
Augmenting Large Language Models 
with Symbolic Rule Learning for Robust 
Numerical Reasoning

Summary

• While LLM prompting has been used to elicit reasoning, 
numerical reasoning in MRC remains an open challenge.
• We propose a neuro-symbolic approach that only needs 

few-shot examples and evaluate it on different splits of the 
DROP benchmark.
• In addition to improving pure LLM performance, this 

approach provides interpretable and verifiable reasoning, 
maintaining faithfulness to the passage
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solution(V1,V2,V3):- subtraction(V1,V2,V3).
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[...] As of the 2000 United
States Census of 2000, there
were 47,829 people, 15,137
households, and 10,898
families residing in the city. The
population density was 7,921.7
people per square mile
(3,057.4/km2). [...]
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Key takeaways     

• Our approach performs competitively close 
to DROP SOTA in many settings, without 
needing data-intensive training

• By using an RC model to answer partial 
questions, we force models to be faithful to 
the given context

• Type-prediction performs almost as well as 
gold-type for all models

• Our approach improves upon all pure LLM 
prompting, 0-shot and 3-shot Chain-of-
Thought

• Our approach bridges the performance gap 
between small and large LLMs by simplifying 
the problem

Rule learning to recompose partial answers 

We utilise symbolic rule learning using ILASP, a logic-based 
machine learning system that can induce rules given observed 
data combined with background knowledge, by defining a 
Learning from Noisy Answer Sets task:
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Collecting few-shot examples 

We build upon a small set of annotated examples[1]:

• Random: Randomly collect 3 examples 
• KNN: Collect the 3 examples with questions most similar to 

the test question based on QQP sentence embeddings[2]
• Gold-type: Each type is associated with 3 canonical 

examples, assume that the type is known (gold)
• Predict-type: An LLM is used to predict the type, using its 

canonical examples

• 𝑩: encodes the background knowledge, we define the 
space of possible operations

• 𝑺𝑴: the hypothesis space, which is defined by mode 
declarations; which predicates can appear in the rules

• 𝑬: Examples with their associated penalties to allow 
robust learning with noise
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Given partial answers to simpler subquestions, this component 
learns the reasoning required to reach the final answer, using only 
few-shot examples.

Why symbolic learning?
• Allows learning from only a few examples
• Generalises beyond seen data
• Learned rule is interpretable

https://aclanthology.org/2022.emnlp-main.81
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1170

