Augmenting Large Language Models with Symbolic Rule Learning for Robust Numerical Reasoning

Hadeel Al-Negheimish¹, Pranava Madhyastha^{2,1}, Alessandra Russo¹

¹Imperial College London, ²City, University of London

Summary

- While LLM prompting has been used to elicit reasoning, numerical reasoning in MRC remains an open challenge.
- We propose a neuro-symbolic approach that only needs few-shot examples and evaluate it on different splits of the DROP benchmark.
- In addition to improving pure LLM performance, this approach provides interpretable and verifiable reasoning, maintaining faithfulness to the passage

Rule learning to recompose partial answers

Given partial answers to simpler subquestions, this component learns the reasoning required to reach the final answer, using only few-shot examples.

We utilise symbolic rule learning using ILASP, a logic-based machine learning system that can induce rules given observed data combined with background knowledge, by defining a Learning from Noisy Answer Sets task:

Collecting few-shot examples

We build upon a small set of annotated examples[1]:

- **Random:** Randomly collect 3 examples
- **KNN:** Collect the 3 examples with questions most similar to the test question based on QQP sentence embeddings[2]
- Gold-type: Each type is associated with 3 canonical examples, assume that the type is known (gold)
- **Predict-type:** An LLM is used to predict the type, using its • canonical examples

 $ILP_{LAS}^{noise} = \langle B, S_M, E \rangle$

- **B**: encodes the background knowledge, we define the space of possible operations
- S_M : the hypothesis space, which is defined by mode declarations; which predicates can appear in the rules
- **E**: Examples with their associated penalties to allow robust learning with noise

Why symbolic learning?

- Allows learning from only a few examples
- Generalises beyond seen data
- Learned rule is interpretable

Approach Overview

Results

Key takeaways

- Our approach performs competitively close to DROP SOTA in many settings, without needing data-intensive training
- By using an RC model to answer partial questions, we force models to be faithful to the given context
- Type-prediction performs almost as well as gold-type for all models
- Our approach improves upon all pure LLM prompting, 0-shot and 3-shot Chain-of-Thought
- Our approach bridges the performance gap between small and large LLMs by simplifying the problem

