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Abstract
In the last few years, new view synthesis has emerged

as an important application of 3D stereo reconstruction.
While the quality of stereo has improved, it is still imperfect,
and a unique depth is typically assigned to every pixel. This
is problematic at object boundaries, where the pixel colors
are mixtures of foreground and background colors. Inter-
polating views without explicitly accounting for this effect
results in objects with a “cut-out” appearance.

To produce seamless view interpolation, we propose a
method called boundary matting, which represents each oc-
clusion boundary as a 3D curve. We show how this method
exploits multiple views to perform fully automatic alpha
matting and to simultaneously refine stereo depths at the
boundaries. The key to our approach is the unifying 3D
representation of occlusion boundaries estimated to sub-
pixel accuracy. Starting from an initial estimate derived
from stereo, we optimize the curve parameters and the fore-
ground colors near the boundaries. Our objective function
maximizes consistency with the input images, favors bound-
aries aligned with strong edges, and damps large perturba-
tions of the curves. Experimental results suggest that this
method enables high-quality view synthesis with reduced
matting artifacts.

1. Introduction
Although stereo correspondence was one of the first prob-
lems in computer vision to be extensively studied, automat-
ically obtaining dense and accurate estimates of depth from
multiple images remains a challenging problem [1].

Most stereo research has been concerned solely with
methods for producing accurate depth maps, so interpolated
views are rarely evaluated as results. By contrast, our ex-
plicit goal is superior view synthesis from stereo. Even for
easy scenes in which all objects are opaque, diffuse, and
well-textured, state-of-the-art stereo techniques fail in some
respects to generate high-quality interpolated views. Even
if a perfect depth map were available, current methods for
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Figure 1: View synthesis with matting. If mattes are rep-
resented at the pixel level, resampling for view synthesis
can lead to blurring artifacts at object boundaries. This
scene can be represented exactly using a sub-pixel bound-
ary model instead.

view interpolation share two major limitations:

• Sampling blur. There is an effective loss of resolution
caused by resampling and blending the input views.

• Boundary artifacts. Synthesized sprites seem to pop
out of the scene, as in bad blue-screen composites,
because most current methods do not perform mat-
ting to resolve mixed pixels at object boundaries into
their foreground and background components. (But
see some of the more recent work discussed in the next
section for a few notable exceptions.)

In this paper we focus on the latter issue and propose a tech-
nique we call boundary matting for reducing such artifacts.
Our technique, as outlined in Figs. 2–3, combines ideas
from image matting and stereo to resolve mixed boundary
pixels. It consists of estimating 3D curves over multiple
views and uses stereo data to bootstrap this estimation.

The key feature of our approach is that occlusion bound-
aries are represented in 3D, leading to five contributions
over the state of the art. First, compared to video matting
[2] and other methods that recover pixel-level mattes for
the input views [3, 4], our method is more suitable for view
synthesis (Fig. 1). Second, our method can perform fully
automatic matting from imperfect stereo data, for large-
scale opaque objects. Third, our method exploits informa-
tion from matting to refine stereo disparities along occlusion
boundaries. Fourth, occlusion boundaries can be estimated
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Figure 2: Block diagram describing the system architecture.
The dashed lines indicate that the objective function is used
to optimize the parameters of the boundary curve and the
foreground colors.

to sub-pixel accuracy, suitable for super-resolution or zoom-
ing. Fifth, our error metric is symmetric with respect to the
input images, and so does not overly favor specific frames.

2. Previous work
Traditional matting techniques from cinema are reviewed
in [5], and a triangulation method is presented for matting
static foreground objects using multiple images taken with
different backgrounds. More recent matting research has
focused on natural image matting, where the goal is to es-
timate the matte from a single image, given regions hand-
labelled as completely foreground and background [6, 7, 8].
These methods operate by propagating statistics of the la-
belled color distributions throughout the unlabelled regions,
yielding impressive results. The approach in [7] was also
extended using optical flow techniques to obtain a semi-
automated method for matting video sequences [2]. This
system for video matting also used a manually obtained
clean-plate background to further constrain the background
color distribution.

Several researchers have also investigated an additive
transparent image formation model, useful for separating
the reflections found on glass [9, 10]. Along the same lines,
additive transparency has been decomposed based on pa-
rameterizing the dominant motions in the scene [11].

Few researchers, with the exception of [4, 12, 13], have
tried to estimate transparency from stereo data in general
terms. In [4], transparency was estimated in a volumetric
fashion along with depth, using a plane-sweep algorithm,
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Figure 3: Geometric view of the system. (a) Stereo depth
information is used to detect an occlusion boundary in the
reference view, which is backprojected to 3D as our initial
curve estimate. The 3D curve is refined, along with esti-
mates for F color, by evaluating the projections of the curve
in all input views. The alpha value for a given pixel can be
computed from the projected curve geometrically. (b) In the
simplest case, alpha corresponds to the fraction of area on
the F side of the curve. (c) Smoother blurring of the con-
tinuous alpha matte is a more realistic model.

generalized to a four-dimensional xydα search space. Re-
sults were mainly shown for synthetic problems, but even
for those, the quality of interpolated views was limited.
Similarly, the iterative voxel reconstruction approach pre-
sented in [12] gave results unsuitable for view synthesis,
whereas [13] is more appropriate for volumetric scenes that
are semi-transparent everywhere. Mixed pixels for stereo
have also been examined as a consequence of using mixture
models to estimate optical flow [14], and in developing a
matching metric more robust to mixing [15].

Most closely related to our work is [3], which also es-
timates matting from multiple views of a scene. However,
because this method is pixel-based and only estimates mat-
ting in a reference view, it is limited for synthesizing new
views. As shown in Fig. 1, the naı̈ve approach of warping
and resampling the alpha matte introduces additional blur-
ring, and makes hidden assumptions about the underlying
scene. Another basic limitation of this method is that high
quality stereo data is required everywhere in the image, and
the extension to inaccurate stereo is unclear. Both these
problems are circumvented in [3] by matting scenes with
easily registered planar structures, and only demonstrating
object insertion for the reference view. In contrast, since our

2



method is based on a 3D curve representation (see Sec. 3),
the alpha matte has a well-defined geometric interpretation
that is consistent across arbitrary nearby views. Moreover,
we tolerate some inaccuracy in the stereo data by simul-
taneously estimating the matting and refining the disparity
estimates (i.e., by adjusting the boundary curve).

Our geometric view of alpha values has precedence in
work on (single view) user-assisted segmentation of opaque
objects [16, 17]. Here, alpha is estimated from the fractional
pixel coverage given by a sub-pixel parametric edge model
fit to the object boundaries. Both methods require manual
interaction at key frames, and neither extend readily to mul-
tiple views. By comparison, our method is fully automatic,
and multiple views are fully incorporated. Along similar
lines, sub-pixel edge geometry has been used to interpolate
sparse point samples for rendering synthetic scenes, to bet-
ter respect object and shadow boundaries [18].

3. Image formation model
To model the matting effects at occlusion boundaries, we
use the well-known compositing equation [5, 19]:

C = αF + (1 − α)B , (1)

which describes the observed composite color C as a blend
of the foreground color F and the background color B ac-
cording to the alpha value (opacity) α. The alpha matte is
typically given at the pixel level, so fractional alpha-values
may be due to partial pixel coverage of foreground objects
at their boundaries, or due to true semi-transparency. In
this work, we focus exclusively on the former case, where
objects are opaque and alpha values are entirely due to the
micro-geometry of partial pixel coverage.

Our method for inverting Eq. (1) exploits stereo infor-
mation, in the spirit of the triangulation method [5]. Rather
than viewing a static object with a single camera and manu-
ally changing the background, we obtain simultaneous im-
ages of the object from multiple viewpoints. Under the
assumption that foreground color varies little over nearby
views, multiple views can also provide us with images of
the same foreground region against different backgrounds
[3]. While triangulation approaches require that the back-
ground be known, this can theoretically be obtained from
multiple views using stereo. Note that we do not restrict
our calculations to a reference image, as in [3], so our 3D
boundary curves in general lead to different alpha values for
corresponding pixels in each view. This is a useful feature
because it helps us resolve the ambiguity where the back-
ground is constant over all views.

3.1. Boundary curves in 3D with blurring
We model the occlusion boundary of a foreground object
as a single (possibly open) 3D curve. For such a curve to

be globally consistent with all of its projections, we assume
that the occluding contours of the foreground objects are
sufficiently sharp relative to both the closeness of the views
and the standoff distance of the cameras (unlike, e.g., [20],
which assumes that the object surface may be smoothly
curved). Even for relatively smoother contours, although
the boundary curve only approximates a path through the
swept occlusion surface, this approximation may still be ac-
curate enough to improve our estimation of alpha. After
refinement, our method localizes this curve to sub-pixel.

In our approach, we model the 3D curve as a spline
parameterized by control points, θ. For now, we simply
take this curve to be piecewise linear, parameterized using
the (metric) 3D coordinates of the control points; the ex-
tension to higher-order splines should be straightforward.
The control points are spaced on the order of several pixels
apart, and so do not constitute direct geometric models for
such extremely fine-scale objects as hair or foliage. Rather,
for such objects, these splines can only approximate partial
pixel coverage along occlusion boundaries.

Given the camera projection matrix, M , for a particu-
lar view, we construct a signed distance function from the
projected curve, d(M, θ), defined to be positive on the fore-
ground side. In the ideal case, with a Dirac point spread
function, the continuous alpha matte for the i-th view is:

αi(θ) =

{

1, d(Mi, θ) > 0
0, otherwise

. (2)

This is a simple 2D step function of the curve parameters
(Fig. 3(b)).

We simulate image blurring due to camera optics and
motion by convolving α with an isotropic 2D Gaussian
function G(0, σ),

αi(θ, σ) = αi(θ) ∗G(0, σ)

= 1
σ
√

2π

∫ d(Mi,θ)

−∞
exp

(

−t2

2σ2

)

dt .
(3)

This modified model gives us a smoothed step function for
alpha (Fig. 3(c)), parameterized using a single additional
variable, σ.

For a given pixel j, we can generate the resulting pixel-
level alpha value by integrating either of the continuous al-
pha functions proposed in Eqs. (2–3) over the footprint of
that pixel. For view i, this gives αij =

∫∫

j
αi. For the ideal

case of Eq. (2), this is equivalent to computing the area on
the foreground side of the projected curve, which has a sim-
ple form when the curve is piecewise linear. On the other
hand, the blurred model of Eq. (3) is more complicated, so
we approximate the integral using supersampling.

3.2. Objective function
We formulate boundary matting as finding the 3D boundary
curve and foreground colors that best fit the V input im-
ages. Our primary goal is to minimize inconsistency with
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Figure 4: Boundary initialization. For a well-known stereo
sequence, we show (a) the reference image, (b) the depth
map calculated using [21], (c) the depth discontinuity map,
corresponding to the thresholded gradient of depth, and (d)
the initial occlusion boundaries extracted from (c).

the images, according to the matting equation, Eq. (1). This
leads to a basic objective function encoding the total cost of
matting inconsistency:

O(θ, F ) =
∑V

i=1

∑N

j=1 [ Cij −

αij(θ)Fj − (1 − αij(θ))Bij ]
2
, (4)

where N is the number of pixels along the curve in each
view. In practice, we evaluate this objective function over
all pixels in a conservatively wide band around the bound-
ary curve (e.g., Fig. 6(b)), to ensure that every mixed pixel
contributes to Eq. (4).

If we are using the blurred image formation model from
Eq. (3), we also need to determine the optimal value for the
blur parameter, σ. Currently, we estimate this parameter
using a coarse exhaustive search, separately from the rest of
the optimization.

4. Initialization using stereo data
The starting point for boundary matting is an initialization
derived from stereo. We use [21] to compute stereo, which
assumes that camera calibration is known. While initializa-
tion depends on the accuracy of the stereo data, we later
refine the matting using an optimization based on Eq. (4).

In this section, we describe how to extract occlusion
boundaries from the stereo data, how to estimate the clean-
plate background B for pixels near the occlusion boundary,
how to initialize our estimate of foreground color F , and
how to construct a prior favoring strong edges at the bound-
ary that can be used to tweak the initial guess.

(a) (b) (c) (d)

Figure 5: Spline fitting to extracted occlusion boundaries.
(a) Pixel-level occlusion boundary extracted from a region
at the top-middle of Fig. 4(a). The piecewise-linear spline
is shown overlaid at sub-pixel resolution (b–d). (b) Initial
fit to the extracted boundary. (c) Adaptive subdivision in re-
gions of poor matting. (d) Snapping to the strongest nearby
edge within a 1.0-pixel radius.

4.1. Boundary initialization
To extract the inital curve corresponding to an occlusion
boundary, we first form a depth discontinuity map by ap-
plying a threshold to the gradient of the depth map for the
reference view (Fig. 4(b–c)). Next, we separate this image
into multiple contours, greedily removing the longest four-
connected curves until no depth discontinuities of some
minimum length remain (Fig. 4(d)). By growing the longest
curves possible, we eliminate the small spurs and loops that
are mainly due to inaccurate stereo. We also ensure that our
discontinuity curves do not cross other depth discontinuity
boundaries, as in T-junctions between three regions of dif-
ferent depths.

Next, we backproject the points along the discontinuity
curve into 3D using the stereo (foreground) depth (Fig. 3),
and fit a 3D curve to these points. Our current fitting tech-
nique is very simple, with control points sampled uniformly,
at every fifth point along the discontinuity curve (Fig. 5(b)).
We connect the control points with line segments to obtain
a piecewise-linear spline in 3D.

After initial boundary extraction, we evaluate the curve
for consistency with the matting equation (see Sec. 5 for
more details). In regions with high matting error, we sub-
divide the curve, but only once (Fig. 5(c)). While we have
experimented with a general adaptive subdivision scheme,
the four-connected boundary gives undesired staircase arti-
facts with smaller stopping criteria.

We also modify our initial guess to reflect the fact that
occlusion boundaries tend to coincide with strong edges,
perturbing the control points in the reference image to the
local peak of an edge potential field (Fig. 5(d)). We first
apply a multiscale difference-of-Gaussians edge detector to
each image, localizing edgels to sub-pixel, and use this to
pre-compute edge potential fields, {Ei}, quantized to 0.25
pixels. We define these fields as the sum of “forces” pro-
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Figure 6: Estimation of the clean-plate background. (a) The
region labelled F is a mixed pixel in all views. The back-
ground colors B2 and B3 can be obtained from view 1, by
following the dashed lines. However, B1 is occluded in all
views. (b–c) A region of Fig. 4(a) is shown, (b) with pix-
els near the boundary highlighted, and (c) with these pixels
filled in using our clean-plate background estimate.

portional to edgel strength and inversely proportional to
squared edgel distance. Though edges are a strong cue for
occlusion boundaries in many scenes, this heuristic can also
be distracted by spurious internal texture, so we limit the
perturbation to a 1.0-pixel radius neighborhood.

4.2. Background (clean plate) estimation
As discussed in Sec. 3, using stereo data to triangulate the
matting problem requires that the background be known.
A clean plate background refers to an image where fore-
ground pixels are replaced with (unmixed) background col-
ors, and is specified in many systems using manual interac-
tion at keyframes [2, 3]. However, this process can in the-
ory be made automatic by exploiting stereo information to
grab corresponding background colors from nearby frames
in which the background is exposed (Fig. 6). Note that aside
from specifying the initial guess for the 3D boundary curve,
the only place our approach relies on accurate stereo is in
warping the background from nearby views.

For a given boundary pixel, we find potentially corre-
sponding background colors by forward-warping that pixel
to all other views. This warping is performed according to
the depth on the background side of the boundary, as given
by stereo. We use nearest-neighbor sampling to avoid blur-
ring mixed pixels together, assuming that the background
texture is slowly varying. If a forward-warped pixel has
background depth in the new view, it becomes a candidate
source from which to grab the background.

We use a color consistency test to select the exposed
background pixel, to avoid selecting mixed pixels labelled
with background depths. From all views, we choose the cor-
responding pixel at background depth that is the most color-
consistent with its immediate neighbors also at background

depth. This heuristic assumes slowly varying background
texture, but seems to work well in most of our cases.

If a corresponding background pixel cannot be estimated
(e.g., it is occluded by the foreground object in all views),
then it is marked as such, and this pixel is not used directly
in the optimization. In rendering the results, we either high-
light these pixels as unknown, or use the naı̈ve non-matting
approach to determine color (i.e., F = B = C) and esti-
mate alpha from the curve.

4.3. Foreground estimation
Given an estimate for the parameters of the curve (which
determine alpha), the clean-plate background, B, and the
input images, C, we can obtain a reasonable guess for the
foreground colors, F . For a given pixel we can simply invert
the matting equation, Eq. (1), to obtain:

F̂ (α) = (C − (1 − α)B)/α . (5)

For robustness, we aggregate F̂ estimates over all V views,
with the correspondence between foreground pixels deter-
mined from stereo. Analogous to clean plate background
estimation, we use the foreground-side depth from stereo to
warp the boundary pixels in the reference view to all other
views. To aggregate the F̂ estimates of Eq. (5), we take the
weighted average,

F̂ =

∑V

i=1 α
2
i F̂ (αi)

∑V

i=1 α
2
i

, (6)

with the weights constructed to favor F color information
from pixels posited to contain more foreground, based on
the curve estimate. Note that this formula is also the sta-
tistically optimal least-squares estimate for F given the
set of V noise-contaminated composite color pixels, Ci =
αiF + (1 − αi)Bi.

5. Parameter optimization
Now that we have constructed a clean-plate background
(Sec. 4.2), specified correspondences between pixels across
the different views (Sec. 4.3), and provided initial estimates
for the curve parameters and the foreground colors (Sec. 4.1
and 4.3), we are in a position to modify these estimates to
better fit the images.

Because the objective function, Eq. (4), is highly non-
linear, involving bilinearity in the variables, perspective
projection, and a complicated form for alpha as the par-
tial pixel coverage of a projected spline (possibly convolved
some blurring), we resort to Levenberg-Marquardt nonlin-
ear least-squares optimization with the Jacobian calculated
using the forward difference approximation [22]. The stop-
ping criteria and step size for this optimization are both re-
lated to a parameter encoding the predicted accuracy of the
objective function.
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5.1. Two-stage estimation
In our experience, it is faster and more stable to first opti-
mize only the curve parameters, while estimating the fore-
ground colors based on the alpha values derived from the
curve (Sec. 4.3). We thus suggest a two-stage approach,
where the optimized curve from the first stage is used as an
initial guess for the joint estimation of both the curve and
foreground colors.

Assuming that the starting point is reasonably accu-
rate, this optimization should refine our curve, and separate
mixed pixels into background and foreground components.
If our initial estimate is further than one pixel away from the
curve, we may get trapped in a local minimum, because dif-
ferential changes to the curve parameters may not improve
matting consistency. Hopefully, even in the case of gross
stereo errors, the control points may have wide enough sup-
port so that some pixels are indeed affected by their move-
ment, and these pixels will gradually guide the curve closer
to the true solution. The blurred image formation model,
Eq. (3), may be more resilient to stereo errors than the basic
model, because the control points have a larger support.

5.2. Adding edge snapping and state damping
We also created a penalty function to bias the optimization
to areas with stronger edges, so the overall optimization can
be considered a kind of 3D snake [23]. This function reuses
the edge potential fields, {Ei}, described in Sec. 4.1, nor-
malized to have a maximum of one. We project all n(θ)
control points, denoted {θp}, into each view using the cam-
era matrices {Mi}, then calculate a penalty term propor-
tional to inverse edge strength,

P1(θ, F ) =
∑V

i=1

∑n(θ)
p=1 [ 1 − Ei(Miθp) ]

2
, (7)

for the control points over all views.
An additional penalty function is used to discourage the

control points from being displaced too far from their start-
ing positions,

P2(θ, F ) =
∑V

i=1

∑n(θ)
p=1

[

max
(

0, ||Miθp −Miθp0||
2 − 4.0

) ]2
, (8)

where θp0 is the initial location of the p th control point. The
penalty is zero for displacements of 2.0 pixels or less, but
increases rapidly after that. This function helps avoid de-
generate configurations where the curve collapses on itself.

We add these penalty terms to the original objective
function (Eq. 4), and express this succinctly as:

Onew = O + λ1P1 + λ2P2 . (9)

Moderate values of λ1 and λ2 ensure that neither edges
nor initial positions exert too much influence over the opti-
mization. In practice, the optimization did not seem overly

sensitive to these parameters, so the same setting was used
across all datasets. These parameters were normalized by
k = N/n(θ), and set to λ1 = 0.015k and λ2 = 0.053k.

6. Results
For all datasets, we used five input views, with the mid-
dle view designated as the reference view for initialization.
For our first experiment, we applied boundary matting to
the dataset shown in Fig. 4 to insert a new object between
the foreground and background layers (Fig. 7). The results
show that not only is the matting greatly improved, but the
extracted boundaries can even be sharpened, by rendering
the curves at sub-pixel resolution (Fig. 7(d)).

The same dataset was also used for a view synthesis task,
for matting both an input view and a novel interpolated view
(Fig. 8). In both cases, boundary matting produces a signif-
icant improvement over naı̈ve view synthesis (i.e., forward
warping with a fixed footprint, then feathering between the
warped images). These results also demonstrate some tol-
erance to inaccurate stereo, since the initial stereo estimate
in the region shown (Fig. 8(b–e)) was up to two pixels off.
We also experimented with a variety of settings for the blur
parameter. While the addition of blur did not appear to im-
prove the matting for this case, the optimal blurred bound-
ary better matches the appearance of the input images.

Our method broke down for the upper-left region of the
tree with many twigs, yet performed no worse here than
naı̈ve view synthesis ignoring matting. The reason for fail-
ure was not the inability to localize a consistent 3D curve,
but rather that inaccurate stereo led to an initial boundary es-
timate up to ten pixels off. Without additional color-based
priors, our matting method is content to accept the possi-
bility of depth discontinuities occurring across untextured
regions of sky, trapping the optimization in local minima
with F = B.

Finally, for a synthetic dataset consisting of a planar
ellipse-shaped sprite, boundary matting is visually indis-
tinguishable from the ground truth (Fig. 9(c)), and demon-
strates further resilience to artificial noise (Fig. 9(c–e)).

7. Concluding Remarks
For seamless view interpolation, mixed boundary pixels
must be resolved into foreground and background compo-
nents, and boundary matting appears to be a useful tool for
addressing this problem in an automatic way. Using 3D
curves to model occlusion boundaries is a natural represen-
tation that provides several benefits, including the ability to
super-resolve the depth maps near occlusion boundaries.

A current limitation of our approach is its lack of rea-
soning about color statistics, which has proven very use-
ful in natural image matting [7, 2]. Such an ability might
enable us to resolve boundaries even in areas where stereo
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Figure 7: Object insertion. The object shown in (a) is inserted behind the tree from Fig. 4(a), with one region of interest
highlighted. (b) Naı̈ve object insertion, with no matting, leads to background spill and haloing artifacts at the edges of
the tree. (c) Using our boundary matting method leads to an improved composite. (d) Boundary matting shown at super-
resolution demonstrates sharpening of the boundaries, although the mismatch in resolutions may appear artificial.

gives grossly incorrect depths, as in the upper-left region
of the tree in Fig. 4(a). By integrating boundary matting
with complementary aspects of pixel-based matting meth-
ods [7, 3], we hope to extend the generality of boundary
matting while retaining its superior view synthesis. In the
future, we would also like to adapt boundary matting to a
dynamic stereo framework, where disocclusions over time
may reveal additional information to improve the matting.
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separation without matting shows significant spill from the background layer. (d) Using the boundary matting method reduces
this artifact. (e) Boundary matting with a blurred edge model (σ = 0.4 pixels) better matches the blur in the input images.

(a) (b) (c) (d) (e)
Figure 9: Boundary matting synthetic data, with the addition of noise. (a) Reference image of a planar textured ellipse, with
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