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Fig. 1. We present a system that uses a novel combination of motion-adaptive burst capture, robust temporal denoising, learning-based white balance, and
tone mapping to create high quality photographs in low light on a handheld mobile device. Here we show a comparison of a photograph generated by the
burst photography system described in [Hasinoff et al. 2016] and the system described in this paper, running on the same mobile camera. In this low-light
setting (about 0.4 lux), the previous system generates an underexposed result (a). Brightening the image (b) reveals significant noise, especially chroma noise,
which results in loss of detail and an unpleasantly blotchy appearance. Additionally, the colors of the face appear too orange. Our pipeline (c) produces
detailed images by selecting a longer exposure time due to the low scene motion (in this setting, extended from 0.14 s to 0.33 s), robustly aligning and merging
a larger number of frames (13 frames instead of 6), and reproducing colors reliably by training a model for predicting the white balance gains specifically in
low light. Additionally, we apply local tone mapping that brightens the shadows without over-clipping highlights or sacrificing global contrast.

Taking photographs in low light using a mobile phone is challenging and
rarely produces pleasing results. Aside from the physical limits imposed
by read noise and photon shot noise, these cameras are typically handheld,
have small apertures and sensors, use mass-produced analog electronics
that cannot easily be cooled, and are commonly used to photograph subjects
that move, like children and pets. In this paper we describe a system for
capturing clean, sharp, colorful photographs in light as low as 0.3 lux, where
human vision becomes monochromatic and indistinct. To permit handheld
photography without flash illumination, we capture, align, and combine
multiple frames. Our system employs “motion metering”, which uses an
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estimate of motion magnitudes (whether due to handshake or moving ob-
jects) to identify the number of frames and the per-frame exposure times
that together minimize both noise and motion blur in a captured burst. We
combine these frames using robust alignment and merging techniques that
are specialized for high-noise imagery. To ensure accurate colors in such
low light, we employ a learning-based auto white balancing algorithm. To
prevent the photographs from looking like they were shot in daylight, we
use tone mapping techniques inspired by illusionistic painting: increasing
contrast, crushing shadows to black, and surrounding the scene with dark-
ness. All of these processes are performed using the limited computational
resources of a mobile device. Our system can be used by novice photog-
raphers to produce shareable pictures in a few seconds based on a single
shutter press, even in environments so dim that humans cannot see clearly.
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1 INTRODUCTION
Low-light conditions present significant challenges for digital pho-
tography. This is a well-known problem with a long history of
treatment in the camera and mobile device industries, as well as the
academic literature.
The fundamental difficulty of low-light photography is that the

signal measured by the sensor is low relative to the noise inherent
in the measurement process. There are two primary sources of
noise in these systems: shot noise and read noise [MacDonald 2006;
Nakamura 2016]. If the signal level is very low, read noise dominates.
As the signal level rises above the read noise, shot noise becomes
the dominant factor. The signal levels relative to these noise sources,
that is, the signal-to-noise ratio (SNR), needs to bemanaged carefully
in order to successfully capture images in low light.
The most direct approaches for low-light photography have fo-

cused on increasing the SNR of the pixels read from the sensor.
These strategies typically fall into one of these categories:

• Expand the camera’s optical aperture.
• Lengthen the exposure time.
• Add lighting, including shutter-synchronized flash.
• Apply denoising algorithms in post-processing.

Unfortunately, these techniques present significant hindrances
for photographers—especially for mobile handheld photography,
which is the dominant form of photography today. Increasing a
camera’s aperture increases the size of the device, making it heavier
and more expensive to produce. It also typically increases the length
of the optical path, which conflicts with the market’s preference for
thin devices. Lengthening the exposure time leads to an increased
chance of motion blur, especially when the device is handheld or
if there are moving objects in the scene. Adding lighting makes it
challenging to produce a natural look: the flash on mobile devices
often makes the subject look over-exposed, while the background
often looks black because it is too far away for the flash to illuminate.
Post-processing single-frame spatial denoising techniques have been
widely studied and are often very successful at improving the SNR of
an image. However, when noise levels are very high, the reduction
of noise often results in significant loss of detail. Moreover, merely
improving the SNR addresses only some of the challenges of low
light photography and does not yield an overall solution.
This paper presents a system for producing detailed, realistic-

looking photographs on handheld mobile devices in light down
to about 0.3 lux, a level at which most people would be reluctant
to walk around without a flashlight. Our system, which launched
to the public in November 2018 as Night Sight on Google Pixel
smartphones, is designed to satisfy the following requirements:

(1) Reliably produce high-quality imageswhen the device is hand-
held, avoiding visual artifacts.

(2) Avoid using an LED or xenon flash.
(3) Allow the user to capture the scene without needing any

manual controls.
(4) Support total scene acquisition times of up to ∼6 seconds.
(5) Accumulate as much light as possible in that time without

introducing motion blur from handshake or moving objects.
(6) Minimize noise and maximize detail, texture, and sharpness.

(7) Render the image with realistic tones and white balance de-
spite the mismatch between camera and human capabilities.

(8) Operate on a mobile device (with limited compute resources),
with processing time limited to ∼2 seconds.

While previous works have focused on specific aspects of low-
light imaging (such as denoising [Dabov et al. 2007; Mildenhall
et al. 2018]), there have been relatively few works that describe
photographic systems that address more than one of the above re-
quirements. The main strategies that have been used by previous
systems are burst imaging [Hasinoff et al. 2016], and end-to-end
trained convolutional neural networks (CNNs) [Chen et al. 2018].
Burst imaging systems capture, align, and merge multiple frames to
generate a temporally-denoised image. This image is then further
processed using a series of operators including additional spatial
denoising, white balancing, and tone mapping. CNN-based systems
attempt to perform as much of this pipeline as possible using a
deep neural network with a single raw frame as its input. The net-
work learns how to perform all of the image adjustment operators.
CNN-based solutions often require significant computational re-
sources (memory and time) and it is challenging to optimize their
performance so that they could run on mobile devices. Additionally,
end-to-end learning based systems don’t provide a way to design
and tune an imaging pipeline; they can only imitate the pipeline
they were trained on.
Our solution builds upon the burst imaging system described

in [Hasinoff et al. 2016]. In contrast to CNN-based systems, [Hasi-
noff et al. 2016] was designed to perform well on mobile devices.
Simply extending it to collect more frames allows it to generate
high-quality photographs down to about 3 lux. However, to pro-
duce high-quality images in even lower light, tradeoffs between
noise and motion blur must be addressed. Specifically, noise can be
improved by increasing the exposure time, but individual frames
might contain blur, and because the cited system does not perform
deblurring, the motion blur present in the reference frame will re-
main in the output. Alternatively, noise can be improved by merging
more frames and increasing the contribution of each merged frame,
effectively increasing temporal denoising, however, doing so will
cause moving objects to appear blurry in the output image.
In addition to the problem of low SNR, low-light photographs

suffer from a natural mismatch between the capabilities of a digital
camera and those of the human visual system. Low light scenes
often contain strongly colored light sources. The brain’s visual
processing can adapt to this and still pick out white objects in
these conditions. However, this is challenging for digital cameras. In
darker environments (such as outdoors under moonlight), a camera
can take a clean, sharp, colorful pictures. However, we humans don’t
see well in these conditions: we stop seeing in color because the cone
cells in our retinas do not function well in the dark, leaving only
the rod cells that cannot distinguish between different wavelengths
of light [Stockman and Sharpe 2006]. This scotopic vision system
also has low spatial acuity, which is why things seem indistinct at
night. Thus, a long-exposure photograph taken at night will look to
us like daytime, an effect that most photographers (or at least most
mobile camera users) would like to avoid.
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Fig. 2. An overview of our processing pipeline, showing how we extend [Hasinoff et al. 2016]. Viewfinder frames are used for live preview for composition and
for motion metering, which determines a per-frame exposure time that provides a good noise vs. motion blur tradeoff in the final result (Section 2). Based on
this exposure time, we capture and merge a burst of 6–13 frames (Section 3). The reference frame is down-sampled for the computation of the white-balance
gains (Section 4). White balance and tone mapping (Section 5) are applied at the “Finish” stage, as well as demosaicing, spatial and chroma denoising and
sharpening. Total capture time is between 1 and 6 seconds after the shutter press and processing time is under 2 seconds.

The system described here solves these problems by extend-
ing [Hasinoff et al. 2016] in the following ways:

(1) Real-time motion assessment (“motion metering”) to
choose burst capture settings that best balance noise against
motion blur in the final result. As an additional optimiza-
tion, we set limits on exposure time based on an analysis
of the camera’s physical stability using on-device gyroscope
measurements.

(2) Improved motion robustness during frame merging to
alleviate motion blur during temporal denoising. Contribu-
tions from merged frames are increased in static regions of
the scene and reduced in regions of potential motion blur.

(3) White balancing for low light to provide accurate white
balance in strongly-tinted lighting conditions. A learning-
based color constancy algorithm is trained and evaluated
using a novel metric.

(4) Specialized tonemapping designed to allow viewers of the
photograph to see detail they could not have seen with their
eyes, but to still know that the photograph conveys a dark
scene.

The collection of these new features, shown in the system dia-
gram in Figure 2, enables the production of low-light photographs
that exceed human vision capabilities. The following sections cover
these topics in detail. Section 2 describes the motion metering sys-
tem, and Section 3 describes the motion-robust temporal merging
algorithm. Section 4 details how we adapt a learning-based color
constancy algorithm to perform white balancing in low-light scenes.
Section 5 presents our tone-mapping strategy. Section 6, and the
supplementary material, show the results of our system for differ-
ent scenes and acquisition conditions as well as comparisons to
other systems and devices. All images were captured on commercial
mobile devices unless otherwise specified. Most of the images in
the paper were captured while handheld. If a photo was captured
using a tripod or braced, it is indicated as "camera stabilized" in the
caption .
To further the exploration of low-light photography, we have

released a datatset of several hundred raw bursts of a variety of
scenes in different conditions captured and processed with our
pipeline [Google LLC 2019].

2 MOTION METERING
To capture a burst of images on fixed aperture mobile cameras,
the exposure time and gain (ISO) must be selected for each frame
in the burst. Here, the gain represents the combination of analog
and digital gain. However, several constraints limit the degrees of
freedom within these parameters:

• We leverage the strategy in [Hasinoff et al. 2016], where all
frames in the burst are captured with the same exposure time
and gain after the shutter press, making it easier to align and
merge the burst.

• An auto-exposure system (e.g., [Schulz et al. 2007]) deter-
mines the sensor’s target sensitivity (exposure time × gain)
according to the scene brightness.

• As mentioned in Section 1, the total capture time should be
limited (≤ 6 seconds for our system).

Thus, selecting the capture settings reduces to decomposing the
target sensitivity into the exposure time and gain, and then calcu-
lating the number of frames according to the capture time limit (i.e.
6 seconds divided by the exposure time, limited to a maximum num-
ber of frames set by the device’s memory constraints). [Hasinoff
et al. 2016] performs the decomposition using a fixed “exposure
schedule”, which conservatively keeps the exposure time low to
limit motion blur. However, this may not yield the best tradeoff in
all scenarios.
In this section, we present “motion metering”, which selects the

exposure time and gain based on a prediction of future scene and
camera motion. The prediction is used to shape an exposure sched-
ule dynamically, selecting slower exposures for still scenes and
faster exposures for scenes with motion. The prediction is driven
by measurements from a new motion estimation algorithm that
directly computes the magnitude of the optical flow field. Only the
magnitude is needed since the direction of motion blur has no effect
on final image quality.
A key challenge is measuring motion efficiently and accurately,

as the motion profile in the scene can change rapidly. This can occur
due to hand shake or sudden changes in the motion of subjects.
Recent work in optical flow has produced highly accurate results
using convolutional neural networks ([Dosovitskiy et al. 2015; Re-
vaud et al. 2015]), but these techniques have a high computational
cost that prohibits real-time performance on mobile devices. Earlier
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Fig. 3. Overview of the motion metering subsystem. The goal is to select an exposure time and gain (ISO) that provides the best SNR vs. motion blur tradeoff
for a burst of frames captured after the shutter press. This is done by measuring scene and camera motion before the shutter press, predicting future motion,
and then using the prediction to calculate the capture settings. To measure motion, a stream of frames is downsampled and then processed by an algorithm
that directly estimates the magnitude of the optical flow field (“Bounded Flow”). A weighted average of the flow magnitude is then calculated, assigning higher
weights to areas where limiting motion blur is more important. To predict future motion, the sequence of weighted averages is processed by a temporal filter
based on a Gaussian mixture model (GMM). Concurrently, angular rate measurements from a gyro sensor are filtered to assess the device’s physical stability.
These measurements are used to build a custom “exposure schedule” that factorizes the sensor’s target sensitivity computed by a separate auto-exposure
algorithm into exposure time and gain. The schedule embodies the chosen tradeoff between SNR and motion blur based on the motion measurements.

optical flow algorithms such as [Lucas and Kanade 1981] are faster
but less accurate.

Another key challenge is how to leverage motion measurements
to select an exposure time and gain. [Portz et al. 2011] optimizes
the exposure time to limit motion blur exclusively at the expense of
noise, and [Gryaditskaya et al. 2015] uses a heuristic decision tree
driven by the area taken up by motion in the scene. [Boracchi and
Foi 2012] provides a technique to optimize the exposure time given
a camera motion trajectory and known deblurring reconstruction
error in different situations. However, this is primarily useful when
strong deblurring can be applied without producing artifacts (a
challenging open problem).

Figure 3 depicts our subsystem that addresses these challenges. It
combines efficient and accurate motion estimation, future motion
prediction, and a dynamic exposure schedule that allows us to tune
the system to prioritize noise vs. motion blur. Flow magnitudes
are estimated between N successive pairs of frames before shutter
press (Section 2.1). Each flow magnitude solution is center-weighted
averaged, and the sequence of averages is used to fit a probabilistic
model of the motion profile. The model is then used to calculate
an upper bound of the minimum motion over the next K frames,
where K is chosen such that the motion blur of the merged burst is
below some threshold (Section 2.2). Finally, this bound is used to
shape the exposure schedule (Section 2.4). We also utilize angular
rate estimates from gyro measurements to enhance the future mo-
tion prediction (Section 2.3), which improves the robustness of our
system in very low light conditions.

2.1 Efficient motion magnitude estimation
We present a new algorithm that directly computes the magnitude
of the optical flow field. We start with the Taylor expansion of the
brightness constancy constraint [Negahdaripour and Yu 1993]:

∆It (x ,y) = ®д(x ,y)T ®v(x ,y) , (1)
the change in intensity between a pair of images at the same pixel
location ∆It is equal to the inner product of the spatial intensity
gradient at that location ®д and the motion vector at that location ®v .
The Cauchy-Schwartz inequality can be applied to this expression,

and then rearranged to bound the magnitude of the motion vector:

|∆It (x ,y)| ≤ ∥ ®д(x ,y)∥ · ∥ ®v(x ,y)∥

∥ ®v(x ,y)∥ ≥
|∆It (x ,y)|

∥ ®д(x ,y)∥

(2)

Thus, a lower bound for the flow magnitude can be computed by
dividing the magnitude of the change in intensity by the norm of
the spatial gradient. We call this technique “Bounded Flow". The
bound reaches equivalence when the direction of motion is parallel
to the gradient. This is the same property as the aperture problem
in full flow solutions: flow along edges can be under-estimated
if the direction of motion has a component perpendicular to the
gradient. Thus, the “lower bound” in Equation 2 can be considered
a direct computation of the optical flow magnitude according to
Lucas-Kanade.

The flow magnitude is computed using a pair of linear (non-tone
mapped) images on a per-pixel basis. The linearity of the signal
enables the efficient modeling of pixel noise variance, where the
variance is a linear function of the signal level [Nakamura 2016]. We
leverage this by masking out motion in regions where the gradient
∥ ®д∥ is too low relative to the noise standard deviation σ :

∥ ®д(x ,y)∥ < Kσ . (3)

We use K = 2.5. Discarding small spatial gradients is particularly
important in low-light scenes, where noise can be prevalent and
can corrupt the flow magnitude estimate. As a final step, the motion
magnitudes are refined by downsampling and taking the 90-th per-
centile motion in each bin, as a form of outlier rejection. Figure 4
shows the effect of applying the noise mask and the refinement.

Table 1 shows the accuracy of the motion magnitudes computed
by Bounded Flow relative to other methods, computed from the
MPI-Sintel optical flow dataset [Butler et al. 2012]. The methods’
run times are also provided. Bounded Flow with noise masking
compares favorably to other flow methods when comparing motion
magnitudes estimated from noisy imagery. Bounded Flow is more
accurate than other methods that do not use CNNs, but is also faster
by at least 2× over Lucas-Kanade based methods.
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Fig. 4. Intermediate results of “motionmetering”. The input is a pair of down-
sampled linear images with a known noise variance (a). The white/black
levels and the relative exposures are used to normalize the images so that
Equation 2 can be applied. The result is (b), which shows the motion mag-
nitude in a grayscale image (white = 10 pixels of motion). The motion is
overestimated in areas with low gradients. The noise model is used to com-
pute areas where the gradient is high relative to the noise, and this serves
as a mask (c) where valid motion measurements can be made (Equation 3).
The motion magnitudes after masking are shown in (d). These are further
refined by downsampling with outlier rejection, taking the 90th-percentile
motion in each bin. The final result is shown in (e). The resolution of the
final output is 16×12.

Table 1. Comparison of different optical flow algorithms. The means of
absolute errors (MAEs) between the predicted and true motion magnitudes
were generated using the MPI-Sintel optical flow dataset [Butler et al. 2012].
The images were inverse-tone mapped into a simulated linear space using
[Brooks et al. 2019], and high-magnitude noise was added, with a standard
deviation of 5% of the white level. The images were then downsampled to
256×192 using a triangle kernel before being processed by the algorithms.
Errors are computed only at locations indicated by the noise-based mask in
Equation 3. Run times are also provided, measured from single-threaded
executions running on an Intel Xeon E5-2690 v4 CPU. We see that Bounded
Flow is as accurate as other methods that are not based on neural networks.
Furthermore, Bounded Flow is 2× faster than the next fastest method. This
makes it suitable for our real-time application where the motion magnitude
needs to be monitored constantly on a mobile device while drawing minimal
power.

MAE Run time
Motion estimation method (pixels) (ms)
Coarse-to-fine flow [Liu 2009] 0.74 310.0
FlowNet [Dosovitskiy et al. 2015] 0.55 451.0
Non-iterative Lucas-Kanade (LK) 0.89 6.25
Iterative LK (max 20 iter) 0.73 9.45
Iterative pyramid LK (max 20 iter, 3 lvls) 0.81 17.0
Our Bounded Flow algorithm 0.62 3.11

After motion magnitude has been measured across the scene, the
measurements are aggregated into a single scalar value by taking
a weighted average. Typically, a center-weighted average is used,
where motion in the center of the scene is weighted highly, and
motion on the outside of the scene is discounted. Humans viewing
photographs are particularly perceptive to motion blur on faces,
therefore, if a face is detected in the scene by a separate automatic
system such as [Howard et al. 2017], then the area of the face is
weighted higher compared to the rest of the scene. The same type
of weighting occurs if a user manually selects an area of the scene.
Spatial weight maps of this kind are common inmany auto-exposure
and autofocus systems.

2.2 Future motion prediction
Given a sequence of weighted average motion measurements, we
predict the scene motion of future frames comprising the post-
shutter burst. The predictor considers a key property of temporal
denoising systems such as [Hasinoff et al. 2016]: one frame out of
the first K frames of the burst is selected as the “reference frame”,
and is denoised by merging into it other frames in the burst. The
end result is that the motion blur of the merged frame is close to
the motion blur of the reference frame, and thus, the frame with the
least motion blur should be selected as the reference frame. Thus,
we can pose the future motion prediction problem as the following:
given motion samples vi , i = 1, 2, · · · ,N before the shutter press,
what is the minimum motion vmin within the next K frames.

One way to predict future motion is to use a finite impulse re-
sponse (FIR) filter on the past N samples. There are two issues with
this approach. First, FIR filters are not very robust to outliers. If
one of the past frames has extremely large motion, either due to a
fast moving object or inaccurate motion estimation, the FIR filter
output will suddenly increase. However, the outlier frame can eas-
ily be rejected when selecting the reference frame, so this should
not suddenly lower the final selected exposure time. Second, FIR
filters do not consider that only one out of K frames are used as a
reference and they require tuning when K changes. For example,
when K increases, the maximum exposure time should increase,
since there is a higher chance that one frame out of the larger pool
of frames remains sharp. However, re-tuning an FIR filter to exhibit
this behavior is not straightforward.

To resolve these issues, we propose a motion prediction method
based on a cumulative distribution function (CDF). We find the
minimum motion vmin such that:

Pr

[
vmin ≥

K
min
k=1

vk

��� {vi }i=1, · · · ,N ]
≥ Pconf . (4)

That is, vmin is an upper bound on the minimum motion over the
next K frames, to a high degree of confidence (Pconf). An upper
bound was chosen in order to obtain a conservative estimate of
how much the exposure time can be lengthened, thus reducing the
chance of unwanted motion blur.

To model the probability of scene motion after the shutter press,
we assume that future motion shares the same distribution as scene
motion before shutter press. We fit a three-cluster Gaussian mixture
model (GMM) to the weighted average motion samples before shut-
ter press using expectation-maximization [Dempster et al. 1977].
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Table 2. Comparison of three different filters for future motion prediction,
evaluated on a dataset of 777 sequences of weighted average motion mag-
nitude estimates from Bounded Flow taken from sequential frames when
composing real-world scenes. For each sequence, we use the motion es-
timates between N successive frames to predict the minimum pairwise
motion of next K frames (here, N = 10 and K = 4). We compare: 1) the
averaging of 5 motion samples, 2) a 8-tap Hamming-window FIR filter with
a cutoff frequency of 0.01 of Nyquist, and 3) our Gaussian mixture model
(GMM)-based probabilistic prediction on two evaluation metrics: RMSE
(root-mean-square error) and RMSE on log2 motion. We calculate log2 to
roughly denote f-stops, as the ideal exposure time is inversely proportional
to motion magnitude Equation 6. On both metrics, the GMM filter has the
lowest error among all three algorithms.

mean filter FIR filter GMM
RMSE 1.2652 1.4671 1.1722

RMSE of log2 motion 0.2538 0.2967 0.1963

Then, assuming that each motion magnitude vk is independently
drawn from the GMM, we have:

1 − Pr [vmin ≤ vk ]
K ≥ Pconf . (5)

Since v is a 1D GMM, we can calculate Pr [vmin ≤ vk ] for each
Gaussian cluster by using the unit normal table. To find the mini-
mum motion vmin such that Equation 5 still holds, we use binary
search because the left hand side of Equation 5 is a monotonic func-
tion with respect to vmin. Table 2 shows that this GMM-based filter
is more accurate at future motion prediction than FIR filtering.

2.3 Camera stability detection
In low light, experienced photographers will often stabilize their
camera on a tripod or against a surface to allow for longer expo-
sure times. While we prioritize handheld capabilities, we also allow
longer exposures if a user chooses to brace the device, leave it
propped, or put the device on a tripod. When the device is handheld,
we capture up to 333 ms exposures; when we detect the device is
stabilized, we capture up to 1 s exposures. Figure 5 shows a very
dark scene captured using a tripod at different exposure times.

Before extending the exposure time, we must be certain that the
camera is braced or on a tripod. To accomplish this, we leverage mea-
surements from the device’s gyroscope sensor. Gyroscopes provide
a useful signal in video stabilization [Karpenko et al. 2011; Rawat
and Jyoti 2011] and alignment [Ringaby and Forssén 2014], and
they are similarly valuable for detecting camera stability. Moreover,
they provide reliable measurements even in very low light, in which
longer exposures have the most benefit.
To assess camera stability from gyro measurements, we tempo-

rally smooth angular speeds by averaging them over the t0 = 1.466 s
before shutter press. When on a tripod, significant vibration can
be caused by the shutter button press, which, on our device, we
determined empirically to last for a few hundred milliseconds. This
vibration is particularly large if the camera is on a small, lightweight
tripod, and can even exceed the camera motion when handheld.
Since there is some latency between the physical shutter press and
the software receiving this signal, some of these measurements are
counted as pre-shutter angular speed. The combination of these

Fig. 5. A demonstration of our algorithm with extended exposures enabled
by camera stability detection. The measured light levels at the tree were
0.06 lux. (a) A handheld capture uses 13× 333ms exposures. (b) When stabi-
lized on a tripod, our algorithm uses 6× 1 s exposures. The longer individual
exposures greatly reduce noise. (c) Camera stability detection could be used
for even longer captures, such as the 25× 4 s exposures in this example.
Noise is significantly reduced, at the cost of a much longer total capture
time.

factors makes it difficult to reliably differentiate between handheld
and stabilized cameras. We therefore mask out the t1 = 0.400 s of
gyroscope readings nearest to the shutter press signal.
The camera motion measurement is thus the average angular

speed in the range −t0 ≤ t ≤ −t1, where t = 0 represents the time
at which capture begins. Figure 6 shows the improved reliability
of gyroscope measurements after temporal smoothing and shutter
press masking. Any residual motion in the first frame of the burst
caused by the shutter press will be rejected by reference frame
selection.

2.4 Exposure time selection
Based on motion prediction and camera stability detection, our goal
is to select the exposure time and gain that will best trade off SNR
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(a) Angular speed, raw signal (b) Angular speed, filtered

Fig. 6. Masking and smoothing of a gyroscope signal for a more reliable
camera stability detection. (a) shows the raw gyroscope signals leading
up to the capture of handheld and stabilized bursts taken of the same
scene. Despite the camera being stabilized on a tripod, angular speed peaks
right before capture due to the shutter press. As described in Section 2.3,
motion caused by the shutter press can briefly meet or exceed handheld
motion, making reliable camera stability detection challenging. (b) shows
the temporally smoothed and masked gyroscope signals, to ignore the
brief motion from shutter press. This results in more accurate and reliable
discrimination between handheld and stabilized cameras.

for motion blur in the final rendered image. This becomes more
challenging in low-light scenes with fast-moving subjects. Selecting
a short exposure time that freezes the motion would cause excessive
noise, and selecting long exposure times would cause too much
motion blur. Therefore, in these scenarios, a balance needs to be
struck between the two extremes.
To address this, we use an exposure schedule that factorizes the

target sensitivity (generated by an auto-exposure algorithm) into
exposure time and gain. Figure 7 depicts a typical exposure schedule
for a mobile camera. Instead of using a static exposure schedule, we
use a dynamic schedule that is shaped according to the scene mo-
tion and camera stability estimates, shown in Figure 7. The camera
stability estimate governs the maximum exposure time returned
by the schedule. Then, the motion prediction is used to compute a
“blur-limiting exposure time”, which restricts the estimated motion
blur to B pixels:

t
(B)
exp =

B

vmin
, (6)

where vmin is calculated from Equation 5. As the scene becomes
darker, higher gains are required to restrict the exposure time to this
value. At a certain point, the gain starts to result in excessive noise,
and thus, the exposure schedule begins to increase both exposure
time and gain together. Although this can cause the captured images
to exceed the motion blur threshold, the noise remains reasonable
in the final result.

The difference between static and dynamic schedules depends on
the light level. In bright scenes (> 100 lux), the SNR can be high even
with short exposure times, so the gain is kept at the minimum value
in both schedules. In very dark scenes (< 0.3 lux), both schedules
choose the maximum exposure time. The lux levels in between are
where the dynamic schedule helps the most.

Fig. 7. Cameras typically encode the exposure time vs. gain tradeoff with
a static “exposure schedule”, depicted by the thicker blue line. If the ex-
posure schedule curve is higher, the camera favors higher SNR and more
motion blur, and if the curve is lower, the camera favors lower SNR and
less motion blur. Instead of a static schedule, we use a dynamic schedule
based on the measured scene motion. This allows the schedule to provide a
better tradeoff for the scene’s conditions. Zero motion (orange line) leads
to the slowest possible schedule, and as motion increases, the schedule
favors proportionally faster exposure times. The flat regions of the dynamic
exposure schedules denote the “blur-limiting exposure time" in Equation 6.

Fig. 8. Comparison of images captured with static (left) and dynamic (right)
exposure schedules. The pairs were captured at the same time with different
exposure times governed by the schedules. The top row shows the com-
parison on a still scene (although there is some hand motion) where the
dynamic schedule selects an exposure time 0.5 f/stop longer than the static
schedule, thereby reducing noise and increasing detail without incurring
additional motion blur. The bottom row shows a comparison on a scene
with significant subject motion, for which the dynamic schedule selects
an exposure time 1 f/stop shorter, thereby reducing motion blur without
adding noticeable noise.

Figure 8 shows images collected at the same time with static
and dynamic exposure schedules. They indicate that the dynamic
schedule chooses better points in the SNR vs. motion blur tradeoff
than the static schedule.
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3 MOTION-ADAPTIVE BURST MERGING
Aligning and merging a burst of frames is an effective method for
reducing noise in the final output. A relatively simple method that
aligns and averages frames was implemented in SynthCam [Levoy
2012]. While this method is very effective at reducing noise, mov-
ing subjects or alignment errors will cause the resulting image to
have motion artifacts. Convolutional neural networks [Aittala and
Durand 2018; Godard et al. 2018; Mildenhall et al. 2018] are a more
recent and effective method for motion-robust frame merging. How-
ever, these techniques require considerable computation time and
memory, and are therefore not suited to running within 2 seconds
on a mobile device. Bursts can be aligned and merged for other
applications, such as super-resolution [Farsiu et al. 2004; Irani and
Peleg 1991; Wronski et al. 2019]. These techniques can also be ben-
eficial for denoising in low light and we have provided additional
information on using [Wronski et al. 2019] in the supplementary
materials.
Since our method must be fast and robust to motion artifacts,

we build upon the Fourier domain temporal merging technique
described in [Hasinoff et al. 2016], which was targeted for mobile
devices. Other fast burst denoising techniques include [Liu et al.
2014], [Delbracio and Sapiro 2015], [Dabov et al. 2007], and [Mag-
gioni et al. 2012]. However, these methods operate on tone-mapped
(JPEG) images instead of raw images. As a result, [Hasinoff et al.
2016] benefits from increased dynamic range and better adaptation
to different SNR levels in the scene due to having a more accurate
noise variancemodel. In addition, [Liu et al. 2014] performs per-pixel
median selection instead of denoising a reference frame, which can
lead to artifacts at motion boundaries and locations where different
objects with similar intensities occur. For an in-depth comparison
of these fast burst denoising techniques, the reader is referred to
the supplementary material from [Hasinoff et al. 2016].
Fourier domain merging has a fundamental trade off between

denoising strength andmotion artifacts. That is, if the scene contains
motion, it is challenging to align different frames correctly, and a
simple average of the aligned frames would result in motion blur
and ghosting. [Hasinoff et al. 2016] addresses this by reducing the
degree of merging (i.e., reducing weights in a weighted average)
from frequency bands whose difference from the reference frame
cannot be explained by noise variance. However, the reduction
of the weights is controlled by a global tuning parameter, and as
a result, must be tuned conservatively to avoid motion artifacts.
Consequently, more denoising could occur in static regions of scenes
without incurring artifacts.

In low-light scenes, it becomes important to recover the lost
denoising performance in static regions of scenes while remaining
robust to motion artifacts. To do so, we propose adding a spatial
domain similarity calculation (in the form of “mismatch maps”,
defined below) before frequency domain merging. The mismatch
maps allow us to specify where the frequency-based merging can
be more or less aggressive, on a per-tile basis. Using this method we
can increase temporal merging in static regions in order to reduce
noise, while avoiding artifacts by reducing merging in dynamic
regions and in tiles which may have been aligned incorrectly.

Our contributions on top of [Hasinoff et al. 2016] are 1) Calculat-
ing mismatch maps, in which high mismatch represents dynamic
regions in the scene; 2) Using these maps to enable spatially varying
Fourier-domain burst merging, in which merging is increased in
static regions and reduced in dynamic regions; and 3) Increasing
spatial denoising where merging was limited, to compensate for the
reduced temporal denoising.

3.1 Alignment
Alignment and merging are performed with respect to a reference
frame, chosen as the sharpest frame in the burst. We use a tile-based
alignment algorithm similar to [Hasinoff et al. 2016] with slight
modifications to improve performance in low light and high noise.
The alignment is performed by a coarse-to-fine algorithm on four-
level Gaussian pyramids of the raw input. In our implementation,
the size of the tiles for alignment is increased as the noise level in the
image rises, at the cost of slightly increased computation for larger
tile sizes. Whereas the previous alignment method used 8 or 16 pixel
square tiles, we use square tiles of 16, 32, and 64 pixels, depending
on the noise level. For example, in a well-lit indoor setting, the size
of the alignment tiles is 16 while in the dark it is 64 pixels.

3.2 Spatially varying temporal merging
As described in [Hasinoff et al. 2016], after alignment, tiles of size
16 × 16 pixels are merged by performing a weighted average in the
Fourier domain. This merging algorithm is intrinsically resilient to
temporal changes in the scene and to alignment errors, owing to
the reduced weight given to frames and frequency bands that differ
from the reference frame significantly above the noise variance.
In [Hasinoff et al. 2016], the weight of the contribution from each
frame z in the location of tile t , is proportional to 1 − Atz (ω), in
which Atz (ω) is

Atz (ω) =
|Dtz(ω)|

2

|Dtz(ω)|2 + cσtz 2
, (7)

whereDtz(ω) is the difference between tiles in Fourier bandω as de-
fined in [Hasinoff et al. 2016], σtz 2 is the noise variance provided by
a model of the noise, and c is a constant that accounts for the scaling
of the noise variance. If the difference between tiles is small relative
to the noise, Atz (ω) decreases and a lot of merging occurs, and if
the difference is large, the function goes to 1 and the contribution
of the tile decreases.

In Equation 7, the value of c can be tuned to control the tradeoff be-
tween denoising strength and robustness to motion and alignment-
error artifacts. We call this parameter the “temporal strength”, where
a strength of 0 represents no temporal denoising, and a strength of
infinity represents averaging without any motion robustness (see
Figure 9a–d).

For very low-light scenes, we have found that c has to be increased
considerably in order to increase the contribution of each frame to
the average and to reduce noise. However, doing this introduces
artifacts due to tiles erroneously being merged together (due to
scene motion or alignment errors, as shown in Figure 9). In order
to reduce noise in very low-light scenes without suffering from
artifacts, we introduce a spatially varying scaling factor to c , the
“temporal strength factor”, ftz , where t and z represent the tile and
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frame respectively. The modified temporal strength is c · ftz . We
compute the temporal strength factor as a function of a mismatch
map,mtz , which is calculated per frame in the spatial (pixel) domain.
The mismatch maps are calculated using a “shrinkage” operator
[Dabov et al. 2007], with the same form as Equation 7:

mtz =
d2tz

d2tz + sσtz
2 . (8)

The mismatch,mtz , is calculated between the corresponding tile in
frame z to tile t in the reference frame, and has a value between zero
(no mismatch) and one (high mismatch). dtz is the L1 difference
between tile t in the reference frame and the tile that was aligned
to it from frame z. For efficiency, we reuse the calculations in the
previous alignment stage to obtain dtz . The constant s is a scaling
factor to allow tuning the mismatch maps, and we found that s = 0.5
results in a mismatch map that suppresses noise while detecting
actual motion in the scene.
The temporal strength factor, ftz , is a piecewise-linear function

ofmtz , and the modified Atz (ω) is now:

Atz (ω) =
|Dtz (ω)|

2

|Dtz (ω)|2 + c ftz (mtz )σtz 2
. (9)

The function ftz (mtz ), shown in Figure 9f, is manually tuned for
various scene noise levels (and linearly interpolated between them)
to increase the temporal denoising in high-matching regions while
decreasing merging and preserving the details in regions that have
high-mismatch. The maximal value of the temporal strength factor
is higher when more merging is desired, notably, darker scenes
with higher noise, as determined by a calculated tuning factor. The
minimal value of the temporal strength factor is similar for all scenes
and represents increased robustness to mismatch artifacts. In these
cases the temporal strength factor is simply 1 and the algorithm
naturally degrades back to Equation 7.

This modified algorithm provides additional robustness to [Hasi-
noff et al. 2016] by better determining when the differences between
tiles originate from changes in random noise and when they are due
to actual changes in the scene. Although the the mismatch map is
also based on tile differences, the difference of Equation 7, Dtz (ω),
only looks at differences within a certain frequency band in a 16×16
pixel tile, while the difference dtz of Equation 8 originates from the
alignment error which often has a larger support (up to 64 × 64)
and is calculated in the spatial domain, across all frequency bands.
These complementary approaches to calculating the differences be-
tween tiles help create a motion robust merge that is also effective
at removing noise in very low light.

As an additional improvement to [Hasinoff et al. 2016], instead of
calculating theweight 1−Atz (ω) per color channel andmerging each
channel separately, we now compute the minimal weight across all
color channels for each tile, and use a similar weight for merging all
of the channels in each frequency band. We found that in low light
the weights for each channel can be very different from one another,
which causes color artifacts. Using a similar weight is important to
reduce these artifacts.

Fig. 9. The temporal strength (c in Equation 7) determines the tradeoff
between temporal denoising andmotion robustness. It does this by adjusting
the contributions of tiles in alternate frames to the merged result based
on their similarity to the corresponding tiles in the reference frame. To
demonstrate the influence of the temporal strength, we manually set it to
various values in sub-figures (a-d). In (a) the temporal strength is set to
zero and effectively only the reference frame is used to create the image.
In (b), the burst of 13 frames is merged using a low temporal strength.
The resulting image has significant noise but no motion blur. In (c, d) the
temporal strength is high and consequently the resulting image has less
noise but more motion blur. By creating mismatch maps for each frame, we
can compute a spatially varying temporal strength. (e) shows a mismatch
map of one of the frames of the burst, as computed per tile according to
Equation 8. The static background has low mismatch and the regions which
have motion have a high mismatch. (f) shows the conversion from the
mismatch maps to the temporal strength factor at various scene noise levels.
(g) shows the spatially varying temporal strength factor. In the resulting
image, regions with movement, such as the face, are sharp as in (b), and the
static regions, such as the corner of the fireplace, have reduced noise as in
(c). Refer to the supplement to see additional frames from this burst and
the corresponding mismatch maps.

3.3 Spatially varying denoising
As in [Hasinoff et al. 2016], we next perform spatial denoising in
the 2D DFT domain, by applying a shrinkage operator of the same
form as Equation 7 to the spatial frequency coefficients. Originally,
the strength of denoising was calculated assuming that all N frames
were averaged perfectly and the estimate of the noise variance of
the image after merging was updated to be σ 2

N . In our modified
implementation, we calculate the noise variance of the merged
image based on the actual merging that occurred in each tile, which
increases the noise variance in regions of high mismatch. As a result,
these regions get increased spatial denoising, via the shrinkage
function, which compensates for their reduced temporal denoising.
See Figure 10 for the results in Figure 9 without and with spatially
varying denoising.
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(a) No spatially varying denoise (b) With spatially varying denoise

Fig. 10. Spatially varying denoising adaptively reduces more noise in regions
with less temporal denoising, such as the face and hand. Static regions of
the image are not affected. The amount of denoising increases in tiles with
reduced frame merging.

(b) Short exposure, single frame(a) Long exposure, single frame

(c) Previously described burst processing (d) Our merge algorithm

Fig. 11. Motion-robust align and merge can be applied to dSLR photos to
improve low light handheld photography. a) At 0.3 lux, at an exposure time
of 330ms at ISO 12800, the photograph isn’t overly noisy on a professional
dSLR (Canon EOS-1D X) but suffers from motion blur. In these situations,
photographers must balance a tradeoff between unwanted motion blur and
unwanted noise. b) At 50ms exposure and ISO 65535 there is no motion
blur, but the image suffers from significant noise. c) Merging 13 frames with
50ms exposure at ISO 65535 as described in [Hasinoff et al. 2016] produces
an image with reduced noise and reduced motion blur. d) When applying
our modified merge algorithm to the burst we are able to reduce noise even
further and provide more detail. The crops on the right were brightened by
30% to emphasize the differences in noise.

Figure 9h shows the result of our algorithm on a dark indoor
scene with a lot of motion. The image was created by merging a
burst of 13 frames captured on a mobile device. Our procedure for
aligning and robustly merging multiple frames generalizes to the
raw bursts captured by a handheld digital single-lens reflex camera
(dSLR). As shown in Figure 11, our algorithm can be used to merge
multiple short exposures and reduce motion blur.

4 LOW-LIGHT AUTO WHITE BALANCE
Camera pipelines require an Automatic White Balance (AWB) step,
wherein the color of the dominant illumination of the scene is esti-
mated and used to produce an aesthetically pleasing color compo-
sition that (often) appears to be lit by a neutral illuminant. White

balance is closely related to color constancy, the problem in both
human vision [Foster 2011] and computer vision [Gijsenij et al.
2011] of discounting the illuminant color of a scene and inferring
the underlying material colors. Because modern color constancy
algorithms tend to use machine learning, these algorithms can be
adapted to serve as AWB algorithms by training them on illumi-
nants that, when removed, result in pleasing color-corrected images,
rather than training them on the illuminants used in color constancy
that, when removed, produce veridically neutralized images. “Fast
Fourier Color Constancy” (FFCC) [Barron and Tsai 2017] is the cur-
rent top-performing color constancy algorithm, both in terms of
accuracy (on standard color constancy datasets [Cheng et al. 2014;
Gehler et al. 2008]) and speed (capable of running at ∼700 frames
per second on a mobile device). FFCC works by learning and then
applying a filter to a histogram of log-chrominance pixel and edge
intensities, as was done by its predecessor technique [Barron 2015].

White balance is a particularly challenging problem in low-light
environments, as the types of illuminations are more diverse, and
the observed image is more noisy. In this section we describe how
FFCC can be modified to serve as an effective AWB algorithm for
low-light photography, through the use of a new dataset and a
new error metric for training and evaluation. In the supplement we
document some additional modifications we made to FFCC that are
unrelated to low light photography, regarding image metadata and
sensor calibration.

Dataset: FFCC is learning-based, and so its performance depends
critically on the nature of the data used during training. While there
are publicly available color datasets [Cheng et al. 2014; Gehler et al.
2008], these target color constancy—objectively neutralizing the
color of the illuminant of a scene. Such neutralized images often
appear unnatural or unattractive in a photographic context, as the
photographer often wants to retain some of the color of the illumi-
nant in particular settings, such as sunsets or night clubs. Existing
datasets also lack imagery in extreme low-light scenarios, and often
lack spectral calibration information. To address these issues, we
collected 5000 images of various scenes with a wide range of light
levels, all using mobile devices with calibrated sensors. Rather than
using a color checker or gray card to recover the “true” (physically
correct) illuminant of each scene, we recruited professional photog-
raphers to manually “tag” the most aesthetically preferable white
balance for each scene, according to their judgment. For this we
developed an interactive labelling tool to allow a user to manually
select a white point for an image, while seeing the true final ren-
dering produced by the complete raw processing pipeline of our
camera. Matching the on-device rendering during tagging is critical,
as aesthetic color preferences can be influenced by other steps dur-
ing image processing, such as local tone-mapping, exposure, and
saturation. Our tagging tool and a subset of our training data is
shown in the supplement.

Errormetrics: Traditional error metrics used for color constancy
behave erratically in some low-light environments, which neces-
sitates that we design our own error metric for this task. Bright
environments are often lit primarily by the sun, so the true illumi-
nant of images taken in bright environments is usually close to white.
In contrast, low light environments are often lit by heavily tinted
illuminants—campfires, night clubs, sodium-vapor lamps, etc. This
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appears to be due to a combination of sociological and technological
trends (the popularity of colorful neon lights in dark environments)
and of the nature of black body radiation (dim lights are often tinted
red). Heavily-tinted illuminants mean that the true white-balanced
image may contain pixel values where a color channel’s intensity is
near zero for all pixels, such as the image in Fig. 12a. This is problem-
atic when evaluating or training white balance algorithms, which
are commonly evaluated in terms of how well they recover all color
channels of the illuminant. If a color channel is “missing” (i.e. having
little or no intensity) then this task becomes ill-posed. For example,
if all pixels in an image have a value near 0 in their red channel, then
the image will look almost identical under all possible scalings of its
red channel. This is problematic for a number of reasons: 1) When
collecting ground-truth illuminant data, it is unclear how missing
channels of the illuminant should be set. 2) When evaluating an
algorithm on heavily-tinted images, its accuracy may seem low due
to irrelevant “mistakes” when estimating missing color channels. 3)
Learning-based algorithms will attempt to minimize a loss function
with respect to meaningless illuminant colors in these missing chan-
nels, which may impair learning—a model may waste its capacity
trying to accurately predict illuminant colors that are impossible to
determine and are irrelevant to the image’s final rendering.
To address this, we present a new error metric that correctly

handles heavily-tinted scenes. First, let us review the canonical
metric for color constancy, which is the angular error between
RGB vectors of the true illuminant ℓt and the recovered illuminant
ℓp [Gijsenij et al. 2009]:

∆ℓ
(
ℓp , ℓt

)
= cos−1

(
ℓTp ℓt

∥ℓt ∥∥ℓp ∥

)
(10)

The angular error measures errors in the recovered illuminant, even
though our primary concern is the appearance of the white-balanced
image attained when dividing the input image by the recovered
illuminant. The reproduction error of [Finlayson and Zakizadeh
2014] addresses this:

∆r
(
ℓp , ℓt

)
= cos−1

(
∥r ∥1

√
3∥r ∥2

)
r =

ℓt
ℓp

(11)

where division is element-wise. The reproduction error considers
the error in the appearance of a white patch under a recovered
illumination compared to the true illuminant. But as we have no-
ticed, in heavily-tinted scenes where one or two color channels
are missing, the notion of a “white patch” becomes ill-defined. We
therefore propose an improved metric that considers the appearance
of the average patch of the image when viewed under the recovered
illumination, which we dub the “Anisotropic Reproduction Error”
(ARE):

∆a
(
ℓp , ℓt , µt

)
= cos−1

( √
r
T
H
√
r√

tr(H )
√
rTHr

)
H = diag

(
µt

)2 (12)

µt is an RGB vector containing the mean color of the true image:

µt = mean
i

( [
r
(i)
t ; д(i)t ; b(i)t

] )
(13)

The ARE implicitly projects the inverse of the true and predicted
illuminants (i.e. the appearance of a white patch under the true

(a) Ground-truth image

∆ℓ = 18.1◦

∆r = 20.4◦

∆a = 3.25◦

(b) Our model’s output image

∆ℓ ∆r = ∆a (µt = ®1) ∆a (µt = [.10; .53; .84])

Fig. 12. Low-light environments often have heavily tinted illuminants, re-
sulting in images where one or more color channels have low intensities
across the image (a). As a result, during white balance the appearance of
the image is sensitive to accurate estimation of the gains for high-intensity
channels (here, green and blue) but is less sensitive to the low-intensity
channels (here, red), as evidenced by the output of our model (b), which is
grossly inaccurate in the red channel but still results in an accurate-looking
rendering. Traditional error metrics (∆ℓ and ∆r ) exaggerate errors in our
low-intensity color channel (b, inset), causing difficulties during training
and evaluation. Our “Anisotropic Reproduction Error” (ARE), denoted ∆a ,
accounts for the anisotropy of the RGB values in the true image, and down-
weights errors in missing channels accordingly, resulting in a learned model
that produces output images (b) that closely match the ground-truth (a) in
these challenging scenes. Below we visualize the error surfaces of traditional
metrics ∆ℓ and ∆r alongside ∆a using the log-chroma UV histograms of
[Barron and Tsai 2017], where luma indicates error (the true illuminant
is at the origin and our prediction is a white circle). By conditioning on
the mean RGB value of the true image µt , the ARE’s curvature is reduced
with respect to red (along the u-axis) but still highly curved with respect to
blue and green (along the v -axis and diagonally), which accurately reflects
performance in this heavily-tinted scene.

and predicted illuminants) into a 3D space scaled by the average
color of the true white-balanced image µt , and then computes the
reproduction error in that projected space. Therefore, the smaller
the value of some channel of µt , the less sensitive ∆a is to errors in
that channel of the estimated illuminant ℓp , with a value of 0 in µt
resulting in complete insensitivity to errors in that channel. If two
color channels are absent in an image, the ARE will be 0 regardless
of the predicted illuminant, accurately reflecting the fact that the
color composition of the scene cannot be changed by applying per-
channel color gains. the ARE degrades naturally to the standard
reproduction error when the average scene color is gray:

∀α > 0, ∆a
(
ℓp , ℓt ,α1

)
= ∆r

(
ℓp , ℓt

)
(14)

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.



1:12 • Liba et al.

Table 3. White balance results using 3-fold cross-validation on our dataset,
in which we modify FFCC by replacing its data term with different error
metrics, including the ARE, ∆a . We report mean error, and the mean of
the largest 25% of errors. Minimizing the ARE improves performance as
measured by all error metrics, as it allows training to be invariant to the
inherent ambiguity of white points in heavily-tinted scenes.

∆ℓ (Ang. Err.) ∆r (Repro. Err.) ∆a (ARE)

Algorithm Mean Worst Mean Worst Mean Worst
25% 25% 25%

FFCC [2017] 1.377 3.366 1.836 4.552 1.781 4.370
FFCC + ∆r 1.332 3.154 1.771 4.255 1.721 4.088
FFCC + ∆ℓ 1.320 3.115 1.768 4.229 1.714 4.049
FFCC + ∆a 1.312 3.088 1.752 4.194 1.696 4.007

In most of the scenes in our dataset, the average true color is close to
gray and therefore the error surface of the ARE closely resembles the
reproduction error, but in challenging low-light scenes the difference
between the two metrics can be significant, as is shown in Figure 12
In addition to its value as a metric for measuring performance,

the ARE can be used as an effective loss during training. To demon-
strate this we trained our FFCCmodel on our dataset using the same
procedure as was used in [Barron and Tsai 2017]: three-fold cross
validation, where hyperparameters are tuned to minimize the “aver-
age” error used by that work. We trained four models: a baseline in
which we minimize the von Mises negative log-likelihood term used
by [Barron and Tsai 2017], and three others in which we replaced
the negative log-likelihood with three error metrics: ∆r , ∆ℓ , and
our ∆a (all of which are differentiable and therefore straightforward
to minimize with gradient descent). Results can be seen in Table 3.
As one would expect, minimizing the ARE during training produces
a learned model that has lower AREs on the validation set. But
perhaps surprisingly, we see that training with ARE produces a
learned model that performs better on the validation data regardless
of the metric used for evaluation. That is, even if one only cared
about minimizing angular error or reproduction error, ARE is still a
preferable metric to minimize during training. This is likely because
the same ambiguity that ARE captures is also a factor during dataset
annotation: If an image is lacking some color, the annotation of
the ground-truth illuminant for that color will likely be incorrect.
By minimizing ARE, we model this inherent uncertainty in our
annotation and are therefore robust to it, and our learned model’s
performance is not harmed by potentially-misleading ground truth
annotations.

5 TONE MAPPING
The process of compressing the dynamic range of an image to that
of the output is known as “tone mapping”. In related literature,
this is typically achieved through the application of tone mapping
operators (TMOs), which differ in their intent: some TMOs try to
stay faithful to the human visual system, while others attempt to
produce images that are subjectively preferred by artistic experts.
[Eilertsen et al. 2016; Ledda et al. 2005] provide evaluations of TMOs
for various intents.

Figure 13 depicts the human visual acuity in different light levels.
The intent of our TMO is to render images that are vibrant and
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Fig. 13. The variation in color perception and acuity of human vision across
typical ambient light levels (figure adapted from [Stockman and Sharpe
2006]). Any TMO that attempts to simulate the human visual system in
low-light situations (scotopic and mesopic regimes) is subject to complex
physiological phenomena, including Purkinje shift, desaturation, and loss
of spatial acuity [Shin et al. 2004].

colorful even in low-light scenarios, enabling photopic-like vision
at mesopic and scotopic light levels. While TMOs are able to simu-
late the human visual system in the color-sensitive cone mediated
regime, simulating the rod-mediated regime is more challenging
due to the presence of complex physiological phenomena [Ferwerda
et al. 1996; Jacobs et al. 2015; Kirk and O’Brien 2011]. The ability
to render vibrant and colorful dark scenes has been developed for
digital astronomy [Villard and Levay 2002]. Our system aims to
bring this ability to handheld mobile cameras.
Development of the final look of a bright nighttime photograph

needs to be done carefully. A naïve brightening of the image can lead,
for example, to undesired saturated regions and low contrast in the
result. Artists have known for centuries how to evoke a nighttime
aesthetic through the use of darker pigments, increased contrast,
and suppressed shadows ([Helmholtz 1995], originally written in
1871). In our final rendition, we employ the following set of carefully
tuned heuristics atop the tone mapping of [Hasinoff et al. 2016] to
maintain a nighttime aesthetic:

• Allow higher overall gains to render brighter photos at the
expense of revealing noise.

• Limit boosting of the shadows, keeping a significant amount
of the darkest regions of the image near black to maintain
global contrast and preserve a feeling of nighttime.

• Allow compression of higher dynamic ranges to better pre-
serve highlights in challenging conditions, such as night
scenes with light sources.

• Boost the color saturation in inverse proportion to scene
brightness to produce vivid colors in low-light scenes.

• Add brightness-dependent vignetting.
[Hasinoff et al. 2016] uses a variant of synthetic exposure fu-

sion [Mertens et al. 2007] that splits the full tonal range into a
shorter exposure (“highlights”) and longer exposure (“shadows”),
determines the gains that are applied to each exposure, and then
fuses them together to compress the dynamic range into an 8-bit
output. For scenes with illuminance Ev below log-threshold Lmax,
we gradually increase the gainAs applied to the shadows (the longer
synthetic exposure) with the lux level, reaching a peak of over 1
additional stop (2.2×) of shadow brightness at log-threshold Lmin:

As = 2.21−max
(
0,min

(
1, log(Ev )−Lmin

Lmax−Lmin

))
, (15)
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(a) Baseline (b) CLAHE (c) Our tone mapping

Fig. 14. A nighttime scene (about 0.4 lux) that demonstrates the difficulty
in achieving balanced tonal quality. (a) The tone mapping of [Hasinoff et al.
2016] results in most of the image being too dark and is not a pleasing
photograph. (b) Applying a tone mapping technique that brightens the
image using histogram equalization (CLAHE [Zuiderveld 1994]) reveals
more detail, but the photo lacks global contrast. (c) The photo with our tone
mapping retains the details of (b), but contains more global contrast and
enough dark areas to show that the captured scene is dark.

where the illuminance thresholds Lmax and Lmin correspond to a
scene brightness of 200 lux and 0.1 lux, respectively.
A fraction of up to 20% of the additional shadow gain As is also

applied to the highlights (the short synthetic exposure). This is done
in inverse proportion to the normalized dynamic range of the scene
D, because otherwise the intensity distribution can become too
narrow, causing a loss of contrast. The highlight gain Ah is:

Ah = 1 + 0.2 · (As − 1) · (1 − D) . (16)

We also increase the color saturation in inverse proportion to the
log-lux level of the scene up to 20%, which helps maintain vivid
renditions of facial skin tones.
Due to the high gains applied to the images, artifacts from in-

accuracies in the subtraction of the black-level and lens-shading
correction begin to manifest. These artifacts are most prominent in
the corners of the image (where the lens-shading correction gain is
greatest). To suppress these artifacts, we apply vignetting in scenes
darker than 5 lux, gradually increasing in darker scenes. The ap-
pearance of vignetting also contributes to the perception of a dark
scene and adds an aesthetic “depth” to the image.

To demonstrate the results of ourmethod, the rendition from [Hasi-
noff et al. 2016] is shown in Figure 14a and is too dark to show much
detail. The amount of detail in that rendition can be increased by
locally increasing its contrast, for example by applying adaptive his-
togram equalization. In Figure 14b we use CLAHE [Zuiderveld 1994]
on the V channel following an HSV decomposition of the image
[Smith 1978]. This increases local contrast but the global contrast is
flattened, resulting in a low-contrast appearance. The result of our
technique (Figure 14c) reveals shadow details without significant
loss of contrast and maintains a natural nighttime appearance.

6 RESULTS
Our system was launched publicly in November 2018 as a mode
called “Night Sight” in the camera app on Google Pixel smartphones.
It is implemented on Android and relies on the Camera2 API [Google

LLC 2016a]. On Pixel, Pixel 2 and Pixel 3a we use the motion-
adaptive burst merging method described in Section 3. On Pixel
3, which has a faster system-on-chip, burst merging is performed
using [Wronski et al. 2019]. This alternative merging technology
also launched in October 2018 on the Pixel 3 under the name “Su-
per Res Zoom”. We compare these two merging algorithms in the
supplementary material. All of the results in this paper, except for
those clearly indicated in the supplementary comparison figure, use
the motion-robust Fourier-domain merge described in Section 3.

Our system uses refined and tuned versions of some of the algo-
rithms described in the “Finishing” section of [Hasinoff et al. 2016]
in order to convert the raw result of the merged burst into the final
output. These include demosaicing, luma and chroma spatial denois-
ing, dehazing, global tone adjustment, and sharpening. We are not
able to provide additional details about these proprietary algorithms,
and we note that they are not a contribution of the system described
in this paper.
In Figure 15, we compare our results to the burst photography

pipeline that we build upon [Hasinoff et al. 2016]. The sequence
shows that simply applying the tone mapping described in Sec-
tion 5 to the baseline results in excessive noise. When motion me-
tering (Section 2) and motion-adaptive burst merging (Section 3)
are applied, the noise and detail improve significantly. Finally, the
low-light auto white balance (Section 4) algorithm improves color
rendition, making the final image better match the human visual
perception of the scene. The final results allow users to see more
detail while still having low noise, pleasing colors, and good global
contrast. In the supplement, we demonstrate our processing com-
pared to [Hasinoff et al. 2016] across multiple scenes and a variety
of illuminants. Additionally, we have processed the dataset released
by [Hasinoff et al. 2016] ([Google LLC 2016b]) and published our
results on [Google LLC 2019].

We also compare our pipeline with an end-to-end trained neural
network that operates on raw images [Chen et al. 2018]. The CNN
performs all of the post-capture tasks performed by our pipeline,
but with a large convolutional architecture and a single frame as
input. Figure 16 shows that the output of the CNN has less detail
and more artifacts than the output of our pipeline (additional results
are in the supplement). In this comparison, we used raw frames
captured with a similar camera model as was used for training the
network in [Chen et al. 2018] (Sony α7S II) because that network did
not generalize well to the frames of the mobile device and produced
severe color and detail artifacts (not shown here). Although our
pipeline was not specifically calibrated or tuned for the Sony camera,
it still produced higher-quality images compared with the results
of [Chen et al. 2018].
Performance on mobile devices must also be considered while

evaluating imaging pipelines. The CNNnetwork architecture in [Chen
et al. 2018] is large and may not be well suited for running efficiently
on a mobile device. [Chen et al. 2018] reports a time of 0.38 s to
process the Sony images on a desktop GPU, which is equivalent to
10s of seconds on a mobile GPU [GFXBench 2019] (assuming mem-
ory and temperature limits allow the model to be run on a mobile
device). Our pipeline has been designed for efficiency, and thus is
able to process the captured burst of images in under 2 seconds on
a mobile phone. Pre-capture motion metering is also efficient and
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(a) Baseline system, exposure time 1/15s
(b) Adding new tone mapping to baseline, 

exposure time 1/15s. Results are noisy.
(c) Adding motion metering, exposure 
time 1/3s. Noise and detail improve.

(d) Adding motion-robust merge. Noise  
and detail improve further.

(e) Adding low-light auto white balance. 
Color improves.

Fig. 15. Comparison between our pipeline and the baseline burst processing pipeline [Hasinoff et al. 2016] on 13 frame bursts. Due to hand shake, over the
duration of the capture the top example contains 41 pixels of motion and the bottom example contains 66 pixels of motion. The columns show the effect of
augmenting the baseline with various parts of our pipeline. (a) shows the results of the baseline. (b) demonstrates how our tone mapping makes the scene
brighter, allowing the viewer to see more detail while preserving global contrast. However, noise becomes more apparent, and overwhelms visible detail in the
darker parts of the scenes. Adding motion metering in (c) allows us to increase the exposure time in these scenes without introducing significant motion blur
(3-4 pixels per frame). The resulting images are less noisy, and more detail is visible. Adding motion-robust merging in (d) allows us to increase temporal
denoising in static regions, further improving detail. Finally, the low-light auto white balance is applied in (e), making the colors in the scene better match the
perceived colors from the human visual system.

Single exposure from Sony camera processed by end-to-end 
CNN, 1/10s exposure time.

Burst from Sony camera processed by our pipeline and 
color-equalized, 1/10s exposure time, 13 frames.

Single exposure from Sony camera processed by end-to-end 
CNN, 1/3s exposure time.

Burst from Sony camera processed by our pipeline and 
color-equalized, 1/3s exposure time, 13 frames.

Single exposure from Sony camera processed by our pipeline 
and color-equalized, 1/10s exposure time.

Single exposure from Sony camera processed by our pipeline 
and color-equalized, 1/3s exposure time.

(a) (b) (c)

Fig. 16. Comparison between the end-to-end trained CNN described in [Chen et al. 2018] and the pipeline in this paper. Raw images were captured with a
Sony α7S II, the same camera that was used to train the CNN. The camera was stabilized using a tripod. The illuminance of these scenes was 0.06-0.15 lux.
Because our white balancing algorithm was not calibrated for this sensor, and since color variation can affect photographic detail perception, the results of our
pipeline are color-matched to the results of [Chen et al. 2018] using Photoshop’s automatic tool (see supplement for details). Column (a) shows the result from
the CNN, and column (b) shows the result of our pipeline processing 13 raw frames. Column (c) shows the result of our pipeline processing one raw frame (no
merging). The advantages of burst processing are evident, as the crops in column (b) show significantly more detail and less noise than the single-frame
results. Additional examples can be found in the supplement.
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b) OnePlus 6Ta) Huawei P30 Pro

c) Samsung Galaxy S10+ d) Ours

300 ms exposure

Fig. 17. Comparison of the output of our system to photographs captured
with the specialized low-lightmodes of other devices. The scene brightness is
0.4 lux and it is illuminated by a dim tungsten light. Readers are encouraged
to zoom in on the images. The different results show the challenges inherent
in low-light photography. High levels of detail, limited artifacts, pleasing
color, and good exposure (brightness) are all important, and are difficult to
achieve in unison.

can estimate the flow field’s magnitude in only 3ms. Therefore, the
maximum total capture and processing time of our system is 8 s, of
which 6 s is the maximum capture time, achieved when the camera
is stabilized. Memory is also an important consideration. Based on
the architecture of the network described in [Chen et al. 2018], we
estimate that it requires around 3GB of memory, while our process
needs under 400MB of memory.
Figure 17 compares photos captured with our device and pro-

cessed with our on-device pipeline, to three other devices that have
specialized low-light photography modes. Our pipeline has a well-
balanced rendition that has good brightness and pleasing color with
a low amount of artifacts. For additional examples, please refer to
the supplement.

6.1 Limitations
Although our proposed system is successful in producing high-
quality photographs on a mobile device in low-light conditions, it
has several practical limitations.
Autofocus. Consistent and accurate autofocus (AF) is a prerequi-

site for sharp output images. AF in low-SNR scenes is fundamentally
difficult, and beyond the scope of this paper. We use the device’s
AF out of the box, which employs both phase- and contrast-based
strategies, but isn’t optimized for very low-light conditions. Empiri-
cal experiments show that our camera’s AF fails almost 50% of the
time when the scene luminance is around 0.4 lux. We mitigate this
issue by locking the lens’s focus distance to the hyperfocal distance
when the AF system reports a focus failure. When the lens is at
the hyperfocal distance, everything from a certain distance out to
infinity is in acceptable focus, and the depth of field is maximized,

thereby minimizing potential misfocus. We also allow the user to
adjust the focus distance manually prior to the capture.

Real-time preview. The viewfinder allows the user to frame the
shot in real time and anticipate the final rendition of a processed
image. Rendering a high-quality preview in low light is challenging,
as both exposure time and processing latency are constrained by the
viewfinder refresh rate (e.g., ≥ 15 fps). We circumvent this challenge
by adopting the camera’s proprietary hardware-accelerated preview
pipeline and adaptively gaining up its output using a GPU shader.
One could potentially obtain better results by employing lightweight
temporal denoising techniques such as [Ehmann et al. 2018].

Shutter lag. Similar to [Hasinoff et al. 2016], our system doesn’t
start collecting raw frames until the user presses the shutter, re-
sulting in a noticeable delay for the captured “moment”. This is
different from many zero-shutter-lag (ZSL) applications, where the
camera continuously caches viewfinder frames to a ring buffer and
processes them upon shutter press. We choose not to use ZSL frames
because their exposure time is limited by the viewfinder refresh
rate, which is so short that read noise dominates the signal.

Black levels. The minimum digital value returned by a sensor
that is treated as black is called the black level. Inaccurate black
levels are a potential limitation to low-light imaging. However, a
good sensor can get within 0.25 data numbers (DN) of a 10-bit
signal, and accuracy can be further improved with a gain-dependent
look-up table. We use black levels straight from the camera driver.

Sky tones. At night, the tone of the sky usually overlaps with
that of the foreground. As our pipeline adjusts the mid-tones during
global tone mapping to make details in the foreground more visi-
ble, the rendition of the sky is also brightened. The perception of
darkness is naturally sensitive to the tone and color of the sky and
therefore in certain conditions our results fail to convey the sense
of darkness adequately. To correctly account for the perception of
darkness, one would need to apply a different tonal adjustment
specifically to the sky.

7 CONCLUSIONS
In this paper, we set forth a list of requirements that a computational
photography system should satisfy in order to produce high-quality
pictures in very low-light conditions, and described an implemen-
tation of a system that meets these requirements. We introduced
motion metering, a novel approach for determining burst capture
parameters that result in a good tradeoff between SNR and motion
blur, and motion-robust merging, which minimizes motion artifacts
when merging extremely noisy raw images. We also outlined how
we incorporate learning-based auto white balancing and specialized
tone mapping to best convey the color and aesthetics of a low-light
photograph. Our system overcomes many constraints of a small
sensor size, and runs efficiently on a modern mobile device.
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