
O(ωM/B) reads and writes (Lemma 4.4.10), the sort costs O(ω2M/B) reads and O(ωM/B)
writes (by Lemma 4.4.4), and the ωM bu�er tree inserts cost O((ω2M/B)(1 + logωM/B n))
reads and O((ωM/B)(1 + logωM/B n)) writes (by Theorem 4.4.8). The latter dominates.
Amortizing against the ωM inserts that occur between over�ows, the amortized cost per
insert matches the theorem statement.

Deleting the minimum element from the alpha working set is free. When the alpha
working set becomes empty, we extract M/4 elements from the beta working set, with a
cost ofO(ωM/B) reads andO(1)writes (Lemma 4.4.9). This cost may be amortized against
the M/4 deletes that occur between extractions, for an amortized cost ofO(ω/B) reads and
O(1/M) writes per delete-min. Every ω extractions of M/4 elements, the beta working set
is rebuilt, with a cost of O(ωM/B) reads and writes (Lemma 4.4.10) or amortized O(1/B)
reads and writes per delete-min. Adding these together, we so far have O(ω/B) reads and
O(1/B) writes per delete-min.

It remains to analyze the cost of re�lling the beta working set when it becomes empty.
The cost of removing a leaf from the bu�er tree is dominated by the cost of emptying
bu�ers on a length-O(logωM/B n) path. Note that the bu�ers are not full, so we cannot
apply Lemma 4.4.7. But a similar analysis applies. The cost per node is O(ω2M/B + X/B)
reads and O(ωM/B + X/B) writes for an X -element bu�er. As with Arge’s version of
the priority queue [25], the O(X/B) terms can be charged to the insertion of the X
elements, so we are left with a cost of O(ω2M/B) read and O(ωM/B) writes per bu�er.
Multiplying by O(1 + logωM/B n) levels gives a cost of O((ω2M/B)(1 + logωM/B n)) reads
and O((ωM/B)(1+ logωM/B n)) writes. Because each leaf contains at least ωM/4 elements,
we can amortize this cost against at least ωM/4 deletions, giving a cost that matches the
theorem. �

With this priority queue, sorting can be trivially implemented in O((ωn/B)(1 +
logωM/B n)) reads andO((n/B)(1+ logωM/B n))writes, matching the bounds of the previous
sorting algorithms.
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4.5 Longest Common Subsequence and Edit Distance

This section describes a more e�cient dynamic-programming algorithm for longest
common subsequence (LCS) and edit distance (ED) on the (M,ω)-ARAM model. The
standard approach for these problems (an M × M tiling) results in an ARAM cost of
O(mnω/M) and work of O(mn +mnω/M), wherem and n are the length of the two input
strings. Lemma 3.4.2 states that the standard bound is optimal under the standard DAG
computation rule that all inputs must be available before evaluating a node. Perhaps
surprisingly, we are able to beat these bounds by leveraging the fact that dynamic programs
do not perform arbitrary functions at each node, and hence we do not necessarily need
all inputs to begin evaluating a node.

Our main result is captured by the following theorem for large input strings (the
general case). For smaller strings, we can do even better and will be discussed later in
Section 4.5.2.

4.5.1 The General Case

Theorem 4.5.1. Let kT = min((ω/M)1/3,
√
M) and suppose m,n = Ω(kTM). Then it is

possible to compute the ED or length of the LCS with workW (m,n) = O(mn +mnω/(kTM)).
Let kQ = min(ω1/3,

√
M) and supposem,n = Ω(kQM). Then it is possible to compute the

ED or length of the LCS with an ARAM cost of Q(m,n) = O(mnω/(kQM)).

To understand these bounds, our algorithm beats the ARAM cost of the standard tiling
algorithm by a kQ factor. And if ω ≥ M , our algorithm (using di�erent tuning parameters)
beats the work of the standard tiling algorithm by a kT factor.

Overview The dynamic programs for LCS and ED correspond to computing the
shortest path through anm × n grid with diagonal edges, wherem and n are the string
lengths. We focus here on computing the length of the shortest path, but it is possible to
output the path as well with the same asymptotic complexity (see Section 4.5.3). Without
loss of generality, we assume thatm ≤ n, so the grid is at least as wide as it is tall. For LCS,
all horizontal and vertical edges have weight 0; the diagonal edges have weight −1 if the
corresponding characters in the strings match, and weight∞ otherwise. For ED, horizontal
and vertical edges have weight 1, and diagonal edges have weights either 0 or 1 depending
on whether the characters match. Our algorithm is not sensitive to the particular weights
of the edges, and thus it applies to both problems and their generalizations.

Note that the m × n grid is not built explicitly since building and storing the graph
would take Θ(mn) writes if mn � M . To get any improvement, it is important that
subgrids reuse the same space. The weights of each edge can be inferred by reading the
appropriate characters in each input string.
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Our algorithm partitions the implicit grid into size-(hM′ × kM′), where h and k are
parameters of the algorithm to be set later, and M′ = M/c for large enough constant c > 1
to give su�cient working space in small-memory. When string lengths m and n ≥ m are
both “large”, we use h = k and thus usually work with kM′ × kM′ square subgrids. If the
smaller string length m is small enough, we instead use parameters h < k . To simplify
the description of the algorithm, we assume without loss of generality thatm and n are
divisible by hM′ and kM′, respectively, and that M is divisible by c .

Our algorithm operates on one hM′ × kM′ rectangle at a time, where the edges are
directed right and down. The shortest-path distances to all nodes along the bottom and
right boundary of each rectangle are explicitly written out, but all other intermediate
computations are discarded. We label the vertices ui,j for 1 ≤ i ≤ hM′ and 1 ≤ j ≤ kM′

according to their row and column in the square, respectively, starting from the top-left
corner. We call the vertices immediately above or to the left of the square the input nodes.
The input nodes are all outputs for some previously computed rectangle. We call the
vertices uhM ′,j along the bottom boundary and ui,kM ′ along the right boundary the output
nodes.

The goal is to reduce the number of writes, thereby decreasing the overall cost of
computing the output nodes, which we do by sacri�cing reads and work. It is not hard to
see that recomputing internal nodes enables us to reduce the number of writes. Consider,
for example, the following simple approach assuming M = Θ(1): For each output node of
a k ×k square, try all possible paths through the square, keeping track of the best distance
seen so far; perform a write at the end to output the best value.2 Each output node tries
2Θ(k) paths, but only a Θ(1/k)-fraction of nodes are output nodes. Setting k = Θ(lgω)
reduces the number of writes by a Θ(lgω)-factor at the cost of ωO(1) reads. This same
approach can be extended to larger M , giving the same lgω improvement, by computing
“bands” of nearby paths simultaneously. But our main algorithm, which we discuss next,
is much better as M gets larger (see Theorem 4.5.1).

Path sketch The key feature of the grid leveraged by our algorithm is that shortest
paths do not cross, which enables us to avoid the exponential recomputation of the
simple approach. The noncrossing property has been exploited previously for building
shortest-path data structures on the grid (e.g., [246]) and more generally planar graphs
(e.g., [124, 191]). These previous approaches do not consider the cost of writing to large-
memory, and they build data structures that would be too large for our use. Our algorithm
leverages the available small-memory to compute bands of nearby paths simultaneously.
We capture both the noncrossing and band ideas through what we call a path sketch,

2This approach requires constant small-memory to keep the best distance, the current distance, and
working space for computing the current distance. We also need bits proportional to the path length to
enumerate paths.
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which we de�ne as follows. The path sketch enables us to cheaply recompute the shortest
paths to nodes.

We call everyM′-th row in the square a superrow, meaning there areh superrows in the
square. The algorithm partitions the i-th superrow into segments 〈i, `, r 〉 of consecutive
elements uiM ′,`,uiM ′,`+1, . . . ,uiM ′,r . The main restriction on segments is that r < ` +M′,
i.e., each segment consists of at most M′ consecutive elements in the superrow. Note that
the segment boundaries are determined by the algorithm and are input dependent.

A path sketch is a sequence of segments 〈s, `s, rs〉, 〈s+1, `s+1, rs+1〉, 〈s+2, `s+2, rs+2〉, . . . ,
〈i, `i, ri〉, summarizing the shortest paths to the segment. Speci�cally, this sketch means
that for each vertex in the last segment, there is a shortest path to that vertex that goes
through a vertex in each of the segments in the sketch. If the sketch starts at superrow 1,
then the path originates from a node above the �rst superrow (i.e., the top boundary or
the topmost M′ nodes of the left boundary). If the sketch starts with superrow s > 1, then
the path originates at one of the M′ nodes on the left boundary between superrows s − 1
and s . Since paths cannot go left, the path sketch also satis�es `s ≤ `s+1 ≤ · · · ≤ `i .

Evaluating a path sketch Given a path sketch, we refer to the process of deter-
mining the shortest-path distances to all nodes in the �nal segment 〈i, `i, ri〉 as evaluating
the path sketch or evaluating the segment, with the distances in small-memory when the
process completes. Note that we have not yet described how to build the path sketch, as
the building process uses evaluation as a subroutine.

The main idea of evaluating the sketch is captured by Figure 4.3 for the example
sketch 〈1, 4, 6〉, 〈2, 6, 6〉, 〈3, 8, 9〉. The sketch tells us that shortest paths to u9,8 and u9,9 pass
through one of u3,4,u3,5,u3,6 and the node u6,6. Thus, to compute the distances to u9,8 and
u9,9, we need only consider paths through the darker nodes and solid edges—the lighter
nodes and dashed edges are not recomputed during evaluation.

The algorithm works as follows. First compute the shortest-path distances to the �rst
segment in the sketch. To do so, horizontally sweep a height-(M′ + 1) column across the
(M′+1)×kM′ slab raising above the s-th superrow, keeping two columns in small-memory
at a time. Also keep the newly computed distances to the �rst segment in small-memory,
and stop the sweep at the right edge of the segment. More generally, given the distances
to a segment in small-memory, we can compute the values for the next segment in the
same manner by sweeping a column through the slab. This algorithm yields the following
performance.

Lemma 4.5.2. Given a path sketch 〈s, `s, rs〉, . . . , 〈i, `i, ri〉 in an hM′ × kM′ grid with dis-
tances to all input nodes computed, our algorithm correctly computes the shortest-path
distances to all nodes in the segment 〈i, `i, ri〉. Assuming k ≥ h and small-memory size
M ≥ 5M′ + Θ(1), the algorithm requires O(kM2) operations in small-memory, O(kM) reads,
and 0 writes.
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Figure 4.3: Example square grid and path sketch for M ′ = 3 and h = k = 4. The circles are nodes
in the square. The diamonds are input nodes (outputs of adjacent squares), omitting irrelevant
edges. The red slashes are the 4 superrows, and the solid red are the sketch segments.

Proof. Correctness follows from the de�nition of the path sketch: the sweep performed
by the algorithm considers all possible paths that pass through these segments.

The algorithm requires space in small-memory to store two columns in the current
slab, the previous segment in the sketch, and the next segment in the sketch, and the
two segment boundaries themselves, totaling 4M′ + Θ(1) small-memory. Due to the
monotonically increasing left endpoints of each segment, the horizontal sweep repeats
at most M′ columns per supperrow, so the total number of column iterations is O(kM′ +
hM′) = O(kM′). Multiplying by M′ gives the number of nodes computed.

The main contributor to reads is the input strings themselves to infer the struc-
ture/weights of the grid. With M′ additional small-memory, we can store the “vertical”
portion of the input string used while computing each slab, and thus the vertical string is
read only once with O(hM′) = O(kM′) reads. The “horizontal” input characters can be
read with each of the O(kM′) column-sweep iterations. An additional k reads su�ce to
read the sketch itself, which is a lower-order term. �

Building the path sketch The main algorithm on each rectangle involves building
the set of sketches to segments in the bottom superrow. At some point during the sketch-
building process, the distances to each output node is computed, at which point it can
be written out. The main idea of the algorithm is a sketch-extension subroutine: given
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segments in the i-th superrow and their sketches, extend the sketches to produce segments
in the (i + 1)-th superrow along with their sketches.

Our algorithm builds up an ordered list of consecutive path sketches, one superrow
at a time. The �rst superrow is partitioned into k segments, each containing exactly M′

consecutive nodes. The list of sketches is initialized to these segments.
Given a list of sketches to the i-th superrow, our algorithm extends the list of sketches

to the (i + 1)-th superrow as follows. The algorithm sweeps a height-(M′ + 1) column
across the (M′ + 1) × kM′ slab between these superrows (inclusive). The sweep begins at
the left end of the slab, reading the input values from the left boundary, and continuing
across the entire width of the slab. In small-memory, we evaluate the �rst segment of
the i-th superrow (using the algorithm from Lemma 4.5.2). Whenever the sweep crosses
a segment boundary in the i-th superrow, again evaluate the next segment in the i-th
superrow. For each node in the slab, the sweep calculates both the shortest-path distance
and a pointer to the segment in the previous superrow from whence the shortest path
originates (or a null pointer if it originates from the left boundary). When the originating
segment of the bottom node (the node in the (i + 1)-th superrow) changes, the algorithm
creates a new segment for the (i + 1)-th superrow and appends it to the sketch of the
originating segment. If the segment in the current segment in the (i + 1)-th superrow
grows past M′ elements, a new segment is created instead and the current path sketch
is copied and spliced into the list of sketches. Any sketch that is not extended through
this process is no longer relevant and may be spliced out of the list of sketches. When the
sweep reaches a node on the output boundary (right edge or bottom edge of the square),
the distance to that node is written out.

Lemma 4.5.3. The sketching algorithm partitions the i-th superrow into at most ik segments.

Proof. The proof is by induction over superrows. As a base case, the �rst superrow consists
of exactly k segments. For the inductive step, there are two cases in which a new segment
is started in the (i + 1)-th superrow. The �rst case is that the originating segment changes,
which can occur at most ik times by inductive assumption. The second case is that the
current segment grows too large, which can occur at most k times. We thus have at most
(i + 1)k segments in the (i + 1)-th superrow. �

Lemma 4.5.4. Suppose h ≤ k and small-memory M ≥ 11M′ + Θ(1), and consider an
hM′ × kM′ grid with distances to input nodes already computed. Then the sketch building
algorithm correctly computes the distances to all output boundary nodes using O((hk)2M2)

operations in small-memory, O((hk)2M) reads from large-memory, and O(h2k + X ) writes
to large-memory, where X = O(kM) is the number of boundary nodes written out.

Proof. Consider the cost of computing each slab, ignoring the writes to the output nodes.
We reserve 5M′+Θ(1) small-memory for the process of evaluating segments in the previous
superrow. To perform the sweep in the current slab, we reserve M′ small-memory to store
one segment in the previous row, M′ small-memory to store characters in the “vertical”
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input string, 4(M′ + 1) small-memory to store two columns (each with distances and
pointers) for the sweep, and an additional Θ(1) small-memory to keep, e.g., the current
segment boundaries. Since there are at most hk segments in the previous superrow
(Lemma 4.5.3), the algorithm evaluates at most hk segments; applying Lemma 4.5.2, the
cost isO(hk2M2) operations,O(hk2M) reads, and 0 writes. There are an additionalO(kM2)

operations to sweep through the kM2 nodes in the slab, plus O(kM) reads to scan the
“horizontal” input string. Finally, there are O(hk) writes to extend existing sketches and
O(hk) writes to copy at most k sketches.

Summing across all h slabs and accounting for the output nodes, we get O((hk)2M2 +

hkM2) operations, O((hk)2M + hkM) reads, and O(h2k + X ) writes. Removing the lower-
order terms gives the lemma. �

Combining across all rectangles in the grid, we get the following corollary.

Corollary 4.5.5. Letm ≤ n be the length of the two input strings, withm ≥ M . Suppose
h = O(m/M) and k = O(n/M) with h ≤ k . Then it is possible to compute the LCS or edit
distance of the strings with O(mnhk) operations in small-memory, O(mnhk/M) reads to
large-memory, and O(mnh/M2 +mn/(hM)) writes to large-memory.

Proof. There are Θ(mn/(hkM2)) size-(hM/11) × (kM/11) subgrids. Multiplying by the
cost of each grid (Lemma 4.5.4) gives the bound. �

Setting h = k = 1 gives the standard M ×M tiling with O(nm) work and O(mnω/M)
ARAM cost. As the size of squares increase, the fraction of output nodes and hence
writes decreases, at the cost of more overhead for operations in small-memory and reads
from large-memory. Assuming both n and m are large enough to do so, plugging in
h = k = max{1,kT } or h = k = kQ with a few steps of algebra to eliminate terms yields
Theorem 4.5.1.

Proof of Theorem 4.5.1. As long as h ≤
√
M , the number of writes reduces to O(mn/(hM)).

(Increasing h further causes the number of writes to increase.)
Consider the work bound �rst. If kT ≤ 1, then just use algorithm with h = k = 1.

Otherwise, let M′ = M/11 and use the algorithm with h = k = kT . As long as h = k ≤
(ω/M)1/3, which is true for kT , the work of operations is less than the work of writes,
giving the bound.

For the ARAM cost, use our algorithm with h = k = kQ . As long as h = k ≤ ω1/3, then
cost of reads is less than the cost of writes. �

4.5.2 Smaller String Lengths

We now discuss how to improve the ARAM cost for smaller string lengths. Ifm ≤ M ,
then the standard I/O algorithm becomes even better — simply sweep a column through,
which remains in small-memory, using O(m + n) reads, no writes, and O(mn) work. Since
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there are no writes, we cannot beat that bound. As described already, ifm ≥ kM′ then our
algorithm partitions the grid into kM′ × kM′ squares, which for larger k saves writes by
sacri�cing reads and re-computation. The remaining question is what happens whenm is
larger than small-memory but not too much larger, i.e., M < m < kTM

′ or M < m < kQM
′.

When m falls in this range, we apply the algorithm to m × kM′ rectangles, i.e., setting
h =m/M′. It turns out we can achieve a better bound than Theorem 4.5.1 by increasing
k even further. The key observation here is that the bottom of the rectangle no longer
needs to be written out because there is no rectangle below it — only the right edge is an
output edge. The number of writes per rectangle (Lemma 4.5.4 with X = hM′) reduces to
O(h2k + hM). We thus have the following modi�ed version of Corollary 4.5.5

Corollary 4.5.6. Let m ≤ n be the length of the two input strings, with m ≥ M . Let
h = Θ(m/M), and suppose k = O(n/M) satisfying h ≤ k . Then it is possible to compute LCS
or edit distance of a lengthm and n input strings withO(mnhk) operations in small-memory,
O(mnhk/M) reads to large-memory, and O(mnh/M2 +mn/(kM)) writes to large-memory.

Proof. There are Θ(n/(kM)) sizem × (kM/11) subgrids. Multiplying by the cost of each
grid from Lemma 4.5.4, with X = hM , gives O(nh2kM) operations, O(nh2k) reads, and
O(nh2/M + nh/k) writes. Substituting one of the h terms with h = Θ(m/M) gives the
theorem. �

The following theorem provides the improved work and ARAM cost in the case that
one string is short but the other is long. To understand the bounds here, consider the
maximum and minimum values of h for h =m/M′ and large ω. If h = (ω/M)1/3, i.e., m is
large enough that we can divide into kTM

′ × kTM
′ squares, then we get k′T = (ω/M)

1/3

matching the bound in Theorem 4.5.1. As h decreases, the bound improves. In the limit,
h = Θ(1) (orm = Θ(M)), we get k′T =

√
ω/M which is better.

Theorem 4.5.7. Let h = Θ(m/M) and suppose that h ≤ kT speci�ed in Theorem 4.5.1. Let
k′T = min{

√
ω/(hM),M/h} and suppose that n = Ω(k′TM). Then it is possible to compute

the length of the LCS or edit distance with total work ofW (m,n) = O(mn +mnω/(k′TM)).
Let h = Θ(m/M) and suppose that h ≤ kQ speci�ed in Theorem 4.5.1. Let k′Q =

min{
√
ω/h,M/h} and suppose n = Ω(k′QM). Then it is possible to compute the length

of the LCS or edit distance with an ARAM cost of Q(m,n) = O(mnω/(k′QM)).

Proof. With the restrictions on h, we have h ≤ k , so Corollary 4.5.6 is applicable. As
in proof of Theorem 4.5.1, the second term of the min has the e�ect that O(mnh/M2 +

mn/(kM)) = O(mn/(kM)). The rest of the bound follows by choice of k to makes the cost
of writes dominate. �

When n is also small, the bound improves further. In this case, the algorithm consists
of building the sketch on a singlem × n grid, so no boundary nodes are output — the only
writes that need be performed are the sketch itself.
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Theorem 4.5.8. Let m ≤ n be the length of the two input strings, with m ≥ M . Let
h = Θ(m/M) and let k = Θ(n/M). Then it is possible to compute the LCS or edit distance
of the two strings with work W (m,n) = O(mnhk + h2kω) and ARAM cost Q(m,n) =
O(mnhk/M + h2kω).

Proof. The bound follows directly from Lemma 4.5.4 with X = 0 and substituting one hk
term in the read/work bounds. �

4.5.3 Recovering the Shortest Path

The standard approach for outputting the shortest path is to trace backwards through
the grid from the bottom-rightmost node. This approach assumes that the distances to all
internal nodes are known, but unfortunately our algorithm discards distances to interior
nodes.

Fortunately, the sketch provides enough information to cheaply traceback a path
through each square without any additional writes (except the path itself) and without
asymptotically more reads or work. In particular, for any node v in superrow i + 1, it is
not hard to identify a node u in superrow i such that a shortest path to v passes through u.
Consider the sketch 〈s, `s, rs〉, . . . , 〈i, `i, ri〉, 〈i+1, `i+1, ri+1〉 to the segment 〈i+1, `i+1, ri+1〉

that includes v . The vertex u is one of the vertices in the penultimate segment 〈i, `i, ri〉
of the sketch, so the goal is to identify which one. To do so, evaluate the sketch to the
segment 〈i, `i, ri〉. Then perform a horizontal sweep through the �nal slab, keeping track
of the originating vertex from the penultimate segment.

Now suppose we have these vertices u and v that fall along the shortest path and are
in consecutive superrows. We also need to identify the path through the slab between u
and v . To do that, we apply Hirschberg’s [167] recursive low-space algorithm for path
recovery in the ED/LCS grid, splitting the horizontal dimension in half on each recursion.
Note that the work reduces by a constant fraction in each recursion, but the ARAM cost
does not (the only ARAM cost here is from reading the “horizontal” input string), so
it may not be immediately obvious that the ARAM cost is cheap enough. Fortunately,
after recursing at most lgk times, the length of the horizontal substring is at most M′
and the remaining path-recovery subproblem can be done with no further reads from
large-memory.

Putting it all together, tracing a path to the previous superrow requires one sketch
evaluation, followed by work that is linear in the area and an ARAM cost that corresponds
to reading the horizontal string from large-memory lgk times. Rounding up loosely, we
get work of O(k(M′)2 + (M)(kM)) = O(kM2) along with O(kM′ + (kM′) lgk) = O(k2M)
reads. Multiplying by the h superrows, we have O(hkM2) work and O(hk2M) reads from
large-memory. Both of these are less than the cost of building the sketch in the �rst place
(Lemma 4.5.4).
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Chapter 5

Graph Algorithms

5.1 Overview

In this section we investigate write-e�cient graph algorithms. Generally, designing
write-e�cient algorithms on graph problems is hard because of the di�culty to partition
the computation to be small enough to �t into the small-memory on a general graph. In
most cases we seek chances in algorithmic designing to trade fewer writes from more
reads (and other operations), but in phased Dijkstra introduced in Section 5.4.1 we utilize
the small-memory to avoid frequent updates of the priority queue to the large-memory.

In this section we �rst study undirected graph connectivity and biconnectivity in
Section 5.3. We propose sequential and parallel algorithms to solve them using signi�-
cantly fewer writes than conventional algorithms. Our primary algorithmic tool is the
construction of an o(n)-sized implicit decomposition of a bounded-degree graph G on n
nodes, which combined with read-only access to G enables fast answers to connectivity
and biconnectivity queries on G. The construction breaks the linear-write “barrier”, re-
sulting in costs that are asymptotically lower than conventional algorithms while adding
only a modest cost to querying time.

To be more speci�c, for general graphs with n vertices and m edges, We provide
(bi)connectivity oracles that can either be preprocessed in either O(m + ωn) or O(

√
ωm)

work with small depth. Then each connectivity query can be answered in O(1) or O(
√
ω)

work, and each biconnectivity query can be answered in O(1) or O(
√
ω) work. More

details of previous and our results can be found in Table 5.1.
Then later in Section 5.4 we investigate write-e�cient distance-based graph algorithms.

Since most of these distance-based problems are notoriously hard in parallel, we mainly
study them in the sequential setting based on (M,ω)-ARAM model. We cover single
source shortest paths (SSSP) using Dijkstra in Section 5.4.1 and minimum spanning trees
(MST) in Section 5.4.2, and their costs are summarized in Table 5.2. For parallel setting,
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Connectivity Biconnectivity Best choice

Sequential Parallel Sequential Parallel when

Best prior results O(m + ωn) O(ωm)† O(ωm) O(ωm)† –
This thesis

O(m + ωn)† O(m + ωn)† O(m + ωn)† O(m + ωn)† m ∈ Ω(
√
ωn)

(§5.3.4.2,§5.3.5.2)
This thesis

§5.3.4.3,§5.3.5.3 O(
√
ωm)† O(

√
ωm)† O(

√
ωm)† O(

√
ωm)† m ∈ o(

√
ωn)

Table 5.1: Summary of main results for constructing connectivity oracles (n nodes, m edges,
†=expected), where ω � 1 is the cost of writes to the asymmetric memory. Here “Sequential”
indicates the ARAM work, and “Parallel” indicates the work on Asymmetric NP. All parallel
algorithms have depth polynomial in ω logn. For prior results, this table shows the work of the
best prior sequential algorithm and parallel algorithm respectively. Compared to prior work,
asymmetric memory writes are reduced by up to a factor of ω, yielding improvements in both
sequential and parallel settings. Query times are O(

√
ω)† (connectivity) and O(ω)† (biconnectivity)

for the last row and O(1) for the rest. For all algorithms the small symmetric memory is only
O(ω logn) words.

we also discuss the minimum spanning trees in Section 5.4.2.2, and BFS in Section 5.4.3.
The bounds of these algorithms are summarized in Table 5.3.

5.2 Preliminaries and Terminologies

In this section, a graph G = (V , E) has n = |V | vertices andm = |E | edges. Vertices are
indexed from 0 to n − 1. Unless otherwise stated, G can contain self-loops and parallel
(duplicate) edges, and is not necessarily connected. We assume a global ordering of the
vertices to break ties when necessary. If the degree of every vertex is bounded by a
constant, we say the graph is bounded-degree.

We use standard de�nitions of spanning tree, spanning forest, connected component,
biconnected component, articulation points, bridge, and k-edge-connectivity on a graph, and
lowest-common-ancestor (LCA) query on a tree.

A spanning tree T of an undirected connected graph G is a subgraph that is a tree
which includes all of the vertices of G . A spanning forest of G contains the union of the
spanning trees of all connected components in G. The lowest-common-ancestor (LCA)
query for two vertices on a rooted spanning tree requires O(n) work and O(logn) depth
on preprocessing, and O(1) query time [48, 243].

A connected component of G is a subgraph in which any two vertices are connected
to each other by paths via edges in the graph.
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Problem Cost and work on (M,ω)-ARAM

Single-source
shortest paths

Q(n,m) = O
(
min

(
n
(
ω +

m

M

)
,ω(m + n logn),m(ω + logn)

))
W (n,m) = O(Q(n,m) + n logn)

Minimum
spanning tree

Q(n,m) = O
(
m min

( n
M
, logn

)
+ ωn

)
W (n,m) = O(Q(n,m) + n logn)

Table 5.2: Summary of results on sequential graph algorithms in this thesis on the (M,ω)-ARAM.

Problem Work on Asymmetric NP Depth

MST (parallel KKT) Q(n,m) =W (n,m) =
O(α(n)m + ωn log(min(m/n,ω)))

O(ω polylog(n))

Breadth-�rst search Q(n,m) =W (n,m) = O(m + ωn) O(ω∆ logn) whp

Table 5.3: Summary of results on parallel graph algorithms in this thesis on the Asymmetric NP.
∆ is the diameter of the input graph.

A biconnected component (also known as a block or 2-connected component) of G
is a maximal subgraph such that it is still connected after removing any single vertex in
the subgraph. Any connected graph decomposes into a tree of biconnected components
called the block-cut tree of the graph. The blocks are attached to each other at shared
vertices called articulation points.

A bridge of G is an edge whose deletion increases the number of connected com-
ponents of the graph. A connected graph is k-edge-connected if it remains connected
whenever fewer than k edges are removed. An unconnected graph is 0-edge connected;
a connected graph with bridges is 1-edge-connected; and a bridge-less graph is at least
2-edge-connected.

When G = (V , E) is a weighted graph, the edge lengths are denoted as l : E → R+.
The shortest-path distance on the graph G is denoted as dG(u,v) between nodes u and
v in V . Throughout this thesis, we assume that minx,y d(x,y) = 1. Let ∆ = maxx ,y d(x,y)

minx,y d(x,y) =

maxx,y d(x,y), the diameter of the graph G.
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5.3 Connectivity / Biconnectivity

5.3.1 Introduction

In this section we look into graph connectivity problems, and in particular whether it is
possible to build an “oracle” using a sublinear number of writes that supports fast queries,
along with any read-write tradeo�s this entails. We consider undirected connectivity
(connected components, spanning forests) and biconnectivity (biconnected components,
articulation points, and related 1-edge-connectivity) problems. We do not consider the
cost of initially storing the graph in memory, but note that there are many scenarios in
which the graph is either represented implicitly, e.g., the Swendsen-Wang algorithm [262],
or for which the graph is sampled and used multiple times, e.g., edges selected based on
di�erent Boolean hash functions or based on properties (timestamp, weight, relationship,
etc.) associated with the edge.

Our results show that if a graph with n vertices andm edges is su�ciently dense, a
sublinear number of writes (o(m)) can be achieved without asymptotically increasing the
number of reads (no tradeo� is required). For bounded-degree graphs, on the other hand,
our algorithm achieving a sublinear number of writes (o(n)) involves a linear tradeo�
between reads and writes. The main technical contribution is a new implicit decomposition
of a graph that allows writing out information only for a suitably small sample of the
vertices. We use two models to account for the read-write asymmetry: (i) the (M,ω)-ARAM
model, in which writes to the asymmetric memory cost ω � 1 and all other operations
are unit cost; and (ii) its parallel variant, the Asymmetric NP model. Both models have
a small symmetric memory (a cache) that can be used to help minimize the number of
writes to the large asymmetric memory.

Table 5.1 summarizes our main results for these models, showing asymptotic im-
provements in construction costs over all prior work (sequential or parallel) for these
well-studied connectivity problems.

Algorithms with o(m)writes for non-sparse graphs. The �rst contribution is a group
of algorithms that achieve O(m/ω + n) writes, O(m) other operations, and hence O(m +
ωn) work. While standard sequential BFS- or DFS-based graph connectivity algorithms
require only O(n) writes, and hence already achieve this bound, the parallel setting is
more challenging. Existing linear-work parallel connectivity algorithms perform Θ(m)
writes [104, 137, 160, 161, 229, 231, 253], and hence are actually Θ(ωm) work in the
asymmetric memory setting. We show how the algorithm of Shun et al. [253] can be
adapted to use only O(m/ω +n) writes (and O(m) other operations), by avoiding repeated
graph contractions and using the write-e�cient BFS (discussed later in this section),
yielding the �rst O(m +ωn) expected work, low-depth parallel algorithm for connectivity
in the asymmetric setting. (By low depth we mean depth polynomial in ω logn.)
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For biconnectivity, the standard output is an array of size m indicating to which
biconnected component each edge belongs [108, 183]. Producing this output requires
at leastm writes, and as a result, the sequential time (and parallel work) ends up being
Θ(ωm) in the asymmetric memory setting. We present an equally e�ective representation
of the output, which we call the BC labeling, which has size only O(n). This leads to a
sequential biconnectivity algorithm that constructs the oracle in only O(m + ωn) time in
the asymmetric setting. Moreover, we show how to leverage our new parallel connectivity
algorithm to compute the BC labeling in O(m/ω + n) writes, yielding the �rst O(m + ωn)
work parallel algorithm for biconnectivity in the asymmetric memory setting. We show:

Theorem 5.3.1. Graph connectivity and biconnectivity oracles can be constructed in parallel
with O(m + ωn) expected work and O(ω2 log2 n) depth whp on the Asymmetric NP model,
and each query can be answered in O(1) work. The symmetric memory is O(ω logn) words.

Algorithms with o(n) writes for sparse graphs. For sparse graphs, the work of our
connectivity and biconnectivity algorithms is dominated by the Ω(n) writes they perform.
This led us to explore the following fundamental question: Is it possible to construct,
using o(n) writes to the asymmetric memory, an oracle for graph connectivity (or
biconnectivity) that can answer queries in time independent of n? Given that the
standard output for these problems (even with BC labeling) is Θ(n) size even for bounded-
degree graphs, one might conjecture that Ω(n) writes are required. Our main contribution
is a (perhaps surprising) a�rmative answer to the above question for both the connectivity
and biconnectivity problems.

The key technical contribution behind our breaking of the Ω(n)-write “barrier” is
the de�nition and use of an implicit k-decomposition of a graph. Informally, a k-
decomposition of a graph G is comprised of a subset S of the vertices, called centers, and a
mapping ρ(·) that partitions the vertices among the centers, such that (i) |S | = O(n/k), (ii)
the number of vertices in each partition is at most k , and (iii) for each center, the induced
subgraph on its vertices is connected. However, explicitly storing the center associated
with each vertex would require Ω(n) writes. Instead, an implicit k-decomposition de�nes
the mapping implicitly in terms of a procedure that is given only G and S (and a 1-bit
labeling on S).

With the new concept of implicit k-decomposition, we present three algorithmic sub-
routines which together construct connectivity and biconnectivity oracles with O(m/

√
ω)

writes, which is o(n) whenm ∈ o(
√
ωn). For clarity of presentation, we begin by assuming

the input graph has bounded degree. Section 5.3.6 discusses how to relax this constraint.
We �rst present an algorithm to compute an implicit k-decomposition that can be

constructed in only O(n/k) writes, O(kn) reads, and low depth, and can compute ρ(v) in
only O(k) expected reads and no asymmetric memory writes. The intuition behind our
construction is �rst to pick a random subset of the vertices and then map each unpicked
vertex to the closest center by performing a BFS on the graph G . Unfortunately, this does
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not satisfy the constraint on partition size, so a more sophisticated approach is needed.
The unique challenge that arises again and again in the asymmetric context is that the
sublinear limitation on the number of writes rules out the approaches used by prior work.

We then show how the implicit k-decomposition can be used to solve graph con-
nectivity and biconnectivity. We de�ne the concept of a clusters graph, which contains
vertices each representing a cluster and edges between clusters. The key idea is that after
precomputing on the clusters graph and storing a constant amount of information about
connectivity and biconnectivity on each vertex (corresponding to a cluster in the original
graph), a connectivity or biconnectivity query can be answered by only looking at the
local structure and preprocessed information on a constant number of clusters. This is
straightforward for connectivity queries because we need only compare the labels of the
clusters that contains the respective query points. However, this becomes much more
challenging in graph biconnectivity since the correspondence between the clusters and
biconnected components is non-trivial: a cluster may contain the vertices in many bicon-
nected components while the vertices in a certain biconnected component can belong to
di�erent clusters. Therefore, biconnectivity queries require considerable subtleties in the
design, to store the appropriate information on the clusters graph that enables each query
to access only a constant number of clusters (at most 3). More speci�cally, we de�ne the
concept of the local graph of each cluster (it maintains the relationship of biconnectivity
of this cluster and its neighbor clusters and can be computed with the cost proportional
to the size of this cluster), such that the biconnectivity queries discussed in Section 5.3.5
can be answered by looking up a constant number of local graphs and the information
stored in the clusters graph.

Our sequential algorithms have signi�cant algorithmic merits on their own, but we
also show that all the algorithms can be made to run in parallel with low depth. We show:

Theorem5.3.2. Graph connectivity and biconnectivity oracles can be constructed inO(m/
√
ω)

expected writes andO(m
√
ω)work on the (M,ω)-ARAMmodel. The depth on the Asymmetric

NP is O(ω3/2 log3 n) whp. Each connectivity query can be answered in O(ω1/2) expected
time (work) (O(ω1/2 logn) whp) and each biconnectivity query inO(ω) expected time (work)
(O(ω logn) whp). The symmetric memory is O(ω logn) words.

5.3.2 Related Work

Although graph decompositions with various properties have been shown to be quite
useful in a large variety of applications (e.g., [1, 33, 34, 35, 63, 201, 216]), to our knowledge
none of the prior algorithms provide the necessary conditions for processing graphs
with a sublinear number of writes in order to answer connectivity/biconnectivity queries
(targeting instead other decomposition properties that are unnecessary in our setting, such
as few edges between clusters). For example, Miller et al.’s [216] parallel low-diameter
decomposition algorithm requires at least Ω(n) writes (even if a write-e�cient BFS is
used), and provides no guarantees on the partition sizes. Similarly, algorithms for size-
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balanced graph partitioning (e.g., [22]) require Ω(n) writes. Our implicit k-decomposition
construction is reminiscient of sublinear time algorithms for estimating the number of
connected components [46, 88] in its use of BFS from a sample of the vertices. However,
their BFS is used for a completely di�erent purpose (approximate counting of 1/nu , the
inverse of the size of the connected component containing a sampled node u), does not
provide a partitioning of the nodes into clusters (two BFS from di�erent nodes can overlap),
and cannot be used for connectivity or biconnectivity queries (two BFS from the same
connected component may be truncated before intersecting).

5.3.3 Implicit Decomposition

We now introduce the concept of an implicit decomposition. The idea is to partition
an undirected graph into connected clusters such that all we need to store to represent
the cluster is one representative, which we call the center of the cluster, and some small
amount of information on that center (1 bit in our case). The goal is to quickly answer
queries on the cluster. The queries we consider are: given a vertex �nd its center, and
given a center �nd all its vertices. To reduce the amount of symmetric-memory needed,
we need all clusters to be roughly the same size. We start with some de�nitions, which
consider an undirected graphs G.

For graph G = (V , E) we refer to the subgraph induced by a subset of vertices as a
cluster. A decomposition of a connected graphG = (V , E) is a vertex subset S ⊂ V , called
centers, and a function ρ(v) : V → S , such that the cluster C(s) = {v ∈ V | ρ(v) = s} for
each center s ∈ S is connected. A decomposition is a k-decomposition if the size of each
cluster is upper bounded by k , and |S | = O(n/k). We are often interested in the graph
induced by the decomposition, and in particular:
De�nition 1 (clusters graph). Given the decomposition (S, ρ) of a graph G = (V , E), the
clusters graph is the multigraph G′ = (S, 〈 {ρ(u), ρ(v)} : {u,v} ∈ E, ρ(u) , ρ(v) 〉 ).
De�nition 2 (implicit decomposition). An implicit decomposition of a connected graph
G = (V , E) is a decomposition (S, ρ, `) such that ρ(·) is de�ned implicitly in terms of an
algorithm given only G, S , and a (short) labeling `(s) on s ∈ S .

For the algorithms in this thesis, we use implicit k-decompositions. Our goal is to
construct and query the decomposition quickly, while using short labels. Our main result
is the following.
Theorem 5.3.3. An implicit k-decomposition (S, ρ, `) can be constructed on an undirected
bounded-degree graph G = (V , E) with |V | = n such that:

• the construction takes O(kn) operations and O(n/k) writes, both in expectation;
• ρ(v) query: �nding ρ(v) for any given v ∈ V takesO(k) operations in expectation and
O(k logn) whp, and no writes;

• C(s) query: �nding C(s) for any given s ∈ S takes O(k2) operations in expectation,
and O(k2 logn) whp and no writes;
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Figure 5.1: An example implicit k-decomposition for k = 4 consisting of clusters
{d,h, l}, {i, j,b}, {e, f }, and {a, c,д,k}. In the graph, j ′s primary center is e (i.e., ρ0(j) = e) and its
secondary center is b (i.e., ρ(j) = b). Note b is on the shortest path to from j to e . Also note that c
is closer to the secondary center b than to д, but picks д as its actual center, because b is not on the
shortest path to its primary center. In breaking ties we assume lexicographically smaller letters
have higher priorities. The solid lines are on shortest paths from a vertex to its secondary center.

• the labels `(s), s ∈ S are 1-bit each; and,
• construction and queries take O(k logn) symmetric memory whp.

Note that this theorem indicates a linear tradeo� between reads (operations) and writes
for the construction controlled by k .

At a high level, the construction algorithm works by identifying a subset of centers
such that every vertex can quickly �nd its nearest center without having to keep a pointer
to it (which would require too many writes). It �rst selects a random subset of the vertices
where each vertex is selected with probability 1/k . We call these the primary centers
and denote them as S0. All other vertices are then assigned to the nearest such center.
Unfortunately, a cluster de�ned in this way can be signi�cantly larger than k (super-
polynomial in k). To handle this, the algorithm identi�es an additional O(n/k) secondary
centers, S1. Every vertex v is associated with a primary center ρ0(v) ∈ S0, and an actual
center ρ(v) ∈ S = S0 ∪ S1. The only values the algorithm stores are the set S and the
bits `(s), s ∈ S indicating whether it is primary or secondary. An example is given in
Figure 5.1.

In our construction it is important to break ties among equal-length paths in a consis-
tent way, such that subpaths of a shortest path are themselves a unique shortest path. For
this purpose we assume the vertices have a total ordering (and comparing two vertices
takes constant time). Among two equal hop-length paths from a vertex u, consider the
�rst vertex where the paths diverge. We say that the path with the higher priority vertex
at that position is shorter. Let SP(u,v) be the shortest path between u and v under this
de�nition for breaking ties, and L(SP(u,v)) be its length such that comparing L(SP(u,v))
and L(SP(u,w)) breaks ties as de�ned. By our de�nition all subpaths of a shortest path
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are also unique shortest paths for a �xed vertex ordering. Based on these de�nitions we
specify ρ0(v) and ρ as follows:

ρ0(v) = argmin
u∈S0

L(v,u)

ρ(v) = argmin
u∈S∧u∈SP(v,ρ0(v))

L(v,u)

The de�nitions indicate that a vertex’s center is the �rst center encountered on the
shortest path to the nearest primary center. This could either be a primary or secondary
center (see Figure 5.1). ρ(v) is de�ned in this manner to prevent vertices from being
reassigned to secondary centers created in other primary clusters, which could result in
oversized clusters.

We now describe how to �nd ρ(v) for any vertex v . First, we �nd v’s closest primary
center by running a BFS from v until we hit a vertex in S0. The BFS orders the vertices
by L(SP(v, ·)). To �nd ρ(v) we �rst search for the primary center of v (ρ0(v)) and then
identify the �rst center on the path from v to ρ0(v), possibly ρ0(v) itself.

Lemma5.3.4. ρ(v) can be found inO(k) operations in expectation, andO(k logn) operations
whp, and using O(k logn) symmetric memory whp.

Proof. Note that the search order from a vertex is deterministic and independent of the
sampling used to select S0. Therefore, the expected number of vertices visited before
hitting a vertex in S0 is k . By tail bounds, the probability of visiting O(ck logn) vertices
before hitting one in S0 is at most 1/nc . The search is a BFS, so it takes time linear in the
number of vertices visited. Because the vertices are of bounded degree, placing them in
priority order in the queue is easy. Once the primary center is found, a search back on the
path gives the actual center. We assume that symmetric memory is used for the search so
that no writes to the asymmetric memory are required. The memory used is proportional
to the search size, which is proportional to the number of operations; O(k) in expectation
and O(k logn) whp. �

The space requirement for the symmetric memory is O(k logn), which we believe is
realistic as we set k =

√
ω when using this decomposition later in this chapter.

We use the following lemma to help �nd C(s) for a center s .

Lemma 5.3.5. The union of the shortest paths SP(v, ρ(v)) forv ∈ V de�ne a rooted spanning
tree on each cluster, with the center as the root (when path edges are viewed as directed
towards ρ(v)).

Proof. We �rst show that this is true for the clusters de�ned by the primary centers S
(i.e., ρ0(v)). We use the notation SP(v,u) + SP(u,w) to indicate joining the two shortest
paths at u. Consider a vertex v with ρ0(v) = s , and consider all of the vertices P on
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the shortest path from v to s . The claim is that for each u ∈ P, ρ(u) = s and SP(u, s) is
a subpath of P . This implies a rooted tree. To see that ρ(u) = s note that the shortest
path from u to a primary vertex t has length L(SP(u, t)). We can write the length of
the shortest path from v to t as L(SP(v, t)) ≤ L(SP(v,u) + SP(u, t)) and the length of the
shortest path from v to s as L(SP(v, s)) = L(SP(v,u) + SP(u, s)). Because ρ0(v) = s , we
know that L(SP(v, s)) < L(SP(v, t)) ∀t , s . Through substitution and subtraction, we see
that L(SP(u, s)) < L(SP(u, t)) ∀t , s . This means that ρ0(u) = s . We know that SP(u, s)
cannot contain the edge b that v takes to reach u in SP(v, s) because u ∈ SP(v, s). Since
the search from u excluding b will have the same priorities as the search from v when it
reaches u, SP(u, s) is a subpath of P .

Now consider the clusters de�ned by ρ(v). The secondary centers associated with a
primary center s partition the tree for s into subtrees. Each subtree begins (relative to
the root) at a center and ends when encountering another center (this other center is
not included). Each vertex in the tree for s will be assigned the correct partition by ρ(v)
because each will be assigned to the �rst secondary center on the way to the primary
center. �

The set of solid edges in Figure 5.1 is an example of the spanning forest. This gives
the following.

Corollary 5.3.6. For any vertex v , SP(v, ρ(v)) ⊆ C(ρ(v)).

Lemma 5.3.7. For any vertex s ∈ S , its clusterC(s) can be found inO(k |C(s)|) operations in
expectation and O(k |C(s)| logn) operations whp, and using O(|C(v)| + k logn) symmetric
memory whp.

Proof. For any center s ∈ S , identifying all the vertices in its cluster C(s) can be imple-
mented as a BFS starting at s . For each vertex v ∈ V that the BFS visits, the algorithm
checks if ρ(v) = s . If so, we add v toC(s) and put its unvisited neighbors in the BFS queue,
and otherwise we do neither. By Corollary 5.3.6, any vertex v for which ρ(v) = s must
have a path to s only through other vertices whose center is v . Therefore the algorithm
will visit all vertices in C(s). Furthermore, because the graph has bounded degree it
will only visit O(C(s)) vertices not in C(s). Each visit to a vertex u requires �nding ρ(v).
Our bound on the number of operations therefore follows from Lemma 5.3.4. We use
O(|C(v)|) symmetric memory for storing the queue andC(v), andO(k logn)memory whp
for calculating ρ(v). �

We now show how to select the secondary centers such that the size of each cluster
is at most k . Algorithm 4 describes the process. By Lemma 5.3.5, before the secondary
centers are added, each primary vertex in s ∈ S0 de�nes a rooted tree of paths from the
vertices in its cluster to s . The function SecondaryCenters then recursively cuts up this
tree into subtrees rooted at each u that is identi�ed.
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Algorithm 4: Constructing Implicit k-Decomposition
Input: Connected bounded-degree graph G = (V , E), parameter k
Output: A set of cluster centers S0 and S1 (S = S0

⋃
S1)

1 Sample each vertex with probability 1/k , and place in S0
2 S1 = �

3 foreach vertex v ∈ S0 do

4 SecondaryCenters(v , G, S0)
5 return S0 and S1

6 function SecondaryCenters(v , G, S)
7 Search from v for the �rst k vertices that have v as their center. This de�nes a

tree.
8 If the search exhausts all vertices with center v , return.
9 Otherwise identify a vertex u that partitions the tree such that its subtree and

the rest of the tree are each at least a constant fraction of k .
10 Add u to S1.
11 SecondaryCenters(v , G, S ∪ u)
12 SecondaryCenters(u, G, S ∪ u)

Lemma 5.3.8. Algorithm 4 runs inO(nk) operations andO(n/k)writes (both in expectation),
and uses O(k logn) symmetric memory whp on the (M,ω)-ARAM Model. It generates a
implicit k-decomposition S of G with labels distinguishing S0 from S1.

Proof. The algorithm creates clusters of size at most k by construction (it partitions any
cluster bigger thank using the added verticesu). Each call to SecondaryCenters (without
recursive calls) will use O(k2) operations in expectation because we visit k vertices and
each one has to search back tov to determine ifv is its center. Each call also usesO(k logn)
space for the search whp because we need to store the k elements found so far and each
ρ(v) uses O(k logn) space for the search whp. Before making the recursive calls, we write
out u to S1, requiring one write per call to SecondaryCenters. The symmetric memory
can be reused by the recursive calls.

We are left with showing there are at mostO(n/k) calls to SecondaryCenters. There
are n/k primary centers in expectation. If there are too many (beyond some constant
factor above the expectation), we can try again. Because the graph has bounded degree,
we can �nd a vertex that partitions the tree such that its subtree and the rest of the tree
are both at most a constant fraction of k . We can now charge all internal nodes of the
recursion against the leaves. There are at most O(n/k) leaves because each de�nes a
cluster of size Θ(k). Therefore there are O(n/k) calls to SecondaryCenters, giving the
stated overall bounds. �

89



Parallelizing the decomposition. To parallelize the decomposition in Algorithm 4, we
make one small change; in addition to adding u to the set of secondary centers at each
recursive call to SecondaryCenters, we add all children of v (thus separating v into its
own cluster). This guarantees that the height of the tree decreases by at least one on each
recursive call, and only increases the number of writes by a constant factor. This gives
the following lemma.

Lemma 5.3.9. On the Asymmetric NP model, Algorithm 4 runs in depth O(k3 log2 n) whp.

Proof. Certainly selecting the set S0 can be done in parallel. Furthermore the calls to
SecondaryCenters on line 4 can be made recursively in parallel. The depth will be
proportional to the depth to each call to SecondaryCenters (not including recursive
calls) multiplied by the depth of the recursion. To bound the depth, in the parallel version
we also mark the children of the root as secondary centers, which does not increase the
number of secondary centers asymptotically (due to the bounded-degree assumption). In
this way the height of the tree decreases by one on each recursive call. The depth of the
recursion is at most the depth of the tree associated with the primary center ρ0(v). This is
bounded by O(k logn) whp because by Lemma 5.3.4 every vertex �nds its primary center
within O(k logn) steps whp. The depth of SecondaryCenters (without recursion) is just
the number of operations (O(k2 logn) whp). This gives the bound. �

Extension to unconnected graphs. Note that once a connected component contains
at least one primary center, the de�nition and Theorem 5.3.3 hold. However, it is possible
that in a small component, the search of ρ(·) exhausts all connected vertices without
�nding any primary centers (vertices in the initial sample, S0). In this case, we check
whether the size of the cluster is at least k , and if so, we mark as a primary center the
vertex that is the smallest according to the total order on vertices. This marks at most
n/k primary centers and the rest of the algorithm remains unchanged. This step is added
after line 1 in Algorithm 4, and requires O(nk) work and operations, O(n/k) writes, and
O(k + logn) depth. The cost bound therefore is not changed. If the component is smaller
than k , we use the smallest vertex in the component as a center implicitly, but never write
it out. The ρ(·) function can easily return this in O(k) operations.

5.3.4 Graph Connectivity and Spanning Forest

This section describes parallel write-e�cient algorithms for graph connectivity and
spanning forest; that is, identifying which vertices belong to each connected component
and producing a spanning forest of the graph. These tasks can be easily accomplished
sequentially by performing a breadth-�rst or depth-�rst search in the graph with O(m)
operations and O(n) writes. While there are several work-e�cient parallel algorithms
for the problem [104, 137, 160, 161, 229, 231, 253], all of them use Ω(n +m) writes. This
section has two main contributions: (1) Section 5.3.4.2 provides a parallel algorithm using
O(n +m/ω) writes in expectation, O(nω +m) expected work, and O(ω2 log2 n) depth with
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high probability; (2) Section 5.3.4.3 gives an algorithm for constructing a connectivity
oracle on constant-degree graphs in O(n/

√
ω) expected writes and O(n

√
ω) expected total

operations. Our oracle-construction algorithm is parallel, having depth O(ω3/2 log3 n)
whp, but it also represents a contribution as a sequential algorithm.

Our parallel algorithm (Section 5.3.4.2) can be viewed as a write-e�cient version
of the parallel algorithm due to Shun et al. [253]. This algorithm uses a low-diameter
decomposition algorithm of Miller et al. [216] as a subroutine, which we review and adapt
next in Section 5.3.4.1.

The exponential distribution with parameter λ is de�ned by the probability density
function:

f (x, λ) =

{
λe−λx if x ≥ 0
0 otherwise

The mean of the exponential distribution is 1/λ.

5.3.4.1 Low-diameter Decomposition

Here we review the low-diameter decomposition of Miller et al. [216]. The so-called
“(β,d)-decomposition” is terminology lifted from their paper, and it should not be confused
with our implicit k-decompositions. The details of the decomposition subroutine are
important only to extract a bound on the number of writes.

A (β,d)-decomposition of an undirected graph G = (V , E), where 0 < β < 1 and
1 ≤ d ≤ n, is de�ned as a partition of V into subsets V1, . . . ,V` such that (1) the shortest
path between any two vertices in each Vi using only vertices in Vi has length at most d ,
and (2) the number of edges (u,v) ∈ E crossing the partition, i.e., such that u ∈ Vi , v ∈ Vj ,
and i , j, is at most βm. Miller et al. [216] provide a parallel algorithm for generating
a (β,O(logn/β))-decomposition with O(m) operations and O((log2 n)/β) depth whp. As
described by Miller et al., the number of writes performed is also O(m), but this can be
improved to O(n). Speci�cally, the algorithm executes multiple breadth-�rst searches
(BFS’s) in parallel, which can be replaced by write-e�cient BFS’s.

In more detail, the algorithm �rst assigns each vertex v a value δv drawn from an
exponential distribution with parameter β (mean 1/β). Then on iteration i of the algorithm,
BFS’s are started from unexplored vertices v where δv ∈ [i, i + 1) and all BFS’s that have
already started are advanced one level. At the end of the algorithm, all vertices that
were visited by a BFS starting from the same source will belong to the same subset
of the decomposition. If a vertex is visited by multiple BFS’s in the same iteration, it
can be assigned to an arbitrary BFS.1 The maximum value of δv can be shown to be
O(logn/β) whp, and so the algorithm terminates in O(logn/β) iterations. Each iteration

1The original analysis of Miller et al. [216] requires the vertex to be assigned to the BFS with the smaller
fractional part of δs , where s is the source of the BFS. However, Shun et al. [253] show that an arbitrary
assignment gives the same complexity bounds.
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requires O(logn) depth for packing the frontiers of the BFS’s, leading to an overall depth
of O(log2 n/β) whp. A standard BFS requires operations and writes that are linear in the
number of vertices and edges explored, giving a total work of O(ω(m + n)). By using the
write-e�cient BFS, the expected number of writes for each BFS is proportional to the
number of vertices marked (assigned to it), and so the total expected number of writes is
O(n). Tasks only needO(1) symmetric memory in the algorithm. This yields the following
theorem:

Theorem 5.3.10. A (β,O(logn/β))-decomposition can be generated inO(n) expected writes,
O(m + ωn) expected work, and O(log2 n/β) depth whp on the Asymmetric NP model.

5.3.4.2 Connectivity and Spanning Forest

The parallel connectivity algorithm of [253] applies the low-diameter decomposition
recursively with β set to a constant less than 1. Each level of recursion contracts a subset
of vertices into a single supervertex for the next level. The algorithm terminates when
each connected component is reduced to a single supervertex. The stumbling block for
write e�ciency is this contraction step, which performs writes proportional to the number
of remaining edges.

Instead, our write-e�cient algorithm applies the low-diameter decomposition just
once, but with a much smaller β , as follows:

1. Perform the low-diameter decomposition with parameter β = 1/ω + n/m.
2. Find a spanning tree on each Vi (in parallel) using write-e�cient BFS.
3. Create a contracted graph, where each vertex subset in the decomposition is con-

tracted down to a single vertex. To write down the cross-subset edges in a compacted
array, employ the write-e�cient �lter (Section 4).

4. Run any parallel linear-work spanning forest algorithm on the contracted graph,
e.g., the algorithm from [104] with O(ω logn) depth.

Combining the spanning forest edges across subsets (produced in Step 4) with the spanning
tree edges (produced in Step 2) gives a spanning forest on the original graph. Adding the
bounds for each step together yields the following theorem. Again only O(1) symmetric
memory is required per task.

Theorem 5.3.11. For any choice of 0 < β < 1, connectivity and spanning forest can be
solved in O(n + βm) expected writes, O(ωn + βωm +m) expected work, and O(log2 n/β)
depth whp on the Asymmetric NP model. For β = 1/ω, these bounds reduce to O(n +m/ω)
expected writes, O(m + ωn) expected work and O(min{ω,m/n} log2 n) depth whp.

Proof. Step 1 has performance bounds given by Theorem 5.3.10, and the expected number
of edges remaining in the contracted graph is at most βm. Step 2 performs BFS’s on
disjoint subgraphs, so summing across subsets yieldsO(n) expected writes andO(m +nω)
expected work. Since each tree has low diameter D = O(logn/β), the BFS’s have depth
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O(D logn) = O(log2 n/β) whp (Section 5.4.3). Step 3 is dominated by the �lter, which has
a number of writes proportional to the output size of O(βm), for O(m + βωm) work. The
depth is O(logn) (Section 4.2.2). Finally, the algorithm used in Step 4 is not write-e�cient,
but the size of the graph is O(n + βm), giving that many writes and O(ω(n +mβ)) work.
Adding these bounds together yields the theorem. �

5.3.4.3 Connectivity Oracle in Sublinear Writes

A connectivity oracle supports queries that take as input a vertex and return the label
(component ID) of the vertex. This allows one to determine whether two vertices belong
in the same component. The algorithm is parameterized by a value k , to be chosen later.
We assume throughout that the symmetric memory per task is Ω(k logn) words and that
the undirected graph has bounded degree.

We begin with an outline of the algorithm. The goal is to produce an oracle that can
answer for any vertex which component it belongs to inO(k)work. To build the oracle, we
would like to run the connectivity algorithm on the clusters graph produced by an implicit
k-decomposition. The result would be that all center vertices in the same component
be labeled with the same identi�er. Answering a query then amounts to outputting the
component ID of the center it maps to, which can be queried in O(k) expected work and
O(k logn) work whp according to Lemma 5.3.4.

The main challenge in implementing this strategy is that we cannot a�ord to write
out the edges of the clusters graph (as there could be too many edges). Instead, we treat
the implicit k-decomposition as an implicit representation of the clusters graph. Given an
implicit representation, our connected components algorithm is the following:

1. Find an implicit k-decomposition of the graph.
2. Run the write-e�cient connectivity algorithm from Section 5.3.4.2 with β = 1/k ,

treating the k-decomposition as an implicit representation of the clusters graph, i.e.,
querying edges as needed.

As used in the connectivity algorithm, our implicit representation need only be able
to list the edges in the clusters graph that are adjacent to a center vertex x . To do so, start
at x , and explore outwards (e.g., with BFS), keeping all vertices and edges encountered so
far in symmetric memory. For each frontier vertex v , query its center (as in Lemma 5.3.7)
— if ρ(v) = x , then v’s unexplored neighbors are added to the next frontier; otherwise (if
ρ(v) , x ) the edge (x, ρ(v)) is in the clusters graph, so add it to the output list.

Lemma 5.3.12. Assuming a symmetric memory of size Ω(k logn), the centers neighboring
each center in the clusters graph can be listed in no writes, and work, depth, and operations
all O(k2) in expectation or O(k2 logn) whp.

Proof. Listing all the vertices in the cluster takes expected work O(k2) according to
Lemma 5.3.7, or O(k2 logn) whp. The number of vertices in the cluster is O(k), so they
can all �t in symmetric memory. Moreover, because each vertex in the cluster has O(1)
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neighbors, the total number of explored vertices in neighboring clusters is O(k), all of
which can �t in symmetric memory. Each of these vertices is queried with a cost of O(k)
operations in expectation and O(k logn) whp given the speci�ed symmetric memory size
(Lemma 5.3.4). �

Note that a consequence of the implicit representation is that listing neighbors is more
expensive, and thus the number of operations performed by a BFS increases, a�ecting both
the work and the depth. The implicit representation is only necessary while operating
on the original clusters graph, i.e., while �nding the low-diameter decomposition and
spanning trees of each of those vertex subsets; the contracted graph can be built explicitly
as before. The best choice of k is k =

√
ω, giving us the following theorem.

Theorem 5.3.13. A connectivity oracle that answers queries in O(
√
ω) expected work and

O(
√
ω logn) work whp can be constructed in O(n/

√
ω) expected writes, O(

√
ωn) expected

work, and O(ω3/2 log3 n) depth whp on the Asymmetric NP model, assuming a symmetric
memory of size Ω(

√
ω logn).

Proof. The implicit k-decomposition can be found in O(n/k) writes, O(kn + ωn/k) work,
and O(k3 log2 n) depth by Lemmas 5.3.8 and 5.3.9. For k =

√
ω, these bounds reduce to

O(n/
√
ω) writes, O(

√
ωn) work, and O(ω3/2 log3 n) depth.

If we had an explicit representation of the clusters graph with n′ = O(n/k) vertices and
m′ = O(m) = O(n) edges, the connectivity algorithm would have O(n′ +m′/k) = O(n/k)
expected writes, O(ωn′ + ωm′/k +m′) = O(ωn/k + n) expected work, and O(k log2 n)
depth whp (by Theorem 5.3.11). The fact that the clusters graph is implicit means that
the BFS needs to perform O(k2) additional work (but not writes) per node in the clusters
graph, giving expected workO(ωn/k +n+k2n′) = O(ωn/k +kn). To get a high probability
bound, the depth is multiplied by O(k2 logn), giving us O(k3 log3 n) = O(ω3/2 log3 n) for
k =
√
ω. �

We can also output the spanning forest on the contracted graph in the same bounds,
which will be used in the biconnectivity algorithms in Sections 5.3.5.3 and 5.3.5.4.

5.3.5 Graph Biconnectivity

In this section we introduce algorithms related to biconnectivity and 1-edge connec-
tivity queries. We �rst review the classic approach and its output, which requires Θ(m)
writes. Then we propose a new BC (biconnected-component) labeling output, which has
size O(n) and can be constructed in O(n) writes. Queries such as determining bridges,
articulation points, and biconnected components can be answered in O(1) operations
(and no writes) with the BC labeling. Finally we show how an implicit k-decomposition
(as generated by Algorithm 4) can be integrated into the algorithm to further reduce the
writes to O(n/

√
ω).

94



We begin by presenting sequential algorithms that we believe to be new and interesting.
Then in Section 5.3.5.4 we show that these algorithms are parallelizable. All of our
biconnectivity algorithms use O(k logn) symmetric memory.

In this section we assume that the graph is connected. If not, we can run the connec-
tivity algorithm and then run the algorithm on each component. The results for a graph
are the union of the results of each of its connected components.

5.3.5.1 The Classic Algorithm

The classic Tarjan-Vishkin parallel algorithm [266] to compute biconnected com-
ponents and bridges of a connected graph is based on the Euler-tour technique. The
algorithm starts by building a spanning tree T rooted at some arbitrary vertex. Each
vertex is labeled by �rst(v) and last(v), which are the ranks ofv’s �rst and last appearance
on the Euler tour of T . The low value low(v) and the high value high(v) of a vertex v ∈ V
are de�ned as:

low(v) = min{w(u) | u is in the subtree rooted at v}
high(v) = max{w(u) | u is in the subtree rooted at v}

where
w(u) = min{�rst(u) ∪ {�rst(u′) | (u,u′) is a nontree edge}}2

Namely, low(v) and high(v) indicate the �rst and last vertex on the Euler tour that
are connected by a nontree edge to the subtree rooted at v . The low(·) and high(·) values
can be computed by a reduce on each vertex followed by a lea�x3 on the subtrees. The
computation of low and high takesO(logn) depth,O(m+ωn)work, andO(n)writes on the
Asymmetric NP model, by using the algorithm and scheduling theorem in Chapter 2 and 4.
Then a tree edge is a bridge if and only if the child’s low and high is inclusively within the
range of �rst and last values of its parent. The cost of this variant of the Tarjan-Vishkin
algorithm applied to �nding bridges is dominated by the cost of the spanning tree, as
given in Theorem 5.3.11.

For biconnected components, the standard output is an array B[·] of sizem, where the i-
th element in B indicates to which biconnected component the i-th edge belongs [108, 183].
Explicitly writing out B is costly in the asymmetric setting, especially whenm � n. We
provide an alternative BC labeling as output that requires only O(n) writes.

5.3.5.2 The BC Labeling

Here we describe the BC (biconnected-component) labeling, which e�ectively rep-
resents biconnectivity output in O(n) space. Instead of storing all edges within each
biconnected component, the BC labeling stores a component label for each vertex, and a

2If there are multiple edges (u,u ′) in the graph, none of them are considered here.
3Lea�x is similar to pre�x but de�ned on a tree and computed from the leaves to the root.
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2 6

3 4 5 7 8 9

Figure 5.2: An example of the BC labeling of a graph. The spanning tree is rooted at vertex 1. The
solid and dot lines indicate tree edges while dot lines are the critical edges. Dash lines are non-tree
edges. The vertex labels l = [1, 1, 1, 2, 1, 1, 3, 3] (note that the root does not have a label), and compo-
nent heads r = [1, 2, 6]. Based on the BC labeling the bridges, articulation points, and biconnected
components can be easily retrieved as {(2, 5)}, {2, 6}, and {{1, 2, 3, 4, 6, 7}, {2, 5}, {6, 8, 9}}.

vertex for each component. An example of a BC labeling of a graph is shown in Figure 5.2.
We will later show how to use this representation along with an implicit decomposition
to reduce the writes further.

De�nition 3 (BC labeling). The BC labeling of a connected undirected graph with respect
to a rooted spanning tree stores a vertex label l : V \{root} → [C] where C is the number
of biconnected components in the graph, and a component head r : [C] → V of each
biconnected component.

Lemma 5.3.14. The BC labeling of a connected graph can be computed in O(m) operations
and O(n +m/ω) writes on the (M,ω)-ARAM. Queries to �nd bridges, articulation points,
or biconnected components can be answered in no writes and O(1) operations given a BC
labeling on a rooted spanning tree.

The algorithm to compute BC labeling. A vertex v ∈ V (except for the root) is an
articulation point if and only if there exists at least one child u in the spanning tree that
has �rst(v) ≤ low(u) and high(u) ≤ last(v), and here we call the tree edge between such a
pair of vertices a critical edge. The algorithm to compute the BC labeling simply removes
all critical edges and runs graph connectivity on all remaining graph edges. Then the
algorithm described in Section 5.3.4.2 gives a unique component label that we assign
as the vertex label. For each component, its head is the vertex that is its parent in the
spanning tree (this parent is unique). Each connected component and its head form a
biconnected component.

The correctness of the algorithm can be proven by showing the equivalence of the
result of this algorithm and that of the Tarjan-Vishkin algorithm [266].
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Because the number of biconnected components is at most n, the spanning tree, vertex
labels, and component heads require only linear space. Therefore, the space requirement
of the BC labeling is O(n).

Query on BC labeling. We now show that queries are easy with the BC labeling. An
edge is a bridge if and only if it is the only edge connecting a single-vertex component
and its component head (the biconnected component contains this single edge). The root
of the spanning tree is an articulation point if and only if it is the head of at least two
biconnected components. Any other vertex is an articulation point if and only if it is the
head of at least one biconnected component. A block-cut tree can also be generated from
the BC labeling: for each vertex create an edge from itself and its vertex label; and for
each component create an edge from the label of this component to the component head.
We have a block-cut tree after removing degree-1 nodes corresponding to vertices.

This new representation can be interpreted as an implicit version of the standard
output [108, 183] of biconnected components, i.e., the label of the biconnected component
of each edge can be reported in O(1) operations. This is simple: we report the label of the
endpoint of the edge that is further from the root along the spanning tree. The correctness
can be shown in two cases: if the edge is a spanning tree edge, then the component label
is stored in the further vertex; otherwise, the two vertices must have the same label and
reporting either one gives the label of this biconnected component.

Using BC labeling gives the following theorem (see Section 5.3.5.4 for depth analysis):

Theorem 5.3.15. Articulation points, bridges, and biconnected components on the Asym-
metric NP model takeO(m +nω) expected work andO(min{ω,m/n} log2 n) depth whp, and
each query can be answered in O(1) work.

It is interesting to point out that, the BC labeling can e�ciently answer queries that
are non-trivial when using the standard output. For example, consider the query: are
two vertices in the same biconnected component? With the BC labeling we can answer
the query by �nding the label of the lower vertex and checking whether the higher
one has the same label or is the component head of this component. To the best of our
knowledge, answering such queries on the standard representation can be hard, unless
other information is also kept (e.g. a block-cut tree).

5.3.5.3 Biconnectivity Oracle in Sublinear Writes

Next we will show how the implicit k-decomposition generated by Algorithm 4 can
be integrated into the algorithm to further reduce writes in the case of bounded-degree
graphs. Our goal is as follows.

Theorem 5.3.16. There exists an algorithm that computes articulation points, bridges, and
biconnected components of a bounded-degree graph in O(n

√
ω) expected work, O(n/

√
ω)
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writes andO(ω3/2 log3 n) depth, and each query takes an expectedO(ω) work andO(ω logn)
work whp, with no writes, on the Asymmetric NP model.

The overall idea of the new algorithm is to replace the vertices in the original graph
with the clusters generated by Algorithm 4. We generate the BC labeling on the clusters
graph (so the vertex labels are now the cluster labels), and then show that a biconnectivity
query can be answered using only the information on the clusters graph and a constant
number of associated clusters. The cost analysis is based on the parameter k , and using
k =
√
ω gives the result in the theorem.

The BC labeling on the clusters graph.

In the �rst step of the algorithm we generate the BC labeling on the clusters graph
with k =

√
ω. We root this spanning tree and name it the clusters spanning tree. The head

vertex of a cluster is chosen as the cluster root for that cluster. (The root cluster does not
have a cluster root.) For a cluster, we call the endpoint of a cluster tree edge outside of the
cluster an outside vertex. The outside vertices of a cluster is the set of outside vertices
of all associated cluster tree edges. Note that all outside vertices except for one are the
cluster roots for neighbor clusters.

The local graph of a cluster.

We next de�ne the concept of the local graph of a cluster, so that each query only
needs to look up a constant number of associated local graphs. An example of a local
graph is shown in Figure 5.3 and a more formal de�nition is as follows.

De�nition 4 (local graph). The local graph G′ of a cluster is de�ned as (Vi ∪Vo, E′), where
Vi is the set of vertices in the cluster and Vo is the set of outside vertices, and E′ consists of:

1. The edges with both endpoints in this cluster and the associated clusters’ tree edges.

2. For c neighbor clusters sharing the same cluster label, we �nd the c corresponding
outside vertices in Vo , and connect the vertices with c − 1 edges.

3. For an edge (v1,v2) with only one endpoint v1 in Vi , we �nd the outside vertex vo that
is connected to v2 on the cluster spanning tree, and create an edge from v1 to vo .

Figure 5.3 shows an example local graph. Solid black lines are edges within the cluster
and solid grey lines are cluster tree edges. Neighbor clusters that share a label are shown
with dashed outlines and connected via curved dashed lines. e1 and e2 are examples of
edges with only one endpoint in the cluster, and they are replaced by e′1 and e′2 respectively.

Computing local graphs requires a spanning tree and BC labeling of the clusters graph.

Lemma 5.3.17. The cost to construct one local graph isO(k2) in expectation andO(k2 logn)
whp on the (M,ω)-ARAM.

Proof. Each cluster in the implicit k-decomposition has at most k vertices, so �nding the
vertices Vi takes O(ck) cost where c is the cost to compute the mapping ρ(·) of a vertex
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𝑒1

𝑒1
′

𝑒2
′

𝑒2

Figure 5.3: An example of a local graph. The vertices in the shaded area is in one cluster. The
local graph contains the vertices in the shaded area and the outside vertices shown in smaller
circles. Solid lines indicate the edges that are in the clusters and thick grey lines represent cluster
tree edges connecting other clusters (which are shown in yellow pentagons). The three neighbor
clusters sharing the same cluster label are connected using two edges (dash curves). Edges e1 and
e2 are the edges that only has one endpoints in the cluster. The other endpoint is set to be the
outside vertex connecting the cluster of the other original endpoint of this edge in the cluster
spanning tree. Consequently e ′1 and e ′2 are the replaced edges for e1 and e2.
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Algorithm 5: Sublinear-write algorithm for biconnectivity
Input: Connected bounded-degree graph G = (V , E) and an implicit

k-decomposition

1 Apply connectivity algorithm to generate the clusters graph.
2 Compute low(·) and high(·) values of all clusters.
3 Compute the BC labeling of the clusters graph.
// Bridges and articulation points can be queried

4 Compute the root biconnectivity of all outside vertices in all local graphs.
5 Apply lea�x to identify the articulation point of each cluster root.
// Biconnectivity and 1-edge connectivity on vertices and edges can be queried

6 Compute the number of biconnected components in each cluster that are
completely within this cluster.

7 Apply pre�x sums on the clusters to give an identical label to each biconnected
component.

// The label of biconnected component can be queried

(O(k) in expectation and O(k logn) whp). Since each vertex has a constant degree, there
will be at most O(k) neighbor clusters, so |Vo | = O(k). Enumerating and checking the
other endpoint of the edges adjacent to Vi takes O(ck) cost. Finding the new endpoint of
an edge in category 3 requires constant cost after an O(n/k) preprocessing of the Euler
tour of the cluster spanning tree. The number of neighbor clusters isO(k) so checking the
cluster labels and adding edges costs no more thanO(k). The overall cost to construct one
local graph is thus O(k2) in expectation and O(k2 logn) whp. After plugging in c is O(k)
in expectation and O(k logn) whp, the overall cost matches the bounds in the lemma. �

Queries.

With the local graph and the BC labeling on the clusters graph, many types of bicon-
nectivity queries can be answered. Some of them are easier while other queries require
more steps, and the preprocess steps are shown in an overview of Algorithm 5.

Bridges. There are three cases when deciding whether an edge is a bridge: a tree edge
in the clusters spanning tree, a cross edge in the clusters spanning tree, or an edge with
both endpoints in the same cluster. Deciding which case to use takes constant operations.

A tree edge is a bridge if and only if it is a bridge of the clusters graph, which we
can mark with O(n/k) writes while computing the BC labeling. A cross edge cannot be a
bridge.

For an edge within a cluster, we use the following lemma:

Lemma 5.3.18. An edge with both endpoints in one cluster is a bridge if and only if it is a
bridge in the local graph of the corresponding cluster.
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Proof. If an edge is a bridge in the original graph it means that there are no edges from
the subtree of the lower vertex to the outside except for this edge itself. By applying the
modi�cations of the edges, this property still holds, which means the edge is still a bridge
in the local graph and vice versa. �

Checking if an edge in a cluster is a bridge takes O(k2) work in expectation and
O(k2 logn) whp.

Articulation points. By a similar argument, a vertex is an articulation point of the
original graph if and only if it is an articulation point of the associated local graph. Given
a query vertexv , we can check whether it is an articulation point the local graph associated
to v , which costs O(k2) work in expectation and O(k2 logn) whp.

We now discuss how to perform several more complex queries. To start with, we show
some de�nitions and results that are used in the algorithms for queries.

De�nition 5 (root biconnectivity). We say a vertex v in a cluster C’s local graph is root-
biconnected if v and the cluster root have the same vertex label in C’s local graph.

A root-biconnected vertex v indicates that v can connect to the ancestor clusters
without using the cluster root (i.e., the cluster root is not an articulation point to cut v).
Another interpretation is that there is no articulation point in cluster C that disconnects
v from the outside vertex of the cluster root.

Lemma 5.3.19. Computing and storing the root biconnectivity of all outside vertices in all
local graphs takes O(nk) operations in expectation and O(n/k) writes on the (M,ω)-ARAM.

The proof is straightforward. The cost to construct the local graphs and compute root
biconnectivity is O(nk), and since there are O(n/k) clusters tree edges, storing the results
requires O(n/k) writes.

Querying whether two vertices are biconnected. Checking whether two vertices v1
and v2 can be disconnected by removing any single vertex in the graph is one of the most
commonly-used biconnectivity-type queries. To answer this query, our goal is to �nd the
tree path between this pair of vertices and check whether there is an articulation point on
this path that disconnects them.

The simple case is when v1 and v2 are within the same cluster. We know that the two
vertices are connected by a path via the vertices within the cluster. We can check whether
any vertex on the path disconnects these two vertices using their vertex labels.

Otherwise, v1 and v2 are in di�erent clusters C1 and C2. Assume CLCA is the cluster
that contains the LCA of v1 and v2 (which can be computed by the LCA of C1 and C2 in
O(1) operations) and vLCA ∈ CLCA is the LCA vertex. The tree path between v1 and v2 is
fromv1 toC1’s cluster root, and then to the cluster root of the outside vertex ofC1’s cluster
root, and so on, until reaching vLCA, and the other half of the path can be constructed
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symmetrically. It takesO(k2) expected operations to check whether any articulation point
disconnects the paths inC1,C2 andCLCA. For the rest of the clusters, since we have already
precomputed and stored the root biconnectivity of all outside vertices, then applying a
lea�x on the clusters spanning tree computes the cluster containing the articulation point
of each cluster root. Therefore, checking whether such an articulation point exists on
the path between C1 and CLCA or between C2 and CLCA that disconnects v1 and v2 takes
O(1) operations. Thus, checking whether two vertices are biconnected requires O(k2)

operations in expectation and no writes.

Querying whether two vertices are 1-edge connected. This is a similar query com-
paring to the previous one and the only di�erence is whether an edge, instead of a vertex,
is able to disconnect two vertices. The query can be answered in a similar way by check-
ing whether a bridge disconnects the two vertices on their spanning tree path, which is
related to the two clusters containing the two query vertices and the LCA cluster, and
the precomputed information for the clusters on the tree path among these three clusters.
The cost for a query is also O(k2) operations in expectation and it requires no writes.

Queries on biconnected-component labels for edges. We now answer the standard
queries [108, 183] of biconnected components: given an edge, report a unique label that
represents the biconnected component this edge belongs to.

We have already described the algorithm to check whether any two vertices are
biconnected, so the next step is to assign a unique label of each biconnected components,
which requires the following lemma:

Lemma 5.3.20. A vertex in one cluster is either in a biconnected component that only
contains vertices in this cluster, or biconnected with at least one outside vertex of this cluster.

Proof. Assume a vertex v1 in this cluster C is biconnected to another vertex v2 outside
the cluster, then let vo be the outside vertex of C on the spanning tree path between v1
and v2, and v1 is biconnected with vo , which proves the lemma. �

With this lemma, we �rst compute and store the labels of the biconnected components
on the cluster roots, which can be �nished with O(nk) expected operations and O(n/k)
writes with the BC labeling on the clusters graph and the root biconnectivity of outside
vertices on all clusters. Then for each cluster we count the number of biconnected
components completely within this cluster. Finally we apply a pre�x sum on the numbers
for the clusters to provide a unique label of each biconnected component in every cluster.
Although not explicitly stored, the vertex labels in each cluster can be regenerated with
O(k2) operations in expectation andO(k2 logn) operations whp, and a vertex label is either
the same as that of an outside vertex which is precomputed, or a relative label within the
cluster plus the o�set of this cluster.

Similar to the algorithm discussed in Section 5.3.5.2, when a query comes, the edge
can either be a cluster tree edge, a cross edge, or within a cluster. For the �rst case the
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label biconnected component is the precomputed label for the (lower) cluster root. For
the second case we just report the vertex label of an arbitrary endpoint, and similarly for
the third case the output is the vertex label of the lower vertex in the cluster. The cost of
a query is O(k2) in expectation and O(k2 logn) whp.

With the concepts and lemmas in this section, with a precomputation of O(nk) cost
and O(n/k) writes, we can also do a normal query with O(k2) cost in expectation and
O(k2 logn) whp on bridge-block tree, cut-block tree, and 1-edge-connected compo-

nents.

5.3.5.4 Parallelizing Biconnectivity Algorithms

The two biconnectivity algorithms discussed in this section are highly parallelizable.
The key algorithmic components include Euler-tour construction, tree contraction, graph
connectivity, pre�x sum, and preprocessing LCA queries on the spanning tree. Since the
algorithms run each of the components a constant number of times, the depth of the
algorithm is bounded by the depth of graph connectivity, whose bound is provided in
Section 5.3.4 (O(ω2 log2 n) and O(ω3/2 log3 n) whp when plugging in β as 1/ω and 1/

√
ω,

respectively).4

For the sublinear-write algorithm, we assume that computations within a cluster
are sequential, and the work is upper bounded by O(k2) = O(ω) in expectation and
O(k2 logn) = O(ω logn) whp for the computations within a cluster. This term is additive
to the overall depth, since after computing the spanning tree (forest) of the clusters, we
run all computations within the clusters in parallel and then run tree contraction and
pre�x sums based on the calculated values. The O(ω) expected work (O(ω logn) whp)
is also the cost for a single biconnectivity query, and multiple queries can be done in
parallel.

5.3.6 Sublinear-Write Algorithms on Unbounded-Degree Graphs

Here we discuss a solution to generate another graph G′ which has bounded degree
with O(m) vertices and edges, and the connectivity queries on the original graph G can
be answered in G′ equivalently.

The overall idea is to build a tree structure with virtual nodes for each vertex that
has more than a constant degree. Each virtual node will represent a certain range of the
edge list. Considering a star with all other vertices connecting to a speci�c vertex v1, we
build a binary tree structure with 2 virtual nodes on the �rst level v1,2→n/2, v1,n/2+1→n,
4 virtual nodes on the second level v1,2→n/4, · · · ,v1,3n/4+1→n and so on. We replace the
endpoint of an edge from the original graph G with the leaf node in this tree structure

4The classic parallel algorithms with polylogarithmic depth solve the Euler-tour construction, tree
contraction, and pre�x sum, since we here only require linear writes (in terms of number of vertices, O(n)
and O(n/k), for the two algorithms) for both algorithms.
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that represents the corresponding range with a constant number of edges. Notice that if
both endpoints of an edge have large degrees, then they both have to be redirected.

The simple case is for a sparse graph in which most of the vertices are bounded-degree,
and the sum of the degrees for vertices with more than a constant number of edges is
O(n/k) (or O(n/

√
ω)). In this case we can simply explicitly build a tree structure for the

edges of a vertex.
Otherwise, we require the adjacency array of the input graph to have the following

property: each edge can query its positions in the edge lists for both endpoints. Namely,
an edge (u,v) knows it is the i-th edge in u’s edge list and j-th edge in v’s edge list. To
achieve this, either an extra pointer is stored for each edge, or the edge lists are presorted
and the label can be binary searched (this requires O(logn) work for each edge lookup).
With this information, there exists an implicit graph G′ with bounded-degree. The binary
tree structures can be de�ned such that given an internal tree node, we can �nd the three
neighbors (two neighbors for the root) without explicitly storing the newly added vertices
and edges. Notice that the new graphG′ now hasO(m) vertices including the virtual ones.
The virtual nodes help to generate implicit k-decomposition and require no writes unless
they are selected to be either primary or secondary centers.

Graph connectivity is obviously not a�ected by this transformation. It is easy to check
that a bridge in the original graph G is also a bridge in the new graph G′ and vice versa.
In the biconnectivity algorithm, an edge in G can be split into multiple edges in G′, but
this will not change the biconnectivity property within a biconnected component, unless
the component only contains one bridge edge, which can be checked separately.

This construction, combined with our earlier results, leads to Theorem 5.3.2.

5.3.7 Conclusion

This work provides several algorithms targeted at solving graph connectivity problems
considering the read-write asymmetry. Our algorithms make use of an implicit decompo-
sition technique that is applicable beyond the scope of the problems studied in this thesis.
By using this decomposition and redundantly performing small computation, we are able
to reduce the number of writes in exchange for a small increase in the total number of
operations. This allows us to o�set the increased cost of writes in anticipated future
systems and improve overall performance. Even excluding new memory technology, we
believe that research into algorithms with fewer writes provides interesting results from
both a theoretical and memory/cache coherence perspective. Our work provides a frame-
work which can be used to develop write-e�cient solutions to large graph connectivity
problems.
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5.4 Distance-based Algorithms

On (M,ω)-ARAM model, breadth-�rst and depth-�rst search can be performed with
Q =W = O(ωn +m). In particular each vertex only requires a constant number of writes
when it is �rst added to the frontier (the stack or queue) and a constant number of writes
when it is �nished (removed from the stack or queue). Searches along an edge to an
already visited vertex requires no writes. This implies that several problems based on BFS
and DFS also only requireQ =W = O(DFS(n)). For example, topological sort, biconnected
components, and strongly connected components. The analysis is based on the fact that
there are onlyO(n) forward edges in the DFS. However when using priority-�rst search on
a weighed graph (e.g., Dijkstra’s or Prim’s algorithms) then the problem is more di�cult
to perform optimally. This is because the priority queue might need to be updated for
every edge that is visited. A common theme in many of our algorithms is that they use
redundant computations and require a tradeo� between reads and writes. We show how
to adapt Dijkstra’s single-source shortest-paths algorithm using phases so that the priority
queue is kept in small-memory (Section 5.4.1), and brie�y sketch how to adapt Borůvka’s
minimum spanning tree algorithm to reduce the number of shortcuts and hence writes
that are needed (Section 5.4.2).

For parallel and write-e�cient graph algorithms, we show minimum spanning trees in
Section 5.4.2.2, and BFS in Section 5.4.3. The parallelism is from the random exponential
growing-with-�ltering technique.

5.4.1 Single-Source Shortest Paths

The single-source shortest-paths (SSSP) problem takes a directed weighted graph
G = (V , E) and a source vertex s ∈ V , and outputs the shortest distances d(s,v) from s
to every other vertex in v ∈ V . For graphs with non-negative edge weights, the most
e�cient algorithm is Dijkstra’s algorithm [114].

In this section we will study (variants of) Dijkstra’s algorithm in the asymmetric
setting. We describe and analyze three versions (two classical and one new variant) of
Dijkstra’s algorithm, and the best version can be chosen based on the values of M , ω, the
number of vertices n = |V |, and the number of edgesm = |E |.

Theorem 5.4.1. The SSSP problem on a graph G = (V , E) with non-negative edge weights
can be solvedwithQ(n,m) = O

(
min

(
n
(
ω +

m

M

)
,ω(m + n logn),m(ω + logn)

))
andW (n,m) =

O(Q(n,m) + n logn), both in expectation, on the (M,ω)-ARAM.

We start with the classical Dijkstra’s algorithm [114], which maintains for each vertex
v , δ (v), a tentative upper bound on the distance, initialized to +∞ (except for δ (s), which
is initialized to 0). The algorithm consists of n − 1 iterations, and the �nal distances from
s are stored in δ (·). In each iteration, the algorithm selects the unvisited vertex u with
smallest �nite δ (u), marks it as visited, and uses its outgoing edges to relax (update) all of
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its neighbors’ distances. A priority queue is required to e�ciently select the unvisited
vertex with minimum distance. Using a Fibonacci heap [128], the work of the algorithm
is O(m + n logn) in the standard (symmetric) RAM model. In the (M,ω)-ARAM, the costs
are Q = W = O(ω · (m + n logn)) since the Fibonacci heap requires asymptotically as
many writes as reads. Alternatively, using a binary search tree for the priority queue
reduces the number of writes (see Section 4.1) at the cost of increasing the number of
reads, giving Q =W = O(m logn + ωm). These bounds are better when m = o(ωn). Both
of these variants store the priority queue in large-memory, requiring at least one write to
large-memory per edge.

We now describe an algorithm, which we refer to as phased Dijkstra, that fully main-
tains the priority queue in small-memory and only requires O(n) writes to large-memory.
The idea is to partition the computation into phases such that for a parameter M′ each
phase needs a priority queue of size at most 2M′ and visits at least M′ vertices. By selecting
M′ = M/c for an appropriate constant c , the priority queue �ts in small-memory, and the
only writes to large-memory are the �nal distances.

Each phase starts and ends with an empty priority queue P and consists of two parts.
A Fibonacci heap is used for P , but is kept small by discarding the M′ largest elements
(vertex distances) whenever |P | = 2M′. To do this P is �attened into an array, the M′-th
smallest element dmax is found by selection, and the Fibonacci heap is reconstructed from
the elements no greater than dmax , all taking linear time. All further insertions in a given
phase are not added to P if they have a value greater than dmax . The �rst part of each phase
loops over all edges in the graph and relaxes any that go from a visited to an unvisited
vertex (possibly inserting or decreasing a key in P ). The second part then runs the standard
Dijkstra’s algorithm, repeatedly visiting the vertex with minimum distance and relaxing
its neighbors until P is empty. To implement relax, the algorithm needs to know whether
a vertex is already in P , and if so its location in P so that it can do a decrease-key on it.
It is too costly to store this information with the vertex in large-memory, but it can be
stored in small-memory using a hash table.

The correctness of this phased Dijkstra’s algorithm follows from the fact that it only
ever visits the closest unvisited vertex, as with the standard Dijkstra’s algorithm.

Lemma 5.4.2. Phased Dijkstra’s hasQ(n,m) = O
(
n
(
ω +

m

M

))
andW (n,m) = O(Q(n,m)+

n logn) both in expectation (forM ≤ n).

Proof. During a phase either the size of P will grow to 2M′ (and hence delete some
entries) or it will �nish the algorithm. If P grows to 2M′ then at least M′ vertices are
visited during the phase since that many need to be deleted with delete-min to empty
P . Therefore the number of phases is at most dn/M′e. Visiting all edges in the �rst part
of each phase involves at mostm insertions and decrease-keys into P , each taking O(1)
amortized time in small-memory, and O(1) time to read the edge from large-memory.
Since compacting Q when it over�ows takes linear time, its cost can be amortized against
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the insertions that caused the over�ow. The cost across all phases for the �rst part is
therefore Q =W = O(mdn/M′e). For the second part, every vertex is visited once and
every edge relaxed at most once across all phases. Visiting a vertex requires a delete-min
in small-memory and a write to large-memory, while relaxing an edge requires an insert
or decrease-key in small-memory, and O(1) reads from large-memory. We therefore have
for this second part (across all phases) that Q = O(ωn +m) andW = O(n(ω + logn) +m).
The operations on P each include an expected O(1) cost for the hash table operations.
Together this gives our bounds. �

Compared to the �rst two versions of Dijkstra’s algorithm with Q =W = O(ωm +
min(ωn logn,m logn)), the new algorithm is strictly better when ωM > n. More speci�-
cally, the new algorithm performs better when nm/M < max{ωm,min(ωn logn,m logn)}.
Combining these three algorithms proves Theorem 5.4.1, when the best one is chosen
based on the parameters M , ω, n, andm.

We will discuss the implementation details of Phased Dijkstra later in Section 8.6.2.

5.4.2 Minimum Spanning Tree (MST)

In this section we discuss several commonly-used algorithms for computing a min-
imum spanning tree (MST) on a weighted graph G = (V , E) with n = |V | vertices and
m = |E | edges. Some of them are optimal in terms of the number of writes (O(n)). Al-
though loading a graph into large-memory requires O(m) writes, the algorithms are still
useful on applications that compute multiple MSTs based on one input graph. For example,
it can be useful for computing MSTs on subgraphs, such as road maps, or when edge
weights are time-varying functions and hence the graph maintains its structure but the
MST varies over time.

Prim’s algorithm. All three versions of Dijkstra’s algorithm discussed in Section 5.4.1
can be adapted to implement Prim’s algorithm [108]. Thus, the upper bounds of ARAM
cost and work in Theorem 5.4.1 also hold for minimum spanning trees.

Kruskal’s algorithm. The initial sorting phase requires Q = W = O(m logn + ωm)
(Section 4.4.1). The second phase constructs a MST using union-�nd without path com-
pression in O(m logn) work, and performs O(n) writes (the actual edges of the MST).
Thus, the complexity is dominated by the �rst phase. Neither ARAM cost nor work match
our variant of Borůvka’s algorithm.

5.4.2.1 Borůvka’s Algorithm

Borůvka’s algorithm consists of at most logn rounds. Initially all vertices belong in
their own component, and in each round, the lightest edges that connect each component
to another component are added to the edge set of the MST, and components are merged
using these edges. This merging can be done using, for example, depth �rst search
among the components and hence takes time proportional to the number of remaining
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components. However, since edges are between original vertices the algorithm is required
to maintain a mapping from vertices to the component they belong to. Shortcutting all
vertices on each round to point directly to their component requiresO(n)writes per round
and hence up to O(n logn) total writes across the rounds. This is not a bottleneck in the
standard RAM model but is in the asymmetric case.

We now describe a variant of Borůvka’s algorithm which is asymptotically optimal
in the number of writes. It requires only O(1) small-memory. The algorithm proceeds in
two phases. For the �rst log logn rounds, the algorithm performs no shortcuts (beyond
the merging of components). Thus it will leave chains of length up to log logn that need
to be followed to map each vertex to the component it belongs to. Since there are at most
O(m log logn) queries during the �rst log logn rounds and each only require reads, the
total work for identifying the minimum edges between components in the �rst phase is
O(m(log logn)2). After the �rst phase all vertices are shortcut to point to their component.
We refer to these components as the phase-one components. In the second phase, on
every round, we shortcut the phase-one components to point directly to the component
they belong to. Since there can only be at most n/logn phase-one components, and at
most logn − log logn rounds in phase-two, the total number of reads and writes for these
updates is O(n). During phase two the mapping from a vertex to its component takes two
steps: one to �nd its phase-one component and another to get to the current component.
Therefore the total work for identifying the minimum edges between components in the
second phase is O(m logn).

All other work is on the components themselves (i.e., adding the forest of minimum
edges and performing DFS to merge components). The number of reads, writes, and other
instructions is proportional to the number of components. There are n components on
the �rst round and the number decreases by at least a factor of two on each following
round. Therefore the total work on the components is O(ωn). Summing the costs give the
following lemma.

Lemma 5.4.3. Our variant of Borůvka’s algorithm generates a minimum spanning tree
on a graph with n vertices andm edges with ARAM cost and work Q(n,m) = W (n,m) =
O(m logn + ωn) on the (M,ω)-ARAM.

Theorem 5.4.4. A minimum spanning tree on a graph G = (V , E) can be computed with
ARAM costQ(n,m) = O

(
m min

( n
M
, logn

)
+ ωn

)
and workW (n,m) = O(Q(n,m)+n logn)

on the (M,ω)-ARAM.

The theorem is a combination of the bounds of Prim’s and Borůvka’s algorithms (the
n/M term is in expectation).

5.4.2.2 KKT Algorithm and the Parallel Version

This section extends Karger, Klein and Tarjan’s (KKT) [185] sequential linear-work
randomized algorithm for minimum spanning tree/forest. At a high level, their algorithm
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proceeds as follows: Randomly sample half of the edges, and calculate a minimum spanning
forest on these sampled edges. Use the sampled forest to �lter out edges that cannot be
part of the overall minimum spanning forest. Speci�cally, identify all edges e = (x,y)
of the graph such that e is the heaviest edge on the cycle it closes in the sampled forest.
These edges are discarded. Next, recurse on the remaining graph and perform a constant
number “Borůvka steps” to reduce the number of nodes in the graph. The proof that this
algorithm runs in linear work hinges on two main facts: �rst, that the �ltering can be done
in linear work, and second, that the number of edges �ltered out is large in expectation.
We will use the following de�nitions in this section.

De�nition 6. For a given treeT in the graph, and two vertices x,y ∈ V , the path connecting
x and y in T (if such a path exists) is denoted by τ (x,y).

De�nition 7. An edge e = (x,y) is said to be heavy with respect to a treeT on the graph if
e closes a cycle in T and it is the heaviest edge in that cycle. That is,w(e) ≥ max(w(e′) | e′ ∈
τ (x,y)). Any edge that is not heavy with respect to T is said to be light with respect to T .

Recall the well-known cycle property of MSTs: a tree T is an MST in a graph G if and
only if every non-tree edge closes a cycle in T and is the maximum weight edge on that
cycle. Therefore, if all edges of a graph not inT are heavy, thenT is an MST of that graph.

The �ltering-out of heavy edges is achieved via minimum spanning tree veri�cation
algorithms. These algorithms take a tree and a graph as input and determine whether the
tree is an MST in the graph. They operate by labeling each edge as light or heavy with
respect to the tree. There is extensive work on the veri�cation of minimum spanning
trees, and several algorithms are known to operate in linear work [116, 159, 188]. The
KKT algorithm then throws out any edges labelled heavy by the veri�cation algorithm,
and recurses on the remainder of the graph.

To be e�cient, the KKT algorithm requires that when a minimum spanning forest is
built on a random subset of the graph, a large fraction of edges in the remaining graph
can be �ltered out. They show that this holds using the following lemma:5

Lemma 5.4.5 (Sampling Lemma). For a random subset R ⊆ E of size r , and a random
subset S ⊆ E of size s , the expected number of edges in S that are light with respect to the
MST of R is less than sn/r .

Using this lemma, Karger et al. prove that their algorithm requires O(m) work with high
probability.

Write-e�cient MST.

Our goal is to �nd an MST algorithm that minimizes the number of writes performed
without signi�cantly increasing the number of reads. A slight modi�cation of Borůvka’s

5The statement of this lemma is a slight variation of the version given in [86] and is di�erent
from the original paper [185].
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Algorithm 6: Write-e�cient MST algorithm
Input: A graph G = (V , E)
Output: An MST with a set T of edges

1 sampleSize← max(2n,m/ω)
2 Edge set T ← {}
3 while sampleSize < m do

4 The set of light edges SL ← {}
5 for s ← 1 to sampleSize do
6 Randomly pick an edge e ∈ E
7 if e cannot be �ltered with respect to T then

8 SL ← SL + {e}

9 T ← KKT(SL ∪T )
10 sampleSize← 2 · sampleSize
11 SL ← {}
12 forall e ∈ E do // Take all edges in �nal round
13 if e cannot be �ltered with respect to T then

14 SL ← SL + {e}

15 T ← KKT(SL ∪T )
16 return T

algorithm yields an algorithm which executes inO(m logn+ωn)work in the (M,ω)-ARAM
model. That is, we can achieve the optimal number of writes (O(n)) usingO(m logn) reads.
However, we want to �nd an algorithm that more closely matches the optimal work of
the algorithm of Karger et al. [185].

We present an MST algorithm that uses the KKT algorithm as a subroutine, and requires
O(α(n)m) reads (where α(·) is the inverse Ackermann function) andO(n log(min(m/n,ω)))
writes, resulting in O(α(n)m + ωn log(min(m/n,ω))) work.

The algorithm is iterative, and proceeds as follows. It begins by taking an O(n) sized
random sample of the edges and running KKT on them to �nd a minimum spanning forest
of the sampled graph. Then, in each round, it takes a random sample that is twice as large
as the previous one, �lters out the edges in the sample that are heavy with respect to the
most recently calculated spanning forest, and then runs KKT again on the remaining part
of the sample. In each such round, with high probability, we will only be left with O(n)
edges from the sample that pass the �ltering, and so each round will need O(n) writes.
The algorithm proceeds in this way until the �nal sample includes all edges in the graph.
The pseudocode for this algorithm is presented in Algorithm 6.

Analysis.
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We start with a sample set S of edges with size max(2n,m/ω), and run the KKT
algorithm on this sample to calculate a minimum spanning forest on it. We then double
the size of the sample set in each round and recalculate, until all edges are processed.
However, to save writes, instead of storing all the samples, we use an online �ltering
algorithm to throw out the edges that are heavy, and only keep the light sample edges.
We sample slightly (a constant factor) more than our desired sample size to account for
collisions. Note that once the sample size is linear in m, we can sample by �ipping a coin
with appropriate probabilities for each edge, without increasing the algorithm’s total work.
We de�ne the edge set SL to be the subset of S that contains light edges (with respect to
the current spanning forest in this round), and the edge set SH to be the subset consisting
of heavy edges. Clearly, S = SH ∪ SL.

Lemma 5.4.6. At the end of round i of the algorithm, we have a minimum spanning forest
on Θ(2i−1 max(n,m/ω)) edges of the graph in expectation.

Proof. In round i , we have at least Θ(2i−1 max(2n,m/ω)) sample edges in expectation,
but only build a minimum spanning forest using the edges in SL, along with the tree we
already have. Let T be the set of edges in the current forest, as shown in the pseudocode.
Note that by the de�nition of heavy edges, T is a minimum spanning forest in the graph
whose edge set is SH ∪T . Therefore, the MST ofT ∪ SL is also a minimum spanning forest
on T ∪ SL ∪ SH . �

Therefore, at the end of round dlog2(min(m/n,ω))e, we have an MST on the entire
graph, and we are done. Note that in the last round, we simply consider all of the edges
(without sampling) to ensure that we’ve seen every edge.

Lemma 5.4.7. In every round, the expected size of SL, the number of edges that pass the
�ltering, is Θ(n).

Proof. By Lemma 5.4.6, the MST used to �lter edges in round i is a minimum spanning
forest on at least c12i−1n edges in expectation for some constant c1. The sample size in
round i is c22in in expectation for some constant c2. By the Sampling Lemma, the expected

size of SL in round i is less than
sn

r
=
c2(2in)n
c12i−1n

= Θ(n). �

By Lemmas 5.4.6 and 5.4.7, it is easy to see that, excluding any work needed for the
�ltering, the total number of writes required for this algorithm is O(n log(min(m/n,ω))),
and the number of reads is

∑dlog2(min(m/n,ω))e
i=1 Θ(2in) = O(m).

Ideally, we would like the �ltering step to take no more thanO(n)writes per round, and
a constant number of reads per edge. There are several MST veri�cation algorithms that
take work linear in the number of edges [116, 159, 188]. However, all of these algorithms
also take O(m) writes, and are therefore not suitable for us. Alon and Schieber [18]
present an online algorithm for minimum spanning tree veri�cation that operates in O(n)
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preprocessing work, and then α(n) work per queried edge. The queries are done through
a look-up in the data structure built in the preprocessing stage, and require no writes.
Using their algorithm allows us to execute the entire write-e�cient MST algorithm in
O(n log(min(m/n,ω))) writes and O(α(n)m) reads.

Alon and Schieber also prove a matching lower bound for the problem of answering
online tree product queries, which is a generalization of the MST veri�cation problem.
However, they show this lower bound looking at the worst case query. It may be possible
to improve upon this result by considering the query time amortized over all of the edges.

Parallel Analysis.

We can parallelize each of the steps of the algorithm. Clearly, the sampling of edges
can be done in parallel in constant depth. We then use a parallel version of Alon and
Schieber’s algorithm [18] to �lter out heavy edges. This takes polylogarithmic depth.
Cole et al. [104] presented a parallel version of the KKT algorithm that takes linear work
and polylogarithmic depth, which we can use instead of the sequential version whenever
we call KKT. So simply by using the parallel versions of these algorithms, we achieve
a work-e�cient polylogarithmic depth algorithm (we only sample O(log(min(m/n,ω)))
times, and the depth is only increased by a factor of O(log(min(m/n,ω)))).

However, we need to be precise with the number of writes required in the parallel
version. After using Alon and Schieber’s algorithm to check whether each sampled edge
can be �ltered out, we need to pack out the edges that passed the �ltering to use them in
the next round of the algorithm. A standard packing algorithm would execute a number
of writes proportional to the total size of the sample, which is too many writes for us. For
this, we use the output sensitive �lter algorithm presented in Section 4.2.2.

We thus obtain the following theorem:

Theorem 5.4.8. Given a graph G withm edges and n vertices, an MST of G can be found
inO(α(n)m +ωn log(min(m/n,ω))) work,O(polylog(n)) depth andO(n log(min(m/n,ω)))
writes whp in the Asymmetric NP model, where α(·) is the inverse Ackerman function.

5.4.3 Parallel Breadth-First Search

The breadth-�rst search (BFS) problem takes as input an unweighted graph G = (V , E)
and a source vertex r , and returns breadth-�rst search tree rooted at r containing all
vertices reachable from r . This section describes a parallel write-e�cient BFS algorithm.
We will use the notation n = |V | andm = |E |. The standard sequential BFS algorithm is
write-e�cient, but not parallel. It requires O(m + ωn) work, including O(n) writes (the
minimum number of writes required for BFS). On the other hand, the standard parallel
level-synchronous BFS algorithm of [53] is not write-e�cient, requiring O(m) writes. The
algorithm explores the graph in parallel, where round i visits all vertices at a distance i
away from r (we call the vertices newly explored in round i − 1 the frontier for round
i). Each frontier vertex visits and writes to all of its unexplored neighbors in parallel,
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which causes additional writes when multiple frontier vertices attempt to visit the same
vertex simultaneously. This algorithm uses O(ω(m + n)) work, O(∆ logn) depth whp, and
O(m + n) writes, where ∆ is the diameter of the input graph.

We now present an algorithm for BFS that runs in O(m + ωn) work and O(∆ log2 n)
depth using only O(n) writes in expectation. The algorithm works like level-synchronous
BFS, but makes use of exponential delaying algorithm when visiting the vertices in a
round to reduce collisions (and writes) on a shared neighbor. In exponential delaying
exploration takes place in iterations, where on each iteration we process a fraction of the
vertices on the frontier. We �rst randomize the order of the frontier vertices, and then on
the �rst iteration we process the �rst vertex and on iteration i > 1, we process the next
2i−2 vertices on the frontier. During the exploration process, a vertex checks to see if its
neighbor has been visited and only updates that neighbor if it was not visited in a prior
round or a prior iteration in the same round.

We now show that the number of writes for this algorithm is O(n) in expectation.
Consider a vertex v that is adjacent to the current frontier and has not yet been visited.
Let F be the number of vertices on the frontier (without loss of generality, assume it is a
power of 2), let NF (v) be the number of in-neighbors v has on the frontier. We will use
α = 1 − (NF (v)/F ) for notational convenience. The probability that v is �rst visited in
iteration 1 is α and in iteration i > 1 is:

(1 − α2i−2
)α

i−1∏
j=2

α2j−2
= (1 − α2i−2

)α2i−2

The expected number of vertices that attempt to visit v in iteration 1 is NF (v)/F = 1 − α
and in iteration i > 1 is 2i−2(1 − α). Summing the expectations over all iterations gives:

(1 − α)α +
log F∑
i=2

2i−2(1 − α)(1 − α2i−2
)α2i−2

< O(1) +
log F∑
i=2

2i−2α2i−2
= O(1)

where we use
∑∞

x=1 xa
x = O(1) for 0 ≤ a < 1. This shows that the expected number of

writes to a vertex is O(1), and the expected number of writes overall is O(n).
Randomly permuting the vertices sums to linear work overall andO(log2 n) depth whp

per round [217, 254]. The logn iterations used in the exponential delaying also contributes
O(∆ log2 n) to the depth per round. Thus the overall depth is O(∆ log2 n). The number of
reads remains O(m + n), which gives the following theorem.

Theorem 5.4.9. For a graph with n vertices,m edges, and diameter diam, our write-e�cient
breadth-�rst search algorithm requires O(m + ωn) work in expectation, O(∆ log2 n) depth
whp, and O(n) writes in expectation on the Asymmetric NP model.
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Chapter 6

Geometric Algorithms

6.1 Overview

Achieving parallelism (polylogarithmic depth) and optimal write-e�ciency simultane-
ously seems generally hard for many algorithms and data structures in computational
geometry. This is because for most geometric algorithms, the computation is not �xed, but
decided by the input value. Therefore, simple solutions to partition the computations into
smaller chunks and apply the computations within the small-memory are not available.
Here, optimal write-e�ciency means that the number of writes that the algorithm or data
structure construction performs is asymptotically equal to the output size.

This thesis mainly consists of two general frameworks and show how they can be used
to design algorithms and data structures from geometry with high parallelism as well as
optimal write-e�ciency. The �rst framework is designed for randomized incremental
algorithms. Randomized incremental algorithms are relatively easy to implement in
practice, and the challenge is in simultaneously achieving high parallelism and write-
e�ciency. There are several technical parts in this framework. The �rst part includes
several new incremental algorithms, which is the �rst step of the parallel and write-
e�cient algorithms. The di�culty of this step is usually in showing the parallelism, and
in this approach the new results are based on analyzing the dependence graph of these
algorithms. This technique is used in other problems in [61, 164, 225, 254]. The second
part is for the write-e�ciency (while maintaining parallelism), which further consists
of two components: a DAG-tracing algorithm and a pre�x doubling technique. The
write-e�ciency is from the DAG-tracing algorithm, that given a current con�guration of
a set of objects and a new object, �nds the part of the con�guration that “con�icts” with
the new object. Finding n objects in a con�guration of size n requires O(n logn) reads
but only O(n) writes. Once the con�icts have been found, then previous and new parallel
incremental algorithms can be used to resolve the con�icts among objects taking linear
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reads and writes. This allows for a pre�x doubling approach in which the number of
objects inserted in each round is doubled until all objects are inserted.

This framework obtains parallel write-e�cient algorithms for comparison sort, planar
Delaunay triangulation, and k-d trees, all requiring optimal work, linear writes, and
polylogarithmic depth. The most interesting result is for Delaunay triangulation (DT).
Although DT can be solved in optimal time and linear writes sequentially using the plane
sweep method, previous parallel DT algorithms seem hard to make write e�cient. Most
are based on divide-and-conquer, and seem to inherently require Θ(n logn) writes. The
DT algorithm in this thesis requires delicate above-mentioned design and analysis in
order to achieve parallelism and write-e�ciency. For k-d trees, the p-batched incremen-
tal construction technique is introduced that maintains the balance of the tree while
asymptotically reducing the number of writes.

The second framework is designed for augmented trees, including interval trees, range
trees, and priority search trees. The goal is to achieve write-e�ciency for both the initial
construction as well as future dynamic updates. The framework consists of two techniques.
The �rst technique is to decouple the tree construction from sorting, and introduce parallel
algorithms to construct the trees in linear reads and writes after the objects are sorted
(the sorting in Chapter 4 can be done with linear writes). Such algorithms provide write-
e�cient constructions of these data structures, but can also be applied in the rebalancing
scheme for dynamic updates—once a subtree is reconstructed once it is unbalanced. The
second technique is the α-labeling. Some tree nodes are subselected as critical nodes, and
the augmentation is only maintained on these nodes. By doing so the number of tree
nodes that need to be written on each update is limited, at the cost of having to read more
nodes.

This framework obtains e�cient augmented trees in the asymmetric setting. In
particular, the trees can be constructed in optimal work and writes, and polylogarithmic
depth. For dynamic updates, a trade-o� is provided between performing extra reads in
queries and updates, while doing fewer writes on updates. A standard algorithm uses
O(logn) reads and writes per update (O(log2 n) reads on a 2D range tree). The number
of writes can be reduced by a factor of Θ(logα) for α ≥ 2, at a cost of increasing reads
by at most a factor of O(α) in the worst case. For example, when the number of queries
and updates are about equal, we can improve the work by a factor of Θ(logω), which is
signi�cant given that the update and query costs are only logarithmic.

The previous two frameworks introduce new parallel write-e�cient algorithms for
comparison sorting, planar Delaunay triangulation, k-d trees, and static and dynamic
augmented trees (including interval trees, range trees and priority search trees). We believe
the techniques in these frameworks will be useful for designing other algorithms in both
the symmetric and asymmetric settings. Also, new parallel write-e�cient algorithms
for write-sensitive hash tables, and sequential write-e�cient algorithms for LP-style
algorithms are also discussed in this chapter.
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Randomized Incremental Algorithms.

The randomized incremental approach (RIC1) has been an extremely useful paradigm
for generating simple and e�cient algorithms for a variety of problems. There have been
dozens of papers on the topic (e.g., see the surveys [218, 248]). Much of the early work
was in the context of computational geometry, but the approach has more recently been
applied to graph algorithms [101, 107]. The main idea is to insert elements one-by-one in
random order while maintaining a desired structure. The random order ensures that the
insertions are somehow spread out, and worst-case behaviors are unlikely.

The incremental process is iterative, and hence would appear to be sequential and
not write-e�cient. In this thesis, we proposed a framework to analyze the computational
DAG of the RIC algorithms, to show the parallelism and write-e�ciency together in a
uniform analysis.

The incremental process would appear sequential since it is iterative, but in practice
incremental algorithms are widely used in parallel implementations by allowing some
iterations to start in parallel and using some form of locking to avoid con�icts. Many
parallel implementations for Delaunay triangulation and convex hull, for example, are
based on the randomized incremental approach [49, 82, 98, 99, 113, 144, 202, 230, 252]. In
theory, however, after 25 years, there are still no known bounds for parallel Delaunay
triangulation using the incremental approach, nor for many other problems.

In this thesis we �rst show that the incremental approach for Delaunay and many
other problem is actually parallel, at least with the right incremental algorithms, and
leads to work-e�cient polylogarithmic-depth (time) algorithms for the problems. The
results are based on analyzing the dependence graph. This technique has recently been
used to analyze the parallelism available in a variety of sequential algorithms, including
the simple greedy algorithm for maximal independent set [61], the Knuth shu�e for
random permutation [254], greedy graph coloring [164], and correlation clustering [225].
The advantage of this method is that one can use standard sequential algorithms with
modest change to make them parallel, often leading to very simple parallel solutions. It
has also been shown experimentally that this approach leads to quite practical parallel
algorithms [60], and to deterministic parallelism [60, 75].

We then show the write-e�cient versions of these algorithms. For sorting and Delau-
nay triangulation, the number of writes is linear, which is optimal since this is the output
size. For other linear-work algorithms, the number of writes can be bounded to O(nϵ ) for
any ϵ > 0. Some analysis here.

The contributions of the section can be summarized as follows.

1The letter C is for constrcution. In early works RIC algorithms were used to construct some generalized
geometric data structures including convex hull and triangulation. Later work, including this thesis,
extended the scope of these algorithms, but we still call them RIC algorithms to follow the convention.
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Problem Work (expected) Depth (whp) Writes

Comparison sorting (Section 6.4) O(n log2 n) O(logn) O(n)

Planar Delaunay triangulation (Section 6.5) O(n logn)† O(log2 n) O(n)

k-d tree construction (Section 6.6) O(n logn)† O(log2 n) O(n)

2D linear programming (Section 6.8.1) O(n) O(log2 n) O(1)
Smallest enclosing disk (Section 6.8.3) O(n) O(log2 n) O(1)

Table 6.1: Work and depth bounds, and number of writes for the randomized incremental algo-
rithms. The work bounds exclude the extra cost for writes. †: the depth of the linear-write version
is O(log2 n log logn). For the last two algorithms, the write-e�cient version does not have the
depth guarantees.

1. We describe a framework for analyzing parallelism and write-e�ciency in random-
ized incremental algorithms, and give general bounds on the depth of algorithms
with certain dependence probabilities (Section 6.2).

2. We show that randomly ordered insertion into a binary search tree is inherently
parallel, leading to an almost trivial comparison sorting algorithm taking O(logn)
depth and O(n logn) work (i.e., n processors), both with high probability on the
priority-write CRCW PRAM (Section 6.4). Surprisingly, we know of no previous
description and analysis of this parallel algorithm. The number of writes can remain
to be optimal on the Asymmetric NP model. The depth bound is O(loд2n) since
in the Asymmetric NP model we only allow binary instead of arbitrary branching
factor.

3. We propose a new randomized incremental algorithm for planar Delaunay triangu-
lation, and then describe a simple way to parallelize it (Section 6.5). The algorithm
takes O(log2 n) depth with high probability, and O(n logn) work (i.e., n/logn pro-
cessors) in expectation, on the CRCW PRAM. The number of writes can be further
reduced to linear on the Asymmetric NP model, with a little sacri�ce on the depth of
O(log logn). It would seem to be by far the simplest work-e�cient parallel Delaunay
triangulation algorithm.

4. We show that classic sequential randomized incremental algorithms for constant-
dimensional linear programming, and smallest enclosing disk can be parallelized
(Section 6.8). The number of writes can be reduced to O(1).

6.2 Iteration Dependences for RIC Algorithms

An iterative algorithm is an algorithm that runs in a sequence of steps (iterations)
in order. When applied to a particular input, we refer to the computation as an iterative
computation. Each step i of an iterative computation does some work W (i), and has
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some depth D(i) (the steps themselves can be parallel). Step j is said to depend on step
i < j if the computation of step j is a�ected by the computation of step i . The particular
dependences, or even the number of steps, can be a function of the input, and can be
modeled as a directed acyclic graph (DAG)—the steps (I = 1, . . . ,n) are vertices and
dependences between them are arcs (directed edges).

De�nition 8 (Iteration Dependence Graph [254]). An iteration dependence graph for
an iterative computation is a (directed acyclic) graphG(I , E) such that if every step i ∈ I runs
after all predecessor steps inG have completed, then every step will do the same computation
as in the sequential order.

We are interested in the depth (longest directed path) of iteration dependence graphs
since shallow dependence graphs imply high parallelism—at least if the dependences can
be determined online, and depth of each step D(i) can be appropriately bounded. We
refer to the depth of the DAG as the iteration depth, and denote it as D(G). Here we are
interested in probabilistic bounds on the iteration depth over random input orders.

An incremental algorithm is an iterative algorithm that maintains some property
over elements while inserting a new element on each step. We will use E = {e1, . . . , en} to
indicate the insertion order of n elements. A randomized incremental (RIC) algorithm
is an incremental algorithm in which the elements are added in a uniformly random
order. In randomized incremental algorithms, the presence of a dependence arc between
steps i and j will have a probability pij based on all possible orders (each of the n! orders
is a primitive event in the sample space). We are interested in upper bounds on these
probabilities, which we will refer to as p̂ij . A subtle point is that the exact probabilities pij
are sometimes not independent (e.g., along a path), but the upper bounds p̂ij are, allowing
them to be multiplied. We will use backwards analysis [248]—we consider “removing”
randomly selected elements one at a time from the end, noting that the analysis of elements
1, . . . , i does not depend on the elements j > i .

In this thesis, we consider three types of incremental algorithms, which we refer to as
Type 1, 2, and 3, for lack of better names.

Type 1Algorithms. In these algorithms we analyze the dependence depth by considering
all possible paths in the iteration dependence graph and taking a union bound over the
probability of each. We describe two algorithms of this type—sorting by insertion into
a binary search tree, and incremental planar Delaunay triangulation. In the algorithms
(and indeed in just about all incremental algorithms) inserting an element j between two
elements i < j and k > j will never add a dependence between i and k (although it might
remove one). The property means that we only need to consider the dependence between
positions i and i + 1 when calculating an upper bound on the probability p̂ij (j > i). In
particular, for all j ≥ i + 1 we use p̂i(i+1) ≥ p̂ij ≥ pij . We use the following lemma.
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Lemma 6.2.1. Consider an iteration dependence graph G of n iterations with p̂ij = f (i) ≥
1/n, independent along any path, then

Pr(D(G) ≥ l) < n

(
e
∑n

i=1 f (i)

l

)l
Proof. Consider a path of length l − 1, and let K ⊆ {1, . . . ,n} be the vertices on the path
(|K | = l ). We have that the probability of the path existing is upper bounded by:

P(K) = n
∏
k∈K

f (k) .

The multiplicative factor of n is needed to account for the fact that the last element of
Kdoes not contribute to the probability of the path and can be as small as 1/n. We can
now take the union bound over all possible paths of length l − 1, giving:

Pr(D(G) > l − 1) ≤ X (G) =
∑

K⊆{1,...,n},|K |=l
P(K)

If f (i) is a constant with value p̂ we have:

X (G) =

(
n

l

)
np̂l < n

(
enp̂

l

)l
= n

(
e
∑n

i=1 f (i)

l

)l
where we use the inequality

(n
m

)
<

( en
m

)m.
We now show that unequal (non-constant) probabilities that maintain the same sum∑n

i=1 f (i) will only reduce X (G) and hence the upper bound on Pr(D(G) ≥ l). Therefore
the probability is maximized by the equation above. Consider two locations i and j such
that f (i) , f (j). We show that changing these probabilities both to p̂m = (f (i) + f (j))/2
will increase X (G). A path will either go through i but not j, j but not i , neither or both.
Clearly the ones through neither will not a�ect the total sum. For every path through
just i there is a path through just j going through the same set of other vertices. If Pr is
the product of probabilities of the other vertices in one of these pairs of paths then the
contribution to the union bound of both is f (i)Pr + f (j)Pr = 2p̂mPr . The contribution
from these paths is therefore not changed by changing f (i) and f (j) to p̂m. However,
the contribution from paths going through both will increase since the old product is
f (i)f (j)Pr while the new one is p̂2

mPr , which has to be at least as large. �

Corollary 6.2.2. Consider an iteration dependence graph G of n iterations with p̂ij ≤ c/i ,
independent along any path. Then for any k ≥ 2ce2 we have

Pr(D(G) > k lnn) ∈ O(1/nk−1) .
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Proof. Plugging into Lemma 6.2.1 gives:

Pr(D(G) ≥ k lnn) < n

(
ec

∑n
i=1 1/i

k lnn

)k lnn

< n

(
ec(1 + lnn)

k lnn

)k lnn

≤ n(1/e)k lnn = 1/nk−1 �

To apply the previous lemma or corollary requires showing independence of the upper
p̂ij along every path. For sorting this is easy. For Delaunay triangulation the probabilities
are not independent among the iterations corresponding to points, but we divide the
iterations into sub-iterations, corresponding to the creation of triangles, for which they
are independent.

The Type 1 algorithms that we describe can be parallelized by running a sequence
of rounds. Each round checks all remaining steps to see if their dependences have been
satis�ed and runs the steps if so. The algorithms require at most O(n) work per round to
check violations. By Theorem 6.2.2, the number of rounds will be O(logn) whp. The total
expected work is therefore O(n logn) for the checks, plus the work for the steps, which
is the same as for the sequential variants—O(n logn) in expectation. The total work is
therefore O(n logn) in expectation.

Type 1 incremental algorithms can be implemented in two ways: one completely
online, only seeing a new element at the start of each step, and the other o�ine, keeping
track of all elements from the beginning. In the �rst case, a structure based on the history
of all updates can be built during the algorithm that allows us to e�ciently locate the
“position” of a new element (e.g., [157]), and in the second case the position of each
uninserted element is kept up-to-date on every step (e.g., [100]). The bounds on work are
typically the same in either case. Our incremental sort uses an online style algorithm, and
the Delaunay triangulation uses an o�ine one.

Type 2 Algorithms. Here we describe a class of incremental algorithms, called Type
2 algorithms, that have a special structure. The iteration dependence graph for these
algorithms is formed as follows: each step j independently has probability at most c/j of
being a special step for some constant c; each special step j has dependence arcs to all
steps i < j; and all non-special steps have one dependence arc to the closest earlier special
step. For Type 2 algorithms, when a special step i is processed, it will check all previous
steps, requiringO(i)work and d(i) depth, and when a non-special step is processed it does
O(1) work. It can be shown that in expectation each step takes O(1) work, so this means
that sequential implementations of Type 2 algorithms take O(n) work in expectation.

Theorem 6.2.3. A Type 2 incremental algorithm has an iteration dependence depth of
O(logn) whp, and can be implemented to run in O(n) expected work and O(d(n) log2 n)
depth whp, where d(n) is the depth of processing a special step.
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Proof. Since the probabilities are independent and the expectation is
∑n

j=1 c/j = O(logn),
using a Cherno� bound, it is easy to show that the number of special steps is O(logn)
whp. With this bound, we can show that the iteration dependence depth, or the length of
the longest path in the dependence graph, is O(logn) whp by noticing that there cannot
be two consecutive non-special steps in a path (i.e., in the worst case every other vertex
in the path is a special step, and there are only O(logn) of them whp).

We now show how parallel linear-work implementations can be obtained. A parallel
implementation needs to execute the special steps one-by-one, and for each special step it
can do its computation in parallel. For the non-special steps whose closest earlier special
step has been executed, their computation can all be done in parallel. To maintain work-
e�ciency, we cannot a�ord to keep all un�nished steps active on each round. Instead,
we start with a constant number of the earliest steps on the �rst round and on each
round geometrically increase the number of steps processed, similar to the pre�x methods
described in earlier work on parallelizing iterative algorithms [61].

Without loss of generality, assume n = 2k for some integer k . We can process batched
steps in k + 1 rounds—the �rst round runs the �rst task and the i-th round (i > 1) runs
the second half of the �rst 2i−1 tasks (we refer to each batch as a pre�x). Each time a
pre�x is processed it checks all steps, �nds the earliest un�nished special step, applies the
computation associated with that step, and marks that special step and all earlier steps as
�nished. Since each step takes O(1) work in expectation, each time a pre�x is processed,
it applies some computation with work O(2i−2) and depth d(n). The maximum/minimum
of n elements can be computed in O(n) work and O(logn) depth, so �nding the earliest
special step can be done in O(2i−2) work and O(logn) depth whp. Marking steps as
�nished can be done in the same bounds. The number of times a pre�x needs to be
executed is equal to the number of special steps in the pre�x, which for any pre�x k is
bounded by

∑2k−1−1
i=2k−2 c/i = O(1) in expectation. Therefore, the work per pre�x is O(2i−2)

in expectation, and summed over all rounds is O(1) +
∑logn

i=2 O(2i−2) = O(n) in expectation.
Summed across all pre�xes, the total number of times they are processed is equal to the
iteration dependence depth, which is O(log2 n) whp, and so we have an overall depth of
O(d(n) log2 n) whp. �

Type 3 Algorithms. In the third type of incremental algorithms, instead of fully abiding
by the dependence arcs and bounding the iteration depth, we allow for violations of the
dependence arcs, and hence allow computations to di�er from the sequential ordering
possibly doing some extra work. However, we bound the extra work and show how to
resolve the con�icts so the results are the same as in the sequential algorithm.

Consider a set of elements S . We assume that each element x ∈ S de�nes a total
ordering <x on all S . This ordering can be the same for each x ∈ S , or di�erent. For
example, in sorting the total ordering would be the order of the keys and the same for all
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x ∈ S . We say the computation has separating dependences if the following condition
is satis�ed.

De�nition 9 (separating dependences). For any three elements a,b, c ∈ S , if a <c b <c c
or c <c b <c a, then c can only depend on a if a is inserted �rst among the three.

In other words, if b separates a from c in the total ordering for c , and runs �rst, it will
separate the dependence between a and c (also if c runs before a, of course, there is no
dependence from a to c). Again using sorting as an example, if we insert b into a BST
�rst (or use it as a pivot in quicksort), it will separate a from c and they will never be
compared (each comparison corresponds to a dependence).

Lemma 6.2.4. In a randomized incremental algorithm that has separating dependences,
p̂ij = 2/i is an upper bound on pij .

Proof. Consider the total ordering <j . The elements are inserted in random order, and so
the probability that i is the nearest element before j among the �rst i is at most 1/i . If it is
not the nearest, it has already been separated from j by an earlier insertion. Similarly for
the nearest element after j, giving a total probability of 2/i . �

Corollary 6.2.5. The number of dependences in a randomized incremental algorithm with
separating dependences is O(n logn) in expectation.2

This comes simply from the sum
∑n

j=2
∑j−1

i=1 pij which is bounded by 2n lnn. This
leads to yet another proof that quicksort, or randomized insertion into a binary search
tree, does O(n logn) comparisons in expectation. This is not the standard proof based
on pij = 2/(j − i + 1) being the probability that the i’th and j’th smallest elements are
compared. Here the pij represent the probability that the i’th and j’th elements in the
random order are compared.

In this thesis we introduce graph algorithms that have separating dependences with
respect to insertion of the vertices, and there is a dependence from vertex i to vertex j if a
search from i (e.g., shortest path or reachability) visits j.

To allow for parallelism we permit iterations to run concurrently in rounds. This
means that we might not separate elements that were separated in the sequential order
(for example, if i separated j from k in the sequential order, but we run i and j concurrently,
then they might both have a dependence to k). Also, for each algorithm we describe a
way to combine results from steps that run in parallel so they give an identical result
as the sequential order. If all elements are randomly permuted and the rounds are of
geometrically increasing size starting with constant size, as with Type 2 algorithms, the
approach wastes at most a constant factor in extra dependences (extra visited vertices in
our graph algorithms).

2Also true whp.
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Theorem 6.2.6. A randomized incremental algorithm with separating dependences can run
inO(logn) parallel rounds over the iterations and every element will haveO(logn) incoming
dependence arcs in expectation (for a total of O(n logn)).

Proof. As in the proof of Theorem 6.2.3, assume without loss of generality n = 2k − 1 for
some integer k , and we process batched steps in k rounds where the batch size increases
by powers of 2 (1, 2, 4, 8, . . .). Clearly the number of rounds is O(logn). Consider the
number of incoming arcs to the last element x to be inserted since it is the worst case in
expectation. We can consider all elements at each round happening at the very beginning
of the round, since in a parallel execution no other elements in the round will separate
any elements in the round from x (although all previous rounds can). For round i , the
beginning of the round is at position 2i−1. Therefore by Lemma 6.2.4, the probability from
any element in round i is 2/2i−1, and there are 2i−1 such elements giving 2 as the expected
number of incoming arcs to x from elements in round i . When summed across the logn
rounds we get 2 logn, which gives us theO(logn) bound on incoming arcs as claimed. �

As a side remark we note that by batching we have increased the number of incoming
arcs over the sequential algorithm by a factor of about (2 log2 n)/(2 lnn) = log2 e ≈ 1.44.

6.3 General Techniques for Incremental Algorithms

In this section, we �rst introduce our framework for randomized incremental algo-
rithms. Our goal is to have a systematic approach for designing geometric algorithms
that are highly parallel and write-e�cient.

Our observation is that it should be possible to make randomized incremental algo-
rithms write-e�cient since each newly added object in expectation only con�icts with a
small region of the current con�guration. For instance, in planar Delaunay triangulation,
when a randomly chosen point is inserted, the expected number of encroached triangles is
6. Therefore, resolving such con�icts only makes minor modi�cations to the con�guration
during the randomized incremental constructions, leading to algorithms using fewer
writes. The challenges are in �nding the con�icted region of each newly added object
write-e�ciently and work-e�ciently, and in adding multiple objects into the con�guration
in parallel without a�ecting write-e�ciency. We will discuss the general techniques to
tackle these challenges based on the history graph [76, 157], and then discuss how to apply
them to develop parallel write-e�cient algorithms for comparison sorting in Section 6.4,
planar Delaunay triangulation in Section 6.5, and k-d tree construction in Section 6.6.

6.3.1 DAG Tracing

We now discuss how to �nd the con�ict set of each newly added object (i.e., only
output the con�ict primitives) based on a history (directed acyclic) graph [76, 157] in a
parallel and write-e�cient fashion. Since the history graphs for di�erent randomized
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incremental algorithms can vary, we abstract the process as a DAG tracing problem that
�nds the con�ict primitives in each step by following the history graph.

De�nition 10 (DAG tracing problem). The DAG tracing problem takes an element x , a
DAG G = (V , E), a root vertex r ∈ V with zero in-degree, and a boolean predicate function
f (x,v). It computes the vertex set S(G, x) = {v ∈ V | f (x,v) and out-degree(v) = 0}.

We call a vertex v visible if f (x,v) is true.

De�nition 11 (tracable property). We say that the DAG tracing problem has the tracable
property when v ∈ V is visible only if there exists at least one direct predecessor vertex u of v
that is visible.

Variable Description
D(G) the length of the longest path in G
R(G, x) the set of all visible vertices in G
S(G, x) the output set of vertices

Theorem 6.3.1. The DAG tracing problem can be solved in O(|R(G, x)|) work, O(D(G))
depth andO(|S(G, x)|) writes when the problem has the tracable property, each vertex v ∈ V
has a constant degree, f (x,v) can be evaluated in constant time, and the small-memory has
size O(D(G)). Here R(G, x), D(G), and S(G, x) are de�ned in the previous table.

Proof. We �rst discuss a sequential algorithm using O(|R(G, x)|) work and O(|S(G, x)|)
writes. Because of the tracable property, we can use an arbitrary search algorithm to visit
the visible nodes, which requiresO(R(G, x))writes since we need to mark whether a vertex
is visited or not. However, this approach is not write-e�cient when |S | = o(|R(G, x)|), and
we now propose a better solution.

Assume that we give a global ordering ≺v of the vertices in G (e.g., using the vertex
labels) and use the following rule to traverse the visible nodes based on this ordering: a
visible node v ∈ V is visited during the search of its direct visible predecessor u that has
the highest priority among all visible direct predecessors of v . Based on this rule, we do
not need to store all visited vertices. Instead, when we visit a vertex v via a directed edge
(u,v) fromu, we can check ifu has the highest priority among all visible predecessors ofv .
This checking has constant cost sincev has a constant degree and we assume the visibility
of a vertex can be veri�ed in constant time. As long as we have a small-memory of size
O(D(G)) that keeps the recursion stack and each vertex in V has a constant in-degree, we
can �nd the output set S(G, x) using O(|R(G, x)|) work and O(|S(G, x)|) writes.

We note that the search tree generated under this rule is unique and deterministic.
Therefore, this observation allows us to traverse the tree in parallel and in a fork-join
manner: we can simultaneously fork o� an independent task for each outgoing edges
of the current vertex, and all these tasks can be run independently and in parallel. The
parallel depth, in this case, is upper bounded by O(D(G)), the depth of the longest path in
the graph. �
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Here we assume the graph is explicitly stored and accessible, so we slightly modify
the algorithms to generate the history graph, which is straightforward in all cases in this
section.

6.3.2 The Pre�x-Doubling Approach

The sequential version of randomized incremental algorithms process one object (e.g.,
a point or vertex) in one iteration. The pre�x-doubling approach splits an algorithm
into multiple rounds, with the �rst round processing one iteration and each subsequent
round doubling the number of iterations processed. This high-level idea is widely used
in parallel algorithm design. We show that the pre�x-doubling approach combined with
the DAG tracing algorithm can reduce the number of writes by a factor of Θ(logn) in a
number of algorithms. In particular, our variant of pre�x doubling �rst processes n/logn
iterations using a standard write-ine�cient approach (called as the initial round). Then
the algorithm runs O(log logn) incremental rounds, where the i’th round processes the
next 2i−1n/logn iterations.

6.4 Comparison Sorting

The �rst algorithm that we consider is sorting by incrementally inserting into a binary
search tree (BST) with no rebalancing (w.l.o.g. we assume that no two keys are equal)3. It
is well-known that for a random insertion order, this takes O(n logn) expected time. We
apply our approach to show that the sequential incremental algorithm is also e�cient in
parallel. Algorithm 7 gives pseudocode that works either sequentially or in parallel. A
step is one iteration of the for loop on Line 2. For the parallel version, the for loop should
be interpreted as a parallel for, and the assignment on Line 7 should be considered a
priority-write—i.e., all writes happen synchronously across the n iterations, and when
there are writes to the same location, the smallest value gets written. The sequential
version does not need the check on Line 8 since it is always true.

6.4.1 Analysis on the Iterative Dependences

The dependence between iterations in the algorithm is in the check if ∗P is empty in
Line 6. This means that iteration j depends on i < j if and only if the node for i is on the
path to j. This leads to the following lemma.

Lemma 6.4.1. For keys in random order, incrementalSort iteration j depends on iteration
i < j with probability at most 2/i , and this upper bound is independent of all choices for
k > i .

3Sorting is not a geometric algorithm but is a good example to illustrate the key concepts and our
framework.
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Algorithm 7: incrementalSort
Input: A sequence K = {k1, . . . ,kn} of keys.
Output: A binary search tree over the keys in K .
// ∗P reads indirectly through the pointer P .
// The check on Line 8 is only needed for the parallel version.

1 Root← a pointer to a new empty location
2 for i ← 1 to n do

3 N ← newNode(ki )
4 P ← Root
5 while true do

6 if
∗P = null then

7 write N into the location pointed to by P
8 if

∗P = N then

9 break
10 if N .key < ∗P .key then

11 P ← pointer to ∗P .left
12 else

13 P ← pointer to ∗P .right
14 return Root

Proof. The proof follows the standard analysis (e.g. [248]). We consider the probability
for steps i and i + 1 (and hence an upper bound for all j > i). Since it was inserted last,
node i is a leaf in the BST when i + 1 is inserted. Node i will therefore only be on the path
to i + 1 if they are neighbors in sorted(1, . . . , i + 1). Node i + 1 has at most two neighbors,
each which is added on step i with probability 1/i (independent of all choices of k > i),
giving p̂i = 2/i . �

Along with Corollary 6.2.2 this implies the following.

Corollary 6.4.2. Insertion of n keys into a binary search tree in random order has iteration
dependence depth O(logn) whp.

We note that since iterations only depend on the path to the key, the transitive
reduction of the iteration dependence graph is simply the BST itself. In general, e.g.
Delaunay triangulation in the next section, the dependence structure is not a tree.

Lemma 6.4.3. The parallel version of incrementalSort generates the same tree as the
sequential version, and for a random order of n keys runs in O(n logn) work and O(logn)
depth whp on a priority-write CRCW PRAM.

Proof. They generate the same tree since whenever there is a dependence, the earliest
step wins. The number of rounds of the while loop is bounded by the iteration depth
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(O(logn) whp) since for each iteration, each round checks a new dependence (i.e., each
round traverses one level of the iteration dependence graph). Since each round takes
constant depth on the priority-write CRCW PRAM with n processors, this gives the
required bounds. �

6.4.2 A Linear-Write Version

We discuss how the DAG-tracing algorithm and pre�x doubling in Section 6.3 reduce
the number of writes in this algorithm.

Linear-write andO(log2 n log logn)-depth incremental sort. We discuss a linear-write
parallel sorting algorithm based on the pre�x-doubling approach. The initial round
constructs the search tree for the �rst n/log2 n elements using Algorithm 7. For the i’th
incremental round where 1 ≤ i ≤ dlog2 log2 ne, we add the next 2i−1n/log2 n elements
into the search tree. In an incremental round, instead of directly running Algorithm 7,
we �rst �nd the correct position of each element to be inserted (i.e., to reach line 7 in
Algorithm 7). This step can be implemented using the DAG tracing algorithm, and in this
case the DAG is just the search tree constructed in the previous round. The root vertex r is
the tree root, and f (x,v) returns true i� the the search of element x visit the node v . Note
that the DAG is actually a rooted tree, and also each element only visits one tree node
in each level and ends up in one leaf node (stored in P ), which means this step requires
O(2i−1n) work, O(logn) depth whp, and O(2i−1n/logn) writes in the i’th round.

After each element �nds the empty leaf node that it belongs to, in the second step in
this round we then run Algorithm 7, but using the pointer P that was computed in the
�rst step. We refer to the elements in the same empty leaf node as belonging to the same
bucket. Notice that the depth of this step in one incremental round is upper bounded by
the depth of a random binary search tree which is O(logn) whp, so this algorithm has
O(log2 n log logn) depth whp: O(log logn) rounds, and in each round there are O(logn)
levels.

We now analyze the expected number of writes of in the second step. In each incre-
mental round the number of elements inserted is the same as the number of elements
already in the tree. Hence it is equivalent to randomly throwing k balls into k bins, where
k is the number of elements to be inserted in this incremental round. Assume that the
adversary picks the relative priorities of the elements within each bin, so that it takes
O(b2) work and to sort b elements within each bucket in the worst case. We can show
that the probability that there are b elements in a bucket is Pr(b) =

(k
b

)
· 1/kb(1 − 1/k)k−b ,

and Pr(b + 1) < Pr(b) · c1 when b > c2, for some constant c1 < 1 and c2 > 1. The expected
number of writes within each bucket in this incremental round is therefore:

k ·
k∑
i=0

i2 Pr(i) < k

(
O(1) +

k∑
i=c2

i2 · Pr(c2)c
i−c2
1

)
= O(k)
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Hence the overall number of writes is also linear. Algorithm 7 sorts b elements in a bucket
with O(b) depth, and whp the number of balls in each bin is O(logk), so the depth in this
step is included in the depth analysis in the previous paragraph. Combining the work and
depth gives the following lemma.
Lemma 6.4.4. incrementalSort for a random order of n keys runs in O(n logn + ωn)
expected work and O(log2 n log logn) depth whp on Asymmetric NP model with priority-
write.

Improving the depth to O(log2 n). We can improve the depth to O(log2 n) as follows.
Notice that for b = c3 log logn and c4 > 1,

k∑
i=b

Pr(i) <
k∑
i=b

Pr(c2)c
i−c2
1 = log−c4 k

This indicates that only a small fraction of the buckets in each incremental round are not
�nished after b = c3 log logn iterations of the while-loop on Line 5 of Algorithm 7.

In the depth-improved version of the algorithm, the while-loop terminates after
b = c3 log logn iterations, and postpones these insertions (and all further insertions into
this subtree in future rounds) to a �nal round. The �nal round simply runs another round
of Algorithm 9 and inserts all uninserted elements (not write-e�ciently). Clearly the
depth of the last round is O(log2 n), since it is upper bounded by the depth of running
Algorithm 7 for all n elements. The depth of the whole algorithm is therefore O(log2 n) +
O(logn log logn) ·O(log logn) +O(log2 n) = O(log2 n) whp.

We now analyze the number of writes in the �nal round. The probability that a bucket
in any round does not �nish is log−c4 k , and pessimistically there are in totalO(n · log−c4 k)
of such buckets. We also know that using Cherno� bound the maximum size of a bucket
after the �rst round is O(log2 n) whp. The number of writes in the last round is upper
bounded by the overall number of uninserted elements times the tree depth, which is
O(n) · log−c4 n ·O(log2 n) ·O(logn) = o(n) by setting c3 and c4 appropriately large. This
leads to the main theorem.
Theorem 6.4.5. incrementalSort for a random order of n keys runs in O(n logn + ωn)
expected work and O(log2 n) depth whp on Asymmetric NP model with priority-write.

Note that this gives a much simpler work/write-optimal logarithmic-depth algorithm
for comparison sorting than the write-optimal parallel sorting algorithm in Chapter 4 that
is based on Cole’s mergesort [102], although this algorithm is randomized and requires
priority-writes.

6.5 Planar Delaunay Triangulation

A Delaunay triangulation (DT) in the plane is a triangulation of a set of points P
such that no point in P is inside the circumcircle of any triangle (the circle de�ned by
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Figure 6.1: An illustration of the procedure of ReplaceTriangle. For each edge (u,w) that
is a boundary of v’s encroached triangle t , we �nd the triangle to on the other side of (u,w),
generate the new triangle t ′, and recompute the encroaching set E(t ′). Notice that the new
(colored) circumcircle for t ′ (the encroaching region for t ′) can only contain points that are in the
circumcircles of t and to .

the triangle’s three corner points). We say a point encroaches on a triangle if it is in
the triangle’s circumcircle, and will assume for simplicity that the points are in general
position (no three points on a line or four points on a circle). Delaunay triangulation can
be solved sequentially in optimal O(n logn) work. There are also several work-e�cient
parallel algorithms that run in polylogarithmic depth [31, 51, 238], but they are all quite
complicated.

The widely-used incremental Delaunay algorithms, due to their simplicity, date back
to the 1970s [150]. They are based on the rip-and-tent idea: for each point p in order, rip
out the triangles p encroaches on and tent over the resulting cavity with a ring of triangles
centered at p. The algorithms di�er in how the encroached triangles are found, and
how they are ripped and tented. Clarkson and Shor [100] �rst showed that randomized
incremental 3D convex hull is e�cient, running in O(n logn) time in expectation, which
by reduction implies the same results for DT. Guibas et al. (GKS) showed a simpler direct
incremental algorithm for DT [157] with the same bounds, and this has become the
standard version described in textbooks [109, 121, 218] and often used in practice. The
GKS algorithm uses a history of triangle updates to locate the triangle t that p is in. It then
searches out for all other encroached triangles. The algorithm, however, is inherently
sequential since for certain inputs and certain points in the input, the search from t will
likely have depth Θ(n), and hence a single step can take linear depth.

Our goal is to use an incremental DT algorithm for which the steps themselves can
be parallelized. For this purpose we use an o�ine variant of an algorithm by Boissonnat
and Teillaud [76]. We show that the iteration depth is O(logn) whp although this requires
analyzing substeps. We further show that each step can be parallelized leading to a simple
parallel algorithm with O(n logn) work in expectation and O(log2 n) depth whp.

Our variant is described in Algorithm 8. For each triangle t ∈ M it maintains the set of
uninserted points that encroach on t , denoted as E(t). On each step i the algorithm selects
the triangles that point i encroach on (all already known), removes these triangles and
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Algorithm 8: IncrementalDT
Input: A sequence V = {v1, . . . ,vn} of points in the plane.
Output: DT(V ).
Maintains: A set of triangles M , and for each t ∈ M , the points that encroach on it,

E(t).

1 tb ← a su�ciently large bounding triangle
2 E(tb) ← V
3 M ← {tb}
4 for i ← 1 to n do

5 foreach triangle t ∈ M with vi ∈ E(t) do
6 ReplaceTriangle(M ,t ,vi )
7 returnM

8 function ReplaceTriangle(M ,t ,v)
9 foreach edge (u,w) ∈ t (three of them) do

10 if (u,w) is a boundary of v’s encroached region then

11 to ← the other triangle sharing (u,w)
12 t ′← (u,w,v)
13 E(t ′) ← {v′ ∈ E(t) ∪ E(to) | inCircle(v′, t ′)}
14 M ← M ∪ {t ′}

15 M ← M \ {t}

replaces them with new ones (see Figure 6.1). All work on uninserted points is done in
determining E(t ′) for each new triangle t ′, and for each new triangle only requires going
through two existing sets, E(t) and E(t ′). This justi�ed by Fact 6.5.1 [76]. Determining
which triangles encroach on a point can be implemented by keeping a mapping of points
to encroached triangles.

Fact 6.5.1. When adding a triangle t ′ = (u,w,v) for a new point v , and for the two old
triangles t and to that shared the edge (u,w), we have E(t) ∩ E(to) ⊆ E(t ′) ⊆ E(t) ∪ E(to).

Proof. Let t = (u,w,v′) be the triangle being removed and to = (w,u,vo) be the other
triangle sharing the edge (u,w). The new point v must be in the circumcircle of t since it
is removing it, but cannot be in the circumcircle of to since then it would be removing
to as well and (u,w) would not be a boundary. The circumcircle of t ′ therefore must be
contained in the union of the circumcircles of t and to , and must contain the intersection
(see Figure 6.1). �

6.5.1 The Work Bound

A time bound for IncrementalDT ofO(n logn) follows from the analysis of Boissonnat
and Teillaud [76], and more indirectly from Clarkson and Shor [100]. However for
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completeness and to show precise (within constant factor) bounds we include a bound on
the number of inCircle tests here. We note that due to Fact 6.5.1, the inCircle test is not
required for points that appear in both E(to) and E(t).

Theorem 6.5.2. IncrementalDT on n points in random order does at most 24n lnn +O(n)
inCircle tests in expectation.

Proof. On step i , for each point at j > i we consider the boundary of the region j encroaches
on. We de�ne each of the boundary edges by its two endpoints (u,w) along with the (up
to) two points sharing a triangle with (u,w). Note that in ReplaceTriangle a point is
only tested for encroachment on the triangle (u,w,v) if its boundary (u,w,vo,v′) is being
deleted and replaced with (u,w,vo,v). We can therefore charge every comparison to the
creation of a boundary of a point, and spend it when deleted.

Consider steps i and i + 1 (recall we can use i + 1 as a surrogate for any j > i). By
Euler’s formula, the average degree of a node in a planar graph is at most 6. Therefore,
since i + 1 is selected uniformly at random (among 1, . . . , i + 1), its expected boundary size
will be at most 6. Each boundary involves up to 4 points from 1, . . . , i , so the probability
that the random point removed on step i is one of them is at most 4/i . Therefore, the total
expected number of boundaries of i + 1 (and hence any j > i) added on step i is at most
6 × 4/i = 24/i . If C is the number of in-circle tests, this gives:

E[C] ≤ 3n +
n∑
j=2

j∑
i=1

24/i ≤ 24n lnn +O(n)

where the 3n term comes from having to charge for the creation of the initial bounding
triangle. �

6.5.2 Analysis on the Iterative Dependences

We now consider the dependence depth of our algorithm. One approach to paralleliz-
ing the algorithm is to on each parallel round have every uninserted point check if its
dependences are satis�ed, and insert itself if so. It turns out that two points i and i + 1
are dependent if and only if immediately before either is added, their encroached regions
overlap by at least an edge. Unfortunately this means that the probabilities of the depen-
dence arcs (i, j) and (j,k) are not independent. In particular if j has a large encroached
region, this increases both pij and pjk . For example, consider a wagon wheel—(n − 1)
points nearly on a circle, and a single point at the hub. When the hub point is inserted at
j, it will have dependence arcs from all previous points, and to all future points.

We therefore consider a more �ne-grained dependence structure that relaxes the
dependences. The observation is that not all triangles added by a point need to be added
on the same round. In particular, ReplaceTriangle only depends on the triangle it is
replacing and the three neighbors. We therefore can run ReplaceTriangle(M, t,v) as
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Algorithm 9: ParIncrementalDT
Input: A sequence V = {v1, . . . ,vn} of points in the plane.
Output: DT(V ).
Maintains: E(t), the points that encroach on each triangle t .

1 tb ← a su�ciently large bounding triangle
2 E(tb) ← V
3 M ← {tb}
4 while E(t) , � for any t ∈ M do

5 parallel foreach triangle t ∈ M do

6 Let t1, t2, t3 be the three neighboring triangles
7 if min(E(t)) ≤ min(E(t1) ∪ E(t2) ∪ E(t3)) then
8 ReplaceTriangle(M, t,min(E(t)))
9 returnM

long as among the points encroaching on t and the three neighbors of t , there is no earlier
point than v . An equal point is �ne, since that would be the same point.

Algorithm 9 describes such a parallel variant. Since the triangles for a given point
can be added on di�erent rounds, the mesh is not necessarily self consistent after each
round. We therefore assume that if a neighboring triangle (i.e., t1, t2 or t3) is already
deleted it can be ignored, and if not yet added, then ReplaceTriangle cannot proceed
until added. A hash table mapping pairs of vertices representing edges to their up to two
adjacent triangles can be used to �nd neighboring triangles. We assume that there is a
synchronization point before Line 8.

Note that there is a one-to-one correspondence between the calls to ReplaceTriangle
in the sequential and parallel algorithm—i.e., they are the “same” algorithm but just with a
di�erent ordering. We believe that this parallel version is even simpler than the sequential
version since it does not require a mapping from points to encroached triangles.

For a sequence of points V , let GT (V ) = (T , E) be the dependence graph de�ned by
ParIncrementalDT(V ) in the following way. The vertices T corresponds to triangles
created by the algorithm, and for each call to ReplaceTriangle(M, t,vi) we place an
arc from triangle t and its three neighbors (t1, t2 and t3) to each of the one, two, or three
triangles created by ReplaceTriangle. Note that we can associate each triangle with the
pointvi that created it. This is an iteration dependence graph over all iterations, including
subiterations that create triangles.

Theorem 6.5.3. For points V in random order, D(GT (V )) = O(logn) whp.

Proof. For a sequence of points V let T (V , i) be the set of triangles created by point vi ,
and let Et,t ′(V ) be the indicator variable for a dependence arc from triangle t to t ′ givenV .
Let p̂ij be an upper bound for the total probability that triangles created by vi have an arc
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to any single triangle created by vj (uniformly random over all permutations of the input).
More precisely:

p̂ij ≥
1
|V |!

©«
∑

V ′∈perms(V )

©« max
t∈T (V ′,j)

©«
∑

t ′∈T (V ′,i)

Et,t ′(V
′)
ª®¬ª®¬ª®¬ .

Consider a path going through a triangle created by each point K ⊆ {1, . . . ,n}. If the
p̂ij are independent along any path, then the probability of such a path is bounded by
the product of the p̂ij along the path and the expectation on the number of triangles on
the last point (which is 6 and independent of the p̂ij). For p̂ij = f (i) ≥ 1/n this gives a
total bounded by 6n

∏
k∈K f (k). We can now apply the proof of Lemma 6.2.1, where the

p̂ij are interpreted in this new way, and the probability along a path K ⊆ {1, . . . ,n} is
interpreted as the probability that any path exists involving triangles created by those
points. As in the proof of Lemma 6.2.1, the union bound over all possible subsets K of
length l gives an overall upper bound on the probability of any path of length l − 1:

Pr(D(GT (V )) > l − 1) ≤
∑

K⊆{1,...,n},|K |=l
6n

∏
k∈K

f (k)

and assuming that p̂ij = f (i) = O(1/i) gives O(logn) depth whp (the argument about
equal probabilities being the worst case still holds).

We are therefore left with showing that the p̂ij = O(1/i) is a valid upper bound, and
that this bound is independent along any path (allowing us to multiply them). As usual
we consider steps (points) i and j = i + 1, and hence an upper bound for any j > i . We
consider one triangle t ′ created at i + 1. Every triangle t ′ depends on 4 triangles—the t that
was sacri�ced for it in ReplaceTriangle, and its three neighbors (see Figure 6.2). These 4
triangles have six corners in total, any one of which could be the point i . Three of those
points (a, b and c in the �gure) would create three triangles that t ′ depends on. The other
three (d , e and f in the �gure) only create one triangle t ′ depends on. Therefore given
that the point i is selected uniformly at random from i points the total probability that
triangles at i have an arc to t ′ (a triangle at i + 1) is bounded by p̂ij = (3 · 3+ 3 · 1)/i = 12/i .

The probabilities are independent since p̂ij = 12/i does not depend on the point j, or
indeed any of the points selected in positions (i + 1), . . . ,n. For example, conditioned
on the center of the wagon wheel being at j, p̂ij = 12/i is still an upper bound. With
p̂ij = O(1/i), and independence of the p̂ij along paths, we can apply our variant of
Lemma 6.2.1 (described above), and Corollary 6.2.2 for the result. �

Theorem 6.5.4. ParIncrementalDT (Algorithm 9) runs in O(n logn) work in expectation
and O(log2 n) depth whp on the CRCW PRAM.

Proof. The number of rounds of ParIncrementalDT is D(GT (V )) since the iteration
dependence graph is de�ned by the algorithm. Each round has depthO(logn) for merging
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Figure 6.2: The dependence of t ′ on four previously created triangles.

the encroached sets and load balancing, for an overall depth of O(log2 n) whp. Assuming
each triangle maintains its minimum index, checking if a triangle is safe to process takes
constant work. Since there are be at most O(n) triangles on any round (true even though
the mesh is not necessarily consistent), each round does at most O(n) work to check all
the triangles, for a total of O(n logn) work across rounds whp. The rest of the work is no
more than the sequential version, which is O(n logn) in expectation. �

6.5.3 A Linear-Write Version

We now discuss a write-e�cient version of the incremental Delaunay algorithm.
We use the DAG tracing and pre�x-doubling techniques introduced in Section 6.3. The
algorithm �rst computes the DT of the n/log2 n earliest points in the randomized order,
using the non-write-e�cient version. This step requires linear writes. It then runs
O(log logn) incremental rounds and in each round adds a number of points equal to the
number of points already inserted.

To insert points, we need to construct a search structure in the DAG tracing problem.
We can modify the BGSS algorithm to build such a structure. In fact, the structure is
e�ectively a subset of the edges of the dependence graph GT (V ). In particular, in the
algorithm the only inCircle test is on Line 13. In this test, to determine if a point
encroaches t ′, we need only check its two ancestors t and to (we need not also check the
two other triangles neighboring t , as needed in GT (V )). This leads to a DAG with depth at
most as large as GT (V ), and for which every vertex has in-degree 2. The out-degree is not
necessarily constant. However, by noting that there can be at most a constant number
of outgoing edges to each level of the DAG, we can easily transform it to a DAG with
constant out-degree by creating a copy of a triangle at each level after it has out-neighbors.
This does not increase the depth, and the number of copies is at most proportional to the
number of initial triangles (O(n) in expectation) since the in-degrees are constant. We
refer to this as the tracing structure. An example of this structure is shown in Figure 6.3.

The tracing structure can be used in the DAG tracing problem (De�nition 10) using
the predicate f (v, t) = inCircle(v, t). This predicate has the traceable property since a
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Figure 6.3: An example of the tracing structure. Here a point v is added and the encroaching
region contains triangles E and F (sub�gure (a)). Four new triangles will be generated and replace
the two previous triangles. They may or may not be created in the same round, and in this example
this is done in two substeps (sub�gures (b) and (c)). Part of the tracing structure is shown in
sub�gure (d). Four neighbor triangles A, B,C , and D are copied, and four new triangles are created.
An arrow indicates that a point is encroached by the head triangle only if it is encroached by the
tail triangle.

point can only be added to a triangle t ′ (i.e., encroaches on the triangle) if it encroached
one of the two input edges from t and to . We can therefore use the DAG tracing algorithm
to �nd all of the triangles encroached on by a given point v starting at the initial root
triangle tb .

We �rst construct the DT of the �rst n/log2 n points in the initial round using Algo-
rithm 9 while building the tracing structure. Then at the beginning of each incremental
round, each point traces down the structure to �nd its encroached triangles, and leaves
itself in the encroached set of that triangle. Note that the encroached set for a given point
might be large, but the average size across points is constant in expectation.

We now analyze the cost of �nding all the encroached triangles when adding a set of
new points. As discussed, the depth of G is upper bounded by O(logn) whp. The number
of encroached triangles of a point x can be analyzed by considering the degree of the
point (number of incident triangles) if added to the DT. By Euler’s formula, the average
degree of a node in a planar graph is at most 6. Since we add the points in a random order,
the expected value of |S(G, x)| in Theorem 6.3.1 is constant. Finally, the number of all
encroached (including non-leaf) triangles of this point is upper bounded by the number
of inCircle tests. Then |R(G, x)|, the expected number of visible vertices of x , is O(logn)
(Theorem 4.2 in [68]).

After �nding the encroached triangles for each point being added, we need to collect
them together to add them to the triangle. This step can be done in parallel with a semisort,
which takes linear expected work (writes) and O(log2m) depth whp [154], wherem is the
number of inserted points in this round. Combining these results leads to the following
lemma.
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Lemma 6.5.5. Given 2m points in the plane and a tracing structure T generated by Algo-
rithm 9 on a randomly selected subset ofm points, computing for each triangle inT the points
that encroach it among the remainingm points takes O(m logm + ωm) work (O(m) writes)
and O(log2 n) depth whp in the Asymmetric NP model.

The idea of the algorithm is to keep doubling the size of the set that we add (i.e.,
pre�x doubling). Each round applies Algorithm 9 to insert the points and build a tracing
structure, and then the DAG tracing algorithm to locate the points for the next round.
The depth of each round is upper bounded by the overall depth of the DAG on all points,
which is O(logn) whp, where n is the original size. We obtain the following theorem.
Theorem 6.5.6. Planar Delaunay triangulation can be computed using O(n logn + ωn)
work (i.e., O(n) writes) in expectation and O(log2 n log logn) depth whp on the Asymmetric
NP model with priority-writes.

Proof. The original Algorithm 9 in [68] has O(log2 n) depth whp. In the pre�x-doubling
approach, the depth of each round is no more than O(log2 n), and the algorithm has
O(log logn) rounds. The overall depth is hence O(log2 n log logn) depth whp.

The work bound consists of the costs from the initial round, and the incremental
rounds. The initial round computes the triangulation of the �rst n/log2 n points, using at
most O(n) inCircle tests, O(n) writes and O(ωn) work. For the incremental rounds, we
have two components, one for locating encroached triangles in the tracing structure, and
one for applying Algorithm 9 on those points to build the next tracing structure. The �rst
part is handled by Lemma 6.5.5. For the second part we we can apply a similar analysis
to Theorem 4.2 of [68]. In particular, the probability that there is a dependence from a
triangle in the i’th point (in the random order) to a triangle added by a later point at
location j in the ordering is upper bounded by 24/i . Summing across all points in the
second half (we have already resolved the �rst half) gives:

E[C] ≤
2m∑

i=m+1

2m∑
j=i+1

24/i = O(m) .

This is a bound on both the number of reads and the number of writes. Since the points
added in each round doubles, the cost is dominated by the last round, which is O(n logn)
reads and O(n) writes, both in expectation. Combined with the cost of the initial round
gives the stated bounds. �

6.6 Space-Partitioning Data Structures

Space partitioning divides a space into non-overlapping regions.4 This process is
usually applied repeatedly until the number of objects in a region is small enough, so that

4The other type of partitioning is object partitioning that subdivides the set of objects directly (e.g.,
R-tree [158, 207], bounding volume hierarchies [152, 274]).
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we can a�ord to answer a query in linear work within the region. We refer to the tree
structure used to represent the partitioning as the space-partitioning tree. Commonly-used
space-partitioning trees include binary space partitioning trees, quad/oct-trees, k-d trees,
and their variants, and are widely used in computational geometry [109, 162], computer
graphics [15], integrated circuit design, learning theory, etc.

In this section, we propose write-e�cient construction and update algorithms for
k-d trees [44]. We discuss how to support dynamic updates write-e�ciently in Sec-
tion 6.6.2, and we discuss how to apply our technique to other space-partitioning trees in
Section 6.6.3.

6.6.1 k-d Tree Construction and Queries

k-d trees have many variants that facilitate di�erent queries. We start with the most
standard applications on range queries and nearest neighbor queries, and discussions for
other queries are in Section 6.6.3. A range query can be answered inO(n(k−1)/k)worst-case
work, and an approximate (1 + ϵ)-nearest neighbor (ANN) query requires logn ·O(1/ϵ)k
work assuming bounded aspect ratio,5 both in k-dimensional space. The tree to achieve
these bounds can be constructed by always partitioning by the median of all of the objects
in the current region either on the longest dimension of the region or cycling among the k
dimensions. The tree has linear size and log2 n depth [109], and can be constructed using
O(n logn) reads and writes. We now discuss how to reduce the number of writes to O(n).

One solution is to apply the incremental construction by inserting the objects into a k-d
tree one by one. This approach requires linear writes,O(n logn) reads and polylogarithmic
depth. However, the splitting hyperplane is no longer based on the median, but the object
with the highest priority pre-determined by a random permutation. The expected tree
depth can be c log2 n for c > 1, but to preserve the range query cost we need the tree depth
to be log2 n+O(1) (see details in Lemma 6.6.1). Motivated by the incremental construction,
we propose the following variant, called p-batched incremental construction, which
guarantees both write-e�ciency and low tree depth.

The p-batched incremental construction.

The p-batched incremental construction is a variant of the classic incremental con-
struction where the dependence graph is a tree. Unlike the classic version, where the
splitting hyperplane (splitter) of a tree node is immediately set when inserting the object
with the highest priority, in the p-batched version, each leaf node will bu�er at most p
objects before it determines the splitter. We say that a leaf node over�ows if it holds more
than p objects in its bu�er. We say that a node is generated when created by its parent,
and settled after �nding the splitters, creating leaves and pushing the objects to the leaves’
bu�ers.

5The largest aspect ratio of a tree node on any two dimensions is bounded by a constant, which is
satis�ed by the input instances in most real-world applications.
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(a) (b) (c)

Figure 6.4: An illustration of one round in the p-batched incremental construction for p = 4.
Sub�gure (a) shows the initial state of this round. Then the new objects (shown in orange) are
added to the bu�ers in the leaves, as shown in sub�gure (b). Two of the bu�ers over�ow, and so
we settle these two leaves as shown in sub�gure (c).

The algorithm proceeds in rounds, where in each round it �rst �nds the corresponding
leaf nodes that the inserted objects belong to, and adds them into the bu�ers of the leaves.
Then it settles all of the over�owed leaves, and starts a new round. An illustration of this
algorithm is shown in Figure 6.4. After all objects are inserted, the algorithm �nishes
building the subtree of the tree nodes with non-empty bu�ers recursively. For write-
e�ciency, we require the small-memory size to be Ω(p), and the reason will be shown in
the cost analysis.

We make a partition once we have gathered p objects in the corresponding subregion
based on the median of these p objects. When p = 1, the algorithm is the incremental
algorithm mentioned above, but the range query cost cannot be preserved. When p = n,
the algorithm constructs the same tree as the classic k-d tree construction algorithm, but
requires more than linear writes unless the small-memory size isO(n), which is impractical
when n is large. We now try to �nd the smallest value of p that preserves the query cost,
and we analyze the cost bounds accordingly.

6.6.1.1 Range Query

We use the following lemma to analyze the cost of a standard k-d range query (on an
axis-aligned hypercube for k ≥ 2).

Lemma 6.6.1. A k-d range query costs O(2((k−1)/k)h) using our k-d tree of height h.

Proof Sketch. A k-d range query has at most 2k faces that generate 2k half-spaces, and
we analyze the query cost of each half-space. Since each axis is partitioned once in every
k consecutive levels, one side of the partition hyperplane perpendicular to the query face
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will be either entirely in or out of the associated half-space. We do not need to traverse
that subtree (we can either directly report the answer or ignore it). Therefore every k
levels will expand the search tree by a factor of at most 2k−1. Thus the query cost is
O(2((k−1)/k)h). �

Lemma 6.6.2. For our p-batched k-d tree, p = Ω(log3 n) guarantees the tree height to be no
more than log2 n +O(1) whp.

Proof. We now consider the p-batched incremental construction. Since we are partitioning
based on the median of p random objects, the hyperplane can be di�erent from the actual
median. To get the same cost bound, we want the actual number of objects on the two
sides to di�er by no more than a factor of ϵ whp. Since we pick p random samples,
by a Cherno� bound the probability that more than 1/2p samples are within the �rst
(1/2 − ϵ/4)n objects is upper bounded by e−pϵ

2/24. Hence, the probability that the two
subtree weights of a tree node di�er by more than a factor of ϵ is no more than 2e−pϵ2/24.
This ϵ controls the tree depth, and based on the previous analysis we want to have
n(12 +

ϵ
4 )

log2 n/p+O(1) < p. Namely, we want the tree to have no more than log2 n/p +O(1)
levels whp to reach the subtrees with less than p elements, so the overall tree depth is
bounded by log2 n/p +O(1) + log2 p = log2 n +O(1). Combining these constraints leads
to ϵ = O(1)/log2 n and p = Ω(log3 n). �

Lemma 6.6.2 indicates that settingp = Ω(log3 n) gives a tree height of log2 n+O(1)whp,
and Lemma 6.6.1 shows that the corresponding range query cost isO(2((k−1)/k)(O(1)+log2 n)) =

O(n(k−1)/k), matching the standard range query cost.

6.6.1.2 ANN Query

If we assume that the input objects are well-distributed and the k-d tree satis�es the
bounded aspect ratio, then the cost of a (1 + ϵ)-ANN query is proportional to the tree
height. As a result, p = Ω(logn) leads to a query cost of logn ·O(1/ϵ)k whp.6

6.6.1.3 Parallel Construction and Cost Analysis

To get parallelism, we use the pre�x-doubling approach, starting with n/logn objects
in the �rst round. The number of reads of the algorithm is still Θ(n logn), since it is
lower bounded by the cost of sorting when k = 1, and upper bounded by O(n logn)
since the modi�ed algorithm makes asymptotically no more comparisons than the classic
implementation. We �rst present the following lemma.

Lemma 6.6.3. When a leaf over�ows at the end of a round, the number of objects in its
bu�er is O(p) whp when p = Ω(logn).

6Actually the tree depth isO(logn) even whenp = 1. However, for write-e�ciency, we needp = Ω(logn)
to support e�cient updates as discussed in Section 6.6.2 that requires the two subtree sizes to be balanced
at every node.
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Proof Sketch. In the previous round, assume n′ objects were in the tree. At that time no
more than p−1 objects are bu�ered in this leaf node. Then in the current round another n′
objects are inserted, and by a Cherno� bound, the probability that the number of objects
falling into this leaf node is more than (c + 1)p is at most e−c2p/2. Plugging in p = Ω(logn)
proves the lemma. �

We now bound the parallel depth of this construction. The initial round runs the
standard construction algorithm on the �rst n/log2 n objects, which requires O((log2 p +
logn) logn) = O(log2 n) depth. Then in each of the next O(log logn) incremental rounds,
we need to locate leaf nodes and a parallel semisort to put the objects into their bu�ers.
Both steps can be done in O(log2 n) depth whp [154]. Then we also need to account for
the depth of settling the leaves after the incremental rounds. When a leaf over�ows, by
Lemma 6.6.3 we need to split a set of O(p) objects for each leaf, which has a depth of
O(log2 p) = O(log logn) using the classic approach, and is applied for no more than a
constant number of times whp by Lemma 6.6.3.

We now analyze the number of writes this algorithm requires. The initial round
requires O(n) writes as it uses a standard construction algorithm on n/log2 n objects. In
the incremental rounds, O(1) writes whp are required for each object to �nd the leaf node
it belongs to and add itself to the bu�er using semisorting [154]. From Lemma 6.6.3, when
�nding the splitting hyperplane and splitting the object for a tree node, the number of
writes required is O(p) whp. Note that after a new leaf node is generated from a split, it
contains at least p/2 objects. Therefore, after all incremental rounds, the tree contains at
most O(n/p) tree nodes, and the overall writes to generate them is O((n/p) · p) = O(n).
After the incremental rounds �nish, we need O(n) writes to settle the leaves with non-
empty bu�ers, assuming O(p) cache size. In total, the algorithm uses O(n) writes whp.

Theorem 6.6.4. A k-d tree that supports range and ANN queries e�ciently can be computed
using O(n logn + ωn) expected work (i.e., O(n) writes) and O(log2 n) depth whp in the
Asymmetric NP model. For range query the small-memory size required is Ω(log3 n).

6.6.2 k-d Tree Dynamic Updates

Unlike many other tree structures, we cannot rotate the tree nodes in k-d trees since
each tree node represents a subspace instead of just a set of objects. Deletion is simple
for k-d trees, since we can a�ord to reconstruct the whole structure from scratch when
a constant fraction of the objects in the k-d tree have been removed, and before the
reconstruction we just mark the deleted node (constant reads and writes per deletion
via an unordered map). In total, the amortized cost of each deletion is O(ω + logn). For
insertions, we discuss two techniques that optimize either the update cost or the query
cost.
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6.6.2.1 Logarithmic Reconstruction [224]

We maintain at most log2 n k-d trees of sizes that are increasing powers of 2. When
an object is inserted, we create a k-d tree of size 1 containing the object. While there are
trees of equal size, we �atten them and replace the two trees with a tree of twice the size.
This process keeps repeating until there are no trees with the same size. When querying,
we search in all (at most log2 n) trees. Using this approach, the number of reads and writes
on an insertion is O(log2 n), and on a deletion is O(logn). The costs for range queries and
ANN queries are O(n(k−1)/k) and log2 n ·O(1/ϵ)k respectively, plus the cost for writing the
output.

If we apply our write-e�cient p-batched version when reconstructing the k-d trees,
we can reduce the writes (but not reads) by a factor of O(logn) (i.e., O(logn) and O(1)
writes per update).

When using logarithmic reconstruction, querying up toO(logn) trees can be ine�cient
in some cases, so here we show an alternative solution that only maintains a single tree.

6.6.2.2 Single-Tree Version

As discussed in Section 6.6.1, only the tree height a�ects the costs for range queries
and ANN queries. For range queries, Lemma 6.6.2 indicates that the tree height should be
log2 n +O(1) to guarantee the optimal query cost. To maintain this, we can tolerate an
imbalance between the weights of two subtrees by a factor of O(1/logn), and reconstruct
the subtree when the imbalance is beyond the constraint. In the worst case, a subtree of size
n′ is rebuilt once after O(n′/logn) insertions into the subtree. Since the reconstructing
a subtree of size n′ requires O(n′ logn′ + ωn′) work, each inserted object contributes
O(logn logn′ + ω logn) work to every node on its tree path, and there are O(logn) such
nodes. Hence, the amortized work for an insertion is O(log3 n + ω log2 n). For e�cient
ANN queries, we only need the tree height to be O(logn), which can be guaranteed if the
imbalance between two subtree sizes is at most a constant multiplicative factor. Using a
similar analysis, in this case the amortized work for an insertion is O(log2 n + ω logn).

6.6.3 Extension to Other Trees and Queries

In Section 6.6.1 we discussed the write-e�cient algorithm to construct a k-d tree
that supports range and ANN queries. k-d trees are also used in many other queries
in real-world applications, such as ray tracing, collision detection for non-deformable
objects, n-body simulation, and geometric culling (using BSP trees). The partition cri-
teria in these applications are based on some empirical heuristics (e.g., the surface-area
heuristic [142]), which generally work well on real-world instances, but usually with no
theoretical guarantees.

The p-batched incremental construction can be applied to these heuristics, as long
as each object contributes linearly to the heuristic. Let us consider the surface-area
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heuristic [142] as an example, which does an axis-aligned split and minimizes the sum
of the two products of the subtree’s surface area and the number of objects. Instead of
sorting the coordinates of all objects in this subtree and �nding the optimal split point, we
can do approximately by splitting when at least p of the objects are inserted into a region.
When picking a reasonable value of p (like O(log2 n) or O(log3 n)), we believe the tree
quality should be similar to the exact approach (which is a heuristic after all). However,
the p-batched approach does not apply to heuristics that are not linear in the size of the
object set. Such cases happen in the Callahan-Kosaraju algorithm [81] when the region of
each k-d tree node shrinks to the minimum bounding box, or the object-partitioning data
structures (like R-trees or bounding volume hierarchies) where each object can contribute
arbitrarily to the heuristic.

6.7 Augmented Trees

An augmented tree is a tree that keeps extra data on each tree node other than
what is used to maintain the balance of this tree. We refer to the extra data on each tree
node as the augmentation. In this section, we introduce a framework that gives new
algorithms for constructing both static and dynamic augmented trees including interval
trees, 2D range trees, and priority search trees that are parallel and write-e�cient. Using
these data structures we can answer 1D stabbing queries, 2D range queries, and 3-sided
queries (de�ned in Section 6.7.1). For all three problems, we assume that the query results
need to be written to the large-memory. Our results are summarized in Table 6.2. We
improve upon the traditional algorithms in two ways. First, we show how to construct
interval trees and priority search trees using O(n) instead of O(n logn) writes (since the
2D range tree requires O(n logn) storage we cannot asymptotically reduce the number
of writes). Second, we provide a tradeo� between update costs and query costs in the
dynamic versions of the data structures. The cost bounds are parameterized by α . By
setting α = O(1)we achieve the same cost bounds as the traditional algorithms for queries
and updates. α can be chosen optimally if we know the update-to-query ratio r . For
interval and priority trees, the optimal value of α is min(2 + ω/r ,ω). The overall work
without considering writing the output can be improved by a factor of Θ(logα). For 2D
range trees, the optimal value of α is 2 +min(ω/r ,ω)/log2 n.

We discuss two techniques in this section that we use to achieve write-e�ciency.
The �rst technique is to decouple the tree construction from sorting, and we introduce
e�cient algorithms to construct interval and priority search trees in linear reads and
writes after the input is sorted. Sorting can be done in parallel and write-e�ciently (linear
writes).Using this approach, the tree structure that we obtain is perfectly balanced.

The second technique that we introduce is the α-labeling technique. We mark a subset
of tree nodes as critical nodes by a predicate function parameterized by α , and only
maintain augmentations on these critical nodes. We can then guarantee that every update
only modi�es O(logα n) nodes, instead of O(logn) nodes as in the classic algorithms. At a
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Construction Query Update

Classic interval tree O(ωn logn) O(ωk + logn) O(ω logn)
WE interval tree O(ωn + n logn) O(ωk + α logα n) O((ω + α) logα n)

Classic priority search tree O(ωn logn) O(ωk + logn) O(ω logn)
WE priority search tree O(ωn + n logn) O(ωk + α logα n) O((ω + α) logα n)

Classic range Tree O(ωn logn) O(ωk + log2 n) O((logn + ω) logn)
WE range tree O((α + ω)n logα n) O(ωk + α logα n logn) O((α logn + ω) logα n)

Table 6.2: A summary of the work cost of the data structures discussed in Section 6.7. In all cases,
it is assumed that the tree contains n objects (intervals or points). For interval trees and priority
search trees, the number of writes in the construction can be reduced fromO(logn) per element to
O(1). For dynamic updates, the number of writes per update can be reduced by a factor of Θ(logα)
at the cost of increasing the number of reads in update and queries by a factor of α for any α ≥ 2.

high level, the α-labeling is similar to the weight-balanced B-tree (WBB tree) proposed by
Arge et al. [26, 27] for the external-memory (EM) model [7]. However, as we discuss in
Section 6.7.3, directly applying the EM algorithms [13, 26, 27, 255, 256] does not give us the
desired bounds in our model. Secondly, our underlying tree is still binary. Hence, we mostly
need no changes to the algorithmic part that dynamically maintains the augmentation
in this trees, but just relax the balancing criteria so the underlying search trees can be
less balanced. An extra bene�t of our framework is that bulk updates can be supported
in a straightforward manner. Such bulk updates seem complicated and less obvious in
previous approaches. We propose algorithms on our trees that can support bulk updates
write-e�ciently and in polylogarithmic depth.

The rest of this section is organized as follows. We �rst provide the problem de�nitions
and review previous results in Section 6.7.1. Then in Section 6.7.2, we introduce our post-
sorted construction technique for constructing interval and priority search trees using
a linear number of writes. Finally, we introduce the α-labeling technique to support a
tradeo� in query and update cost for interval trees, priority search trees, and range trees
in Section 6.7.3.

6.7.1 Preliminaries and Previous Work

We de�ne the weight or size of tree node or a subtree as the number of nodes in this
subtree plus one. The “plus one” guarantees that the size of a tree node is always the sum
of the sizes of its two children, which simpli�es our discussion. This is also the standard
balancing criteria used for weight-balanced trees [222].
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6.7.1.1 Interval Trees and the 1D Stabbing Queries

An interval tree7 [109, 120, 208] organizes a set of n intervals S = {si = (li, ri)} de�ned
by their left and right endpoints. The key on the root of the interval tree is the median of
the 2n endpoints. This median divides all intervals into two categories: those completely
on its left/right, which then form the left/right subtrees recursively, and those covering
the median, which are stored in the root. The intervals in the root are stored in two lists
sorted by the left and right endpoints respectively. In this thesis, we use red-black trees to
maintain such ordered lists to support dynamic updates and refer to them as the inner
trees. In the worst case, the previous construction algorithms scan and copyO(n) intervals
in O(logn) levels, leading to O(n logn) reads and writes.

The interval tree can be used to answer a 1D stabbing query: given a set of intervals,
report a list of intervals covering the speci�c query pointpq . This can be done by searching
pq in the tree. Whenever pq is smaller (larger) than the key of the current node, all intervals
in the current tree node with left (right) endpoints smaller than pq should be reported.
This can be done e�ciently by scanning the list sorted by left (right) endpoints. The
overall query cost is O(ωk + logn) (where k is the output size).

6.7.1.2 2D Range Trees and the 2D Range Queries

The 2D range tree [45] organizes a set of n points p = {pi = (xi,yi)} on the 2D plane. It
is a tree structure augmented with an inner tree, or equivalently, a two-level tree structure.
The outer tree stores every point sorted by their x-coordinate. Each node in the outer tree
is augmented with an inner tree structure, which contains all the points in its subtree,
sorted by their y-coordinate.

The 2D range tree can be used to answer the 2D range query: given n points in the
2D plane, report the list of points with x-coordinate between xL and xR , and y-coordinate
between yB and yT . Such range queries using range trees can be done by two nested
searches on (xL, xR) in the outer tree and (yB,yT ) in at mostO(logn) associated inner trees.
Using balanced BSTs for both the inner and outer trees, a range tree can be constructed
withO(n logn) reads and writes, and each query takesO(log2 n+k) reads andO(k) writes
(where k is the output size). A range tree requires O(n logn) storage so the number of
writes for construction is already optimal.

6.7.1.3 Priority Search Trees and 3-sided Range Queries

The priority search tree [109, 209] (priority tree for short) contains a set of n points
p = {pi = (xi,yi)} each with a coordinate (xi ) and a priority (yi ). There are two variants of
priority trees, one is a search tree on coordinates that keeps a heap order of the priorities
as the augmented values [27, 209]. The other one is a heap of the priorities, where each
node is augmented with a splitter between the left and right subtrees on the coordinate
dimension [109, 209]. The construction of both variants uses O(n logn) reads and writes

7There exist multiple versions of interval trees. In this thesis, we use the version described in [109].
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as shown in the original papers [109, 209]. For example, consider the second variant. The
root of a priority tree stores the point with the highest priority in p. All the other points
are then evenly split into two sets by the median of their coordinates which recursively
form the left and right subtrees. The construction scans and copiesO(n) points inO(logn)
levels, leading to O(n logn) reads and writes for the construction.

Many previous results on dynamic priority search trees use the �rst variant because it
allows for rotation-based updates. In this thesis, we discuss how to construct the second
variant allowing reconstruction-based updates, since it is a natural �t for our framework.
We also show that bulk updates can be done write-e�ciently in this variant. For the rest
of this section, we discuss the second variant of the priority tree.

The priority tree can be used to answer the 3-sided queries: given a set of n points,
report all points with coordinates in the range [xL, xR], and priority higher than yB . This
can be done by traversing the tree, skipping the subtrees whose coordinate range do not
overlap [xL, xR], or where the priority in the root is lower than yB . The cost of each query
is O(ωk + logn) for an output of size k [109].

6.7.2 The Post-Sorted Construction

For interval trees and priority search trees, the standard construction algorithms [108,
109, 120, 208, 209, 260] requireO(n logn) reads and writes, even though the output is only
of linear size. This section describes algorithms for constructing them in an optimal linear
number of writes. Both algorithms �rst sort the input elements by their x-coordinate
in O(ωn + n logn) work and O(log2 n) depth using the write-e�cient comparison sort
described in Section 6.4. We now describe how to build the trees in O(n) reads and writes
given the sorted input. For a range tree, since the standard tree has O(n logn) size, the
classic construction algorithm is already optimal.

6.7.2.1 Interval Tree

After we sort all 2n coordinates of the endpoints, we can �rst build a perfectly-balanced
binary search tree on the endpoints using O(n) reads and writes and O(logn) depth. We
now consider how to construct the inner tree of each tree node.

We create a lowest common ancestor (LCA) data structure on the keys of the tree nodes
that allows for constant time queries. This can be constructed in O(n) reads/writes and
O(log2 n) depth [47, 183]. Each interval can then �nd the tree node that it belongs to using
an LCA query on its two endpoints. We then use a radix sort on the n intervals. The key
of an interval is a pair with the �rst value being the index of the tree node that the interval
belongs to, and the second value being the index of the left endpoint in the pre-sorted
order. The sorted result gives the interval list for each tree node sorted by left endpoints.
We do the same for the right endpoints. This step takes O(n) reads/writes overall. Finally,
we can construct the inner trees from the sorted intervals in O(n) reads/writes across all
tree nodes.
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Parallelism is straightforward for all steps except for the radix sort. The number of
possible keys can be O(n2), and it is not known how to radix sort keys from such a range
work-e�ciently and in polylogarithmic depth. However, we can sort a range of O(n logn)
in O(ωn) expected work and O(log2 n) depth whp [236]. Hence our goal is to limit the
�rst value into a O(logn) range. We note that given the left endpoint of an interval, there
are only log2(2n) possible locations for the tree node (on the tree path) of this interval.
Therefore instead of using the tree node as the �rst value of the key, we use the level
of the tree node, which is in the range [1, . . . ,O(logn)]. By radix sorting these pairs, so
we have the sorted intervals (based on left or right endpoint) for each level. We observe
that the intervals of each tree node are consecutive in the sorted interval list per level.
This is because for tree nodes u1 and u2 on the same level where u1 is to the left of u2, the
endpoints of u1’s intervals must all be to the left of u2’s intervals. Therefore, in parallel
we can �nd the �rst and the last intervals of each node in the sorted list, and construct
the inner tree of each node. Since the intervals are already sorted based on the endpoints,
we can build inner trees in O(n) reads and writes and O(log2 n) depth [65].

6.7.2.2 Priority Tree

In the original priority tree construction algorithm, points are recursively split into
sub-problems based on the median at each node of the tree. This requires O(n) writes at
each level of the tree if we explicitly copy the nodes and pack out the root node that is
removed. To avoid explicit copying, since the points are already pre-sorted, our write-
e�cient construction algorithm passes indices determining the range of points belonging
to a sub-problem instead of actually passing the points themselves. To avoid packing, we
simply mark the position of the removed point in the list as invalid, leaving a hole, and
keep track of the number of valid points in each sub-problem.

Our recursive construction algorithm works as follows. For a tree node, we know the
range of the points it represents, as well as the number of valid points nv . We then pick
the valid point with the highest priority as the root, mark the point as invalid, �nd the
median among the valid points, and pass the ranges based on the median and number of
valid points (either b(nv − 1)/2c or d(nv − 1)/2e) to the left and right sub-trees, which are
recursively constructed. The base case is when there is only one valid point remaining, or
when the number of holes is more than the valid points. Since each node in the tree can
only cause one hole, for every range corresponding to a node, there are at most O(logn)
holes. Since the size of the small-memory is Ω(logn), when the number of valid points
is fewer than the number of holes, we can simply load all of the valid points into the
small-memory and construct the sub-tree.

To e�ciently implement this algorithm, we need to support three queries on the input
list: �nding the root, �nding the k-th element in a range (e.g., the median), and deleting
an element. All queries and updates can be supported using a standard tournament
tree where each interior node maintains the minimum element and the number of valid
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nodes within the subtree. With a careful analysis, all queries and updates throughout
the construction require linear reads/writes overall. The details are provided later in this
section.

The parallel depth is O(log2 n)—the bottleneck lies in removing the points. There are
O(logn) levels in the priority tree and it costs O(logn) writes for removing elements from
the tournament tree on each level. For the base cases, it takes linear writes overall to load
the points into the small-memory and linear writes to generate all tree nodes. The depth
is O(logn).

We summarize our result in this section in Theorem 6.7.1.

Theorem 6.7.1. An interval tree or a priority search tree can be constructed with pre-sorted
input in O(ωn) expected work and O(log2 n) depth whp on the Asymmetric NP model.

The tournament tree for constructing priority trees. We now discuss the tournament
tree on a list that can support the RangeMin and the k-th element in a range, and at the
meantime an element can be removed. Each interior tree node maintains the minimum
element and the number of valid nodes within the subtree. We now show that given the
tree of size n, answering all queries in construction uses linear reads and writes.

For a RangeMin query on (x,y), we start from the left corresponding to x , keep going
up on the tree until the node that its subtree contains y, and traverse the tree to �nd y. In
this process, we use the maintained values in the tree nodes to update the RangeMin when
the corresponding ranges of the subtrees are within (x,y). The reads of such a query is
O(log(y − x + 1)). We can query the k-th element in a range similarly.

Since the tree is fully balanced, the tree height is log2 n. In the i-th level (the root is the
�rst level), there are O(2i) queries and the sum of the query ranges is O(n). The overall
query cost on one level is maximized when all the query ranges are the same, which is
O(2i · log(n/2i)). The overall cost across all levels is

∑log2 n
i=1 O(2i · log(n/2i)) = O(n).

Deleting an element naïvely in a tournament tree costs O(logn) writes in the worst
case. Our observation is that, once we delete an element of a tree node corresponding to
a range (x,y), we know that all further queries are either entirely within (x,y) or disjoint
(x,y). We therefore only update the ancestors of the deleted nodes whose range is within
(x,y), and there are at mostO(log(y−x +1)) of such ancestors. The overall writes required
in all deletions has the same form as the overall reads in the queries, which is O(n).

6.7.3 Dynamic Updates using Reconstruction-Based Rebalancing

Dynamic updates (insertions and deletions) are often supported on augmented trees [108,
109, 120, 208, 209] and the goal of this section is to support updates write-e�ciently, at the
cost of performing extra reads to reduce the overall work. Traditionally, an insertion or
deletion costs O(logn) for interval trees and priority search trees, and O(log2 n) for range
trees. In the asymmetric setting, the work is multiplied by ω. To reduce the overall work,
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we introduce an approach to select a subset of tree nodes as critical nodes, and only update
the balance information of those nodes (the augmentations are mostly una�ected). The
selection of these critical nodes are done by the α-labeling introduced in Section 6.7.3.1.
Roughly speaking, for each tree path from the root to a leaf node, we have O(logα n)
critical nodes marked such that the subtree weights of two consecutive marked nodes
di�er by about a factor of α ≥ 2. By doing so, we only need to update the balancing
information in the critical nodes, leading to fewer tree nodes modi�ed in an update.

Arge et al. [26, 27] use a similar strategy to support dynamic updates on augmented
trees in the external-memory (EM) model, in which a block of data can be transferred
in unit cost [7]. They use a B-tree instead of a binary tree, which leads to a shallower
tree structure and fewer memory accesses in the EM model. However, in the Asymmetric
NP model, modifying a block of data requires work proportional to the block size, and
directly using their approach cannot reduce the overall work. Inspired by their approach,
we propose a simple approach to reduce the work of updates for the Asymmetric NP
model.

The main component of our approach is reconstruction-based rebalancing using the
α-labeling technique. We can always obtain the sorted order via the tree structure, so
when imbalance occurs, we can a�ord to reconstruct the whole subtree in reads and writes
proportional to the subtree size and polylogarithmic depth. This gives a uni�ed approach
for di�erent augmented trees: interval trees, priority search trees, and range trees.

We introduce the α-labeling idea in Section 6.7.3.1, the rebalancing algorithm in
Section 6.7.3.2, and its work analysis in Section 6.7.3.3. We then discuss the maintenance
of augmented values for di�erent applications in Section 6.7.3.4. We mention how to
parallelize bulk updates in Section 6.7.3.5.

6.7.3.1 α-Labeling

The goal of the α-labeling is to maintain the balancing information at only a subset
of tree nodes, the critical nodes, such that the number of writes per update is reduced.
Once the augmented tree is constructed, we label the node as a critical node if for some
integer i ≥ 0, (1) its subtree weight is between 2α i and 4α i − 2 (inclusive); or (2) its subtree
weight is 2α i − 1 and its sibling’s subtree weight is 2α i . All other nodes are secondary
nodes. As a special case, we always treat the root as a virtual critical node, but it does not
necessary satisfy the invariants of critical nodes. Note that all leaf nodes are critical nodes
in α-labeling since they always have subtrees of weight 2. When we label a critical node,
we refer to its current subtree weight (which may change after insertions/deletions) as its
initial weight. Note that after the augmented tree is constructed, we can �nd and mark
the critical nodes in O(n) reads/writes and O(logn) depth. After that, we only maintain
the subtree weights for these critical nodes, and use their weights to balance the tree.

Fact 6.7.2. For a critical node A, 2α i − 1 ≤ |A| ≤ 4α i − 2 holds for some integer i .
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This fact directly follows the de�nition of the critical node.
For two critical nodes A and B, if A is B’s ancestor and there is no other critical node

on the tree path between them, we refer to B as A’s critical child, and A as B’s critical
parent. We de�ne a critical sibling accordingly.

We show the following lemma on the initial weights.

Lemma 6.7.3. For any two critical nodes A and B where A is B’s critical parent, their initial
weights satisfy max{(α/2)|B |, 2|B | − 1} ≤ |A| ≤ (2α + 1)|B |.

Proof. Based on Fact 6.7.2, we assume 2α i − 1 ≤ |A| ≤ 4α i − 2 and 2α j − 1 ≤ |B | ≤ 4α j − 2
for some integers i and j. We �rst show that i = j + 1. It is easy to check that j cannot be
larger than or equal to i . Assume by contradiction that j < i − 1. With this assumption, we
will show that there exists an ancestor of B, which we refer to it as y, which is a critical
node. The existence of y contradicts the fact that A is B’s critical parent. We will use the
property that for any tree node x the weight of its parent p(x) is 2|x | −1 ≤ |p(x)| ≤ 2|x |+1.

Assume that B does not have such an ancestor y. Let z be the ancestor of B with
weight closest to but no more than 2α i−1. We consider two cases: (a) |z | ≤ 2α i−1 − 2 and
(b) |z | = 2α i−1 − 1. In case (a) z’s parent p(z) has weight at most 2|z | + 1 = 4α i−1 − 3. |p(z)|
cannot be less than 2α i−1 by de�nition of z, and so y = p(z), leading to a contradiction.
In case (b), z’s sibling does not have weight 2α i−1, otherwise y = z. However, then
|p(z)| ≤ 2|z | = 4α i−1 − 2, and either z is not the ancestor with weight closest to 2α i−1 or
y = p(z).

Given i = j + 1, we have (α/2)|B | ≤ |A| ≤ (2α + 1)|B | (by plugging in 2α i − 1 ≤ |A| ≤
4α i − 2 and 2α i−1 − 1 ≤ |B | ≤ 4α i−1 − 2). Furthermore, since A is B’s ancestor, we have
2|B | − 1 ≤ |A|. Combining the results proves the lemma. �

6.7.3.2 Rebalancing Algorithm based on α-Labeling

We now consider insertions and deletions on an augmented tree. Maintaining the
augmented values on the tree are independent of our α-labeling technique, and di�ers
slightly for each of the three tree structures. We will further discuss how to maintain
augmented values in Section 6.7.3.4.

We note that deletions can be handled by marking the deleted objects without actually
applying the deletion, and reconstructing the whole subtree once a constant fraction of
the objects is deleted. Therefore in this section, we �rst focus on the insertions only. We
analyze single insertions here, and discuss bulk insertions later in Section 6.7.3.5. Once
the subtree weight of a critical node A reaches twice the initial weight s , we reconstruct
the whole subtree, label the critical nodes within the subtree, and recalculate the initial
weights of the new critical nodes. An exception here is that, if s ≤ 4α i−2 and 2α i+1−1 ≤ 2s
for a certain i , we do not mark the new root since otherwise it violates the bound stated
in Lemma 6.7.4 (see more details in Section 6.7.3.3) with A’s critical parent. After this
reconstruction,A’s original critical parent gets one extra critical child, and the two a�ected
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(a) (b) (c)

Figure 6.5: An illustration of rebalancing based on α-labeling. The critical nodes are shaded. The
case after construction is shown in (a) with solid borders. After some insertions, the size of one of
the subtrees grows to twice its initial weight (dashed lines in (a)), so the algorithm reconstructs the
subtree, as shown in (b). As we keep inserting new nodes along the left spine, the tree will look
like what is shown in (c), but Lemma 6.7.4 guarantees that the subtree of the topmost critical node
will be reconstructed before it gets more than 4α + 2 critical children. The lemma also guarantees
that on the path from a critical node to any of its critical children, there can be at most 4α − 1
secondary nodes.

children now have initial weights the same as A’s initial weight. If imbalance occurs at
multiple levels, we reconstruct the topmost tree node. An illustration of this process is
shown in Figure 6.5.

We can directly apply the algorithms in Section 6.7.2 to reconstruct a subtree as long
as we have the sorted order of the (end)points in this subtree. For interval and range trees,
we can acquire the sorted order by traversing the subtree. using linear work and O(logn)
depth [254]. For priority trees, since the tree nodes are not stored in-order, we need to
insert all interior nodes into the tree in a bottom-up order based on their coordinates
(without applying rebalancing) to get the total order on coordinates of all points (the
details and cost analysis can be found later in this section). After we have the sorted order,
a subtree of weight n can be constructed in O(ωn) work and O(log2 n) depth.

As mentioned, we always treat the root as a virtual critical node, but it does not
necessary satisfy the invariants of critical nodes. By doing so, once the weight of the
whole tree doubles, we reconstruct the entire tree. We need Ω(n) insertions for one
reconstruction on the root (there can be deletions). The cost for reconstruction isO(ωn) for
interval trees and priority trees, andO(ωn logα n) for range trees (shown in Section 6.7.3.4).
The amortized cost is of a lower order compared to the update cost shown in Theorem 6.7.8.

Ordering the nodes within the subtree of a priority tree. Since our priority tree is
not a search tree by default, we need an extra step to obtain the ordering of the points in
a subtree. This can be trivially achieved by inserting the points in the critical nodes into
their subtrees in a bottom-up manner (without balancing the tree). Inserting an object into
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a tree requires O(1) writes, so the overall writes are linear. By Corollary 6.7.6, the subtree
depth is O(α logαm) for a subtree of size m. After the all insertions, the tree depth can be
increased by at most O(logαm). For an critical node A such that 2α i − 1 ≤ |A| ≤ 4α i − 2
for some integer i , the number of reads required to �nd the leaf node is proportional to the
tree depth, O(αi). By Lemma 6.7.4, the number critical nodes with the same i decreases
geometrically with the increasing of i , the overall reads is asymptotically bounded by the
level where i = 1. The overall number of reads is therefore O(αm). The total cost to get
the ordering is O((ω + α)m) for a subtree of sizem.

6.7.3.3 Cost Analysis of the Rebalancing

To show the rebalancing cost, we �rst prove some properties about our dynamic
augmented trees.

Lemma6.7.4. In a dynamic augmented tree withα -labeling, we havemax{(α/4)|B |, (3/2)|B |−
1} ≤ |A| ≤ (4α + 2)|B | for any two critical nodes A and B where A is B’s critical parent.

Proof. For any critical node A in the tree, the subtree weight of its critical child B can
grow up to a factor of 2 of B’s initial weight, after which the subtree is reconstructed to
two new critical nodes with the same initial weight of B. A’s weight can grow up to a
factor of 2 of A’s initial weight, without a�ecting B’s weight (i.e., all insertions occur in
A’s other critical children besides B). Combining these observations with the result in
Lemma 6.7.3 shows this lemma except for the (3/2)|B | − 1 ≤ |A| part. Originally we have
2|B | − 1 ≤ |A| after the previous reconstruction. |A| grows together when |B | grows, and
right before the reconstruction of B we have (3/2)|B | − 1 ≤ |A|. �

Lemma 6.7.4 shows that each critical node has at most 4α + 2 critical children, and so
that there are at most 4n + 1 secondary nodes to connect them. This leads to the following
corollary.

Corollary 6.7.5. The length of the path from a critical node to its critical parent is at most
4α + 1.

Combining Lemma 6.7.4 and Corollary 6.7.5 gives the following result.

Corollary 6.7.6. For a leaf node in a tree with α -labeling, the tree path to the root contains
O(logα n) critical nodes and O(α logα n) nodes.

Corollary 6.7.6 shows the number of reads during locating a node in an augmented
tree, and the number of critical nodes on that path.

With these results, we now analyze the cost of rebalancing for each insertion. For
a critical node with initial weight W , we need to insert at least another W new nodes
into this subtree before the next reconstruction of this critical node. Theorem 6.7.1 shows
that the amortized cost for each insertion in this subtree is therefore O(ω) on this node.
Based on Corollary 6.7.6, the amortized cost for each insertion contains O(logα n) writes
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and O(α logα n) reads. In total, the work per insertion is O((α + ω) logα n), since we
need to traverse O(α logα n) tree nodes, update O(logα n) subtree weights, and amortize
O(ω logα n) work for reconstructions.

We note that any interleaving insertions can only reduce the amortized cost for
deletions. Therefore, both the algorithm and the bound can be extended to any interleaving
sequence of insertions and deletions. Altogether, we have the following result, which may
be of independent interest.

Theorem 6.7.7. Using reconstruction-based rebalancing based on the α -labeling technique,
the amortized cost of each update (insertion or deletion) to maintain the balancing information
on a tree of size n is O((ω + α) logα n).

6.7.3.4 Handling Augmented Values

Since the underlying tree structure is still binary, minor changes to the trees are
required for di�erent augmentations.

Interval trees. We do not need any changes for the interval tree. Since we never apply
rotations, we directly insert/delete the interval in the associated inner tree with a cost of
O(logn + ω).

Range trees. For the range tree, we only keep the inner trees for the critical nodes. As
such, the overall augmentation weight (i.e., overall weights of all inner trees) isO(n logα n).
For each update, we insert/delete this element in O(logα n) inner trees (Corollary 6.7.6),
and the overall cost is O((logn +ω) logα n). Then each query may look into no more than
O(α logα n) inner trees each requiring O(logn) work for a 1D range query. The overall
cost for a query is therefore O(ωk + α logα n logn).

Priority trees. For insertions on priority trees, we search its coordinate in the tree and
put it where the current tree node is of lower priority than the new point. The old subtree
root is then recursively inserted to one of its subtrees. The cost can be as expensive as
O(ωα logα n) when a point with higher priority than all tree nodes is inserted. To address
this, points are only stored in the critical nodes, and the secondary nodes only partition
the range, without holding points as augmented values. This can be done by slightly
modifying the construction algorithm in Section 6.7.2. During the construction, once the
current node is a secondary node, we only partition the range, but do not �nd the node
with the highest priority. Since all leaf nodes are critical, the tree size is a�ected by at
most a factor of 2. With this approach, each insertion modi�es at most O(logα n) nodes,
and so the extra work per insertion for maintaining augmented data is O((α + ω) logα n).
A deletion on priority trees can be implemented symmetrically, and can lead to cascading
promotions of the points. Once the promotions occur, we leave a dummy node in the
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original place of the last promoted point, so that all of the subtree sizes remain unchanged
(and the tree is reconstructed once half one the nodes are dummy). The cost of a deletion
is also O((α + ω) logα n).

Combining the results above gives the following theorem.

Theorem 6.7.8. Given any integer α ≥ 2, an update on an interval or priority search
tree requires O((ω + α) logα n) amortized work and a query costs O(ωk + α logα n); for a
2D range tree, the query and amortized update cost is O((α logn + ω) logα n) and O(ωk +
α logα n logn).

6.7.3.5 Bulk Updates

One of the bene�ts of our reconstruction-based approach is that, bulk updates on
these augmented trees can be supported directly. In the case we change the inner trees
of interval and range trees as treaps. For a treap of size n and a bulk update of size m,
the expected cost of inserting or deleting this bulk is O(ωm +m log(n/m)) using treaps
(Chapter 8), and the depth is O(logm logn) whp [65, 260, 261]. We note that there are
data structures supporting bulk updates in logarithmic expected depth in the PRAM
model [16, 55], but not in the binary forking model discussed in the content of this thesis.

Again deletions are trivial. For interval and range trees, we can just mark all the
objects in parallel but apply deletions to inner trees, which requires constant writes per
deletion. For priority tree, we delete can delete points in a top-down manner, using
O((α + ω) logα n) work per point and O(α logα n logn) depth. We now sketch an outline
on the bulk insertion.

Assume the bulk size ism and less than n since otherwise we can a�ord to reconstruct
the whole augmented tree. We �rst sort the bulk usingO(m logm+ωm)work andO(log2 n)
depth. Then we merge the sorted list into the augmented tree recursively, and check each
critical node in the tree in a top-down manner.

At any time and for a critical node, we use binary search to decide the new objects
inserted in this subtree. If the overall size of the subtree and the newly added objects
over�ows 4α i − 2, we reconstruct the subtree by �rst �attening the tree nodes, merging
with new nodes, rebuilding the subtree using the algorithm in Section 6.7.2, and marking
the critical nodes in this subtree. To guarantee Lemma 6.7.4, we do not mark the critical
nodes with subtree size greater than or equal to 2α i+1 − 1. By doing so, the proof of
Lemma 6.7.4 still holds. The whole process takes O(n′) operations in O(logn′) depth for a
subtree with n′ nodes. Note that at leastO(n′) nodes are inserted between two consecutive
reconstructions so that the cost can be amortized. Otherwise, we just recursively check
all the critical children of this node. Once there are no objects within one subtree, we stop
the recursion in this subtree.

Note that the range of a binary search can be limited by the range of the critical parent.
The overall cost for all binary searches is O(αm log(n/m)) [65] (no writes), and the depth
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is O(α logm logα n). In summary, the amortize work for merging m new objects in to the
tree is O(αm log(n/m) + ωm logα n), and the depth is O(α logm logα n).

We now discuss the bulk updates for the augmented values. Again for interval trees
and range trees, we can just merge all inserted objects into the corresponding inner
trees. Using treaps as the inner trees, merging m′ objects to a search tree with n′ takes
O(m′ log(n′/m′) + ωm′) work and O(ω logm′ logn′) depth. As a result, for interval and
range trees, the work per object in the bulk updates is always no more than the single
insertion, and the depth is polylogarithmic for any bulk size.

The bulk update for priority trees is similar to the constructions. Once there exists an
inserted point with higher priority than the root node, we replace root node with this
inserted node, and insert the original root node into the corresponding subtree. Then
we leave a hole in the inserted list and recursively apply this process. This process
terminates at the time either the subtree root over�ows, we reach a leaf node, or there are
more holes than new objects. The maintenance of augmentations of priority tree takes
O((α + ω)m logα n) amortized work and O(α log2

α n) depth.

6.8 Linear-Work Algorithms

In this section, we study several problems from low-dimensional computational ge-
ometry that have linear-work randomized incremental algorithms. These algorithms fall
into the Type 2 category of algorithms de�ned in Section 6.2, and their iteration depth is
polylogarithmic whp. To obtain linear-work parallel algorithms, we process the steps in
pre�xes, as described in Section 6.2. For simplicity, we describe the algorithms for these
problems in two dimensions, and and brie�y note how they can be extended to any �xed
number of dimensions.

6.8.1 Linear Programming

Constant-dimensional linear programming (LP) has received signi�cant attention in
the computational geometry literature, and several parallel algorithms for the problem
have been developed [11, 17, 89, 111, 119, 145, 147, 251]. We consider linear programming
in two dimensions. We assume that the constraints are given in general position and the
solution is either infeasible or bounded. We note that these assumptions can be removed
without a�ecting the asymptotic cost of the algorithm [247]. The standard randomized
incremental algorithm [247] adds the constraints one-by-one in a random order, while
maintaining the optimum point at any time. If a newly added constraint causes the
optimum to no longer be feasible (a tight constraint), we �nd a new feasible optimum
point on the line corresponding to the newly added constraint by solving a one-dimension
linear program, i.e., taking the minimum or maximum of the set of intersection points of
other earlier constraints with the line. If no feasible point is found, then the algorithm
reports the problem as infeasible.

155



The iteration dependence graph is de�ned with the constraints as steps, and �ts
in the framework of Type 2 algorithms from Section 6.2. The steps corresponding to
inserting a tight constraint are the special steps. Special steps depend on all earlier steps
because when a tight constraint executes, it needs to look at all earlier constraints. Non-
special steps depend on the closest earlier special step i because it must wait for step i
to execute before executing itself to retain the sequential execution (we can ignore all of
the earlier constraints since i will depend on them). Using backwards analysis, a step j
has a probability of at most 2/j of being a special step because the optimum is de�ned by
at most two constraints and the constraints are in a randomized order. Furthermore, the
probabilities are independent among di�erent steps. This gives us a dependence depth of
O(logn) whp as discussed in Section 6.2.

As described in the proof of Theorem 6.2.3, our parallel algorithm executes the steps
in pre�xes. Each time a pre�x is processed, it checks all of the constraints and �nds the
earliest one that causes the current optimum to be infeasible using line-side tests. The
check per step takes O(1) work and processing a violating constraint at step i takes O(i)
work and O(1) depth whp to solve the one-dimensional linear program which involves
minimum/maximum operations. Applying Theorem 6.2.3 with d(n) = O(1) gives the
following theorem.

Theorem 6.8.1. The randomized incremental algorithm for 2D linear programming can
be parallelized to run in O(n) work in expectation and O(logn) depth whp on an arbitrary-
CRCW PRAM.

We note that the algorithm can be extended to the case where the dimensiond is greater
than two by having a randomized incremental d-dimensional LP algorithm recursively call
a randomized incremental algorithm for solving (d − 1)-dimensional LPs. This increases
the iteration dependence depth (and hence the depth of the algorithm) to O(d! logd−1 n)
whp. and increases the expected work toO(d!n). We note that we can generate the random
permutation only once and reuse it for the sub-problems. Although we lose independence,
the expectation is not a�ected, and since there are only a constant (a function of d) number
of sub-problems with high probability, the high probability bound for the depth is not
a�ected.

6.8.2 Closest Pair

The closest pair problem takes as input a set of points in the plane and returns the pair
of points with the smallest distance between each other. We assume that no pair of points
have the same distance. A well-known expected linear-work algorithm [143, 162, 186, 235]
works by maintaining a grid and inserting the points into the grid in a random order. The
grid partitions the plane into regions of size r × r where each non-empty region stores the
points inside the region and r is the distance of the closest pair so far (initialized to the
distance between the �rst two points). It is maintained using a hash table. Whenever a new
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point is inserted, one can check the region the point belongs in and the eight adjacency
regions to see whether the new value of r has decreased, and if so, the grid is rebuilt with
the new value of r . The check takes O(1) work as each region can contain at most nine
points, otherwise the grid would have been rebuilt earlier. Therefore insertion takes O(1)
work, and rebuilding the grid takes O(i) work where i is the number of points inserted so
far. Using backwards analysis, one can show that point i has probability at most 2/i of
causing the value of r to decrease, so the expected work is

∑n
i=1O(i) · (2/i) = O(n).

This is a Type 2 algorithm, and the iteration dependence graph is similar to that of
linear programming. The special steps are the ones that cause the grid to be rebuilt, and
the dependence depth is O(logn) whp. Rebuilding the grid involves hashing, and can
be done in parallel in O(i) work and O(log∗ i) depth whp for a set of i points [141]. We
also assume that the points in each region are stored in a hash table, to enable e�cient
parallel insertion and lookup in linear work and O(log∗ i) depth. To obtain a linear-work
parallel algorithm, we again execute the algorithm in pre�xes. Applying Theorem 6.2.3
with d(n) = O(log∗ n) gives the following theorem.

Theorem 6.8.2. The randomized incremental algorithm for closest pair can be parallelized
to run in O(n) work in expectation and O(logn log∗ n) depth whp on an arbitrary-CRCW
PRAM.

We note that the algorithm can be extended to d dimensions where the depth is
O(logd logn log∗ n) whp and expected work is O(cdn) where cd is some constant that
depends on d .

6.8.3 Smallest Enclosing Disk

The smallest enclosing disk problem takes as input a set of points in two dimensions
and returns the smallest disk that contains all of the points. We assume that no four points
lie on a circle. Linear-work algorithms for this problem have been described [211, 278],
and in this section we will study Welzl’s randomized incremental algorithm [278]. The
algorithm inserts the points one-by-one in a random order, and maintains the smallest
enclosing disk so far (initialized to the smallest disk de�ned by the �rst two points).
Let vi be the point inserted on the i’th iteration. If an inserted point vi lies outside the
current disk, then a new smallest enclosing disk is computed. We know that vi must
be on the smallest enclosing disk. We �rst de�ne the smallest disk containing v1 and
vi , and scan through v2 to vi−1, checking if any are outside the disk (call this procedure
Update1). Whenever vj (j < i) is outside the disk, we update the disk by de�ning the
disk containing vi and vj and scanning through v1 to vj−1 to �nd the third point on
the boundary of the disk (call this procedure Update2). Update2 takes O(j) work, and
Update1 takes O(i) work plus the work for calling Update2. With the points given
in a random order, the probability that the j’th iteration of Update1 calls Update2 is
at most 2/j by a backwards analysis argument, so the expected work of Update1 is
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O(i) +
∑i

j=1(2/j) ·O(j) = O(i). The probability that Update1 is called when the i’th point
is inserted is at most 3/i using a backwards analysis argument, so the expected work of
this algorithm is

∑n
i=1(3/i) ·O(i) = O(n).

This is another Type 2 algorithm whose iteration dependence graph is similar to that
of linear programming and closest pair. The points are the steps, and the special steps are
the ones that cause Update1 to be called, which for step i has at most 3/i probability of
happening. The dependence depth is again O(logn) whp as discussed in Section 6.2.

Our work-e�cient parallel algorithm again uses pre�xes, both when inserting the
points, and on every call to Update1. We repeatedly �nd the earliest point that is outside
the current disk by checking all points in the pre�x with an in-circle test and taking
the minimum among the ones that are outside. Update1 is work-e�cient and makes
O(logn) calls to Update2 whp, where each call takes O(1) depth whp as it does in-circle
tests and takes a maximum. As in the sequential algorithm, each step takes O(1) work in
expectation. Applying Theorem 6.2.3 with d(n) = O(logn) whp (the depth of a executing
a step and calling Update1) gives the following theorem.

Theorem 6.8.3. The randomized incremental algorithm for smallest enclosing disk can be
parallelized to run in O(n) work in expectation and O(log2 n) depth whp on an arbitrary-
CRCW PRAM.

The algorithm can be extended to d dimension, with O(d! logd n) depth whp, and
O(cdn) expected work for some constant cd that depends on d . Again, we can use the
same randomized order for all sub-problems.

6.8.4 Constant-Write Versions

We now introduce a write-e�cient version of LP-type algorithms that reduces the
number of writes to O(1) while maintaining O(n) expected reads. Here we use the recent
work by Har-Peled [163] which only requires constant extra space but is still work-e�cient.
Here we assume δ is the dimension of the problem.

The key idea in Har-Peled’s approach is to simply replace the random permutation by
an arbitrary random sequence that has a uniform distribution over the constraints (e.g., a
hash function). We can in parallel generate such a sequence by a standard pseudo-random
generator by Mulmuley [218]. The output is uniformly random on [n] = {1, . . . ,n} and
ϕ-wise independent, each element can be computed inO(ϕ) time, and the whole algorithm
uses O(c′ϕ) space for an integer constant c′ ≥ 12. Har-Peled shows that plugging this
sequence into the original algorithms gives the same asymptotic work bounds. This is
because with probability less than 1/(20δ ) each integer in [n] does not appears in the �rst
c̄n elements in this sequence for any constant c̄ ≥ 8(5 + dlnδe)2. Taking the union bound
shows that the probability that any of the constraints in the �nal con�guration does not
appear is small: 1/20. Notice that repeated numbers are not a problem in these algorithms.
At the end of the algorithm, we can verify the solution by testing all of the constraints, and
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if a violation is found (with probability no more than 1/20), we just restart the algorithms.
Finally, we need di�erent generators for di�erent recursive levels in the algorithm. Other
details can be found in [163].

Har-Peled also shows that, as long as ϕ ≥ 6δ +9, the probability that the i’th constraint
violates the current con�guration is O(1/i). This gives the expected linear work bound.

Note that in most of these LP-type problems, storing the current con�guration only
uses constant space (O(δ ) to be more accurate). Given a small-memory of constant size
that can hold the con�guration and a constant number of other variables and registers
to run such an algorithm, there are no writes required in the whole algorithm (except to
write the output). This includes problems like low-dimension linear programming and
smallest enclosing disk. However, there exist special cases like the incremental closest-
pair algorithm, which requires linear space to store the con�guration. Here we denote
constant-size LP-type problems as those requiring constant space (O(δ ) words) to store the
con�guration.

Theorem 6.8.4. Given O(δ 2 logn) random bits and a small-memory of constant size, a
δ -dimensional constant-size LP-type problem on n objects can be solved in O(δ !n) work and
O(1) writes for output on the (M,ω)-ARAM model.

To get the guarantee for parallelism, we can plug in the generators for (logn)-wise
hash functions.

6.9 Write-E�cient Convex Hull

The planar convex hull problem takes as input a set of points in 2D and generates
the smallest polygon (represented as a list of segments) that contains all of the points.

If the algorithm is insensitive to the output size, the fastest algorithms for computing
a convex hull require O(n logn) work. This can be achieved by several algorithms that
�rst sort the points by increasing x-coordinate, and then apply a O(n) work step on the
sorted points to compute the hull (see, e.g., [23, 149]). We note that we can trivially obtain
an algorithm with O(n logn) reads and O(n) writes, by �rst using a write-e�cient sort
introduced in Section 4.4, followed by the same post-processing step that takes O(n)
reads/writes. The sort can be done in O(logn) depth whp, and the post-processing step
can be done in parallel in O(n) work and O(logn) depth [146].

If the algorithm is sensitive to the output size, the symmetric work can be decreased
to O(n logh), where h is the number of points on the hull. Naïve implementations of
these algorithms would require O(n logh) reads/writes, respectively, while the minimum
number of writes required is much lower since only the h points and segments on the hull
need to be written. Our goal in this section is to develop work-e�cient parallel algorithms
where the number writes is asymptotically lower than the number of reads.
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Algorithm 10: Output-sensitive (Upper) Convex Hull
1 Input: A set of n two-dimensional points in general position.

1: Place the points into h buckets each of size O(n/h), where the x-coordinates of all
points in bucket i ∈ [0,min(h − 1)] are less than the x-coordinates of all points in
buckets j > i .

(a) Pick Θ(h logn) random samples, sort them, and use every (logn)’th sample
as a splitter.

(b) Have the remaining points each do a binary search on the splitters to
determine

which bucket they belong to.
(c) Use pre�x sums to determine and appropriate o�sets into buckets for each

point.
(d) Have all points write to the appropriate o�set into their bucket.

2: If there is only one bucket B, search up the tree of bridges and perform one of the
following:

(a) If all points in the buckets are on or below a bridge, then do nothing.
(b) If there are points in B not covered by a bridge, then apply a standard

output-sensitive convex hull algorithm on an input containing points in
the bucket and the points forming the bridges BrB,L and BrB,R .

3: Split points into two sets, L and R, where L contains points in the �rst dh/2e buckets,
and R contains the remaining points.

4: Find the bridge between L and R.
5: Recursively apply Steps 2–5 on each of L and R, storing the bridge computed in each

sub-problem as the left and right child, respectively, of the bridge in Step 4.
6: Obtain �nal solution by traversing down the tree of bridges.

6.9.1 An Output-Sensitive Algorithm

Obtaining a write-e�cient output-sensitive convex hull algorithm with O(n logh)
work requires more e�ort because we can no longer directly apply a comparison sort. We
now describe how to obtain an algorithm with O(n logh) reads and O(n log logh) writes.

Our algorithm uses divide-and-conquer and borrows ideas from [85, 189]. We �rst
assume that we know the value of h and that h = O(n/logn) (to make oversampling work);
we will remove these assumptions later. We also assume without loss of generality that
no points have the same x-coordinate. We describe how to compute the upper hull (the
hull above the line from the leftmost point to the rightmost point) and the lower hull can
be computed analogously. The main steps of the algorithm are shown in Algorithm 10.

The algorithm is a divide-and-conquer algorithm but to avoid data movement we
approximately pre-sort the points. In particular, we split the points into h buckets each of
size O(n/h), where the x-coordinates of all points in bucket i ∈ [0,h − 1] are less than the
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x-coordinates of all points in buckets j > i . By picking Θ(h logn) samples, sorting them,
and using every (logn)’th element as a splitter, the buckets can be shown to have size
O(n/h) whp using Cherno� bounds. This step is described as Step 1 of Algorithm 10.

If the input contains a single bucket, then we have reached the base case (Step 2),
which we will describe how to handle shortly. Otherwise, the algorithm splits the points
into approximately two halves, L and R (Step 3). This step requires no data movement,
since the points have already been placed into their respective buckets. We then �nd the
bridge of the upper hull between L and R, which is a line passing through a point in each
set such that all points lie below the line (Step 4). The bridge can be found by solving the
following two-dimensional linear program, where the bridge is the line y = αx + β and
xmid is the x-coordinate of a vertical line between L and R (which can be computed as a
value arbitrarily close to the x-coordinate of the splitter element [212]):

minimize αxmid + β

subject to: αxpi + β ≥ ypi ∀i ∈ L ∪ R

We describe how to solve 2D linear programs write-e�ciently in Section 6.8.1.
The bridge found in Step 4 is stored as the root of a tree of bridges, and we recursively

compute the tree of bridges on each of L and R in Step 5.
We now describe the base case, when there is only a single bucket B. The bucket

searches up the tree of bridges, and considers any bridge whose x-range intersects with
the bucket’s x-range. A bridge can either lie on or above all points in B, have only a left
endpoint in B, or have only a right endpoint in B. If we �nd any bridge that covers all of
B, then no new convex hull edges will be generated from B and we are done. Otherwise,
we �nd the one or two bridges that cover the most points in the bucket, and solve a
subproblem with points in B and the up-to-two bridges using a standard O(n logh)-work
output-sensitive convex hull algorithm.

Call the set of the bridges with a left endpoint in the bucket BrB,L, and the set of bridges
with a right endpoint in the bucket BrB,R . We wish to include the bridge in each set that
covers the most points in the bucket. For a bridge b ∈ BrB,L, let pb be the endpoint of b in
bucket B. The bridge in BrB,L that satis�es this criteria is a bridge b with the minimum
value of xpb , since all points in B are below the bridge, and bridges b ∈ BrB,L cover all
points in B with x-coordinate greater than xpb . If there are ties, then any bridge with
xpb equal to the minimum value su�ces. Similarly, the bridge in BrB,R that satis�es this
criteria is a bridge b with the maximum value of xpb . Both of these bridges can be found
during the search up the tree of bridges.

To obtain the �nal solution (Step 6), we start at the root of the tree of bridges, include
the bridge in the solution, and recursively include into the solution the bridges in the
descendants of the root that have not been already covered by a previously included bridge.
To determine whether to include a bridge, we can search up the tree to see whether it has
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been covered. If the base case is reached, then all bridges formed from the set of points in
the bucket are included.

Cost analysis We now analyze the cost of Algorithm 10. Step 1a can be done using
write-e�cient sorting in O(logn) depth whp using O(n logh) reads and O(n) writes. Step
1b takes O(n logh) reads, O(n) writes, and O(logh) depth. Steps 1c takes O(n) reads and
writes, and O(logn) depth. Finally, Step 1d, takes O(n) reads and writes, and O(1) depth.
So the cost for this pre-processing is O(n logh) reads, O(n) writes and O(logn) depth whp.

The number of levels of recursion of Steps 2–5 isO(logh)whp since there areh buckets
at the beginning and each sub-problem contains half as many buckets.

Step 2 takes O(logh) reads, O(1) writes, and O(logh) depth to �nd BrB,L and BrB,R per
bucket. Summed over all buckets, this takes O(h logh) reads, O(h) writes and O(logh)
depth. Each sub-problem solved using a standard output-sensitive algorithm contains
O(n/h) points, and only generates segments on the upper convex hull of the original point
set, since we included the bridges coming in from both sides of the bucket. The total
number of operations is

∑h
i=1O((n/h) log(1 + hi)), where hi is the number of points on

the hull in bucket i and h =
∑h

i=1 hi . The sum is maximized when all hi ’s are equal, giving
a total of O(n) reads and writes. The algorithm of Kirkpatrick and Seidel [189] can be
parallelized to take O(n logh) work and O(log2 n) depth [139]. Note that the algorithm
that we apply on the buckets on must take O(n logh) work overall for the value of h that
we guessed, not the number of points on the actual convex hull. Once the amount of work
done on the buckets exceeds cn for some constant c , we can assume that our guess of h is
wrong, and terminate. To keep track of the work, we can modify the Kirkpatrick and Seidel
algorithm that we use on the buckets to increment a shared counter in global memory
whenever an operation is performed, and also check the counter before performing an
operation and if it is above cn then terminate. The total number of reads/writes for
maintaining the counter is cn, which is within our bounds.

Step 3 requires constant work/depth since the points are pre-sorted, and Step 4 requires
O(n) reads, O(logn) writes, and O(logn logn) depth whp as shown in Section 6.8.1. There
are O(logh) levels of recursion so the overall number of reads in this step is O(n logh)
in expectation. The number of writes from this step satis�es the recurrence W (n) =
2W (n/2) +O(logn) which solves to O(n). The total depth is O(log2 n logh) as each of the
two recursive calls in Step 5 can be executed in parallel.

In Step 6, the searches up the tree take O(logh) reads and O(1) writes for a total of
O(h logh) reads and O(h) writes. The depth is O((ω + logh) logh).

Overall, the algorithm requiresO(n logh) reads,O(n) writes, andO(logh log2 n) depth
whp.

As done in [85], to remove the assumption that we know h, we will repeatedly guess
h and apply the above algorithm until our guess is above the true value of h. On the i’th
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application of the algorithm, our guess will be h∗ = 32i , so in total we require O(log logh)
iterations until h∗ ≥ h. The number of reads per iteration is

∑O(log logh)
i=0 O(n log 32i ) =

O(n logh). The number of writes is O(n) per iteration, for a total of O(n log logh). Finally,
the depth is O(log2 n logh log logh) whp To remove the assumption that h = O(n/logn),
once our guess of h exceeds cn/logn for some constant c we call the output-insensitive
algorithm described earlier, which takes O(n logh) reads, O(n) writes, and O(logn) depth
whp. We obtain the following theorem.

Theorem 6.9.1. A planar convex hull can be computed with O(n(logh + ω log logh))
expected work,O(log2 n logh log logh) depth whp, andO(n log logh) writes whp under the
Asymmetric NP model.

6.9.2 Another Output-Sensitive Algorithm

Here we describe an algorithm with O(nh) reads, O(n) writes, and O(log2 n) depth
whp, obtained by modifying the algorithm of Kirkpatrick and Seidel [189]. Their original
algorithm �nds a bridge on the two halves of the points, uses the bridge to �lter out a
constant fraction of the points, and recursively �nds the hull of the remaining points
on each half. The number of levels of recursion is O(logh) and the number of sub-
problems solved is h. Their algorithm as described takes O(n logh) reads and writes, and
O(logn logh) depth.

Our goal is to reduce the number of writes. Instead of moving the points such that
points for a sub-problem are contiguous, we just inspect all of the points each time we
need to �nd a bridge in a sub-problem. Furthermore, we do not �lter out any points.
Therefore, each time we need to �nd the bridge, we use the 2D linear programming
algorithm in Section 6.8.1, taking O(n) reads and O(logn) writes. The number of times
we solve the 2D linear program is h, giving a total of O(nh) reads and O(h logn) writes.
We can �nd the splitters that divide the points approximately evenly, which is needed
for the linear program, by taking a random sample of min(n,h logn) elements at the
beginning, sorting them, and using every (logn)’th element as a splitter, as done in our
�rst algorithm. This takes O(n logh) reads, O(n) writes, and O(logn) depth whp in total.
Since the 2D linear programming algorithm requires a randomized order, we generate
a random permutation of the constraints at the beginning, and use it throughout the
algorithm, taking O(n) reads and writes and O(logn) depth. The two recursive calls can
happen in parallel, so the depth is O((ω + logn) logn logh) whp. To reduce the overall
number of writes to O(n), if the algorithm has not terminated after O(log logn) levels of
recursion (after O(n logn) reads and O(log2 n) writes have been done in solving the LPs),
we can switch to the output-insensitive algorithm that takes O(n logn) reads and O(n)
writes. This gives the following theorem.

Theorem6.9.2. A planar convex hull can be computed withO(n(min(h, logn)+ω)) expected
work, O(log2 n logh) depth whp, and O(n) writes under the Asymmetric NP model.
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Chapter 7

Cache-Oblivious Algorithms for

Dynamic Programming and Linear

Algebra

7.1 Overview

Recall from Section 2.1.3 and 2.3.4, the ideal-cache model [131] is widely used in
designing algorithms that optimize the communication between CPU and memory. The
model is comprised of an unbounded memory and a cache of size M . Data are transferred
between the two levels using cache lines of size B, and all computation occurs on data
in the cache. An algorithm is cache-oblivious if it is unaware of both M and B. The
goal of designing such algorithms is to reduce the cache complexity1 (or the I/O cost
indistinguishably) of an algorithm, which is the number of cache lines transferred between
the cache and the main memory assuming an optimal (o�ine) cache replacement policy.
Sequential cache-oblivious algorithms are �exible and portable, and adapt to all levels of a
multi-level memory hierarchy. Such algorithms are well studied [28, 79, 110]. Regarding
parallelism, as discussed in Section 2.3.4, Blelloch et al. [59] suggest that analyzing the
depth and sequential cache complexity of an algorithm is su�cient for deriving upper
bounds on parallel cache complexity.

In this chapter, we focus on a class of cache-oblivious algorithms that have a similar
computation structure as matrix multiplication and can be coded up in nested for-loops.
Their implementations are based on a divide-and-conquer approach that partitions the
ranges of the loops and recurses on the subproblems until the base case is reached.
Such algorithms provide e�cient solutions to many problems solved using dynamic
programming (e.g., the LWS/GAP/RNA/Parenthsis problems) and in linear algebra (e.g.,

1In this chapter, we refer to it as symmetric cache complexity to distinguish from the case when reads
and writes have di�erent costs.
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matrix multiplication, Gaussian elimination, LU decomposition) [59, 92, 94, 96, 131, 181,
263, 270, 271, 279].

With the arrival of new non-volatile memory (NVM) technologies [171, 177], We
have the desire for write-e�cient algorithms. However, these classic cache-oblivious
algorithms based on divide-and-conquer use asymptotically the same numbers of reads
and writes to the main memory, which is ine�cient on asymmetric memories. Meanwhile,
given the various combinations of computation structures and data dependencies, proving
the lower bound and designing the individual algorithm for each speci�c problem can
take signi�cant e�ort.

An additional motivation to study these algorithms is that, the computation of these
algorithms usually involves complicated data dependencies that are entangled with the
divide-and-conquer approach, making the algorithm design and analysis less obvious.
As a result, although these algorithms have been studied for 20 years, some of them are
suboptimal regarding the sequential symmetric cache complexity and/or parallel depth,
or are complicated and can be greatly simpli�ed. For example, previous algorithms to
solve the GAP problem (i.e., the GAP recurrence) and protein accordion folding shown
in [92, 94, 96, 181, 263, 270] have cache complexity Θ(n3/B

√
M). However, because of the

complication of data dependencies, as we show in this thesis, this bound is not-optimal.
Some other problems in higher (greater than three) dimensions (e.g., the RNA problem)
are even harder, and directly applying the automatic systems in [92, 181] cannot yield
algorithms with optimal cache complexity. In short, we lack a general method to analyze
the lower and upper bounds of the cache complexity on these problems. Similar situations
show up in terms of parallelism as well, and there exist spaces for improvements.

To tackle the challenges, in this chapter we propose a level of abstraction to analyze
these cache-oblivious algorithms. Previous algorithms are usually designed and analyzed
based on the number of nested loops, or the number of the dimensions of which the
input and output are stored and organized. However, we observe that the key underlying
factor in determining the cache complexity of these computations is the number of

input entries involved in each basic computation cell (e.g., two input values for the
multiplication in matrix product). This observation and the associated solution is one
of the reasons we show improvements of the bounds. We abstract this relationship as
k-d grid computation structures (henceforth k-d grids). A more formal de�nition is given
Section 7.3. We then discuss the lower bounds to compute such k-d grids with and
without considering the asymmetric cost between writes and reads. We also provide
highly-parallelized algorithms with optimal work and cache complexity, that compute a
k-d grid assuming no data dependency within it.

We claim that the extra level of abstraction helps us to better understand the di�culties
(lower bounds) of some problems. This is because the structures of the algorithms and
recurrences in this chapter (without considering data dependence) are always equivalent
to one or more k-d grids. Hence the lower bounds on k-d grids apply to these algorithms
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and recurrences, indicating whether the previous algorithms are optimal, and if not,
what improvement can be achieved. For write-e�cient algorithms, we can also show the
minimum weighted reads and writes required. We note that the lower bounds shown in
this setting are non-trivial, and raised as an unsolved problem at the beginning of the
research of asymmetric algorithms [64, 84] for many years.

For upper bounds, the data dependencies between the computations come in. However,
we observe that the computations of all cache-oblivious algorithms in this chapter can all be
abstracted as or decomposed into multiple k-d grids without any local dependencies within
each of them. Then by applying the e�cient algorithms on k-d grids to these problems,
we show better upper bounds as well as parallel depths. For problems we provide lower
bounds, all but one algorithms can be shown optimal. We note that the decomposition
is independent of whether the read and write costs are symmetric. Therefore, we will
show that once we propose an optimal algorithm on k-d grids in the asymmetry setting,
we automatically improve the cache complexities of all the problems from the classic
algorithms that do not consider such asymmetry.

We believe that the framework for analyzing cache-oblivious algorithms based on k-d
grids provides a better understanding of these algorithms. In particular, the contributions
include:

• Algorithms with improved symmetric cache complexity on many problems, includ-
ing the GAP recurrence, protein accordion folding, and RNA recurrence. We show
that the previous cache bound O(n3/B

√
M) for the GAP recurrence and protein

accordion folding is not optimal, and we improve the bound to O(n2/B · (n/M +
log min{n/

√
M,
√
M})) and Θ(n2/B · (1 + n/M)) respectively2. For RNA recurrence,

we show an optimal cache complexity of Θ(n4/BM), which improves the best exist-
ing result by Θ(M3/4).

• We show improved, linear parallel depth for cache-oblivious algorithms solving all-
pair shortest-paths, Gaussian elimination, triangular system solver, LWS recurrences
and protein accordion folding. For some of these problems, the depth bounds are
achieved by previous algorithms [115, 264], but they assumes a much stronger model
and the algorithms are also much more complicated (more discussion in Section 7.2).
Our approaches are under the standard nested-parallel model and are much simpler.
Our algorithms are not in-place, but in Section 7.6.1 (before Theorem 7.6.6) we show
that the extra storage can bounded to arbitrarily small (any value no less than the
cache size).

• We provide write-e�cient cache-oblivious algorithms for all problems we discussed
in this chapter, including matrix multiplication, many linear algebra algorithms,

2The improvement is O(
√
M) from an asymptotic perspective (i.e., n approaching in�nity). For smaller

range of n that O(
√
M) ≤ n ≤ O(M), the improvement is O(n/

√
M/log(n/

√
M)) and O(n/

√
M) respectively

for the two cases. (The computation fully �t into the cache when n < O(
√
M).)
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all-pair shortest-paths, and a number of dynamic programming recurrences. If a
write costs ω times more than a read (the formal computational model shown in
Section 7.2), the asymmetric cache complexity is improved by a factor of Θ(ω1/2)

or Θ(ω2/3) on each problem compared to the previous results [66]. We also show
that this improvement is optimal under certain assumptions (the CBCO paradigm,
de�ned in Section 7.4.2).

• The analysis framework is concise. In this chapter, we discuss the lower bounds
and parallel algorithms on a dozen or so computations and DP recurrences, which
can be further applied to dozens of real-world problems3. The results are shown in
both settings with or without considering the asymmetric costs between reads and
writes.

7.2 Preliminaries and Related Work

Computational models. In this chapter we use the computation discussed in Chapter 2
to measure the cost of an algorithm. Unlike previous chapters, because we study and
improve the cache-oblivious algorithms in both the symmetric and asymmetric settings,
we make a few changes of the terminologies in this chapter for the ease of algorithm
description. We refer to the cache complexity in the symmetric setting (Section 2.1.3)
as the symmetric cache complexity. Then, we refer to the cache complexity in the
(M,ω)-ARAM (Section 2.3.4) as the asymmetric cache complexity. Since we focus on
reducing the I/Os and throughout this chapter all algorithms require optimal asymptotic
arithmetic operations, the workW is the total number of arithmetic operations. The work
in (M,ω)-ARAM is justW plus the asymmetric cache complexity.

In the analysis, we always assume that the input size is much larger than the cache
size (which is usually the case in practice). Otherwise, both the upper and the lower
bounds on cache complexity also include the term for output in either the symmetric or
the asymmetric settings. For simplicity, this term is ignored in the asymptotic analysis.

Parallel and cache-oblivious algorithms for dynamic programming and linear

algebra. Dynamic Programming (DP) is an optimization strategy that decomposes a
problem into subproblems with optimal substructure. It has been studied for over sixty
years [9, 40, 108]. For the problems that we consider in this chapter, the parallel DP
algorithms were already discussed by a rich literature in the eighties and nighties (e.g.,
[122, 134, 136, 173, 174, 242]). Later work not only considers parallelism, but also optimizes
symmetric cache complexity (e.g., [59, 92, 93, 94, 96, 115, 131, 181, 259, 263, 264, 270]).
The algorithms in linear algebra that share the similar computation structures (but with
di�erent orders in the computation) are also discussed (e.g., [96, 115, 271, 279]).

3Like in this thesis we abstract the “2-knapsack recurrence”, which �ts into our k-d grid computation
structure and applies to many algorithms.
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Discussions about write-avoiding algorithms by Carson et al. [84].

Carson et al. also discussed algorithms using less writes in the paper [84]. They
concluded that many cache-oblivious algorithms like matrix multiplication could not be
write-avoiding. Their de�nition of write-avoiding is di�erent from our write-e�ciency,
and it requires the algorithm to reduce writes without asymptotically increasing reads.
Hence, their negative conclusion does not contradict the result in this thesis.

We now show an example that optimal number of reads leads to worse overall asym-
metric cache complexity. Let’s say a write is n times more expansive than a read. A smart
cache-oblivious matrix multiplication algorithm should apply n2 inner products, and the
asymmetric cache complexity isO(n3/B)—O(n/B) reads andO(1/B)writes per inner prod-
uct. However, the algorithms using optimal number of reads requires O(n3/B

√
M) reads

and writes, so the overall cache complexity is O(n · n3/B
√
M). The algorithm requiring

more reads is a factor ofO(n/
√
M) better on the asymmetric cache complexity. Notice that

we always assume n = ω(
√
M) since otherwise the whole computation is trivially in the

cache and has no cost. As a result, an algorithm with a good asymmetric cache complexity
does not need to be write-avoiding. Since their assumption is strong, although the claims
in their paper are true, we believe that there are no direct causal relationships between
their results and write-e�cient algorithms (their results can be viewed as side-results of
the analysis in Section 7.4).

The algorithms on asymmetric memory in this chapter all require extra reads, but
can greatly reduce the overall asymmetric cache complexity compared to the previous
cache-oblivious algorithms. The goal of this chapter is to �nd the optimal cache-oblivious
algorithms for any given write-read asymmetry ω.

Discussions on previous work.

We now discuss several possible confusions of this chapter.
We de�ne and analyze the k-d grid computation structure. Similar grid structures

and the bounds on computing them have been discussed in many previous work (e.g.,
[8, 36, 37, 92, 94, 96, 180, 181, 270]). However, we note that the de�nition in this thesis is
di�erent from those papers. In the k-d grid, the dimension of the grid is related to the
number of entries per basic computation unit (formal de�nition in Section 7.3), not the
dimension of the input/output arrays. As a result, the readers should not confuse the k-d
grid in this thesis with the previous grid structures.

Since we believe that the abstraction and de�nition are new, the proof of lower bounds
in Section 7.4 focuses on the simplest sequential setting with a limited-size cache, which is
di�erent from the parallel or distributed settings discussed with in�nite-size local memory
in previous work (e.g., [8, 36, 37, 180]). It is an interesting future work to extend the results
in this thesis to the more complicated settings, especially for the asymmetric setting.

Although the de�nition of k-d grid is di�erent, in the special case when the number
of input entries per basic block is the same as the dimension of input/output arrays, the
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analysis based on k-d grid provides the same sequential symmetric cache complexity as
the previous work [92, 94, 96, 131, 181, 270]. The sequential symmetric versions of these
algorithms based on the k-d grid are the same as or similar to the previous algorithms. One
of such examples is the matrix multiplication [131], and we recommend the reader to use
it as an instantiation to understand our improved parallel and asymmetric algorithms in
Section 7.5 and 7.6. This is also the case for other linear algebra algorithms in Section 7.7.2,
and the LWS and Parenthesis recurrences in Section 7.8.1 and 7.8.4. For the algorithms
with the same bounds as previous, we give another way to describe and analyze them –
this is a minor result, which we do not claim it as a contribution.

Some previous work [115, 264] achieves the same linear depth bounds in several
problems discussed in this thesis. We note that they assume a much stronger model (i.e.,
enabling the DAG to be non-nested and dynamically unfolded), so their algorithms either
need a specially designed scheduler [115], or cannot bene�t from the scheduling results
discussed in this preliminary section. Our algorithms are much simpler and under the
nested-parallel model.

The dynamic programming recurrences discussed in this chapter have non-local
dependencies (de�nition given in [136]), and we point out that they are pretty di�erent
from the problems like edit distance or stencil computations (e.g., [97, 129, 168, 195]) that
only have local dependencies. We did not consider other types of dynamic programming
approaches like rank convergence or hybrid r -way DAC algorithms [95, 203, 204] that
cannot guarantee processor- and cache-obliviousness simultaneously.

7.3 The k-d Grid Computation Structure

Thek-d grid computation structure (short for thek-d grid) is de�ned as ak-dimensional
grid C of size n1 × n2 × · · · × nk . Here we consider k to be a small constant greater than
1. This computation requires k − 1 input arrays I1, · · · , Ik−1 and generate one output
array O . Each array has k − 1 dimensions and is the projection of the grid out of one
di�erent dimension. Each cell in the grid represents some certain computation that
requires k − 1 inputs and generates a temporary value. This temporary value is “added” to
the corresponding location in the output array, and we assume this addition is associative.
The k − 1 inputs of this cell are the projections of this cell removing each (but not the
last) dimensions, and the output is the projection removing the last dimension. They are
referred to as the input and output entries of this cell. When computing each cell, the
input and output entries must be in the cache. Figure 7.1 illustrates such a computation in
2 and 3 dimensions.

We refer to ak-d grid computation structure as a square grid computation structure
(short for a square grid) of size n if it has size n1 = · · · = nk = n. More concisely, we say a
k-d grid has size n if it is square and of size n.
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Input 𝐼1

Output 𝑂 Output 𝑂

Input 𝐼1

Input 𝐼2

Figure 7.1: An illustration of a 2d and a 3d grid. The left �gure shows the 2d case where the input
I1 and output O are 1d arrays, and each computation cell requires exactly one entry in I1 as input,
and update one entry in O . For the 3d case on the right, the inputs and output are 2d arrays, and
each computation cell requires one entry from input I1 and one from input I2. The input/output
entries of each cell are the projections of this cell on di�erent 2d arrays.

For instance, when multiplying two matrices of size n-by-n on a semiring (×,+),
the computation of the classic cubic algorithm exactly matches the 3d square grid. A
corresponding 2d case is when computing a matrix-vector multiplication where the matrix
is implicit (i.e., we can query the value of each cell, but the matrix is not stored explicitly).
Such applications are commonly seen in dynamic programming algorithms.

The key aspect to decide the dimension of a computation is the number of inputs
that each basic cell element requires. For example, when multiplying two dense tensors,
although each tensor may have multiple dimensions, each multiplication operation is
only based on two entries, so it is a 3d grid. The cache-oblivious algorithms discussed in
this thesis are based on k-d grids with k = 2 or 3, but we can also �nd applications with
larger k (e.g., a Nim game with some certain rules on multiple piles [77]).

For some dynamic programming and linear algebra algorithms in this chapter, the
computations can be abstracted as k-d grids, but a constant fraction of the grid cells are
empty. We call such a grid as an α-full grid for some constant 0 < α < 1 if at least an
α ± o(1) fraction of the cells are non-empty. We will show that all properties we show for
a k-d grid also work for the α-full case, since the constant α a�ects the analysis of neither
the lower bounds nor the algorithms.

7.4 The Lower Bounds

We �rst discuss the lower bounds of the cache complexities for a k-d grid computation
structure, which sets the target to design the algorithms in the following sections. In
Section 7.4.1 we show the symmetric cache complexity. This is a direct extension of the
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classic result by Hong and Kong [170] to an arbitrary dimension. Then in Section 7.4.2
we discuss the asymmetric cache complexity when writes are more expensive than reads,
which is more interesting and has involved analyses.

7.4.1 Symmetric Cache Complexity

The symmetric cache complexity of a k-d grid is simple to analyze, yielding to the
following result:

Theorem 7.4.1. The symmetric cache complexity of a k-d grid computation structure with

size n is Ω
(

nk

M1/(k−1)B

)
.

Proof. Let’s say the computations of nk cells are sequentialized in an array. For blocks
of size S = 2kMk/(k−1), the minimum number of inputs and outputs of each block is at
least 2k−1kM ≥ 2M . Since only a total amount of M entries can be held in the cache at
the beginning of the computation, the cache complexity to load the input/output and
�nish the computation for such a block is Ω(M/B). Since there are nk/S = Θ(nkM−k/(k−1))

of such blocks, the cache complexity of the entire computation is Ω(M/B) · nk/S =
Ω(nk/(M1/(k−1)B)). �

Notice that the proof does not assume cache-obliviousness, but the lower bound is
asymptotically tight by applying a sequential cache-oblivious algorithm that is based on
2k-way divide-and-conquer [131].

7.4.2 Asymmetric Cache Complexity

We now consider the asymmetric cache complexity of a k-d grid computation structure.
Unfortunately, this case is signi�cantly harder than the symmetric setting. Again for
simplicity we �rst analyze the square grid of size n, which can be extended to the more
general cases similar to [131].

Interestingly, there is no speci�c pattern that a cache-oblivious algorithm has to follow.
Some existing algorithms use “bu�ers” to support cache-obliviousness (e.g., [25]), and
many others use a recursive divide-and-conquer framework. For the recursive approaches,
when the cache complexity of the computation is not leaf-dominated (like various sorting
algorithms [131]), a larger fan-out in the recursion is more preferable (usually set to
O(
√
n)). Otherwise, when it is leaf-dominated, existing e�cient algorithms all pick a

constant fan-out in the recursion in order to reach the base case as soon as possible. All
problems we discuss in this chapter are in this category, so we make our analysis under
the following constraints. More discussion about this constraint in given in Section 7.9.

De�nition 12 (CBCO paradigm). We say a divide-and-conquer algorithm is under the
constant-branching cache-oblivious (CBCO) paradigm if it has an input-value independent
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computational DAG, such that each task has constant4 fan-outs of its successive subtasks
until the base cases, and the partition of each task is decided by the (sub)problem size and
independent with the cache parameters (M and B).

Notice thatω is a parameter of the main memory, instead of a cache parameter. One can
de�ne resource-obliviousness [103] so that the value of ω is not exposed to the algorithms,
but this is out of the scope of this chapter.

We now prove the (sequential) lower bound on the asymmetric cache complexity of a
k-d grid under the CBCO paradigm. The two places that we use this assumption in the
proof are the constant branching of the recursion, and “scale-free” of the cache-oblivious
algorithms: the structure in the recursive levels around the boundary of cache size is
identical.

Theorem 7.4.2. The asymmetric cache complexity of k-d grid is Ω
(

n3ω1/k

M1/(k−1)B

)
under the

CBCO paradigm.

Proof. We prove the lower bound using the same approach in Section 7.4.1—analyzing
blocks of size S based on the sequence of the operations executed by the algorithm. The
cache can hold M entries as temporary space for the computation. For the lower bound,
we only consider the computation in each cell without considering the step adding the
calculated value back to the output array. Again when computing each cell, the k input
and output entries have to be in the cache.

For a block of operations of size S , the cache needs to hold the entries in I1, · · · , Ik−1
and O corresponding to the cells in this sequence at least once during the computation.
The number of entries is minimized when the sequence of operations are within a k-d
cuboid of size S = a1 × a2 × · · · × ak where the projections on Ii and O are (k − 1)-d arrays
with sizes a1 × · · · × ai−1 × ai+1 × · · · × ak and a1 × · · · × ak−1. Namely, the number of
entries is at least S/B · 1/ai for the corresponding input or output array.

Note that the input arrays are symmetric to each other regarding the access cost, but
in the asymmetric setting storing the output is more expensive. As a result, the cache
complexity is minimized when a1 = · · · = ak−1 = a, and let’s denote ak = ar where r is
the ratio between ak and other ai . Here we assume r ≥ 1 since reads are cheaper. Due
to the scale-free property that M and n are arbitrary, r should be �xed (within a small
constant range) for the entire recursion.

Similar to the analysis in the proof of Theorem 7.4.1, for a block of size S , the read

transfers required by the cache is Ω
(
nk

SB
·max{ak−1r −M, 0}

)
, where nk/S is the number

of such blocks, and max{ak−1r −M, 0}/B lower bounds the number of reads per block
because at most M entries can be stored in the cache from the previous block. Similarly,

4It can exponentially depend on k where we assume k is a constant.

173



the write cost is Ω
(
ωnk

SB
·max{ak−1 −M, 0}

)
. In total, the cost is:

Q = Ω

(
nk

SB
·

(
max{ak−1r −M, 0} + ω max{ak−1 −M, 0}

))
= Ω

(
nk

SB

(
max{S (k−1)/kr 1/k −M, 0} + ω max

{
S (k−1)/k

r (k−1)/k −M, 0
}))

The second step is due to S = O(akr ).
The cost decreases as the increase of S , but it has two discontinuous points S1 =

Mk/(k−1)/r 1/(k−1) and S2 = Mk/(k−1)r . Therefore,

Q = Ω

(
nk

S1B
S (k−1)/k

1 r 1/k +
nk

S2B

(
S (k−1)/k

2 r 1/k +
ωS (k−1)/k

2

r (k−1)/k

))
= Ω

(
nk

S1/k
1 B

r 1/k +
nk

S1/k
2 B

(
r 1/k +

ω

r (k−1)/k

))
=

n3

M1/kB

(
r 1/k +

ω

r

)
When r = ω(k−1)/k , Q is minimized to be Ω

(
n3ω1/k

M1/(k−1)B

)
and this leads to the theorem. �

7.5 AMatching Upper Bound onAsymmetric Memory

In the sequential and symmetric setting, the classic cache-oblivious divide-and-conquer
algorithms to compute the k-d grid (e.g., 3D case in [131]) is optimal. In the asymmetric
setting, the proof of Theorem 7.4.2 indicates that the classic algorithm is not optimal. The
key to improve the cost is the balancing factor r = ω(k−1)/k that leads to more cheap reads
and less expensive writes in each sub-computation.

We now show that the lower bound in Theorem 7.4.2 is tight by a (sequential) cache-
oblivious algorithm with such asymmetric cache complexity. The algorithm is given in
Algorithm 11, which can be viewed as a variant of the classic approach with minor modi-
�cations on how to partition the computation. Notice that in line 6 and 10, “conceptually”
means the partitions are used for the ease of algorithm description. In practice, we can just
pass the ranges of indices of the subtask in the recursion, instead of actually partitioning
the arrays.

Compared to the the classic approaches (e.g., [131]) that partition the largest input
dimension among ni , the only underlying di�erence in the new algorithm is in line 4:
when partitioning the dimension not related to the output array O , nk has to be ω(k−1)/k

times larger than n1, · · · ,nk−1. This modi�cation introduces an asymmetry between the
input size and output size of each subtask, which leads to an improvement in the cache
e�ciency.
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Algorithm 11: Asym-Alg(I1, · · · , Ik−1,O)

Input: k − 1 input arrays I1, · · · , Ik−1, read/write asymmetry ω
Output: Output array O

1 The computation has size n1 × n2 × · · · × nk

2 if I1, · · · , Ik−1,O are small enough then

3 Solve the base case and return

4 i ← arg max1≤i≤k{nixi} where xk = ω−(k−1)/k and xj = 1 otherwise for 1 ≤ j < k
5 if i = k then

6 (Conceptually) equally partition I1, · · · , Ik−1 into {I1,a, I1,b}, · · · , {Ik−1,a, Ik−1,b}

on k-th dimension
7 Asym-Alg(I1,a, · · · , Ik−1,a,O)
8 Asym-Alg(I1,b, · · · , Ik−1,b,O)

9 else

10 (Conceptually) equally partition I1, · · · , Ii−1, Ii+1, · · · , Ik−1,O into
{I1,a, I1,b}, · · · , {Ik−1,a, Ik−1,b}, {Oa,Ob} on i-th dimension

11 Asym-Alg(I1,a, · · · , Ii−1,a, Ii, Ii+1,a, · · · , Ik−1,a,Oa)

12 Asym-Alg(I1,b, · · · , Ii−1,b, Ii, Ii+1,b, · · · , Ik−1,b,Ob)

For simplicity, we show the asymmetric cache complexity for square arrays (i.e.,
n1 = · · · = nk ) and n = Ω(ω(k−1)/kM), and the general case can be analyzed similar
to [131].

Theorem 7.5.1. Algorithm 11 computes the k-d grid of size n with asymmetric cache

complexity Θ

(
nkω1/k

M1/(k−1)B

)
.

Proof. We separately analyze the numbers of reads and writes required by Algorithm 11.
In the sequential execution of Algorithm 11, each subproblem only requires O(1) extra
temporary space. Also, our analysis ignores rounding issues since they will not a�ect the
asymptotic bounds.

When starting from the square grid at the beginning, the algorithm �rst partitions in
the �rst k − 1 dimensions (via line 10 to 12) into ω(k−1)/k-by-ω(k−1)/k subproblems (refer
to as second-phase subproblems) each with size (n/ω(k−1)/k) × · · · × (n/ω(k−1)/k) × n, and
then partition k dimensions in turn.

The number of writes of the algorithmW (n) (to array O) follows the recurrences that:

W ′(n) = 2kW ′(n/2) +O(1)

and
W (n) = (ω(k−1)/k)k−1 ·

(
W ′(n/ω(k−1)/k) +O(1)

)
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whereW ′(n) is the number of writes required by the second-phase subproblems with the
size of O being n × · · · × n. The base case is whenW ′(M1/(k−1)) = O(M/B). Solving the

recurrences givesW ′(n/ω(k−1)/k) = O

(
nkω1−k

M1/(k−1)B

)
, andW (n) = O

(
nkω(1−k)/k

M1/(k−1)B

)
.

We can analyze the reads similarly by de�ning R(n) and R′(n). The recurrences on
reads are:

R′(n) = 2kR′(n/2) +O(1)

and
R(n) = (ω(k−1)/k)k−1 ·

(
R′(n/ω(k−1)/k) +O(1)

)
The di�erence occurs in the base case since the input �ts into the cache when n =
M1/(k−1)/ω1/k . Namely, R′(M1/(k−1)/ω1/k) = O(M/B). Therefore, by solving the recur-

rences, we have R′(n/ω(k−1)/k) = O

(
nkω2−k

M1/(k−1)B

)
and R(n) = O

(
nkω1/k

M1/(k−1)B

)
.

The overall (sequential) asymmetric cache complexity for Algorithm 11 is:

Q(n) = R(n) + ωW (n) = O

(
nkω1/k

M1/(k−1)B

)
and combining with the lower bound of Theorem 7.4.2 proves the theorem. �

Comparing to the classic approach, the new algorithm improves the asymmetric cache
complexity by a factor ofO(ω(k−1)/k), since the classic algorithm requiresΘ(nk/(M1/(k−1)B))
reads and writes. Again here we assume nk−1 is much larger than M . Otherwise, the lower
and upper bounds should include Θ(ωnk−1/B) for just writing down the output O .

7.6 Parallelism

We now show the parallelism in computing the k-d grids. We show that the parallel
versions of the cache-oblivious algorithms only has polylogarithmic depth, indicating
that they are highly parallelized.

7.6.1 The Symmetric Case

We �rst discuss the classic algorithm on symmetric memory. For a square grid, the
algorithm partition the k-dimensions in turn until the base case is reached.

Notice that in every k consecutive partitions, there are no dependencies in k − 1 of
them, which we can take full parallelism from them. The only exception is during the
partition in the k-th dimension, whereas both subtasks share the same output array O
and cause write concurrence. If such two subtasks are sequentialized (like in [131]), the
depth is D(n) = 2D(n/2) +O(1) = O(n).
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We now introduce the algorithm with logarithmic depth. As just explained, to avoid
the two subtasks from editing the same elements in the output array O , our algorithm
works in the following way when partitioning the k-th dimension:

1. Allocating two stack-allocated temporary arrays with the same size of the output
array O before the two recursive function calls.

2. Applying computation for the k-d grid in two subtasks with di�erent output arrays
that are just allocated (with no concurrency to the other subtask).

3. When both subtasks �nish, the computed values are merged back in parallel, with
work proportional to the output size and O(logn) depth.

4. Deallocating the temporary arrays.
Notice that the algorithm also works if we only allocate temporary space for one of

the subtasks, while the other subtask still works on the original space for the output array.
This can be a possible improvement in practice, but in high dimensional case (k > 2) it
requires more complicated details to pass the pointers of the output arrays to descendant
nodes, aligning arrays to cache lines, etc. Theoretically, this version does not change the
bounds except for the stack space in Lemma 7.6.1 when k = 2.

We �rst analyze the cost of square grids of size n in the symmetric setting, and will
discuss the asymmetric setting later.

Lemma 7.6.1. The overall stack space for a subtask of size n is O(nk−1).

Proof. When partitioning the output (k-th) dimension, the algorithm allocates and com-
putes two subtasks of size n/2. This leads to the following recurrence:

S(n) = 2S(n/2) +O(nk−1)

which solves to S(n) = O(nk−1) when k > 2. When k = 2, we can apply the version that
only allocates temporary space for one subtask, which changes the constant before S(n/2)
to 1, and yields to the same bound as S(n) = O(n). Note that we only need to analyze one
of the branches, since the temporary spaces that are not allocated in the direct ancestor
of this subtask have already been deallocated, and will be reused for later computations
for the current branch. �

With the lemma, we have the following corollary:

Corollary 7.6.2. A subtask of size n ≤ M1/(k−1) can be computed within a cache of size
O(M).

This corollary indicates that this modi�ed parallel algorithm has the same sequential
cache complexity since it �ts into the cache in the same level as the classic algorithm
(the only minor di�erence is the required cache size increases by a small constant factor).
Therefore we can apply the a similar analysis in [131] (k = 3 in the chapter) to show the
following lemma:
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Lemma 7.6.3. The sequential symmetric cache complexity of the parallel cache-oblivious
algorithm to compute a k-d grid of size n is O(n3/M1/(k−1)B).

Assuming that we can allocate a chunk of memory in constant time, the depth of this
approach is simply O(log2 n)—O(logn) levels of recursion, each with O(logn) depth for
the additions [59].

We have shown the parallel depth and symmetric cache complexity. Therefore, we have
the following result for parallel symmetric cache complexity by applying the scheduling
theorem in the preliminary section.

Corollary 7.6.4. The k-d grid of size n can be computed with the parallel symmetric cache
complexity of O(n3/M1/(k−1)B + pM log2 n) with private caches, or O(n3/M1/(k−1)B) with
share caches of sizeM + pB log2 n.

Lemma 7.6.1 shows that the extra space required is S1 = O(nk−1) for sequentially
running the parallel algorithm. Naïvely the parallel space requirement is pS1, which can
be very large. We now show a better upper bound for the extra space.

Lemma 7.6.5. The overall space requirement of the k-d grid is O(p1/knk−1).

Proof. We analyze the amount of space allocated in total for all processors. Lemma 7.6.1
indicates that if the root of the computation on one processor has the output array of size
(n′)k−1, then the space requirement for this task is O((n′)k−1). There can be at most 2k pro-
cessors starting with their computations of size nk−1/2k−1, (2k)2 of size nk−1/(2k−1)2, until
(2k)q processors of size nk−1/(2k−1)q where q = log2k p, when each of the p processors all
get a task. This is the most pessimistic case that maximizes the overall space requirement,
which is:

log2k p∑
h=1

O

(
nk−1

(2k−1)h

)
· (2k)h = p ·O

(
nk−1

(2k−1)log2k p

)
= O(p1/knk−1)

which gives the stated bound. �

We believe the space requirement for the parallel cache-oblivious algorithm is ac-
ceptable since it is asymptotically the same as the most intuitively (non-cache-oblivious)
parallel algorithm that partitions the computation into p square subtasks each with size
n/p1/k . In practice nowadays it is easy to �t several terabyte main memory onto a single
powerful machine such that the space requirement can usually be satis�ed. For example,
when k = 2, p = 100 and the main memory can hold 1012 entries, the grid needs to contain
≈ 1022 cells to exceed the memory size: such computation can be too big to run on a
single shared-memory machine. For k ≥ 3, the extra term p1/k only a�ects a small range
of input sizes that cannot �t. Even if it falls into this small region, we can always slightly
change the algorithm to bound the extra space. We �rst partition the input dimensions for
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log2 p rounds to bound the largest possible output size to be O(nk−1/p) that one processor
can steal (similar to the case discussed in Section 7.6.2). Then the overall extra space is
limited to O(nk−1), the same as the input/output size. If needed, the constant in the big-O
can also be bounded. Such change will not a�ect the cache complexity and the depth as
long as the main memory size is larger than pM . In practice, it is always several orders of
magnitude larger than pM . As a conclusion, we believe the extra space requirement is
acceptable in most cases in practice. Throughout the rest of the chapter, we focus on the
cache complexity and the depth, similar to the previous work [59].

Combining all results gives the following theorem:

Theorem 7.6.6. There exists a cache-oblivious algorithm for k-d grid computation structure

of size n that requires Θ(nk) work, Θ
(

nk

M1/(k−1)B

)
symmetric cache complexity, O(log2 n)

depth, and O(p1/knk−1) main memory size.

7.6.2 The Asymmetric Case

Algorithm 11 considers the write-read asymmetry, which involves some minor changes
to the classic cache-oblivious algorithm. In terms of parallelism, the changes only a�ect the
order of the partitioning of the k-d grid in the recurrence, but not the parallel version and
the analysis in Section 7.6.1. As a result, the depth of the parallel variant of Algorithm 11 is
alsoO(log2 n). The extra space requirement is actually decreased, because the asymmetric
algorithm has a higher priority in partitioning the input dimensions that does not requires
allocation temporary space.

Lemma7.6.7. The space requirement of Algorithm 11 onp processors isO(nk−1(1+p1/k/ω(k−1)/k)).

Proof. Algorithm 11 �rst partition the input dimensions until q = O(ω(k−1)2/k) subtasks
are generated. Then the algorithm will partition k dimensions in turn. If p < q, then each
processor requires no more than O(nk−1/q) extra space at any time, so the overall extra
space is O(p · nk−1/q) = O(n). Otherwise, the worst case appears when O(p/q) processors
work on each of the subtasks. Based on Lemma 7.6.5, the extra space is bounded by
O((p/q)1/k · q · nk−1/q) = O(p1/knk−1/ω(k−1)/k). Combining the two cases gives the stated
bounds. �

Lemma 7.6.7 indicates that Algorithm 11 requires extra space no more than the in-
put/output size asymptotically when p = O(ωk−1), which should always be true in practice.

The challenge arises in scheduling this computation. The scheduling theorem for
the asymmetric case constraints on the non-leaf stack memory to be a constant size.
This contradicts the parallel version in Section 7.6.1. This problem can be �xed based
on Lemma 7.6.1 that upper bounds the overall extra memory on one task. Therefore the
stack-allocated array can be moved to the heap space. Once a task is stolen, the �rst
allocation will annotate a chunk of memory with size order of |O | where O is the current

179



output. Then all successive heap-based memory allocation can be simulated on this chunk
of memory. In this manner, the stack memory of each node corresponding to a function
call is constant, which allows us to apply the scheduling theorem in Chapter 2.

Theorem 7.6.8. Algorithm 11 with input size n requires Θ(nk) work, Θ
(

nkω1/k

M1/(k−1)B

)
asym-

metric cache complexity, and O(log2 n) depth for a k-d grid of size n.

7.7 Numerical Algorithms and All-Pair Shortest Paths

In this section we discuss matrix multiplication, Kleene’s algorithm on all pair shortest-
paths, and some linear algebra algorithms including Strassen algorithm, Gaussian elimi-
nation (LU decomposition), and triangular system solver. The common theme in these
algorithms is that their computation structures are very similar to that of matrix mul-
tiplication, which is a 3d grid. Strassen algorithm is slightly di�erent and introduced
separately in Appendix 7.7.6. Other algorithms are summarized in Section 7.7.2 and the
details are given in Appendix 7.7.3–7.7.5.

We show improved asymmetric cache complexity for all problems. For Gaussian elim-
ination and triangular system solver, we show linear depth algorithms in both symmetric
and asymmetric settings which are based on the parallel algorithm discussed in Section 7.6.
There exist work-optimal and sublinear depth algorithm for APSP [269], but we are un-
aware of how to make it I/O-e�cient. Compared to previous linear depth algorithms
in [115], our algorithm is in the classic nested-parallel model and can be scheduled using
the work-stealing scheduler. Also, we believe our algorithms are signi�cantly simpler.

7.7.1 Matrix Multiplication

The combinatorial matrix multiplication (de�nition in Section 7.2) is one of the sim-
plest cases of the 3d grid. Given a semiring (×,+), in matrix multiplication each cell
corresponds to a “×” operation of the two corresponding input values and the “+” op-
eration is associative. Since there are no dependencies between the operations, we can
simply apply Theorem 7.6.6 and 7.6.8 to get the following result.

Corollary 7.7.1. Combinatorial matrix multiplication of size n can be solved in Θ(n3)

work, optimal symmetric and asymmetric cache complexity of Θ
(

n3

B
√
M

)
and Θ

(
ω1/3n3

B
√
M

)
respectively, and O(log2 n) depth.

7.7.2 Result Overview on All-Pair Shortest Paths and Linear Alge-

bra Algorithms

We now discuss the well-known cache-oblivious algorithms to solve all-pair shortest
paths (APSP) on a graph, Gaussian elimination (LU decomposition), and triangular system
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solver. These algorithms share similar computation structures and can usually be discussed
together. Chowdhury and Ramachandran [94, 96] categorized matrix multiplication, APSP,
and Gaussian Elimination into the Gaussian Elimination Paradigm (GEP) and discussed a
uni�ed framework to analyze complexity, parallelism and actual performance. We show
how the parallel depth and the asymmetric cache complexity can be improved using the
algorithms we just introduced in Section 7.5 and 7.6.

We discuss the details of these cache-oblivious algorithms later in this section. The
common theme in these algorithms is that, the computation takes one or two square
matrix(ces) of size n × n as input, applies n3 operations, and generates output as a square
matrix of size n × n. Each output entry is computed by an inner product of one column
and one row of either the input matrices or the output matrix in some intermediate state.
Namely, the output Ai,j requires input Bi,k and Ck,j for 1 ≤ k ≤ n (A, B and C may or
may not be the same matrix). Therefore, we can apply the results of 3d grids on these
problems.5 Note that some of the grids are full (e.g., Kleene’s algorithm) while others are
not, but they are all α-full and contain O(n3) operations.

The data dependencies in these algorithms are quite di�erent from each other, but the
recursions for cache complexity Q(n) and depth D(n) for APSP, Gaussian elimination and
triangular system solver are all in the following form:

Q(n) = β Q(n/2) + γ Q3C(n/2)
D(n) = 2D(n/2) + δ D3C(n/2)

whereQ3C(n) and D3C(n) are the cache complexity and depth of a 3d grid of size n. Here, as
long as the the recursive subtask �ts into the cache together with the 3d grid computation
and the β , γ and δ are constants and satisfy β < 8, we can show the following bounds.

Theorem 7.7.2. Kleene’s algorithm for APSP, Gaussian elimination and triangular system
solver of size n can be computed in Θ(n3) work, symmetric and asymmetric cache complexity

of O
(

n3

B
√
M

)
and O

(
ω1/3n3

B
√
M

)
respectively, and O(n) depth.

7.7.3 All-Pair Shortest-Paths (APSP)

An all-pair shortest-paths (APSP) problem takes a (usually directed) graph G = (V , E)
(with no negative cycles) as input. Here we discuss the Kleene’s algorithm (�rst men-
tioned in [125, 132, 190, 219], discussed in full details in [10]). Kleene’s algorithm has the
same computational DAG as Floyd-Washall algorithm [126, 275], but it is described in a
divide-and-conquer approach, which is already I/O-e�cient, cache-oblivious and highly
parallelized.

5For Gaussian Elimination Ak ,k is also required, but Ak ,k is only on the diagonal, which requires a
lower-order of cache complexity to load when computing a sub-cubic of a 3d grid.

181



Algorithm 12: Kleene(A)
Input: Distance matrix A initialized based on the input graph G = (V , E)
Output: Computed Distance matrix A

1 A00 ← Kleene(A00)

2 A01 ← A01 +A00A01
3 A10 ← A10 +A10A00
4 A11 ← A11 +A10A01

5 A11 ← Kleene(A11)

6 A01 ← A01 +A01A11
7 A10 ← A10 +A11A10
8 A00 ← A00 +A10A01

9 return A

The pseudocode of Kleene’s algorithm is provided in Algorithm 12. The matrix A is

partitioned into 4 submatrices indexed as
[
A00 A01
A10 A11

]
. The matrix multiplication is de�ned

in a closed semi-ring with (+,min).
Kleene’s algorithm is a divide-and-conquer algorithm to compute APSP. Its high-level

idea is to �rst compute the APSP between the �rst half of the vertices only using the
paths between these vertices. Then by applying some matrix multiplication we update
the shortest-paths between the second half of the vertices using the computed distances
from the �rst half. We then apply another recursive subtask on the second half vertices.
The computed distances are �nalized, and we use them to again update the shortest-paths
from the �rst-half vertices.

The asymmetric cache complexity Q(n) of this algorithm follows the recursion of:

Q(n) = 2Q(n/2) + 6Q3C(n/2)
D(n) = 2D(n/2) + 2D3C(n/2)

Considering this cost, the recursion is root-dominated, which indicates that computing
all-pair shortest paths of a graph has the same upper bound on cache complexity as matrix
multiplication.

7.7.4 Gaussian Elimination

Gaussian elimination (without pivoting) is used in solving of systems of linear equa-
tions and computing LU decomposition of symmetric positive-de�nite or diagonally
dominant real matrices. Given a linear system AX = b, the algorithm proceeds in two
phases. The �rst phase modi�esA into an upper triangular matrix (updates B accordingly),
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which is discussed in this section. The second phase solves the values of the variables
using back substitution, which is shown in Section 7.7.5.

The process of Gaussian elimination can be viewed as a three nested-loops and com-
puting the value of Ai,j requires Ai,k , Ak,j and Ak,k for all 1 ≤ k < i . If required, the
corresponding value of the LU decomposition matrix can be computed simultaneously.
The underlying idea of divide-and-conquer approach is almost identical to Kleene’s algo-

rithm, which partitions A into four quadrants
[
A00 A01
A10 A11

]
. The algorithm: (1) recursively

computes A00; (2) updates A10 and A01 using A00; (3) updates A11 using A10 and A01; and
(4) recursively computes A11.

Note that each inter-quadrant update in step (2) and (3) is a 3d grid, which gives the
following recurrence:

Q(n) = 2Q(n/2) + 4Q3C(n/2)
D(n) = 2D(n/2) + 3D3C(n/2)

7.7.5 Triangular System Solver

A Triangular System Solver computes the back substitution step in solving the linear
system. Here we assume that it takes as input a lower triangular n × n matrix T (can
be computed using the algorithm discussed in Section 7.7.4) and a square matrix B and
outputs a square matrix X such that TX = B. A triangular system can be recursively
decomposed as: [

B00 B01
B10 B11

]
=

[
T00 0
T10 T11

] [
X00 X01
X10 X11

]
=

[
T00X00 T00X01

T10X00 +T11X10 T10X01 +T11X11

]
such that four equally sized subquadrants X00, X01, X10, and X11 can be solved recursively.
In terms of parallelism, the two subtasks of X00 and X01 are independent, and need to be
solved prior to the other independent subtasks X10, and X11.

The asymmetric cache complexity Q(n) of this algorithm follows the recursion of:

Q(n) = 4Q(n/2) + 2Q3C(n/2)
D(n) = 2D(n/2) + D3C(n/2)

7.7.6 Strassen Algorithm

Strassen algorithm computes matrix multiplication on a ring. Given two input matrices
A and B and the output matrixC = AB, the algorithm partitions A, B andC into quadrants,
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applies seven recursive matrix multiplications on the sums or the di�erences of the
quadrants, and each quadrant of C can be calculated by summing a subset of the seven
intermediate matrices. This can be done in O(nlog2 7) work, O(nlog2 7/M log4 7−1B) cache
complexity and O(log2 n) depth.

Technically the computation structure of Strassen is not a k-d grid, but we can apply
a similar idea in Section 7.5 to reduce asymmetric cache complexity. We still use r as
the balancing factor between reads and writes (set to be ω2/3 in classic matrix multipli-
cation). Given square input matrices, the algorithm also partition the output into r -by-r
submatrices, and then run the 8-way divide-and-conquer approach to compute the matrix
multiplication. This gives the following recurrences on work (T ), reads, writes and depth
based on the output size n:

T ′(n) = 7T ′(n/2) +O(n2)

R′(n) = 7R′(n/2) +O(n2/B)

W ′(n) = 7W ′(n/2) +O(ωn2/B)

D′(n) = D(n/2) +O(logn)

with the base cases T ′(1) = r , R′(
√
rM) = M/B,W ′(

√
M) = ωM/B, and D′(1) = 1. They

solve to

R(n) = r 2R′(n/r ) = O(nlog2 7r 2−log4 7M1−log4 7/B)

W (n) = r 2W ′(n/r ) = O(ωnlog2 7r 2−log2 7M1−log4 7/B)

D(n) = O(log2 n)

The case when r = ω log7 4 gives the minimized cache complexity of

Q(n) = O(nlog2 7ω log7 16−1M1−log4 7/B) ≈ O(n2.8ω0.42/BM0.4)

an O(ω0.58) improvement over the non-write-e�cient version. In this setting the work is
O(nlog2 7ω log7 64−2), a factor of O(ω0.14) or O(ω1/7) extra work.

7.8 Dynamic Programming Recurrences

In this section we discuss a number of new results for dynamic programming (DP). To
show interesting lower and upper bounds on parallelism and cache e�ciency in either
symmetric and asymmetric setting, we focus on the speci�c DP recurrences instead of the
problems. We assume the operations in the recurrences are atomic, and not decomposable
or batchable.

The goal of this section is to show how the DP recurrences can be viewed as and
decomposed into the k-d grids. Then the lower and upper bounds discussed in Section 7.4
and 7.5, as well as the analysis of parallelism in Section 7.6, can be easily applied to
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the computation of these DP recurrences. When the dimension of the input/output is
the same as the number of entries in each grid cell, then the sequential and symmetric
versions of the algorithms in this section are the same as the existing ones discussed
in [92, 94, 96, 131, 270], but the others are new. Also, the asymmetric versions and most
parallel versions are new. We improve the existing results on symmetric/asymmetric
cache complexity, as well as parallel depth.

Symmetric cache complexity. We show improved algorithms on a number of problems
when the number of entries per cell di�ers from the dimension of input/output arrays,
including the GAP recurrence, protein accordion folding, and RNA recurrence. We show
that the previous cache bound O(n3/B

√
M) for the GAP recurrence and protein accordion

folding is not optimal, and we improve the bounds in Theorem 7.8.2 and 7.8.3. For RNA
recurrence, we show an optimal cache complexity of Θ(n4/BM) in Theorem 7.8.2, which
improves the best existing result by O(M3/4).

Asymmetric cache complexity. By replacing the computation of the k-d grid using the
asymmetric version discussed in Section 7.5, we show a uniform approach to provide
write-e�cient algorithms for all problems in this section. We also prove the optimality of
all these algorithms expect for the GAP recurrence.

Parallelism. The parallelism of these algorithms is provided by using the parallel al-
gorithms discussed in Section 7.6 as the underlying building blocks for computing the
DP recurrences. We can achieve polylogarithmic depth in computing the 2-knapsack
recurrence, and linear depth in LWS recurrence and protein accordion folding. The linear
depth for LWS can be achieved by previous work [115, 264], but they are not in the
nested parallel model and does not have the guarantee by the randomized work-stealing
scheduler. Meanwhile, our algorithms are arguably simpler.

7.8.1 LWS Recurrence

The LWS (least-weighted subsequence) recurrence [169] is one of the most commonly-
used DP recurrences in practice. Given a real-valued function w(i, j) for integers 0 ≤ i <
j ≤ n and D0, for 1 ≤ j ≤ n,

Dj = min
0≤i<j
{Di +w(i, j)}

This recurrence is widely used as a textbook algorithm to compute optimal 1D cluster-
ing [192], line breaking [193], longest increasing sequence, minimum height B-tree, and
many other practical algorithms in molecular biology and geology [135, 136], computa-
tional geometry problems [6], and more applications in [194]. Here we assume thatw(i, j)
can be computed in constant work based on a constant size of input associated to i and j,
which is true for all these applications. Although di�erent special properties of the weight
function w can lead to speci�c optimizations, the study of recurrence itself is interesting,
especially regarding cache e�ciency and parallelism.
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We note that the computation structure (without considering dependencies) of this
recurrence is a standard 2d grid. Each cell requires the input entry of Di , computes
Di +w(i, j) and updates Dj as the output entry, so Theorem 7.4.1 and 7.4.2 show lower
bounds on cache complexity on this recurrence (the grid is (1/2)-full).

We now introduce cache-oblivious implementation considering the data dependencies.
Recent work by Chowdhury and Ramachandran [94] solves the recurrence with O(n2)

work and O(n2/BM) symmetric cache complexity. The algorithm is simply a divide-and-
conquer approach and we describe and extend it based on k-d grids. A task of range (p,q)
computes the cells (i, j) such that p ≤ i < j ≤ q. To compute it, the algorithm generates
two equal-size subtasks (p, r ) and (r + 1,q) where r = (p + q)/2, solves the �rst subtask
(p, r ) recursively, then computes the cells corresponding to w(i, j) for p ≤ i ≤ r < j ≤ q,
and lastly solves the subtask (r + 1,q) recursively. Note that the middle step exactly
matches a 2d grid with no dependencies between the cells, which can be directly solved
using the algorithms in Section 7.5. This leads to the cache complexity and depth to be:

Q(n) = 2Q(n/2) +Q2C(n/2)

D(n) = 2D(n/2) + D2C(n/2)

Here 2C denotes the computation of a 2d grid. The recurrence is root-dominated and
D(1) = 1. This solves to the following theorem.

Theorem7.8.1. The LWS recurrence can be computed inΘ(n2)work,Θ
(
n2

BM

)
andΘ

(
ω1/2n2

BM

)
optimal symmetric and asymmetric cache complexity respectively, and O(n) depth.

7.8.2 GAP Recurrence

The GAP problem [134, 136] is a generalization of the edit distance problem that
has many applications in molecular biology, geology, and speech recognition. Given a
source string X and a target string Y , we can apply a sequence of consecutive deletes
corresponds to a gap in X , and a sequence of consecutive inserts corresponds to a gap
in Y . For simplicity here we assume both strings with length n, but the algorithms and
analyses can easily adapt to the more general case. Since the cost of such a gap is not
necessarily equal to the sum of the costs of each individual deletion (or insertion) in that
gap, we de�ne w(p,q) (0 ≤ p < q ≤ n) to be the cost of deleting the substring of X from
(p + 1)-th to q-th character, and w′(p,q) for inserting the substring of Y accordingly.

Let Di,j be the minimum cost for such transformation from the pre�x of X with i
characters to the pre�x of Y with j characters, the recurrence for i, j > 0 is:

Di,j =

{
min0≤q<j{Di,q +w(q, j)}
min0≤p<i{Dp,j +w(p, i)}
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corresponding to either inserting or deleting a substring. The boundary is set to be
D0,0 = 0, D0,j = w(0, j) and Di,0 = w

′(0, i). The diagonal dependency from Di−1,j−1 can be
added if required, without a�ecting the asymptotic analysis.

The best existing algorithms on GAP Recurrence [94, 263] have symmetric cache
complexity of O(n3/B

√
M). This bound seems to be reasonable, since in order to compute

Di,j , we need the input of two vectorsDi,q andDp,j , which is similar to matrix multiplication
and other algorithms in Section 7.7. However, as indicated in this thesis, each update
in GAP only requires one entry, while matrix multiplication has two. Therefore, if we
ignore the data dependencies, the �rst line of the GAP recurrence can be viewed as n
LWS recurrences, independent of the dimension of i (similarly for the second line). This
derives a lower bound on cache complexity to be that of an LWS recurrence multiplied by
2n, which is Ω(n3/BM) (assuming n > M). Hence, the gap is Θ(

√
M) between the lower

and upper bounds.
We now discuss an I/O-e�cient algorithm to reduce this gap. Unfortunately, the

algorithm is not optimal, and we leave it as an open problem. Chowdhury and Ramachan-
dran’s approach [94] is based on divide-and-conquer to compute output D. The algorithm
recursively partitions D into four equal-size quadrants D00, D01, D10 and D11, and starts to
compute D00 recursively. After this is done, it uses the computed value in D00 to update
D01 and D10 using the recurrence. This step can be considered to compute 2 × n′/2 LWS
recurrences (with no data dependencies) each with size n′/2 (assuming D has size n′ × n′).
Then the algorithm computes D01 and D10 within their own ranges. After that, it updates
D11 using the results from D01 and D10, and solves D11 recursively at the end.

Our modi�ed version reorganizes the data layout and the order of computation to
take advantage of our I/O-e�cient and parallel algorithm on 2d grids. Since the GAP
recurrence has two independent sections in di�erent directions, we keep two copies of
D, one organized in column major and the other in row major. Then when computing
on the inter-quadrant updates (e.g., from D00 to D01) we start n′/2 parallel tasks, each to
compute a 2d grid on the corresponding row or column, taking the input and output with
the correct representation. This update takes the work and cache complexity shown in
Theorem 7.8.1. We also need to keep the consistency of the two copies. After the update
of a quadrant D01 or D10 is �nished, we apply a matrix transpose [59] to update the other
copy of this quadrant, and the cost of the transpose is a lower-order term. For the quadrant
D11, we wait until the two updates from D01 and D10 �nish, and then apply the matrix
transpose to update the values in each other. It is easy to check that by induction, the
values in both copies in a quadrant are update-to-date after each recursion.

The updated algorithm still requires Θ(n3) work since it does not require extra asymp-
totic work. The cache complexity and depth satisfy:

Q(n) = 4Q(n/2) + 4n ·Q2C(n/2)

D(n) = 3D(n/2) + 2D2C(n/2)
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The base cases areQ(
√
M) = O(M/B) andQ2C(m) = O(m/B) form ≤ M for the symmetric

setting. Hence, we have Q(M) = O((M log2
√
M)/B). The top-level computation is root

dominated. Therefore, if n > M , Q(n) = O(n2Q(M)/M) + O(1) · Q2C(n) = O(n2/B ·
(n/M + log2

√
M)). Otherwise, Q(n) = O(n2 log2(n/

√
M)/B). Similarly we can compute

the asymmetric results.

Theorem 7.8.2. The GAP recurrence can be computed in Θ(n3) work, O(nlog2 3) depth,
symmetric cache complexity of

O

(
n2

B
·

(
n

M
+ log2 min

{
n
√
M
,
√
M

}))
and asymmetric cache complexity of

O

(
n2

B
·

(
ω1/2n

M
+ ω log2 min

{
n
√
M
,
√
M

}))
Compared to the previous result [92, 94, 96, 181, 263, 270], the improvement on the

symmetric cache complexity is asymptotically O(
√
M) (i.e., n approaching in�nity). For

smaller range of n that O(
√
M) ≤ n ≤ O(M), the improvement is O(n/

√
M/log(n/

√
M)).

(The computation fully �t into the cache when n < O(
√
M).)

Protein accordion folding. The recurrence for protein accordion folding [270] is Di,j =

max1≤k<j−1{Dj−1,k+w(i, j,k)} for 1 ≤ j < i ≤ n, withO(n2/B) cost to precomputew(i, j,k).
Although there are some minor di�erences, from the perspective of the computation
structure, the recurrence can basically be viewed as only containing the �rst section of
the GAP recurrence. As a result, the same lower bounds of GAP can also apply to this
recurrence.

In terms of the algorithm, we can compute n 2d grids with the increasing order of j
from 1 to n, such that the input are Dj−1,k for 1 ≤ k < j − 1 and the output are Di,j for
j < i ≤ n. For short, we refer to a 2d grid as a task. However, the input and output arrays
are in di�erent dimensions. To handle it, we use the similar method as the GAP algorithm
that keeps two separate matrices, one in column-major and one in row-major. They are
used separately to provide the input and output for the 2d grid. We apply the transpose
in a divide-and-conquer manner: once the �rst half of the tasks �nish, we transpose all
computed values from the output matrix to the input matrix (which is a square matrix),
and then compute the second half of the task. Both matrix transposes in the �rst and
second halves are applied recursively with geometrically decreasing sizes. The correctness
of this algorithm can be veri�ed by checking the data dependencies so that all required
values are computed and moved to the correct positions before they are used for further
computations.

The cache complexity is from two subroutines: the computations of 2d grids and
matrix transpose. The cost of 2d grids is simply upper bounded by n times the cost of
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each task, which is O(n2/B · (1 + n/M)) and O(n2/B · (ω + ω1/2n/M)) for symmetric and
asymmetric cache complexity, and O(n log2 n) depth. For matrix transpose, the cost can
be veri�ed in the following recursions.

Q(n) = 2Q(n/2) +QTr(n/2)

D(n) = 2D(n/2) + DTr(n/2)

where Tr indicates the matrix transpose. The base case is Q(
√
M) = O(M/B) and D(1) = 1.

Applying the bound for matrix transpose [59] provides the following theorem.

Theorem 7.8.3. Protein accordion folding can be computed in O(n3) work, symmetric and

asymmetric cache complexity of Θ
(
n2

B

(
1 +

n

M

))
and Θ

(
n2

B

(
ω +

ω1/2n

M

))
respectively, and

O(n log2 n) depth.

The cache bounds in both symmetric and asymmetric cases are optimal with respect
to the recurrence.

7.8.3 RNA Recurrence

The RNA problem [136] is a generalization of the GAP problem. In this problem a
weight function w(p,q, i, j) is given, which is the cost to delete the substring of X from
(p + 1)-th to i-th character and insert the substring of Y from (q + 1)-th to j-th character.
Similar to GAP, let Di,j be the minimum cost for such transformation from the pre�x of X
with i characters to the pre�x of Y with j characters, the recurrence for i, j > 0 is:

Di,j = min
0≤p<i
0≤q<j

{Dp,q +w(p,q, i, j)}

with the boundary values D0,0, D0,j and Di,0. This recurrence is widely used in computa-
tional biology, like to compute the secondary structure of RNA [276].

While the cache complexity of this recurrence seems to be hard to analysis in previous
papers, it �ts into the framework of k-d grids straightforwardly. Since each computation
in the recurrence only requires one input value, the whole recurrence can be viewed as a
2d grid, with both the input and output as D. The 2d grid contains a constant fraction of
the cells, so we can apply the lower bounds in Section 7.5 here.

Again for a matching upper bound, we need to consider the data dependency. We
can apply the similar technique in GAP algorithm to partition the output D into four
quadrants, compute D00, then D01 and D10, and �nally D11. Each inter-quadrant update
corresponds to a 1/2-full 2d grid. Here maintaining two copies of the array is not necessary
with the tall-cache assumption M = Ω(B2). Applying the similar analysis in GAP gives
the following result:
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Theorem 7.8.4. RNA recurrence can be computed in Θ(n4) work, optimal symmetric and

asymmetric cache complexity of Θ
(
n4

BM

)
and Θ

(
ω1/2n4

BM

)
respectively, and O(nlog2 3) depth.

7.8.4 Parenthesis Recurrence

The Parenthesis recurrence solves the following problem: given a linear sequence
of objects, an associative binary operation on those objects, and the cost of performing
that operation on any two given (consecutive) objects (as well as all partial results), the
goal is to compute the min-cost way to group the objects by applying the operations over
the sequence. Let Di,j be the minimum cost to merge the objects indexed from i + 1 to j
(1-based), the recurrence for 0 ≤ i < j ≤ n is:

Di,j = min
i<k<j
{Di,k + Dk,j +w(i,k, j)}

where w(i,k, j) is the cost to merge the two partial results of objects indexed from i + 1
to k and those from k + 1 to j. Here the cost function is only decided by a constant-size
input associated to indices i , j and k . Di,i+1 is initialized, usually as 0. The applications of
this recurrence include the matrix chain product, construction of optimal binary search
trees, triangulation of polygons, and many others shown in [108, 135, 136, 282].

The computation of this recurrence (without considering dependencies) is a (1/3)-full
3d grid, which has the same lower bound shown in Corollary 7.7.1.

The divide-and-conquer algorithm that computes this recurrence is usually hard
to describe (e.g., it takes several pages in [92, 181] although they also describe their
systems simultaneously). We claim that under the view of our k-d grids, this algorithm is
conceptually as simple as the other algorithms. Again this divide-and-conquer algorithm
partitions the state D into quadrants, but at this time one of them (D10) is empty since
Di,j does not make sense when i > j. The quadrant D01 depends on the other two. The
algorithm �rst recursively computes D00 and D11, then updates D01 using the computed
values in D00 and D11, and �nally recursively computes D01. Here D01 is square, so
the recursive computation of D01 is almost identical to that in RNA or GAP recurrence
(although the labeling of the quadrants is slightly changed): breaking a subtask into
four quadrants, recursively solving each of them in the correct order while applying
inter-quadrant updates in the middle. The only di�erence is when the inter-quadrant
updates are processed, each update requires two values, one in D01 and another in D00 or
D11. This is the reason that Parenthesis is 3d while RNA and GAP are 2d. The correctness
of this algorithm can be shown inductively.

Theorem 7.8.5. The Parenthesis recurrence can be computed in Θ(n3) work, optimal sym-

metric and asymmetric cache complexity of Θ
(

n3

B
√
M

)
and Θ

(
ω1/3n3

B
√
M

)
respectively, and

O(nlog2 3) depth.
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7.8.5 2-Knapsack Recurrence

Given Ai and Bi for 0 ≤ i ≤ n, the 2-knapsack recurrence computes:

Di = min
0≤j≤i
{Aj + Bi−j +w(j, i − j, i)}

for 0 ≤ i ≤ n. The cost function w(j, i − j, i) relies on constant input values related on
indices i , i − j and j. To the best of our knowledge, this recurrence is �rst discussed in
this thesis. We name is the “2-knapsack recurrence” since it can be interpreted as the
process of �nding the optimal strategy in merging two knapsacks, given the optimal local
arrangement of each knapsack stored in A and B. Although this recurrence seems trivial,
the computation structure of this recurrence actually forms some more complicated
DP recurrence. For example, many problems on trees6 can be solved using dynamic
programming, such that the computation essentially applies the 2-knapsack recurrence a
hierarchical (bottom-up) manner.

We start by analyzing the lower bound on cache complexity of the 2-knapsack re-
currence. The computational grid has two dimensions, corresponding to i and j in the
recurrence. If we ignore B in the recurrence, then the recurrence is identical to LWS (with
no data dependencies), so we can apply the lower bounds in Section 7.8.1 here.

Note that each update requires two input values Aj and Bi−j , but they are not indepen-
dent. When computing a subtask that corresponding to (i, j) ∈ [i0, i0 + ni] × [j0, j0 + nj],
the projection sizes on input and output arrays A, B and D are no more than nj , ni + nj
and ni . This indicates that the computation of this recurrence is a variant of 2d grid, so
we can use the same algorithm discussed in Section 7.5.

Corollary 7.8.6. 2-knapsack recurrence can be computed using O(n2) work, optimal sym-

metric and asymmetric cache complexity of Θ
(
n2

BM

)
and Θ

(
ω1/2n2

BM

)
, and O(log2 n) depth.

7.9 Conclusion and Future Work

In this thesis, we abstract the k-d grid as a basic block to analyze the computation
structure of many classic cache-oblivious algorithms. This abstraction provides a more
simple and intuitive framework on better understanding the actual computation of these
algorithms, proving lower bounds, and designing algorithms that are both I/O-e�cient
and highly parallelized. It also provides a uni�ed framework to bound the asymmetric
cache complexity of these algorithms.

6Such problems can be: (1) computing a size-k independent vertex set on a tree that maximizes overall
neighbor size, total vertex weights, etc.; (2) tree properties such that the number of subtrees of certain size,
tree edit-distance, etc.; (3) many approximation algorithms on tree embeddings of an arbitrary metric [62, 70];
and many more.
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Because of the new perspective to review these algorithms, we already provide many
new results, but also observe many new open problems. Among them are:

1. The only non-optimal algorithm regarding cache complexity in this chapter is
for the GAP recurrence. The I/O cost has an additional term of O((n2 logM)/B).
Although in practice this term will not dominate the running time (the computation
has O(n3) arithmetic operations), it is theoretically interesting to know if we can
get rid of this term (even without the constraint of cache-obliviousness or based on
divide-and-conquer).

2. We show our algorithms in the asymmetric setting are optimal under the assumption
of constant-branching (the CBCO paradigm). Since the cache-oblivious algorithms
discussed in this chapter are leaf-dominate, we believe this assumption is always true.
We wonder if this assumption is necessary (i.e., if there exists a proof without using
it, or if there are cache-oblivious algorithms on these problems with non-constant
branching but still I/O-optimal).

3. The parallel symmetric cache complexity Qp on p processors is Q1 + O(pDM/B),
which is a loose upper bound when D is large. Although it might be hard to improve
this bound on any general computation under randomized work-stealing, it can be
a good direction to show tighter bounds on more regular computation structures
like the k-d grids or other divide-and-conquer algorithms. We conjecture that the
additive term can be shown as optimal (i.e., O(pM/B)) for the k-d grid computation
structures.

4. In this chapter we mainly discussed the lower bounds and algorithms for square grid
computation structures, which is the setting of the problems in this chapter (e.g.,
APSP, dynamic programming recurrences). It is interesting to see a more general
analysis on k-d grids with arbitrary shape, and such results may apply to other
applications like the computation of tensor algebra.
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Chapter 8

Experimental Veri�cations of

Write-E�cient Algorithms

8.1 Overview

This section discusses how the write-e�cient algorithms work in practice, more than
just the theoretical analysis asymptotically.

Early works include the study of this read-write asymmetry on NAND Flash chips [41,
123, 133, 226] and algorithms targeting database operators [90, 272, 273]. However, most
of the papers either treat NVMs as external memories, or are based on hardware simulators
for existing architecture, which may have many concerns that we will further discuss in
Section 8.2.

This thesis, in Chapter 2, formally de�ned and analyzed several sequential and parallel
computational models with good caching and scheduling guarantees. Recall that the basic
model, which is the Asymmetric RAM (ARAM), extends the well-known external-memory
model [7] and parameterizes the asymmetry using ω, which corresponds to the cost of
a write relative to a read to the non-volatile main memory. The cost of an algorithm
on the ARAM, the asymmetric I/O cost, is the number of write transfers to the main
memory multiplied by ω, plus the number of read transfers. This model captures di�erent
system consideration (latency, bandwidth, or energy) by simply plugging in di�erent
values of ω, and also allows algorithms to be analyzed theoretically. Based on this idea,
many interesting algorithms (and lower bounds) are designed and analyzed in this thesis.

In this chapter, we will further show the exact numbers of reads and writes of the
algorithms instead of just the asymptotic bounds, and our goal is to bridge the gap between
theory and practice. We also try to study and understand which algorithmic techniques are
useful in designing practical write-e�cient algorithms. As the �rst trial in this direction, it
seems impossible to implement and test all algorithms in the previous chapters. As a result,
we focus on several of the most commonly-seen algorithmic building blocks in modern
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programming: unordered set/map implemented using hash tables, set/map implemented
using balanced binary search trees, comparison sort, and graph traversal algorithms:
breadth-�rst search for unweighted graphs and Dijkstra’s algorithm for weighted
graphs.

Unfortunately, no non-volatile main memory is currently available, making it im-
possible to get real timings. Furthermore, details about latency and other parameters
of the memory and how they will be incorporated into the architecture are also not
available. This makes detailed cycle-level simulation (e.g., PTLsim [232], MARSSx86 [214]
or ZSim [244]) of questionable utility. However, it is quite feasible to count the number of
reads and write to main memory while simulating a variety of cache con�gurations. For
I/O-bounded algorithms, these numbers can be used as reasonable proxies for both run-
ning time (especially when implemented in parallel) and energy consumption.1 Moreover,
conclusions drawn from these numbers can likely give insights into tradeo�s between
reads and writes among di�erent algorithms.

For these reasons, we propose a framework based on a software simulator that can
e�ciently and precisely measure the number of read and write transfers of an algorithm
using di�erent caching policies. We also consider variants in caching policies that might
lead to improvements when read and write are not the same.

We also note that designing write-e�cient algorithms falls in a high dimensional
parameter space since the asymmetries on latency, bandwidth, and energy consumption
between reads and writes are di�erent. Here we abstract this as a single value ω. This
value together with the cache size M and cache-line size B (set to be 64 bytes in this
chapter) form the parameter space of an algorithm.

Our framework provides a simple, clean and hardware-independent method to ana-
lyze and experiment the performance on the asymmetric memory. We investigate the
algorithmic techniques and learn lessons from the experiments that generally apply for a
reasonably large parameter space of ω, M and B. This framework also allows monitoring,
reasoning and debugging the code easily, so it can remain useful even after the new
hardware is available.

With the framework, we design, implement and discuss many di�erent algorithms
and data structures and their write-e�cient implementations. Although some of the
implementations are standard, like quicksort and the classic hash tables, many others,
including the k-level hash tables, sample sort and phased Dijkstra, require careful algo-
rithmic design, analysis, and coding. Under our cost measure, which is the asymmetric
I/O cost, we show better approaches on all problems we study in this chapter, compared
to the most basic and commonly-used ones on symmetric memories. We understand that
there are more advanced versions of the algorithms and data structures discussed in this

1The energy consumption of main memory is a key concern since it costs 25-50% energy on
data centers and servers [198, 200, 206].
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chapter on some speci�c applications, and how to implement them write-e�ciently is an
interesting topic for future work.

With the algorithms and their experimental results, we draw many interesting algo-
rithmic strategies and guidance in designing write-e�cient algorithms. A common theme
is to trade (more) reads for (fewer) writes (apparently it is hard to directly decrease the
writes since this can improve the performance on symmetric memory as well and should
have been investigated already). Some interesting lessons we learned and can be valuable
to share are listed as follows, which can suggest some potential directions to design and
engineer write-e�cient algorithms in the future.

1. Indirect addressing is less problematic. In the classic setting, indirect addressing
should be avoided if possible, since each addressing can be a random access to the
memory. However, when writes are expensive, moving the entire data is costly,
while indirect addressing only modi�es the pointers (at the cost of a possible random
access per lookup).

2. Multiple candidate positions for a single entry in a data structure can help. It can be
a good option to use more reads per lookup but apply less frequent data movements,
when the size of a data structure changes signi�cantly. This is a common strategy we
have applied in this experiment chapter to provide an algorithmic tradeo� between
reads and writes.

3. It is usually worth to investigate existing algorithms that move or modify the data
less. These algorithms can be less e�cient in the symmetric setting due to various
reasons (e.g., more random accesses, less balanced), but the property that they use
fewer writes can be useful in the asymmetric setting (like samplesort vs. quicksort,
treap vs. AVL or red-black tree).

4. In-cache data structures should draw more attention2. Since the data structures are
kept in the cache (or small symmetric memory), the algorithm requires signi�cantly
less writes to the large asymmetric memory, although may require extra reads to
compensate for less information we can keep within the data structure. In this
experiment chapter, we discuss Dijkstra’s algorithm on shortest-paths as an example,
and such idea can also be applied to computing minimum spanning tree, sorting,
and many other problems.

8.2 Discussions on Previous Experiments

2Similar ideas appear in many existing models already, like the external-memory model or the
streaming model. However, the motivations are di�erent: these models restrict the amount of
space that can be used in the computation, while in our case the data structures are used to reduce
the writes to the asymmetric main memory without including too many extra reads.
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There exist a rich literature to show the read-write asymmetry on the new memo-
ries [14, 32, 84, 91, 117, 118, 172, 176, 187, 196, 205, 234, 280, 281, 284, 285], and all other
papers in this thesis. Regarding adapting softwares for such read-write asymmetry, some
work has studied the system aspect. For example, there exist many papers on how to
balance the writes across the chip to avoid uneven wear-out of locations in the context of
NAND Flash chips [41, 123, 133, 226].

More closely-related papers targeting database operators: Chen et al. [90] and Vi-
glas [272, 273] presented several interesting and write-e�cient sequential algorithms
for searching, hash joins and sorting. These are the early and inspirational attempts
to design algorithms with fewer writes. Instead of formally proposing new computa-
tional models and analyzing the asymptotic cost, they mainly show the performance
by the experiment results assuming external memories rather than main memories, or
on the cycle-based simulators for existing architecture. For the latter case however, the
prototypes of the new memories are still under development, and yet nobody actually
knows the exact parameters of the new memories, or how they are incorporated into
the actual architecture which is required for the setup of the cycle-based simulator. As
far as we know, there is no available cycle-based simulator at the present time for the
new memories. In the meantime, the asymmetries on latency, bandwidth, and energy
consumption between reads and writes are di�erent, and any of these constraints can be
the bottleneck of an algorithm. Hence, designing algorithms on asymmetric memory are
in a multiple-dimension parameter space, rather than just recording the running time
from a simulator. Therefore, it is essential to develop theoretical models and tools that
accounts for, and abstract this asymmetry and use them to analyze algorithms on future
memory.

This thesis formally de�ned several sequential and parallel computational models that
take asymmetric read-write costs into account. Based on the computational models, many
interesting algorithms (and lower bounds) are designed and analyzed in Chapter 3, 4, 5, 6,
and 7, in both sequential and parallel settings.

8.3 Our Model and Simulator

To start with, we discuss how to measure the performance of algorithms on asymmetric
memories. We begin with the computational model that estimates the cost of an algorithm.
This model requires the numbers of read and write transfers between the non-volatile
memory and the cache, so later we introduce how the numbers of an algorithm can be
simulated. Unlike the existing symmetric memories, a simple cache policy like LRU does
not work on some asymmetric settings. Thus in Section 8.3.2 we brie�y summarize the
solutions to �x it, and then the cache simulator given in Section 8.3.3 captures this number
with di�erent cache policies.
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8.3.1 The Cost Model for Asymmetric Memory

In this subsection we review the models de�ned in Chapter 2 that are used in this
chapter.

The most commonly-used cost measure of an algorithm is the time complexity based
on the RAM model (Section 2.1.1), which is the overall number of instructions and memory
accesses executed in this algorithm. Nowadays, since the actual latency of an access to the
main memory is at least two orders of magnitudes more expensive than a CPU instruction,
the I/O cost based on the external-memory model [7] (Section 2.1.2) is widely used to
analyze the cost of an I/O-bounded algorithm. This model assumes a small-memory (cache)
of size M ≥ 1, and a large-memory of unbounded size. Both memories are organized in
blocks (cache-lines) of B words. The CPU can only access the small-memory (with no
cost), and it takes unit cost to transfer a single block between the small-memory and
the large-memory. This cost measure estimates the running time reasonably well for
I/O-bounded algorithms, especially in multi-core parallelism. An e�cient algorithm in
practice should achieve optimality in both the time complexity and the I/O cost.

To account for more expensive writes on future memories, here we adopt the idea of
an (M,ω)-Asymmetric RAM: similar to the external-memory model, transferring a block
from large-memory to small-memory takes unit cost; on the other direction, the cost is
either 0 if this block is clean and never modi�ed, or ω � 1 otherwise. The asymmetric

I/O cost Q3 of an algorithm is the overall costs for all memory transfers.

8.3.2 Cache Policies

The cache policy is de�ned and introduced in Section 2.1.3 and 2.3.4. Either the classic
external-memory model or the new ARAM assumes that we can explicitly manipulate
the cache in the algorithm. This largely simpli�es the analysis, and in many cases is
provably within a constant factor of a more realistic cache’s performance. For example,
the standard least-recent used (LRU) policy is 2-competitive against the optimal o�ine
cache-replacement sequence.

However, the competitive ratio does not hold in the asymmetric setting. Consider a
cache with k = M/B cache-lines and a memory access pattern that repeatedly writes to
k − 1 cache-lines and read from other k − 1 cache-lines. An ideal cache policy will keep
all k − 1 cache-lines associated to writes, so the I/O cost of each round is k − 1 for k − 1
read misses. An LRU policy however causes a cache miss for every single memory access,
leading the I/O cost of each round to ω(k − 1) + k − 1. This overhead is proportional to ω,
which can be signi�cant and problematic.

The solution is a�ected by the architecture, depending on whether software explicitly
controls a DRAM bu�er or not [90, 105, 197, 233]. If so, then the cost measures on the
these models are just the costs in practice, but programmers are responsible for managing

3Throughout the experiment chapter, we abbreviate it as the I/O cost, unless stated otherwise explicitly.
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what to put on the small-memory and guaranteeing correctness. The other option is
to leave the hardware to control the small-memory. In this case, Section 2.3.4 shows
that if the small-memory is partitioned into two equal-size pools and each of them is
maintained using LRU policy, the performance is 3-competitive against the optimal o�ine
cache-replacement sequence (e.g. using 3× space and incurring no more than 3× cost).

We consider three di�erent cache policies in the experiment. The Classic policy
maintains the small-memory as one memory pool and uses the LRU policy for replacement.
The SplitPool policy keeps two separate memory pools and each runs the LRU policy. The
Static policy allows static allocation in one memory pool, and the unallocated memory
space is maintained using the LRU policy.

8.3.3 The Cache Simulator

The goal of this chapter is to discuss new algorithmic approaches that minimize the
asymmetric I/O cost to the main memory on a variety of fundamental data structures and
algorithms. To capture the number of reads and writes to the main memory, we developed
a software simulator that can adapt to di�erent cache policies introduced in Section 8.3.2.
The cache simulator is composed of an ordered map that keeps tracks of the time stamp
of the last visit to each cache-line in the current cache, and an unordered map that stores
the mapping from each cache-line to the corresponding location in the ordered map if
this cache-line is currently in the cache. Interestingly, the implementation of this cache
simulator is a natural application of the techniques discussed in this experiment chapter.

The cache simulator encapsulates a new structure Array that is used in coding
algorithms in this experiment chapter. It is like a regular array that can be dynamically
allocated and freed, and supports two functions: Read and Write to a speci�c location
in this array. The Arrays are responsible for reporting the memory accesses of the
algorithm to the cache simulator, and the cache simulator will update the state of the
cache accordingly. Therefore, coding using the Arrays is not di�erent from regular
programming much.

The memory accesses to loop variables and temporary variables are ignored, as well as
the call stack. This is because the number of such variables is small in all of the algorithms
in the experiment (usually no more than 10). Meanwhile, the call stack of all algorithms
in this paper has size O(logn). The overall amount of uncaptured space is orders of
magnitudes smaller than the amount of fast memory in our experiments.

The cache consists of one or two memory pools, depending on di�erent cache policies
discussed in Section 8.3.2. We will explicitly indicate the cache policy used in each of
our experiments. The cache simulator maintains two counters in each memory pool:
the number of read transfers, and the number of write transfers. When testing each
algorithm on a speci�c input instance, the cache is emptied at the beginning and �ushed
at the end. A read or write is free if the location is already in the cache; otherwise the
corresponding cache-line is loaded, the counter of read transfer increments by 1, and
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the least-recently-used cache-line in this pool is evicted. Also, a write will mark the
dirty-bit of the cache-line to be true. When evicting a dirty cache-line, the counter of
write transfer increments by 1. Notice that memory reads can cause write transfers, and
memory writes can lead to read transfers.

When simulating the Classic policy (i.e., the standard one), we also veri�ed our
simulated results to ZSim (cycle-level simulator for current architecture), and the numbers
always di�er by no more than 10% when the parameters are set correctly.

8.4 Sets and Maps

Sets and maps are two of the most commonly-used data types in modern programming.
Most programming languages either have them built in as basic types (e.g. python) or
supply them as standard libraries (C++, C#, Java, Scala, Haskell, ML).

These data types and the data structures to implement them are used extensively.
Not only many other data types can be built based on them, just in the content of the
experiment of thesis, unordered sets and maps are used in BFS in Section 8.6.1, Dijkstra’s
algorithm in Section 8.6.2, and the cache simulator, while ordered sets and maps are used
in Dijkstra’s algorithm in Section 8.6.2 and the cache simulator.

8.4.1 Unordered Sets and Maps

Our implementation of unordered sets and maps is based on hash tables that support
lookup, insertion, and deletion. The hash tables discussed in this section use open
addressing and linear probing, since the goal of the data structure is to try to minimize
the I/O cost focusing on smaller entries (accessing and reading larger entries are costly
anyway so di�erent hash-table implementations make minor di�erences). For simplicity,
we assume no duplicate keys, and it is straightforward to handle the duplicates with minor
modi�cations. In this setting, each operation of the hash table reads a small number of
cache-lines, and an insertion or deletion will modify exactly one cache-line that contains
the location of the key and will be eventually written back to the large-memory.

The challenge emerges when the set size changes dynamically. For an e�cient im-
plementation, we hope the overall size of the hash table to be neither too large nor too
small. If the load factor passes 80%, linear probing’s performance drastically degrades. On
the other hand, we want the hash table size to be reasonably small to better utilize the
small-memory (cache), since each cache-line holds more entries in this case. In practice,
some implementations keep the load factor up- and lower-bounded by some constant.
For example, a typical implementation keeps the occupancy of the hash table between
1/8 and 1/2, and the size doubles or shrinks by half if the number of entries exceeds this
range. Such resizing reinserts p entries before at least p/2 insertions and deletions (where
p is the set/map size). When reads and writes have approximately the same cost, the extra
cost for such resizing is small compared to the query and update costs (e.g., the queries
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read from lots of memory locations). In the asymmetric setting however, the reads cost
much less, but the extra writes in resizing can be signi�cant: the resizing can incur at
most twice (p/(p/2) = 2) the writes compared to the initial insertions (3× writes in total).
Hence, our goal is to discuss an alternative approach that optimizes such extra writes.

8.4.1.1 The k-level Hash Table

Instead of keeping one hash table, our main idea is to maintain a small number k of
hash tables simultaneously, where k is a pre-determined parameter. In particular, the
k-level hash table HashTable is initialized with k arrays HashTable1,··· ,k with size 2c ′+i for
1 ≤ i ≤ k (or smaller in speci�c applications) and a constant c′. In practice we set c′ to be
5.

For insertions, when the overall load factor exceeds some threshold r , we allocate a
new chunk of memory with the double size of the largest current array, and the smallest
hash table is discarded after all elements in it have been reinserted back. Similarly for
deletions, if the occupancy of the hash tables drops below a threshold l , a small array with
half of the size of the current smallest hash table is allocated, and the largest table is freed
after the entries in it being reinserted. For instance, a valid k-level hash table may contain
two arrays of size 215 = 32768 and 216 = 65536, when k = 2 and 30000 entries in the
current con�guration. The pseudocode of the k-level hash table is given in Algorithm 13.
The occupancy range 0 < l < r < 1 indicates when the resizing happens (a valid set of
parameters can be 1/8 and 1/2). A classic implementation can be viewed as the special
case of the k-level hash table when k = 1.

We now analyze the I/O cost Q of the k-level hash table. Here we assume that the size
of the k-level hash table is larger than the small-memory and 1 − r < 1/B, so that one
single lookup, insertion or deletion in a single level in the hash table on average requires
no more than c < 2 cache-line loads to �nd the location.

Lookup. In a k-level hash table, a lookup requires ck instead of c read transfers (c is the
constant just de�ned) in the worst case (can quit earlier once the entry is found). The cost
increases by a factor of k at most.

Insert. There are two de�nitions of insertions: an insertion that the key is known to be
not in the set/map, or an insertion that it is unknown whether the key is in this set/map.
Both cases are commonly-used. In this paper, we take the �rst de�nition and analyze the
cost of this type of insertions. The second type of insertion can be viewed as a lookup
�rst, then an insert if the lookup fails.

When inserting an element in a k-level hash table, we always try the smaller tables
�rst. Once all tables are full, we resize it. More details can be found in Algorithm 13.

The I/O cost Q of an insertion comes in two parts: the cost of the initial insertion to
the hash table, and the cost of this entry in future hash-table resizings. The cost of the
initial insertion is no more than c + ω, where c is the number of cache-line reads to �nd
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Algorithm 13: The k-level hash table
Input: Parameter k , occupancy range l and r

1 Function Lookup(x)
2 for i ← 1 to k do

3 p ← HashTablei .Lookup(x)
4 if p , null then return (i,p)
5 return null

6 Function Insert(x ) // x is not in HashTable
7 for i ← 1 to k do

8 if HashTablei .occupancy < r then
9 HashTablei .Insert(x)

10 return

11 Allocate HashTablek+1 of size 2 · HashTablek .size
12 Relabel the hash tables with indices from 0 to k
13 foreach y ∈ HashTable0 do
14 Insert(y)
15 Free HashTable0

16 Function Delete(x ; i , p) // x is located p-th in HashTablei
17 HashTablei .Delete(x,p)
18 if Overall occupancy is less than l (and HashTable1.size > 1) then
19 Allocate HashTable0 of size HashTable1.size/2
20 Relabel the hash tables with indices between 1 to k + 1
21 foreach y ∈ HashTablek+1 do
22 Insert(y)
23 Free HashTablek+1

the position to insert, plus ω, one cache-line write for the actual insertion. The cost of
resizing is more complicated to analyze.

We note that although a speci�c entry can be reinserted multiple times during di�erent
resizing processes, the overall number of element reinsertion is bounded, and thus we
can a amortize the work. A resizing occurs when an insertion comes in and the hash
table contains exactly r · 2p(2k − 1) elements for some positive integer p. In this case, at
most r · 2p entries (the size of the smallest hash table), are reinserted during the resizing.
The total number of insertions from the last resizing is at least r · 2p−1(2k − 1) (assuming
4l ≤ r ), so the amortized I/O cost Q of reinsertion for each insertion is upper bounded by
(c + ω)r · 2p

r · 2p−1(2k − 1)
= (c + ω) · 2/(2k − 1).

In the asymmetric setting when ω � 1, the I/O cost of each insertion is approximately
ω · (1+ 2/(2k − 1)), indicating that compared to the classic implementation where k = 1, in
the worst-case the improvement when k = 2, 3, 4 is about 44%, 57% and 62% respectively.
The asymptotic improvement when k → +∞ is 67%.

Delete. A deletion in the k-level hash table is similar to an insertion except that a lookup
for the location is required (details in Algorithm 13). The cost of the initial deletion is
ck +ω. A resizing of the hash table can occur after at least l · 2p(2k − 1) deletions for some
positive integer p, and the current hash table keeps l · 2p(2k − 1) entries. However, it is
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possible that all of these entries are in the last hash table so they are all reinserted. We
note that when reinserting the elements from the discarded array, we always try smaller
arrays �rst. This means that a reinserted entry, if not being deleted in the future, will
not be reinserted again in the next min(k − 1, log2 r/2l) shrinking resizings. Namely, the
amortized extra cost of a deletion in future resizings is about ω/k if l is set to be about
2−kr . The overall I/O cost for a deletion is Q = ck + ω(1 + 1/k).

We have bounded of the I/O cost of each lookup, insertion or deletion, and the overall
cost Q can be estimated by summing the amount of each operation multiplied by the cost
of this operation. In practice, insertions and deletions can interleave. For example, when
a deletion comes after an insertion, the number of entries remains the same, which leads
to no further cost for these two updates afterward. The exact cost is also a�ected by the
pattern of the sequence of the operations, and we will show by experiments.

8.4.1.2 Experiments

In the experiment we test the performance of our k-level hash table, including the
numbers of read transfers and write transfers, I/O costs, and wall-clock running time, on
di�erent patterns of queries. In all experiments, we insert 1 million elements to an empty
hash table, each of which is a 4-byte integer, into the hash table, and we vary the number
of queries. The simulated cache contains 10,000 cache-lines and uses the classic policy,
and for wall-clock running time we run the code on a PC with Intel i7-2600 CPU and 8GB
RAM. The occupancy rate is set to be l = 0.2 and r = 0.8. We have tried other parameters
(r between 0.6 and 0.8 and l = r/4). The results slightly vary, but all general conclusions
in this section still hold.

Non-deletion cases.

Many applications, like webpage caching or the breadth-�rst searches, only insert but
never delete elements in a hash table. Our experiment starts with this simpler case. We
�rst show the relationship between k (the number of hash tables) and the numbers of
read transfers and write transfers for a variety of insertion/query ratios, and the results
are shown in Table 8.1. We �x the number of insertions to be one million, and query α
times after each insertion. We vary α from 0, 1/8, to 8 (α < 1 indicates one query per 1/α
insertions). About 50% query keys are in the hash table (this ratio a�ects the I/O cost
since a successful query can terminate earlier). The number of levels k varies from 1 to 4.
In Table 8.2, we show the overall I/O costs, which are the weighted sums assuming two
typical values of the write-read ratio ω, 10 and 100.

We �rst look at the number of write transfers. When there is no query (i.e., the �rst
column, just inserting 1 million entries), the numbers of writes are consistent with our
analysis for insertions in Section 8.4.1.1. The only exception here is that cache can hold
a constant fraction of the elements, which batches the writes and reduces the number
of memory transfers. However, the relative trend in each column remains unchanged.
Namely, the number of writes always decreases as the increase of k regardless of the
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106 insertions, α × 106 queries where α is from 0 to 8, cache size is 10,000 cache-lines.

α 0 1/8 1/4 1/2 1 2 4 8

RT WT RT WT RT WT RT WT RT WT RT WT RT WT RT WT

k=1 1.35 1.17 1.44 1.18 1.52 1.19 1.69 1.21 2.02 1.24 2.68 1.27 4.00 1.31 6.64 1.34
k=2 0.85 0.79 1.06 0.84 1.23 0.87 1.54 0.91 2.09 0.96 3.11 1.00 5.07 1.03 8.94 1.05
k=3 0.76 0.72 1.08 0.80 1.32 0.85 1.73 0.90 2.44 0.95 3.76 0.99 6.31 1.02 11.32 1.05
k=4 0.70 0.67 1.11 0.78 1.40 0.82 1.89 0.88 2.74 0.93 4.30 0.97 7.33 1.00 13.31 1.03

Table 8.1: Numbers of read and write transfers of k-level hash tables with di�erent query/insert
ratios. Numbers of read and write transfers are divided by 1M.

The I/O costs of k-level hash tables with the same settings in Table 8.1.

ω = 10 ω = 100
α 0 1/8 1/4 1/2 1 2 4 8 0 1/8 1/4 1/2 1 2 4 8

k=1 13.0 13.2 13.4 13.8 14.4 15.4 17.1 20.0 117.9 119.3 120.5 122.7 125.8 129.9 134.8 140.5
k=2 8.8 9.5 10.0 10.7 11.7 13.1 15.4 19.5 79.9 85.1 88.4 92.8 97.7 102.9 108.2 114.4
k=3 8.0 9.1 9.8 10.7 11.9 13.7 16.5 21.8 73.1 81.4 85.8 91.3 97.0 102.7 108.7 116.3
k=4 7.4 8.9 9.6 10.7 12.0 14.0 17.4 23.6 67.9 78.6 83.8 89.6 95.5 101.3 107.7 116.1

Table 8.2: The I/O costs of k-level hash tables with di�erent query/insert ratios. The write-read
ratio ω are selected to be typical projected values 10 (latency, bandwidth) and 100 (energy). Results
are based on the numbers in Table 8.1. Numbers in red with underlines indicate the best choice
of k that minimizes the I/O cost in this setting, and numbers in blue indicate better I/O costs
comparing to the classic hash table implementation (i.e., k = 1).
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Figure 8.1: Relative I/O cost of k-level hash table with di�erent k . The I/O cost is divided by the
k = 1 case, so every data point below 1 indicates an improvement in such case. Numbers are from
Table 8.2.

ratio between queries and updates. The number of writes is reduced by 33%, 40% and 43%
when k = 2, 3, 4 respectively. Such improvement also shows up in the overall I/O cost in
Table 8.2.
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We note that more queries cause more reads, and larger k also leads to more reads.
Since these reads �ush the cache-lines, the numbers of writes in these cases also marginally
increase. The optimal choice of k is decided by the update/query distribution as well as
the write-read ratio ω. In general, more queries lead to worse performance with larger k ,
and larger ω prefers larger k . In Table 8.2, we underline the numbers indicating the best
choice of k in that speci�c setting. The experiment results indicate that picking k to be 2
or 3 is always a good choice when ω = 10, and 3 or 4 when ω = 100.

Wall-clock running time.

We also measure the actual running time of the previously stated operations on a
real machine. In the current platform with symmetric memory-access costs, the write-
read ratio is close to 1. Here we show that, the weighted sums of the I/O measures in
Table 8.1 almost match the actual running times shown in Table 8.3, when plugging ω = 1.
Therefore, it is reasonable to believe that, the I/O cost shown in Table 8.2 can reasonably
well project the performance for the future memory, when the bandwidths for reads and
writes become asymmetric. (The argument for energy consumptions holds independently
with this running time and other architectural issues.) Meanwhile, it is interesting to
point out that, when insertions are more than queries, using k-level hash table with k = 2
is actually faster even in the current platform.

Our implementation has a much lower I/O cost compared to separate chaining. We
run the same experiment using the STL unordered set (with the same hash function and
other setups), and our hash table is at least 3-4 times faster in all cases.

Insertion and deletion cases.

We also tested the performance of k-level hash table on deletions. We �rst insert 1
million elements and then remove them all. After each insertion or deletion, we query
α times. The other settings are the same as the non-deletion case. The results on the
numbers of read transfer and write transfer are shown in Table 8.4, and the overall I/O
cost with write-read ratio ω to be 10 and 100 are shown in Table 8.5.

From the results, we get almost the same trend as the non-deletion cases. Compared
to the classic implementation (i.e., k = 1), the overall number of write transfer is reduced
by 25%, 32%, and 36% when no queries are involved, and the improvement is slightly
decreased when more queries come in, since more read accesses �ush out the cache-lines.
We note that the number of read transfers required by a deletion is more than that for an
insertion, since in each deletion we need to locate the element in the hash table, which
requires to look up in most k hash table levels. Hence, compared to the non-deletion
cases, slightly smaller values for k are more preferable. The best choice of k in each case is
underlined and shown in Table 8.5. For smallerω = 10 (indicating bandwidth and latency),
the best choice of k varies based on di�erent query/update ratios, but k = 2 is always an
acceptable choice. When considering the energy consumption (ω ≈ 100), a larger k , like 3
or 4, is more desirable in all cases.
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Wall-clock running time (milliseconds), 106 insertions, α × 106 queries where α is from 0 to 8.

k 0 1/8 1/4 1/2 1 2 4 8

1 61 65 69 77 95 129 191 321
2 36 45 53 69 96 163 277 512
3 31 45 57 80 124 213 392 739
4 30 51 66 95 156 278 519 999

Table 8.3: Wall-clock running time (milliseconds) of k-level hash table with di�erent combinations
of k and query/insert ratios. Numbers in blue indicate a better performance comparing to the
classic implementation (i.e., k = 1).

1 million insertions then 1 million deletions, α times 2 million queries where α is from 0 to 4,
10,000 cache-lines.

k
0 1/4 1 4

RT WT RT WT RT WT RT WT

1 2.55 2.32 2.95 2.36 4.14 2.44 8.91 2.52
2 2.28 1.75 3.15 1.88 5.45 2.04 14.14 2.18
3 2.47 1.59 3.79 1.80 7.11 1.98 19.61 2.12
4 2.72 1.50 4.44 1.75 8.68 1.95 24.67 2.08

Table 8.4: Numbers of read and write transfers of k-level hash tables with di�erent
query/(insert+delete) ratios. Numbers of read and write transfers are devided by 1M.

The I/O costs of k-level hash tables with the same settings in Table 8.4.

k
ω = 10 ω = 100

0 1/4 1 4 0 1/4 1 4

1 25.8 26.6 28.5 34.2 235.0 239.4 247.6 261.4
2 19.7 22.0 25.9 35.9 176.8 191.6 209.6 232.0
3 18.4 21.8 26.9 40.8 161.4 183.6 205.1 231.4
4 17.7 22.0 28.2 45.5 152.3 179.6 203.5 233.1

Table 8.5: The I/O costs of k-level hash tables with di�erent query vs. insert/delete ratios. The
write-read ratio ω are 10 and 100. Results are based on the numbers in Table 8.4. Numbers in red
with underlines indicate the best choice of k that minimizes the I/O cost, and numbers in blue
indicate better I/O costs comparing to the classic hash table implementation (i.e., k = 1).

8.4.1.3 Conclusions

We proposed a new data structure, the k-level hash table, to implement unordered
set and map, that has the same space utilization compared to the classic open-addressing
hash tables. The key idea in the k-level hash table is to keep multiple instead of one level
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of hash tables. As a result, the algorithm uses fewer writes during resizings, at the cost of
more reads in other operations.

The best choice of k is decided by the ratio of updates and queries. Our experiment
shows that k = 2 always leads to a lower or similar I/O cost when the query/insert ratio
is no more than 8, compared to the classic k = 1 setting. For the ratio of write/read cost is
larger (like 100), larger values of k , like 3 or 4, are even more preferable than the k = 2
case.

8.4.2 Ordered Sets and Maps

The implementations of ordered sets and maps are based on some form of balanced tree
(or tree-like) data structure and, at minimum, support lookup, insertion, and deletion

in logarithmic time. Some set-set functions such as union, intersection, and di�erence

are also required in many scenarios.
One commonly-used data structure to maintain ordered sets and maps is the self-

balancing binary search tree (BST). Most languages and libraries use either AVL tree [5]
or red-black tree [39, 156] to implement them, while some other implementations of
weight-balanced trees [222] and treaps [24, 249] also exist. Here we �rst analyze the I/O
cost on some existing solutions.

8.4.2.1 I/O cost on BSTs

For simplicity, here we assume that the small-memory size is M = O(1). Locating
the key for a lookup, insertion or deletion requires to load and compare to Θ(logn) tree
nodes on the balanced binary search trees (BSTs), The I/O cost is Θ(logn), which is also
the lower bound of such operations.

For an insertion or deletion, we also need to modify the tree accordingly. In the
asymmetric setting, weight-balanced trees [222] are not a good option since we have to
update the subtree sizes all the way to the root. This update leads to Θ(logn) writes to
the large-memory per update. For the other types of BSTs, we show their I/O costs on
insertions and deletions individually.

Red-black trees. Red-black trees [39, 156] have the simplest update rules among these
balanced BSTs. With the classic rebalancing rules and careful implementation, it requires
only O(1) amortized time per update (insertion or deletion) after locating the key [267].
Also, red-black trees require no extra cost to update balancing information except for the
tree nodes involved in rotations (unlike the case in AVL trees). As a result, red-black trees
have an optimal amortized I/O cost Q = Θ(logn) per a lookup and Q = Θ(ω + logn) per
insertion or deletion on the (M,ω)-ARAM.

AVL trees. An insertion in AVL trees requires at most two rotations (a double rotation) [5].
Unlike the red-black trees however, we need to track and update the balance factors along
the path from the root to the modi�ed tree node. We now bound the number of updated
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balance factors to be a constant. If we store the height of the subtree in each tree node, the
di�erence of the two subtree heights can be checked in constant time. Since the number
of subtrees of height d in an AVL tree is no more than n/c bd/2c for a tree with n nodes
and some constant c > 1 [65], the number of increments of the counts for n nodes is∑

d≥1 d · (n/c
bd/2c) = O(n). On average, an insertion needs O(n)/n = O(1) writes.

The deletions of AVL trees is more complicated and Θ(logn) rotations can be applied
on every deletion. Amani et al. [20] recently showed that there exists such a sequence of
3n intermixed insertions and deletions on an initially empty AVL tree that takes Θ(n logn)
rotations. This instance indicates that the classic implementation of AVL trees has an I/O
cost Q = Θ(ω logn) per deletion in the worst case.

Treaps. A treap, also called as a randomized search tree [24, 249], is a Cartesian tree in
which each key is given a randomly chosen numeric priority, and the inorder traversal
order of the nodes is the same as the sorted order of the keys. The priority for any non-leaf
node must be greater than or equal to the priority of its children.

When inserting an element into a treap with n − 1 elements or removing an element
from n elements, The updated element only compares to the elements that each has a
higher priority than the other elements between this element and the updated element.
The number of such comparisons is

∑
j∈[n]\{i} 1/|i − j | = O(logn) in expectation4, where i

is the position of the updated element in the total order of n elements [249].
The number of rotations can be computed similarly. For an insertion, a rotation

happens once the inserted element has a higher priority than all elements in the entire
subtree. Again if we assume the inserted element ranked i-th in the total order, the
probability that it rotates up for the j-th ranked tree node is 1/|i − j |2 (i.e., the j-th element
has higher priority than all elements between, and lower than the priority of the inserted
node). The overall expected number of rotations per insertion is

∑
j∈[n]\{i} 1/|i − j |2 = O(1)

in expectation. We can show the constant writes per deletion accordingly.
We note that unlike an AVL tree or a red-black tree, a treap does not require updates to

the balancing criteria, which means that we never need to modify the information in each
tree node after it is inserted. As a result, an insertion, deletion or query on a treap requires
O(logn) reads whp and an insertion or deletion requires O(1) writes in expectation.

8.4.2.2 Join-based Implementation

Blelloch et al. [65, 261] recently proposed a framework that supports fast bulk oper-
ations. This framework supports e�cient single or multiple insertions or deletions on
AVL trees, red-black trees, treaps and weight-balanced trees, as well as union, intersection
and set di�erence on two BSTs (of the same kind). This framework is very concise: each
function can be implemented within a dozen lines of code and are independent with the
speci�c balancing criteria in di�erent types of BSTs. The functions rely on only one helper

4Also with high probability.
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operation Join [3, 4, 65, 258, 267], which deals with the tree balancing and can be treated
as a black box. Under this framework, the implementation of these functions is highly
e�cient and parallelized.

Join(TL,k,TR): The Join function takes two balanced BSTs (of the same balancing
schemes) TL and TR and a key k , and returns a new balanced BST for which the in-order
values are a concatenation of the in-order values of TL, then k , and then the in-order
values of TR . In order to keep the ordering in the tree nodes, the Join function assumes k
to be greater than all keys in TL and smaller than all keys in TR . Join handles all issues
related to rebalancing, and is the only function that knows about and maintains the
balance invariants. The Join algorithms for each of the balancing schemes are given
in [65]. Meanwhile, Join is the only function that writes to the memory. More speci�cally,
all operations that change the attributes of a tree node (e.g., linking to new children,
height-maintaining for AVL or red-black trees, color-changing in red-black trees, etc.)
are restricted in Join. This property also greatly simpli�es the counting of writes in our
simulator and makes the optimizations to reduce writes easier.

Split(T ,k) → (TL,TR): Split can be viewed as the inverse of Join that takes a
balanced BST and a key k , and splits the tree into two smaller trees TL that contains keys
smaller than key k , and TR for keys larger than key k . Split can be trivially implemented
using Join by a recursive approach.

Bulk Operations. Using Join as a black box, either single or bulk updates can be
implemented simply and generally across di�erent balancing schemes. As an example,
we give the algorithm of taking the union of two BSTs (or sets/maps) in Algorithm 14.
The algorithm is based on divide-and-conquer: T1’s root is used to partition all elements
in two trees into two disjoint set, one with T1’s left subtree and Tl , and the other with T1’s
right subtree and Tr . Then we union the two subproblems recursively and independently,
and join the two output trees usingT1’s root. The correctness and running time are shown
in [65].

There are several bene�ts of using this framework for our implementation and experi-
ment. First, as we just explained, di�erent updates have the uniform code on di�erent
types of BSTs (except for the Join), which justi�es the performance by the di�erent bal-
ancing criteria for the BSTs, instead of the di�erent implementations for di�erent trees.
Second, although the joined-based implementation operates on two trees, one can check
that when one tree contains only a singleton element, the algorithm runs the same as
the algorithm of a single insertion on each type of the BSTs. The deletion can also be
implemented by taking the di�erence by the original tree and a tree with a single element.
As a result, the joined-based implementation is strictly more powerful. Lastly, we can
also run interesting experiments on more operations like bulk updates, and compare the
results on di�erent BSTs.
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Algorithm 14: The union function
1 Function Union(T1, T2)
2 if T1 = Nil then return T2
3 if T2 = Nil then return T1
4 〈Tl ,Tr 〉 ← Split(T2, T1’s root)
5 return Join(T1’s root, Union(T1’s left subtree, Tl ), Union(T1’s right subtree, Tr ))

8.4.2.3 Experiments

In this section, we show our experimental results on the counts of read/write transfers
for di�erent settings. Due to the page limit, our experiment mainly focuses on the
performance of various binary search trees (AVL trees, red-black trees, and treaps) with
di�erent batch sizes.

In the experiment, we �rst insertm = 106 million integers as keys to a tree T (empty
at the beginning), drawn from a uniform distribution from 32-bit unsigned integers, and
then delete them in a uniformly random order. The insertion and deletion are grouped in
batches of size s , indicating that the insertions are dm/se unions on the main tree T with
trees of size s . The deletions are also batched in dm/se bulks of size s . In our experiment,
we construct a smaller tree for each batch and then call the union or di�erence function
we just mentioned. We note that if all update elements are given in advance, we can also
sort them and put them in a list. Since this is a more speci�c case, our experiment is based
on the tree-tree updates.

The node size in all di�erent types of tress is 16 bytes. Each tree node stores four 4-byte
data blocks to hold the key, the left and right pointers, and the balancing information.
The cache contains 10,000 cache-lines, similar to the setting for unordered sets.

Table 8.6 shows the experimental results on BSTs with di�erent balancing schemes
with various batch sizes. The numbers are read and write transfers per update.

Batch size 1.

We �rst look at the case corresponding the single insertions and deletions, and the
results are shown in Figure 8.2 and 8.3. Regarding the number of writes, treaps show the
best performance. This is easy to understand since treaps do not modify any information
for rebalancing during insertions/deletions. The structure of treaps is deterministic once
the priorities are decided. The priorities are set before the merging (deleting), and never
changed later. For such reasons, treaps require much fewer writes per update compared
to AVL and red-black trees.

The AVL and red-black trees maintain the balancing information on each tree node
that needs to be updated when the subtree height changes. Then more writes are used due
to these updates. Between these two types of BSTs, red-black trees require more writes,
since there are also some color �ips on the siblings of the updated tree path. Such �ips are
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(a) Insertion / Union

Batch AVL RB-Tree Treap ω = 10 ω = 100
Size RT WT RT WT RT WT AVL RB-T Treap AVL RB-T Treap

1 11.28 2.83 12.00 3.48 16.61 1.79 39.6 46.8 34.5 295 360 196
1k 12.67 2.89 13.29 3.66 17.18 1.89 41.6 49.9 36.1 302 379 206

10k 6.18 2.68 6.40 3.01 7.33 1.85 33.0 36.5 25.8 274 308 192
100k 2.54 1.84 2.54 1.86 2.56 1.66 20.9 21.2 19.2 186 189 169

(b) Deletion / Di�erence

Batch AVL RB-Tree Treap ω = 10 ω = 100
Size RT WT RT WT RT WT AVL RB-T Treap AVL RB-T Treap

1 13.83 2.72 16.17 5.17 17.85 1.98 41.1 67.8 37.7 286 533 216
1k 15.11 2.79 17.65 5.21 18.52 2.08 43.0 69.8 39.3 294 539 227

10k 8.17 2.69 10.43 3.44 9.09 2.06 35.1 44.9 29.7 278 355 215
100k 3.22 1.99 3.54 2.43 3.23 1.78 23.2 27.8 21.1 203 246 182

(c) Average Tree Depth

AVL RB-Tree Treap

19.39 19.62 26.48

Table 8.6: Numbers of read and write transfers and asymmetric I/O costs of di�erent BSTs with
various batch sizes. The numbers are divided by 106 (i.e., per inserted/deleted elements). The
write-read ratio ω are selected to be typical projected values 10 (latency, bandwidth) and 100
(energy).

extremely cheap in the classic symmetric setting but will cost much in the asymmetric
setting when writes become expensive.

The fewer writes for treaps come together with the extra cost on more reads. Treaps
are less strictly balanced compared to the other two trees, which saves the writes to
maintaining such balancing, but leads to larger average tree depth (shown in Table 8.6(c),
about 30% deeper than the other trees). The average depths for AVL and red-black trees
are close to optimal, which is 18.96 for a perfectly balanced tree with 106 nodes. Because
of the shallower average depth, the number of reads required in either updates or queries
is much small on these two trees.

Larger batch sizes.

We now discuss how does the batch size a�ect the numbers of read and write transfers.
The numbers are given in Table 8.6.
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Figure 8.2: The number of read and write transfers of di�erent BSTs on single insertion/deletion.
Data are from the �rst rows in Table 8.6(a) and 8.6(b).
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Figure 8.3: The I/O costs of di�erent BSTs on single insertion/deletion. Data are from the �rst
rows in Table 8.6(a) and 8.6(b).

.

When the batch size increases but remains small, the reads and writes almost remain
the same and slightly increase. When the batch size is smaller, the elements in a batch
and the paths to visit them are always loaded into the cache once and always stay there.
Therefore, the di�erent batch sizes less than 100 do not a�ect the performance much.

The peak I/O cost per update is around batch size 1000, as we show here. In such case,
the overall footprint of a batch update no longer �t into the cache, which may lead to two
loads per tree node (once in the split phase and the other in the join phase).

However, the cost turns down when the batch size grows over 1000. The reason is
that, the number of tree nodes visited during each bulk update is Θ(s log(m/s)) (recall
that s is the bulk size), which is also the time complexity [65] of this process. Namely, we
need to visit O(log(m/s)) tree nodes per inserted node, so we touch fewer nodes as s goes
up. Compared to the single updates, each node on multiple tree paths5 is only looked at

5Usually on the top part of the tree. For example, every single insertion visits the root node.
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and compared with once in the joined-based bulk updates, and this is from which the
improvement comes. Since the top levels in the trees are visited more frequently, they
usually stay in the cache. As a result, the saved memory accesses for small batch size are
hidden by the function of the cache. However, when the batch size keeps growing and
exceed the cache size, then the saved memory accesses lead to lower reads, as shown in
Table 8.6.

The number of writes also decreases for larger batch sizes in AVL and red-black trees,
because of the previously stated reason. When the elements are inserted or deleted one
by one, the balancing factor of a node on by multiple tree paths can be updated multiple
times. On the other hand, when the tree is updated in a bulk, such information will
be updated by at most once at the join point, which saves the number of writes to the
asymmetric memory. However, since treaps do not need to update such information, we
cannot observe a signi�cant drop-o� on writes for larger batch sizes.

Queries.

We have not explicitly tested the I/O costs for queries, since most queries (like �nding
or checking a key, locating the k-th element) have the same memory access pattern as
the insertions. The only di�erence is that they do not modify the tree, so there will be
no writes. These updates may �ush the dirty cache lines, and thus slightly increase the
writes. Our experiment shows that if we have the same number of queries and insertions,
the number of writes increases by no more than 5%, which is insigni�cant. Therefore, we
believe that we can ignore such changes in the most cases.

8.4.2.4 Conclusions

In this section, we theoretically analyze the asymmetric I/O costs of di�erent types of
binary search trees. We show that red-black trees, the insertions for AVL trees, and treaps
in expectation have an optimal asymptotic cost (Θ(ω + logn) per update).

We then test the actual performance by conducting experiments based on the join-
based implementation, and show that treaps have the best update cost in most cases. The
advantage comes from a looser balancing constraint, which also leads to a larger tree
depth and query costs. As a result, AVL tree will be a better option if the queries are much
more than the updates.

8.5 Sorting

Sorting is one of the most fundamental algorithms and building blocks in algorithm
design and programming. In this section, we analyze, performance engineer and experi-
ment the performance of the existing sorting algorithms in the asymmetric setting, which
include quicksort, mergesort, BST sort and samplesort.
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8.5.1 Algorithms and Implementations

We discuss four sorting algorithms, which are either used as the state-of-the-art
implementations or have e�cient theoretical guarantees on asymmetric I/O cost. All four
algorithms requires O(n logn) (optimal) comparisons.

Quicksort. Quicksort is one of the commonly-used sorting algorithms in both sequential
and parallel setting. It picks a random pivot (or the median among several random samples)
that partitions the array into three contiguous subsets containing the input values that are
less than, equal to, and larger than the pivot respectively, based on a scan-based approach.
Then two recursive calls are made to the less-than and larger-than subsets, until the base
case (we set it to be 16 elements) is reach and the algorithm switch to an insertion sort. In
our implementation, the pivot is selected to be the median of three random positions.

We now analyze the I/O cost of quicksort. Once the subproblem size is no more than M ,
the small-memory size, the subproblem will �t into the cache and no more read and write
transfers are required for this subtask thereafter. The I/O costQ is thusO(ωn/B ·log(n/M)),
where the number of memory transfers to partition the array in the same recursive level
add up to O(n/B) and whp the algorithm requires O(log(n/M)) levels to reach the subtask
with size no more than M .

Mergesort. Mergesort is another textbook sorting algorithm that is stable and easy to
parallel. The implement of mergesort has di�erent versions, and here we discuss an
I/O-e�cient version. The algorithm partitions the array into two equal-length parts and
recursively sort every subproblem individually. After the computation of both subtasks is
�nished, a scan-based process merges the two sorted subsequences into the �nal output.
To implement the algorithm e�ciently, we use the rotating arrays so that every element
is moved only once in one merge process. An extra round of data copy is applied if the
latest merge leaves the sorted result in the temporal array.

Similarly to quicksort, no further memory transfers are used in subproblems with size
no more than M . Therefore the I/O cost Q of mergesort is also O(ωn/B · log(n/M)). More
speci�cally, Q = (1+ω)n/B · dlog2(n/M)e when dlog2(n/M)e is even, and otherwise there
is an extra (1 + ω)n/B.

BST sort. BST sort treat the input as an ordered set and all elements are maintained in a
binary search tree. Then the in-order traversal of the tree is the sorted output. The BST
can either be balanced, or does not apply any rotation but the elements are inserted in
a random order. Both cases give I/O cost of O(n logn + nω) on n input elements. It is
typically used when the input is adaptive: we can insert and delete elements dynamically,
while the sorted result are maintained at any time. In this case, some balancing schemes
are required if the insertions and deletions are biased.

In our implementation elements are inserted in a random order, which is done in two
phases: the �rst phase generates n uniformly random integers a1, · · · ,an between 1 to n
using some hash functions, and inserting the ai-th elements into the tree with no rotations
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(check whether this element is already inserted before the actual insertion); then in the
second phase we insert every uninserted element into the tree in the input order. This
guarantees that whp the gap between the elements inserted in the �rst phase is O(logn)
in the output order. Hence the tree depth is O(logn) disregarding any input order, and
thus inserting one element requires O(logn) reads and two random writes (the boolean
�ag that this node is inserted, and to change the parent’s pointer).

Samplesort. Samplesort is a class of sorting algorithms that are based on divide-and-
conquer paradigm with multiple pivots and especially commonly-used in the multicore
setting. To minimize the I/O cost and number of memory transfers, in this paper, we
discuss a cache-aware implementation of samplesort.

Given the cache size M and block size B, if the input size is smaller than M then we
simply call quicksort. Otherwise, we pick M random samples from the input, sort the
samples, and pick the B-th, 2B-th, ... , (M − B)-th samples as the pivots

6 and they form
M/B buckets. Then for each input element, we binary search (an implicit search tree) its
associated bucket. Finally, we again samplesort the elements in each bucket individually
and recursively.

The algorithm partition the input intoM/B almost equal-size subproblems withO(n/B)
read and write transfers. The I/O cost of this algorithm on average is O

(ωn
B

logM
B

n

B

)
.

The number of write transfer of samplesort in our implementation is highly optimized
so that one round of samplesort only requires three sequential reads and one sequential
write per input element. After picking the pivots, we �rst loop over the input to binary
search the associate bucket of each element. However, we do not store this value; instead,
we only modify the counters of each bucket. After that, we have known the number of
elements in each bucket, and we apply a pre�x sum compute the o�set of each element.
Finally, all elements are distributed to their associated buckets based on the o�sets. The
algorithm only requires three reads and one write for each element, and all other operations
are all within the cache. Notice that after one round, the data are stored in another array,
so the �nal results will be moved back to the original array if they happen to be in the
other one.

There do exist other sorting algorithms like heapsort, shellsort, bitonic sort, etc. Their
performances regarding I/O cost however, are less competitive against the previous sorting
algorithms due to either more work or ine�cient memory-access pattern. We did not
compare with previous work in [273] in this paper, since they are not optimal in terms of
comparisons and have tunable parameters in the algorithm, that makes the comparison
among them inconclusive. Instead as a very �rst paper on this topic, we focus on simple

6If M < n/B then we pick n/B samples, and this will happen only once whp in the algorithm. In
practice we replace M to be M/c ′ for some small constant c ′ > 1 to ensure everything that should
be in the cache is actually in the cache.
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Algorithm I/O cost

Quicksort O(ωn/B · log(n/M))∗

Mergesort O(ωn/B · log(n/M))
BST sort O(n logn + nω))

Samplesort O(ωn/B · logM/B(n/B))∗

Table 8.7: List of I/O costs on sorting algorithms. (*) indicates the bounds hold with high probability
(1 − n−c for arbitrary c > 0).

algorithms and draw interesting conclusions that can also be useful in implementing these
more complicated approaches in the future.

8.5.2 Experiments

In the experiment we test our implementations of the four sorting algorithms on the
numbers of read and write transfers with various cache sizes. We set the input into two
categories: one that we indeed move the data, and the other that the algorithm sorts the
indirect pointers pointing to the data �elds. The �rst case is when we are sorting integers,
real numbers or any structures with small and �xed size like graph edges, key-value
pairs of integers and/or pointers, etc. The second case is when the input is irregular, like
strings, texts, images, or any structure that is either large or the sizes vary among di�erent
elements. In this case, moving the data is expensive, so we will sort and output a list of
indices pointing to the actual data �elds. Both cases are widely used in practice.

Performance on sorting �oat-point numbers. We now show the experiments that
perform data movement. We sort 10 million random i.i.d. double-precision �oat-point
numbers and in this case the block size B = 8. The numbers of comparisons and read
and write transfers of four algorithms are summarized in Table 8.8. The I/O costs of the
algorithms for two typical values of ω (10 and 100) are visualized in Figure 8.5.

Both quicksort and mergesort require about log2(n/M) rounds, which is 8 to 16, to
fully �t the subproblems into the small-memory. Both algorithms require approximately
the same number of writes, since quicksort is in-place while mergesort is not and has
double memory footprint, but the partition of quicksort is not exactly even. These factors
o�set each other. However, the read transfer are doubled in mergesort, and in practice
causing its less e�cient practical performance. Mergesort requires fewer comparisons,
but this does not lead to a signi�cant di�erence in modern architecture, compared to the
I/O cost to the main memory.

BST sort, as we analyzed theoretically, requires about log2(nB/M) reads and two
random writes plus some small cost on initializations. BST sort uses less writes compared
to quicksort or mergesort when 2B < log2(n/M), which is hard to be satis�ed given the
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Cache Quicksort Mergesort BST sort Samplesort

Size RT WT #comp RT WT #comp RT WT #comp RT WT #comp

100 2.06 2.04 39.49 4.01 2.00 24.11 24.49 2.04 43.76 1.60 0.82 63.05
1000 1.58 1.57 39.49 3.11 1.56 24.11 19.39 2.04 43.76 1.01 0.51 56.63
10000 1.11 1.10 39.49 2.25 1.13 24.11 14.17 2.03 43.76 0.50 0.25 52.47

Table 8.8: Number of read and write transfers of di�erent sorting algorithms on 107 random i.i.d.
double-precision �oat-point numbers. Values in the table are numbers of read and write transfers
and comparisons per input element. Cache size is measured by the number of 64-byte cache-lines.

Cache Quicksort Mergesort BST sort Samplesort

Size RT WT #comp RT WT #comp RT WT #comp RT WT #comp

100 19.83 1.14 37.68 17.04 1.02 23.30 46.24 1.93 40.93 6.19 0.79 35.97
1000 15.57 0.91 37.68 13.42 0.81 23.30 35.30 1.92 40.93 3.93 0.45 34.34
10000 11.12 0.67 37.68 8.96 0.56 23.30 24.65 1.90 40.93 2.38 0.38 34.43

Table 8.9: Number of read and write transfers of di�erent sorting algorithms on 2 × 106 indices
pointing to structures with average size of 64 bytes. Other setup is the same as that in Table 8.8.
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parameters of the hardware. BST sort thus will still be less e�cient to sort small and
�xed-structure entries in future memories.

The experiment result of samplesort follows our analysis as well: each round of
sample sort approximately requires three sequential reads and one sequential write, and
the algorithm uses roughly dlogM/B(n/B)e rounds to reach the base case. Other costs
(sampling and sorting pivots, transposing the o�sets, etc.) are negligible.

Based on our previous experience, after highly optimizing the performance in the se-
quential setting, samplesort is slightly slower than quicksort (but much faster in multicore
parallelism) even though the I/O cost of samplesort is lower. We believe the reason to
be that, samplesort does not explicitly utilize L1 and L2 caches (the binary search, o�set
transpose, etc.) so most small-memory accesses are toward L3 cache. The memory access
pattern for quicksort, however, is mostly sequential scanning, which is highly optimized
(like by prefetching) in the current architecture. Since the write costs will signi�cantly
increase for future non-volatile main memory, we project that samplesort will be more
e�cient in this setting, since the I/O cost will very likely be the bottleneck of all these
sorting algorithms (similar to the existing multicore parallel setting).

Sorting larger entries. As shown previously, although BST sort requires only at most
random two writes per insertion, this cost is still signi�cant compared to other sorting
algorithms that have better spatial locality in memory access. However, when the size of
each input entry becomes larger, each cache-line holds fewer entries and the number of
write transfers per entry increases.

We run the experiment with a �xed number of inputs (107) and cache-lines (1000),
and varies the size of each input entry from 8 bytes to 64 bytes. The results are shown in
Table 8.10. Based on the analysis in Section 8.5.1, for quicksort, mergesort, and samplesort,
the I/O cost is proportional to the entry size. However, BST sort is mostly not a�ected.
The number of reads just marginally increases since the cache can hold less top-tree
levels, and slightly more writes are required since the overall footprint of the search tree
increases as the growth of the entry size. From the results, we can see that when the
entry size becomes at least 64 bytes, BST sort outperforms all other algorithms in the
asymmetric setting.

Performance on sorting via pointers. In this experiment, we sort 2 million random
strings that the characters are stored contiguously in the memory with an average size of
64 bytes. The input also contains 2 million 8-byte pointers to the strings, and we only
sort the pointers.

The implementations of quicksort, mergesort, and BST sort are identical except that
each comparison requires two indirect addresses to locate the data �eld. Samplesort, since
it is cache-aware, requires two modi�cations: �rst, no oversampling for the pivots since
now each pivot requires one or two cache-lines for its data; second, instead binary-search
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Entry Quicksort Mergesort BSTsort Samplesort

Size RT WT RT WT RT WT RT WT

8 1.58 1.57 3.25 1.63 19.39 2.04 1.01 0.51
16 3.26 3.17 7.00 3.50 21.11 2.29 2.09 1.08
32 6.58 6.13 15.00 7.50 23.04 2.79 4.25 2.24
64 13.18 11.58 32.00 16.00 25.35 3.79 8.91 4.87

Table 8.10: Numbers of read and write transfers of di�erent sorting algorithms with various data
sizes (bytes). The input size is 107 and the cache contains 1000 cache-lines.

the bucket of each element twice, we now store the bucket label after the �rst search to
avoid the second search (roughly double the writes while half the reads).

The numbers of read and write transfers are reported in Table 8.9 and visualized for
two typical values of ω (10 and 100) in Figure 8.5. Writes of quicksort, mergesort, and BST
sort stay approximately the same as the previous experiment (the decrease in values is
due to fewer input elements). Reads are now increased by about log2(nB/M), the cost of
locating the data �elds.

For each round in sample sort, each element now requires one random read, three
sequential reads and two sequential writes (i.e., 1.375 read transfers and 0.25 write transfer).
Also, one extra random read per element is in the base case to load the data into the cache.
The algorithm requiresO(logM/B(n)) rounds to reach the base case, and in the experiment,
this round number is approximately 3, 2 and 1 for three cache sizes. Finally, output needs
to be moved back when reaching the base case in an odd number of rounds.

As what we understand, the wall-clock performance of samplesort when sorting
pointers on current architecture is already faster than the other sorts. This is because
samplesort requires fewer I/Os and comparisons, and all algorithms randomly access the
memory so techniques like prefetching cannot help. This gap will be even enlarged in
future NVMs when the write costs being exaggerated.

8.5.3 Conclusions

Based on our implementations and experiments, the following conclusions and the
projection of the techniques for future non-volatile main-memories can be drawn.

Samplesort. Samplesort generally requires fewer I/Os than other sorting algorithms.
On existing hardware, since samplesort does not explicitly optimize for L1/L2 cache,
its sequential performance is slightly slower than quicksort. However, in the multicore
parallel setting, samplesort is always the fastest due to its e�ciency on I/O cost. We
predict that samplesort will play a more signi�cant role with the future hardware even in
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the sequential setting, because of the lower number of accessing to the large asymmetric
memory and the asymmetry of bandwidth and energy on the new memories.

Sorting indirect pointers. The advantage of samplesort will be enlarged when sorting
via pointers. This is because samplesort requires fewer rounds to �nish, and therefore
it uses fewer reads, fewer writes, and fewer comparisons compared to other algorithms.
This also matches the observation on the existing symmetric setting that samplesort is
more e�cient on wall-clock performance.

BST sort. Although BST sort only requiring constant writes on large-memory per update,
it is still ine�cient compared to other approaches when sorting integers or �oat-point
numbers because of its lacking on utilizing the cache-lines. However, when sorting entries
with at least 64 bytes (i.e., a cache-line size), the I/O cost of BST sort outperforms the rest
three algorithms.

8.6 Graph Traversal Algorithms

We now provide the full version of the graph-traversal algorithms in this paper.
We discuss two of the most commonly-used graph-traversing algorithms: Breadth-�rst
search (BFS), and Dijkstra’s Algorithm. We show that with appropriate implementations,
these algorithms can write much fewer to the main memory, comparing to the classic
implementations.

Throughout this section we assume the input graph G = (V , E) contains n = |V |
vertices andm = |E | edges.

8.6.1 Breadth-First Search

Breadth-�rst search (BFS) is an algorithm for graph traversing or searching. It starts
at the source node, which is an arbitrary node of a graph, and explores the vertices with
respect to the distances (the number of hops) from the source node. BFS is commonly-used
in computing single-source shortest paths on unweighted graphs, as a subroutine for
graph radii estimation, eccentricity estimation and betweenness centrality, and as a basic
building block for other graph algorithms like graph connectivity, reachability, bridges,
biconnected components, and strongly connected components. In this paper we focus
on the most basic application: shortest paths on undirected graphs, and the techniques
discussed here can apply to many other applications.

8.6.1.1 The Classic Implementation

Given a graph G = (V , E) with n vertices andm edges, the classic implementation of
BFS keeps a queue with size n, and an array of boolean �ags with size n indicating that
each vertex is visited or not during the search. This implementation requires at most 2
writes for each vertex: one sequential write for adding it to the queue and one random
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access for changing the �ag of this vertex. Meanwhile, searches along an edge to an
already visited vertex require no writes. The overall I/O cost of BFS Q(n,m) = O(ωn +m)
(Chapter 5).

This bound is asymptotic optimal for arbitrary graphs, since the output of BFS, the
shortest-path tree, has size O(n). However, a number applications (e.g., s-t shortest-path
or connectivity, graph radii estimation or eccentricity estimation) have output size O(1),
which allow techniques utilizing the small-memory and reducing the number of writes.

8.6.1.2 BFS Implementation using Rotating Arrays

The rotating arrays are used in many algorithms to reduce the space requirement.
For example, the diamond DAG computation in the longest common subsequence (LCS)
problem only requires storing two consecutive columns (or rows) at any time during the
dynamic programming process, since each DP value only depends on three other nearby
vertices in the diamond DAG. The algorithm maintains two arrays each with the size of
either input string: one to hold the results in odd columns (rows) while the other for the
even ones. We call this structure the rotating arrays since the two arrays are rotating and
holding computed and uncomputed values. They only require temporal (cache) space of
one dimension although the nodes in the entire DAG have two dimensions.

Here we observe that BFS on undirected graphs can apply a similar approach: instead
of keeping a queue and a global array of boolean �ags with size n, we maintain separate
queues, each corresponding to a speci�c frontier (i.e., the set of vertices with the same
distance to the source). This is because, during the BFS on undirected graphs, the outgoing
edges from the i-th frontier can only reach the vertices in either the (i − 1)-th frontier or
the (i + 1)-th frontier. Otherwise, assume an edge reaches a vertex in the j(< i − 1)-th
frontier, then the vertex in j-th frontier will visit this vertex in (j + 1)-th frontier. As
a result, when processing the i-th frontier, we only need to keep three frontiers with
distance i − 1, i and i + 1.

Since each frontier is separately kept and all vertices in one frontier have the same
distances, we no longer need to keep the relative orders of the elements within each
frontier. We hence directly use an unordered set to maintain each frontier. Since only
three frontiers are useful during the BFS process, we also only allocate and keep three
unordered sets and their roles rotate among the previous, the current and the next frontier.

The 2-level hash table introduced in Section 8.4.1.1 works perfectly well here since we
have no control of the frontier sizes, which can be either greater or smaller than previous
ones. For each frontier, we loop over all vertices in the set, and for each outgoing edge, if
the other endpoint is not in either of the three unordered sets then it is added to the next
frontier. Therefore, the operations to the sets include lookups and insertions. We do not
explicitly delete the sets. Instead, when the searching of one frontier is �nished, the new
next frontier will reuse this space of the previous frontier.
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8.6.1.3 Bidirectional Search

This previous implementation based on rotating arrays can greatly reduce the number
of write transfer when the frontier size is much smaller than the number of vertices,
like grids, meshes, roadmaps, etc. For other graphs with larger frontier size and smaller
diameter (e.g., real-world networks that follow power law), I/O cost is not improved
signi�cantly. However for these graphs, the average distance between every pair of
vertices is usually very small, and this is called the “small-world phenomenon” [277].

To utilize this property, we employ bidirectional breadth-�rst search on computing
the s-t shortest path. Assuming the distance between this pair of query vertices is d , then
the search from each direction will only visit the vertices within distance dd/2e. On these
power-law graphs, the frontier size grows exponentially on the �rst several steps until
most of the vertices are reached. The number of vertices on the top-half levels in the
shortest-path tree is therefore far less than n. This di�erence however, is negligible on
graphs with bounded frontier size, since the distance between a random pair of vertices is
large expectedly, and the bidirectional search eventually reaches about the same amount
of vertices unless d is much smaller than the graph diameter.

To implement bidirectional search e�ciently, we also use three rotating arrays for the
search process. The extra detail here is that, the source, destination, and all intermediate
vertices are put together in the same sets, and use one bit (the sign bit) to identify if the
vertex is by the search from the source or from the destination. We only keep three instead
of six sets, which reduces the number of read transfers approximately by a half.

8.6.1.4 Experiment

In the experiment, we examine whether and how the new algorithms we just discussed
improve the I/O cost. We implement four versions of breadth-�rst search: classic and
bidirectional search with and without using rotating arrays. The experiment is run on 8
graph instances with various cache size.

Graph instances. We use graphs of various types from the SNAP datasets [199] as the
input of the algorithms. The graphs include the road networks in Pennsylvania and Texas
(real-world planar graphs), the web graphs of the University of Notre Dame and Stanford
University, the DBLP collaboration network, and the Youtube online social network (4
real-world networks). In the case of web graphs, each edge represents a hyperlink between
two web pages. We also use synthetic graphs of 2D and 3D grids. For each of the graphs
used, the numbers of vertices and edges are given in the table below. If a graph does not
come equipped with weights, we assign to every edge a random integer between 1 and
10, 000. The graphs we used are relatively small due to the overhead in our software and
hardware simulator, but we adjust the cache size accordingly.

Overall performance. The numbers of read and write transfers on 8 graph instances
with various cache size are given in Table 8.11. Their weighted I/O costs are given in
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Type Graph # Vertices # Edges
Grid: 2D 1M 3.96M

Sparse Grid: 3D 1M 5.94M
Graphs Roadmap: Pennsylvania 1.09M 3.08M

Roadmap: Texas 1.39M 3.84M
Webgraph: Notre Dame 325K 2.20M

Social Webgraph: Stanford 281K 3.98M
Networks DBLP collab. network 317K 2.10M

Youtube network 1.13M 5.98M

Table 8.12 considering two typical values ofω, and visualized (merged into two categories)
in Figure 8.6.

To better understand the performance of di�erent implementations, we also count
various statistics of the searching including the depths and frontier sizes, and the results
are generalized in Table 8.13.

Unidirectional search. Indicated in Table 8.11, classic BFS requires no more than one
sequential write (pushed into the queue) and one random write (marking the distance)
per vertex. The random write can be avoided if the associated cache line is cached, so
better locality of vertex indices of some graphs (roadmaps and NDU webgraph) and larger
cache size reduce writes per vertex. The algorithm also reads the edges of each vertex and
checks whether the other endpoint is visited or not, which is also a�ected by the edges
per vertex and the locality of vertex indices.

For the implementation using rotating arrays, the key factor is whether the frontier
�ts into the cache. Shown in Table 8.13, the sparse graphs (grids and roadmaps) have
smaller frontier sizes, so as long as the cache can hold each of them, the writes are largely
minimized. This is also true for reads since checking is always in the hash table. However,
once the frontier is larger than the cache size, then each insertion to the hash table now
becomes a random write and can hardly be cached because of the hash function. The
reads are increased even more, since checking whether a vertex is visited can lead to at
most 6 cache misses: three rotating arrays each with 2 levels. Summarized in Figure 8.6,
the I/O cost is largely improved using the rotating arrays when frontiers �t into the cache,
but deteriorates when not.

Bidirectional search. The I/O performance of classic bidirectional BFS is similar to
the classic unidirectional BFS since they essentially search in a similar pattern. The
bidirectional search requires fewer reads and writes since it strictly searches fewer vertices,
especially in social networks since these graphs have smaller diameters and the two
searches usually meet earlier before the majority of the vertices are visited.
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Algorithm Classic BFS BFS using RA

Cache Size 500 2000 10000 500 2000 10000

RT WT RT WT RT WT RT WT RT WT RT WT

2D Grid 18.47 6.17 17.60 6.01 10.88 4.59 8.75 0.84 6.52 0.16 6.20 0.01
3D Grid 19.38 5.45 16.42 5.31 13.51 4.51 88.24 4.26 31.03 2.01 6.39 0.38
PA Roadmap 8.73 2.78 8.07 2.54 2.43 1.05 29.61 2.95 5.37 0.65 1.26 0.02
TX Roadmap 6.79 2.16 6.01 1.91 1.95 0.85 23.45 2.29 4.32 0.50 1.00 0.02
Stan Webgraph 39.75 3.97 27.11 3.75 9.63 1.48 232.09 5.99 150.70 4.74 35.19 2.10
NDUWebgraph 3.47 1.04 3.02 0.97 2.52 0.77 84.67 4.80 58.91 3.91 18.33 1.73
DBLP Network 19.70 5.75 15.43 5.07 6.85 1.68 140.01 7.34 104.12 6.27 37.67 3.20
Youtube Network 13.23 2.47 9.64 2.29 5.63 1.84 91.70 6.77 71.98 6.39 39.95 5.08

Algorithm Classic Bidirectional BFS Bidirectional BFS using RA

Cache Size 500 2000 10000 500 2000 10000

RT WT RT WT RT WT RT WT RT WT RT WT

2D Grid 18.14 4.97 17.61 4.94 9.39 4.61 7.60 0.55 4.94 0.13 4.69 0.01
3D Grid 11.66 3.08 10.52 3.06 9.47 2.98 38.24 1.97 8.80 0.69 2.90 0.09
PA Roadmap 7.87 3.19 7.58 3.09 3.37 1.60 27.00 2.62 4.25 0.43 1.06 0.02
TX Roadmap 5.31 2.30 5.03 2.19 1.79 1.06 11.12 1.18 2.30 0.21 0.60 0.01
Stan Webgraph 4.70 1.38 4.24 1.37 2.74 1.29 7.32 0.84 3.00 0.47 0.63 0.13
NDUWebgraph 0.80 0.70 0.77 0.70 0.74 0.68 2.63 0.43 1.12 0.28 0.16 0.06
DBLP network 1.40 1.01 1.29 0.99 1.05 0.89 1.33 0.25 0.37 0.12 0.12 0.04
Youtube network 0.74 0.68 0.71 0.68 0.69 0.67 0.25 0.09 0.08 0.04 0.02 0.01

Table 8.11: Numbers of read and write transfers of BFS implementations on di�erent cache sizes.
Numbers are r/w transfers per vertex per 10 queries. We pick the number 10 to �t the numbers in
one table.

This special property of social network largely helps our implementation using rotating
arrays. Shown in Table 8.13, the two bidirectional searches use 2.7-3.9 rounds on average
to meet, which preserves the frontier in the cache during the search even for very small
cache sizes. As a result, the bidirectional BFS using rotating arrays has a constantly good
performance on all combinations of graphs and cache sizes, which is shown in Table 8.12
and Figure 8.6.

8.6.1.5 Conclusions

We discuss how to e�ciently implement BFS in the asymmetric setting and experiment
the I/O performance for four implementations on a variety of graphs. We show that if
the query is s-t (pairwise) distance, our bidirectional BFS using rotating arrays shows an
overwhelming advantage in all cases we tested. If all distances to the source are required,
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ω = 10
Algorithm Classic BFS BFS using RA Classic Bidir. BFS Bidir. BFS using RA

Cache Size 500 2000 10000 500 2000 10000 500 2000 10000 500 2000 10000

2D Grid 80.18 77.72 56.74 17.13 8.15 6.25 67.80 67.04 55.53 13.14 6.27 4.76
3D Grid 73.85 69.49 58.60 130.86 51.16 10.18 42.44 41.16 39.29 57.98 15.65 3.82
PA Roadmap 36.50 33.42 12.89 59.10 11.84 1.44 39.76 38.46 19.39 53.24 8.52 1.24
TX Roadmap 28.42 25.14 10.44 46.36 9.36 1.18 28.27 26.95 12.37 22.89 4.37 0.69
Stan Webgraph 79.41 64.64 24.39 291.99 198.08 56.18 18.48 17.93 15.62 15.75 7.71 1.93
NDUWebgraph 13.84 12.70 10.20 132.71 98.04 35.58 7.80 7.73 7.54 6.90 3.90 0.75
DBLP network 77.19 66.16 23.67 213.43 166.84 69.63 11.53 11.22 9.91 3.84 1.61 0.56
Youtube network 37.92 32.59 24.06 159.43 135.92 90.72 7.58 7.50 7.38 1.17 0.51 0.17

ω = 100
Algorithm Classic BFS BFS using RA Classic Bidir. BFS Bidir. BFS using RA

Cache Size 500 2000 10000 500 2000 10000 500 2000 10000 500 2000 10000

2D Grid 635.5 618.7 469.4 92.5 22.7 6.7 514.7 511.8 470.7 62.9 18.2 5.3
3D Grid 564.0 547.1 464.3 514.4 232.3 44.2 319.4 316.9 307.6 235.6 77.4 12.0
PA Roadmap 286.4 261.5 107.0 324.4 70.0 3.0 326.7 316.4 163.6 289.4 47.0 2.8
TX Roadmap 223.1 197.3 86.8 252.5 54.7 2.8 234.8 224.2 107.6 128.8 23.0 1.5
Stan Webgraph 436.3 402.4 157.1 831.1 624.5 245.1 142.5 141.2 131.6 91.6 50.1 13.6
NDUWebgraph 107.1 99.8 79.2 565.0 450.2 190.8 70.8 70.3 68.8 45.3 28.9 6.0
DBLP network 594.6 522.6 175.1 874.2 731.3 357.3 102.6 100.5 89.7 26.4 12.8 4.5
Youtube network 260.2 239.1 190.0 769.0 711.4 547.6 69.1 68.5 67.6 9.4 4.3 1.5

Table 8.12: I/O costs of BFS implementations on di�erent cache sizes. Numbers of r/w transfers
are from Table 8.11. Italic-font number indicates that the classic implementation has a lower I/O
cost in that setting.

the unidirectional BFS using rotating arrays has a better performance if the cache can
hold each frontier.

8.6.2 Dijkstra’s Algorithm

Dijkstra’s Algorithm [114] is a well-known algorithm to compute single-source short-
est paths on a non-negative weighted graph G = (V , E). Due to the rapid growth of
the data size, real-world graphs nowadays can easily go beyond the size of the order of
gigabytes, and they need to be stored on the large non-volatile memory. Running the
classic implementation of Dijkstra’s algorithm can be costly in this setting. We show
that with an appropriate implementation, the algorithm can write much fewer to the
non-volatile memory, which further leads to much lower I/O cost.
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(a) ω = 10, sparse graphs
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(b) ω = 10, social networks
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(c) ω = 100, sparse graphs
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(d) ω = 100, social networks

Figure 8.6: The trends of the I/O costs of four di�erent implementations of BFS. The new
implementations shown in this paper are the BFS and bidirectional BFS based on rotating arrays
(red and orange bars). Graphs used in the experiment are shown in Section 8.6.1.4 and categorized
into sparse (almost planar) graphs and social networks. We show the relative I/O cost based on
varied cache sizes, and each number is geometric mean of the four graphs in that category (the
exact numbers are given in Table 8.12). We can see the consistent advantages of the new BFS
implementation on sparse graphs, and the improvement of the new bidirectional version in all
cases. Notice that in (b) and (d) some values exceed the ranges of vertical axis.

Throughout this section we assume the input graph G = (V , E) contains n = |V |
vertices andm = |E | edges.

Dijkstra’s algorithm maintains a set of visited vertices associated with their shortest
distances to the source (denoted by dv for v ∈ V ), and the unvisited neighbors of these
vertices form the “frontier” (dv for unvisited vertex v is +∞). Each vertex u in the frontier
stores a tentative distance to be minv∈N (u){dv +eu,v} where N (u) is the incoming neighbor
set of vertex u. Initially the visited set contains only one vertex: the source node. The
invariant of this algorithm is that, the minimum tentative distance in the frontier set is
indeed the shortest distance of this vertex, and thus Dijkstra’s algorithm iteratively move
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Unidirectional search Bidirectional search

depth maximum

frontier

size

average

frontier

size

depth maximum

frontier

size

average

frontier

size

2D Grid 1571.4 1460 636.4 370.2 2091 1102.8
3D Grid 229.9 13277 4349.7 49.3 15058 4628.9
PA Roadmap 574.5 5032 1893.1 163.9 7204 2718.3
TX Roadmap 748.6 6058 1804.9 174.7 5752 2102.1
Stan Webgraph 107.1 87614 2383.4 3.5 50094 3782.8
NDUWebgraph 29.2 124519 11155.1 3.8 51562 2053.5
DBLP Network 16.1 129283 19694.4 3.9 36373 1420.1
Youtube Network 15.8 607534 71828.5 2.7 1841 107.4

Table 8.13: The depths (number of levels in the shortest-path tree) and frontier sizes (number of
vertices) during the search processes. Note that the numbers are averaged from multiple searches.

this vertex from the frontier to the visited set and update the frontier accordingly. The
correctness can easily be proven by induction on the number of visited nodes.

Due to the widespread use of Dijkstra’s algorithm, there are plenty of works on
the e�cient implementations of Dijkstra’s algorithm and we refer the readers to some
recent works [69, 213] for summaries of the work bounds of di�erent approaches. Di�er-
ent implementations have di�erent costs on the two operations in Dijkstra’s algorithm:
Extract-Min that �nds and removes the vertex with minimum distance in the frontier
set, and Decrease-Key that updates the tentative distance of the other endpoint of an
edge of this vertex removed from the frontier in this iteration. The data type that supports
the queries is abstracted as a priority queue. Speci�cally when the priority queue is
implemented using Fibonacci Heap [128] to maintain the frontier set, the overall time
complexity is O(m + n logn).

8.6.2.1 Classic Implementation using a Binary Heap

Although there are many advanced implementations of the priority queue with lower
time complexities, the constant hidden in the asymptotic bound is large. In practice
the classic implementation using a binary heap works reasonably well on general sparse
real-world graphs, and its wall-clock performance is competitive or even better on modern
computer architecture. We hence implement it as a baseline and measure the number of
read and write transfers of this algorithm as a comparison to our write-e�cient version.

For each vertex, we maintain the shortest distance in a global array with size n.
For practical purpose, instead of initializing the priority queue of size n with in�nite
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distances, we insert a vertex when it is �rst added to the frontier (so the priority queue
needs to support Insert, which most implementations do). The binary heap only stores
the indices of the vertices which optimizes the memory footprint and number of write
transfers. To perform Decrease-Key in a binary heap e�ciently, we keep another global
array, an auxiliary structure that maps each vertex to its position in the heap, and is
maintained up-to-date as the priority queue changes. This implementation has worst-case
time complexity to be O(m logn). Since this implementation does not take any special
optimization on caching, the I/O cost is therefore O(ωm log(nB/M)), assuming the cache
always keeps the �rst M/B vertices in the priority queue.

8.6.2.2 Phased Dijkstra

Phased Dijkstra (Section 5.4.1) is a speci�c implementation of Dijkstra’s algorithm
that the goal is to fully maintain the priority queue in small-memory. It only requires
O(n) writes to large-memory, the shortest distances to all vertices. The idea is to partition
the computation into phases such that for a parameter M′ each phase keeps a priority
queue of size at most (1 + ϵ)M′ and visits at least M′ vertices. By selecting M′ = M/c for
an appropriate constant c , the priority queue �ts in small-memory, and the only writes to
large-memory are the �nal distances.

Algorithm 15: Phased Dijkstra
Input: A connected weighted graph G = (V , E) and a source vertex s
Output: The shortest distances δ = {δ1, . . . , δn} from source s

1 Priority Queue P ← �
2 Mark vertex s as visited and set δ (s) ← 0
3 while there exists unvisited vertices do
4 if P = � then

5 Scan over all edges in E and store at most M ′ closest unvisited vertices in P
6 if |P | = M ′ then
7 Set dmax as the distance to the farthest vertex in P
8 else

9 dmax ← +∞
10 u = P .Extract-Min()
11 Set δu as the distance from s to u, and mark u as visited
12 foreach (u,v, disu ,v ) ∈ E do

13 if δu + disu ,v < dmax then

14 if v ∈ P then

15 P .Decrease-Key(v, δu + disu ,v )
16 else

17 P .insert(v, δu + disu ,v )
18 if |P | = (1 + ϵ)M ′ then
19 Remove ϵM ′ vertices with larger distances in P
20 Set dmax as the farthest distance in P
21 return δ (·)

The pseudocode of the algorithm is provided in Algorithm 15. Technically the priority
queue P can be implemented using an arbitrary heap since it is fully in the small-memory
and will not a�ect the I/O cost. In our experiment we implement it using a binary heap.
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In phased Dijkstra, each phase starts and ends with an empty priority queue P . The
priority queue is kept small by discarding the ϵM′ largest elements (vertex distances)
whenever |P | = (1 + ϵ)M′. To achieve this, P is �attened into an array, the M′-th smallest
element dmax is found by selection, and the priority queue is reconstructed from the
elements no greater than dmax , all taking linear time. After such a truncation, all further
insertions in a given phase are not added to P if they have a value greater than dmax .

The processing of each phase in phased Dijkstra consists of two parts. The �rst
part (line 5–9) of each phase loops over all edges in the graph and relaxes any that go
from a visited to an unvisited vertex (possibly inserting or decreasing a key in P ). The
second part (repeatedly loop over line 10–20) then runs standard Dijkstra’s algorithm
repeatedly visiting the vertex with minimum distance and relaxing its neighbors until P
is empty. Similar to other implementations, to implement relax, the algorithm needs to
know whether a vertex is already in P , and if so where in P so that it can do a decrease-key
on it. However in phased Dijkstra it is too costly to store this information using a global
array. Instead, we use an unordered map introduced in Section 8.4.1.1 for this mapping.
Theoretically the hash table can be set with �xed size, but in practice we use a 2-level
hash table since it leads to better performance when the frontier size is consistently small,
and equal performance otherwise. This map is referred as vertex map later.

The I/O cost of phased Dijkstra is Q(n,m) = O
(
n
(m
M
+ ω

))
. More details on the

correctness and complexity analysis can be found in Section 5.4.1.
We make a special optimization that once all outgoing edges of a vertex are visited,

we remove this node and all associated edges in the scan in Line 5. This is done by using
the sign-bit of the output distances, such that it is more likely being cached. We call the
active set that contains visited but not removed vertices.

For an e�cient implementation that optimizes memory footprint and I/O e�ciency,
each heap element contains the vertex index, the pointer to the vertex map, and the
tentative distance. In total it takes 16 bytes. Each element in the vertex map only stores a
pointer, and the vertex index can be check via the corresponding heap element. Through-
out our experiment we set the maximum occupancy rate of the 2-level hash table to be 0.8,
and truncation ratio ϵ = 0.25. M′ is chosen such that the hash table and priority queue
occupy about 40% of the small-memory, while various values of M′ are also discussed.

8.6.2.3 Experiments

The experiments are run on two Dijkstra implementations with di�erent parameter
combinations on cache size, cache policy, and the priority queue size. The experiment is
run on eight graph instances with various cache size.

Since in phased Dijkstra the number of reads is signi�cantly more than that of writes,
to keep the priority queue in the cache, the special cache strategy in Section 8.3.2 is
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Classic Dijkstra using binary heap Phased Dijkstra

Cache Size 2k 10k 50k 2k 10k 50k

Graph Instance RT WT RT WT RT WT RT WT RT WT RT WT

2D Grid 10.37 4.87 4.61 2.34 3.53 1.89 5.93 1.12 (1) 3.62 1.11 (1) 2.74 1.04 (1)
3D Grid 25.87 14.53 17.44 8.54 8.20 3.35 126.56 1.12 (383) 28.16 1.12 (44) 5.90 1.07 (1)
PA Roadmap 7.82 4.14 2.16 0.81 1.12 0.40 30.40 0.99 (202) 1.89 0.52 (1) 1.04 0.28 (1)
TX Roadmap 7.69 4.10 2.16 0.82 1.09 0.40 37.93 0.97 (262) 1.88 0.53 (1) 1.01 0.27 (1)
Stan Webgraph 37.31 18.13 26.73 12.06 10.60 3.91 404.61 1.03 (100) 81.02 1.02 (16) 13.83 0.88 (2)
NDUWebgraph 24.97 15.34 15.14 8.21 5.19 1.65 99.86 1.10 (132) 22.57 1.01 (24) 5.81 0.67 (3)
DBLP Network 32.14 19.66 23.17 13.02 10.08 4.58 341.08 1.12 (131) 64.75 1.10 (24) 11.53 0.94 (4)
Youtube Network 35.19 22.86 26.80 16.53 21.18 12.90 836.64 1.13 (477) 161.36 1.11 (93) 33.08 1.05 (18)

Table 8.14: Number of read and write transfers of di�erent Dijkstra implementations on di�erent
cache size. Numbers are normalized to read or write transfers per vertex. We ran SSSP queries on
10 di�erent randomly-chosen source nodes. Numbers in the parentheses are the average phases.

ω = 10 ω = 100
Classic Phased Dijkstra Classic Phased Dijkstra

Cache Size 2k 10k 50k 2k 10k 50k 2k 10k 50k 2k 10k 50k

2D Grid 59.1 28.0 22.4 17.1 14.7 13.1 497.8 238.9 192.2 118.3 114.3 106.8
3D Grid 171.2 102.8 41.7 137.8 39.3 16.6 1478.9 871.2 343.5 239.0 140.1 113.1
PA Roadmap 49.2 10.2 5.1 40.3 7.1 3.8 421.4 83.1 41.2 129.0 53.9 28.7
TX Roadmap 48.7 10.4 5.1 47.6 7.1 3.7 417.5 84.3 40.9 134.5 54.5 28.3
Stan Webgraph 218.6 147.3 49.7 414.9 91.2 22.6 1850.2 1232.2 401.8 507.7 182.8 101.9
NDUWebgraph 178.4 97.2 21.6 110.9 32.7 12.5 1559.4 836.3 169.7 209.9 123.9 72.8
DBLP Network 228.7 153.4 55.9 352.3 75.7 20.9 1997.6 1325.2 468.4 453.1 174.7 105.9
Youtube Network 263.8 192.1 150.1 847.9 172.5 43.6 2321.0 1679.4 1310.8 949.3 272.8 138.3

Table 8.15: The I/O costs on di�erent Dijkstra implementations on di�erent cache size. The
write-read ratio ω are selected to be typical projected values 10 (latency, bandwidth) and 100
(energy). Results are based on the numbers in Table 8.14.

required. In Table 8.16 we show that di�erent cache policies only cause minor di�erences,
so in the majority of this section we use the Static policy.

Overall performance. In Table 8.14 we show the number of read and write transfers of
two implementations on di�erent graphs with various cache size. Cache size varies from
2,000 to 50,000 cache lines each with 64 bytes. In Table 8.15 the overall I/O costs with
di�erent values of ω are listed based on the numbers in Table 8.14.

For the binary-heap implementation, the actual reads and writes mostly match the
theoretical bound O(m log(nB/M)). Reads are about slightly less than twice as writes:
each edge is read once during Dijkstra (linear scan and requires no modi�cation), and an
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Figure 8.7: I/O costs of classic Dijkstra and phased Dijkstra. Graphs are categorized into sparse
(almost planar) graphs and social networks and the I/O cost is geometric mean of the four. Numbers
are from Table 8.15.

update in the binary heap always requires one more read than writes. The only exception
is on the roadmaps when the frontier size is consistently small while nearby vertices share
contiguous indices. In this case the cache e�ciently holds the entire heap and leads to
fewer reads and writes to the large-memory.

For phased Dijkstra, we �rst observed that the number of writes is always no more
than 1.3 per vertex: one write per vertex when the distance is �nalized, plus some other
cost to maintain the active set. The number of read transfers is mainly decided the number
of phases, and the size of the active set (the edge lists of active vertices at the beginning
of each phase needs to be scanned).

The overall I/O performance (shown in Table 8.15) indicates that phased Dijkstra is
consistently better than the binary-heap version except for the only case that both ω and
cache size are small and the active set is large. This case can hardly happen in practice
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since the cache size is even much smaller than the current L3 cache. The improvement
on I/O cost in all cases is up to 3 and 7.6 when ω is 10 and 100. This peak occurs when
the small-memory sizes is large and frontier size is larger, since at this time the cost to
maintain the binary heap in the classic implementation is costly, while the extra cost to
run phased Dijkstra is insigni�cant.

Cache Policy SplitPool Static

RT WT RT WT

2D Grid 3.74 1.11 3.62 1.11
3D Grid 27.43 1.12 28.16 1.12
PA Roadmap 1.84 0.88 1.89 0.52
TX Roadmap 1.83 0.87 1.88 0.53
Stan Webgraph 81.40 1.02 81.02 1.02
NDUWebgraph 21.96 1.07 22.57 1.01
DBLP Network 65.20 1.11 64.75 1.10
Youtube Network 163.38 1.12 161.36 1.11

Table 8.16: Number of read and write transfer of phased Dijkstra with two di�erent cache policies:
the SplitPool policy and the Static policy. The cache contains 10,000 cache-lines. Di�erent policies
give very similar performance except for the writes on roadmaps.

Priority Queue Size 30% 40% 50% 60%

RT WT RT WT RT WT RT WT

2D Grid 8.4 1.10 8.6 1.11 8.9 1.11 9.3 1.11
3D Grid 33.7 1.12 28.9 1.12 25.6 1.12 23.3 1.12
PA Roadmap 2.7 0.48 2.8 0.52 3.0 0.58 3.2 0.66
TX Roadmap 2.6 0.48 2.7 0.53 2.9 0.59 3.1 0.66
Stan Webgraph 94.4 1.02 82.9 1.02 72.1 1.02 67.1 1.02
NDUWebgraph 26.1 1.01 22.8 1.01 20.2 1.03 18.5 1.04
DBLP Network 75.1 1.10 64.9 1.10 57.3 1.10 51.5 1.11
Youtube Network 183.8 1.11 161.5 1.11 144.4 1.12 134.9 1.12

Table 8.17: Number of read and write transfers of phased Dijkstra with di�erent priority queue’s
size. The overall percentage of priority queue and vertex map varies from 30% to 60% comparing
to the cache size, which is 10,000 cache-lines.

Di�erent cache maintenance policy. We show the number of read and write transfer
of phased Dijkstra on two di�erent cache policies in 8.16. Di�erent policies actually give
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a very similar performance in the graph instances. More analysis is shown in the full
version of this paper.

Picking appropriate priority queue’s sizeM′. In previous experiment we empirically
set the overall size of the priority queue and vertex map to be about 40% of the overall
cache size. However, this percentage can a�ect the performance of phased Dijkstra. Larger
percentage leads the heap to contain more elements so that the overall number of phases is
decreased. Meanwhile the size left for the rest cache is smaller, which decreases the cache
performance. Hence, the number of phases and speci�c graph property lead to di�erent
optimality point of the the priority queue’s size and no easy conclusions can be drawn. In
Table 8.17 we show a snapshot on the cache size of 10,000 and the percentage varies from
30% to 60%. The trend is that, when the priority queue’s size is smaller than the average
frontier size then larger priority queue helps, and vice visa. In general di�erent priority
queue’s sizes only make a minor di�erence on I/O cost and will not a�ect the relatively
lower cost comparing to the binary-heap implementation.

8.6.2.4 Conclusions

We discussed phased Dijkstra and experiment its performance on a variety of graphs.
The high-level idea is to �t the computation within the small-memory (i.e., the cache) and
thus requires no intermediate writes to the large asymmetry memory. The experimental
results show that phased Dijkstra consistently outperforms the binary-heap version on
I/O cost except for the combination of small ω (= 10), small cache size, and on social
networks. Although phased Dijkstra contains some parameters, we also show that they
do not a�ect the e�ciency of phased Dijkstra when they are within a reasonable large
range. A similar case also holds for di�erent cache policies.

Notice that the idea here that �ts the computation in the small-memory can also be
applied to computing minimum spanning tree, sorting, and many other problems.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This thesis provides a comprehensive study of write-e�cient algorithms, from com-
putational models, to lower and upper bounds, experiments, as well as guaranteeing the
fault-tolerance of the write-e�cient algorithms. These write-e�cient algorithms will
have improved performance on the new non-volatile main memory with asymmetric read
and write costs, or can provide additional functionality with little costs in other recent
settings that may lead to write-read asymmetry.

This thesis discusses how to extend the most commonly-used computational models
and cost measures used in analyzing classic algorithms to the asymmetric setting in
Chapter 2, which provides the theoretical approaches to analyze the algorithms asymptot-
ically. Based on the models, researches can analyze lower bounds of the problems in the
asymmetric setting, and a list of known results are shown in Chapter 3 and 7.

The main contribution of this thesis consists of a list of new write-e�cient algorithms.
They are widely spread from the basic algorithmic building blocks (sorting, reduce, �lter,
etc.) in Chapter 4, to graph algorithms (e.g., (bi)connectivity, shortest paths, MST, BFS)
in Chapter 5, geometric algorithms and data structures (e.g., convex hull, Delaunay
triangulation, k-d trees, augmented trees) in Chpater 6, as well as many cache-oblivious
algorithms for dynamic programming and linear algebra problems 7. All these algorithms
have asymptotically improved cost under the sequential (M,ω)-ARAM or the parallel
Asymmetric NP model. Also, most of these algorithms are highly parallelized. Since the
new memories provide a much larger (terabyte-level) capacity, parallelism is a necessity
to process data with such volume.

It is interesting to point out that, this thesis also introduces many new techniques and
analysis frameworks on many types of algorithms. Each of them not only leads to many
new write-e�cient algorithms, but also is of independent interests since many results in
the symmetric settings on these problems can also be improved based on it.
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This thesis also contains experiment veri�cations of the write-e�cient algorithms in
Chapter 8. This part contains the �rst experimental framework to analyze the performance
of write-e�cient algorithms in practice, and experiments on a variety of algorithms which
leads to many interesting �ndings and lessons.

9.2 Future Work

This thesis consolidates the research of write-e�cient algorithms, which is a relatively
new research topic. It is notable that this is still a very open area, and there are many new
problems worth to be investigated. A few of the interesting future topics are listed here.

Actual Performance.

The new hardware has been manufactured at the time when this thesis is being written.
As a result, it is reasonable to assume that the new hardware will be available to the public
very soon. When it becomes available, implementing the write-e�cient algorithms and
testing their actual wall-clock performance is de�nitely one of the works that should
be investigated. As discussed in Chapter 8, the software simulator for write-e�cient
algorithms is still a useful tool even when the hardware is available. However, it is
interesting to know the best parameter to set in the simulator that can �t the performance
in practice the best. Also, it is of notable importance to have the highly-optimized
implementations to be in an available library, so researchers or other programmers whose
work is not performance engineering can directly call the functions in the library.

Write-e�cient algorithms.

This thesis discusses a few dozens of new write-e�cient algorithms, but this is still a
relatively small amount compared to the entity of the algorithms that are widely being
used in practice. The write-e�cient versions of these algorithms remain to be a future
research topic.

Other than designing write-e�cient algorithms for other problems, the new problems
raised by studying the write-e�cient algorithms in this thesis can also lead to potential
future work. For example, many new problems are proposed by the analysis framework of
the k-d grid computation structure in Section 7.9. There are many unanswered questions
for geometric algorithms as well.

This thesis discusses the implicit k-decomposition and the compact representations for
connectivity and biconnectivity information of a graph. It is interesting to know whether
such kinds of compact representations of other graph problems, or even data structure
and other problems (like a triangulation). A further question is the tradeo� between the
space requirement, the number of writes, and the total algorithmic instructions for each
problem. It remains unknown if one can show the lower bounds of a combination of these
terms for graph connectivity, and we can ask similar questions to other graph problems
as well.
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Persistency and fault-tolerance.

As discussed in Section 1.1.2, another major property of these new main memories are
their non-volatility or persistency: unlike DRAM, they have the capability of surviving
power outages and other failures without losing data. As a result, it is possible to design
the special programming model and algorithms that are resilient to either the processor
fault or the power lost.

The consistent states of the intermediate data stored in the persistent main memory
need to be guaranteed such that either a single processor or the entire program can be
restarted from here. On the other hand, standard caches are write-back (write-behind),
meaning that a write to a memory location will make it as far as the cache, until at some
later point the updated cache line gets �ushed out to the persistent memory. Usually
the programmers have no control of this process. Therefore, a fault-tolerant algorithm
running on the persistent main memory needs to explicitly �ush some of the cache lines to
guarantee the desired states of the data in the persistent memory, using instructions (such
as Intel’s CLFLUSH instruction) supported by various programming models (e.g., [178, 240,
241]). Such instructions require memory barriers to enforce the ordering in the execution,
which leads to extra cost for these writes such as in synchronizing the processors. As a
result, the new non-volatile main memory provides the option for algorithms to programs
to be fault resilient, but maintaining the memory consistency can cause the costly writes
on these memories to be even more expensive. Write-e�cient algorithms can be e�cient
in such settings because of the fewer overall writes that need to be �ushed to the persistent
main memory.

However, as a �rst step, we need to �rst have a programming model to support such
fault-tolerant programming. Such a model is introduced by Belleoch et al. [71], which
is named as the Parallel Persistent Memory (Parallel-PM) model. Based on this model, we
can discuss how to make algorithms to be fault-tolerant, with or without considering the
more expensive writes.

The Parallel Persistent Memory (Parallel-PM) model, consists of P processors, each
with a fast local ephemeral memory of limited size M , and sharing a large slower persistent
memory. As in the external memory model [29, 30], each processor runs a standard
instruction set from its ephemeral memory and has instructions for transferring blocks of
size B to and from the persistent memory. The cost of an algorithm is calculated based on
the number of such transfers, and the cost can be either symmetric or asymmetric. A key
di�erence, however, is that the model allows for individual processors to fault at any time.
If a processor faults, all of its processor state and local ephemeral memory is lost, but the
persistent memory remains. We consider both the case where the processor restarts (soft
faults) and the case where it never restarts (hard faults).

The model is motivated by two complimentary trends. Firstly, it is motivated by
upcoming non-volatile memories that are nearly as fast as existing random access memory
(DRAM), are accessed via loads and stores at the granularity of cache lines, and have large
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capacity (more bits per unit area than existing random access memory). For example,
Intel’s 3D-Xpoint memory technology, currently available as an SSD, is scheduled to be
available as such a random access memory in 2019. While such memories are expected
to be the pervasive type of memory [210, 221, 283], each processor will still have a small
amount of cache and other fast memory implemented with traditional volatile memory
technologies (SRAM or DRAM). Secondly, it is motivated by the fact that in current and
upcoming large parallel systems the probability that an individual processor faults is not
negligible, requiring some form of fault tolerance [83].

In this model, a single processor version, the PM model, is �rst discussed, which gives
conditions under which programs are robust against faults. In particular, we identify that
breaking a computation into “capsules” that have no write-after-read con�icts (writing a
location that was read earlier within the same capsule) is su�cient, when combined with
our approach to restarting faulting capsules from their beginning, due to its idempotent
behavior. We then show that RAM algorithms, external memory algorithms, and cache-
oblivious algorithms [131] can all be implemented asymptotically e�ciently on the model.
This involves a simulation that breaks the computations into capsules and bu�ers writes,
which are handled in the next capsule. However, the simulation is likely not practical.
We therefore consider a programming methodology in which the algorithm designer
can identify capsule boundaries, and ensure that the capsules are free of write-after-read
con�icts.

Then the multiprocessor counterpart, the Parallel-PM described above, is considered,
which gives conditions under which programs are correct when the processors are inter-
acting through the shared memory. We identify that if capsules are free of write-after-read
con�icts and atomic, in a way that we de�ne, then each capsule acts as if it ran once
despite many possible restarts. Furthermore we identify that a compare-and-swap (CAS)
instruction is not safe in the PM model, but that a compare-and-modify (CAM), which
does not see its result, is safe.

The most signi�cant result of this work is a work-stealing scheduler that can be used
on the Parallel-PM. The scheduler is based on the scheduler of Arora, Blumofe, and Plaxton
(ABP) [30]. The key challenges in adopting it to handle faults are (i) modifying it so that it
only uses CAMs instead of CASs, (ii) ensuring that each stolen task gets executed despite
faults, (iii) properly handling hard faults, and (iv) ensuring its e�ciency in the presence
of soft or hard faults. Without a CAS, and to avoid blocking, handling faults requires
that processors help the processor that is part way through a steal. Handling hard faults
further requires being able to steal a thread from a processor that was part way through
executing the thread.

Based on the scheduler we show that any race-free, write-after-read con�ict free
multithreaded fork-join program with workW , depth D, and maximum capsule work C
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will run in expected time:

O

(
W

PA
+ kD

(
P

PA

)⌈
log1/(C f )W

⌉)
.

Here k is the ratio of whether the reads and writes are symmetric (1 for symmetric setting,
ω for the asymmetric setting), P is the maximum number of processors, PA the average
number, and f ≤ 1/(2C) an upper bound on the probability a processor faults between
successive persistent memory accesses. This bound di�ers from the ABP result only in
the log1/(C f )W factor on the depth term, due to faults along the critical path.

Based on the models, it is interesting to design Parallel-PM algorithms. A few examples
are already discussed, while it remains to be an interesting future work about how to
adapt the write-e�cient algorithms in this thesis to be fault-tolerant, and whether there
are general high-level approaches to make this happen.
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Appendix A

Detail Information of Asymmetric

Memory

While DRAM stores data in capacitors that typically require refreshing every few mil-
liseconds, and hence must be continuously powered, emerging NVM technologies store
data as “states” of the given material that require no external power to retain. Energy
is required only to read the cell or change its value (i.e., its state). While there is no
signi�cant cost di�erence between reading and writing DRAM (each DRAM read of a
location not currently bu�ered requires a write of the DRAM row being evicted, and hence
is also a write), emerging NVMs incur signi�cantly higher cost for writing than reading.
This large gap seems fundamental to the technologies themselves: to change the physical
state of a material requires relatively signi�cant energy for a su�cient duration, whereas
reading the current state can be done quickly and, to ensure the state is left unchanged,
with low energy. Existing research has shown such asymmetry, for example:

• A cell in Spin-Torque Transfer Magnetic RAM can be read in 0.14 ns but uses a 10
ns writing pulse duration, using roughly 10−15 joules to read versus 10−12 joules to
write [117] (these are the raw numbers at the materials level).

• A Memristor Resistive RAM cell uses a 100 ns write pulse duration, and an 8MB
Memristor RRAM chip is projected to have reads with 1.7 ns latency and 0.2 nJ
energy versus writes with 200 ns latency and 25 nJ energy [280], over two orders of
magnitude di�erences in latency and energy.

• Phase-change memory is the most mature of the three technologies, and early
generations are already available as I/O devices. A recent paper [187] reported 6.7
µs latency for a 4KB read and 128 µs latency for a 4KB write. Another reported that
the sector I/O latency and bandwidth for random 512B writes was a factor of 15
worse than for reads [176]. As a future memory/cache replacement, a 512MB PCM
memory chip is projected to have 16 ns byte reads versus 416 ns byte writes, and
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writes to a 16MB PCM L3 cache are projected to be up to 40 times slower and use
17 times more energy than reads [118].

While these numbers are speculative and subject to change as the new technologies
emerge over time, there seems to be su�cient evidence that writes will be considerably
more costly than reads in these NVMs. Thus, studying write-e�cient (parallel) algorithms
and systems is of signi�cant, lasting importance.

Note that, unlike SSDs and earlier versions of phase-change memory products, these
emerging memory products will sit on the processor’s memory bus and be accessed at byte
granularity via loads and stores (like DRAM). Thus, the time and energy for reading can
be roughly on par with DRAM, and depends primarily on the properties of the technology
itself relative to DRAM.
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