

(1) Rim Reflectance Imaging Indirect Imaging with Diffuse Reflection (2) Time-Varying Imaging **Diffuse surfaces** generally blur together incident lighting from many Exploit visibility differences very close to occlusion boundary directions geometry • To what extent can we use **diffuse objects** as **"cameras"**? Single shot is enough Single pixel is enough Requires high resolution, compact lighting Requires many shots, natural variation • How much **resolution** can we hope to achieve? incident lighting incident lighting recorded "directly" ill-posed? • Novel approach (to our knowledge) • Classical astronomy ("light curves") Goal: Recover detailed incident illumination (or surface albedo) using Moon as a Mirror - Feasibility Study photos measuring the reflectance of a diffuse object. Observing Earth via its reflection in the moon **Theory of Reflection and its Inversion** BBSO earthshine project measures albedo over time [Qiu et al. 2003] [Pallé et al. 2003] Single-bounce light transport Matrix formulation Can we resolve more than a single pixel? $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{A}\mathbf{x}, \eta^2 \mathbf{I})$ $B(\mathbf{p}, \vec{\omega}_o) =$ $\alpha(\mathbf{p}) L(\mathbf{p}, \vec{\omega}_i) \rho(\vec{\omega}_i, \vec{\omega}_o) V(\mathbf{p}, \vec{\omega}_i) \max(\vec{\omega}_i \cdot \vec{n}, 0) d\vec{\omega}_i$ J_{Ω} **<u>Simulation</u>**: Rim reflectance imaging surface incoming **Simulation:** Time-varying imaging reflected visibility clipped BRDF transfer distant noise observed albedo radiance radiance cosine matrix lighting pixels Reflectance \approx spherical convolution of lighting and BRDF Images of convex Lambertian objects with distant lighting lie in a ~9D subspace [Basri and Jacobs, 2003] [Ramamoorthi and Hanrahan, 2001] 1am, Feb 24, 2010 5am, Feb 24, 2010 dB nsti 60 **Key: Occlusion Geometry for Illumination Coding** dB "Sculpture design" for inverse rendering 80 Occlusion creates high frequencies, adaptive optics (0.07") std. optics (0.4") improves conditioning In the extreme, scene geometry 1 night (107 obs.) 1 month (412 obs.) isolates individual rays **Simulation:** Time-varying imaging with clouds double-pinholes coded reflectance natural complexity and the second sec **Bayesian Reconstruction Method** earth with clouds mean clouds ideal baseline Standard MAP estimation basic recon. covariant recon. Reconstructing the stable component of **time-varying lighting** Marginalize out temporal variations • Gaussian prior [Wiener 1949] **Martian Surface from Single-Pixel Data** $\int \mathbf{A}_1(\mathbf{x} + \mathbf{t}_1)$ $p(\mathbf{y}|\mathbf{x},\mathbf{t}_1,\ldots,\mathbf{t}_D) = \mathcal{N}($ temporal binning $= \mathcal{N} \left(\begin{bmatrix} \vdots \\ \mathbf{A}_D(\mathbf{x} + \mathbf{t}_D) \end{bmatrix}, \eta^2 \mathbf{I} \right)$ **<u>Real data</u>**: 234 historical photometry measurements [Irvine et al. 1968ab] with Gaussian prior

$$\mathrm{p}(\mathbf{x}) = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{x}})$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}\left(\boldsymbol{\Sigma}(\frac{1}{\eta^2}\mathbf{A}^{\mathrm{T}}\mathbf{y}), \boldsymbol{\Sigma}\right)$$
$$\boldsymbol{\Sigma} = (\boldsymbol{\Sigma}_{\mathbf{x}}^{-1} + \frac{1}{n^2}\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}$$

• Sparse derivative prior [Levin et al. 2007] $g(z) = |z|^{0.8}$

Diffuse Reflectance Imaging with Astronomical Applications

TTIC, Google*

Anat Levin Weizmann Institute

 $\mathrm{p}(\mathbf{t}_i) = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{t}})$ $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{A}_{1}\\\vdots\\\mathbf{A}\end{bmatrix}\mathbf{x}, \begin{bmatrix}\mathbf{A}_{1}\boldsymbol{\Sigma_{t}}\mathbf{A}_{1}^{*} & \mathbf{U}\\\cdot\\\cdot\\\mathbf{A}\end{bmatrix} + \eta^{2}\mathbf{I}\right)$

temporal variations as correlated noise

Philip R. Goode **Big Bear Solar Observatory**

ground truth visible

relative contribution

Exploit variation over time in the occlusion

William T. Freeman

MIT CSAIL

*current affiliation

recon. from simulation

recon. from real data (hVB)