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Abstract

In this paper, we describe how techniques from reinforcement learn-
ing might be used to approach the problem of acting under uncertainty.
We start by introducing the theory of partially observable Markov deci-
sion processes (POMDPs) to describe what we call hidden state problems.
After a brief review of other POMDP solution techniques, we motivate re-
inforcement learning by considering an agent with no previous knowledge
of the environment model. We describe two major groups of reinforce-
ment learning techniques: those the learn a value function over states of
world, and those that search in the space of policies directly. Finally, we
discuss the general problems with these methods, and suggest promising
avenues for future research.

1 Introduction

Consider a robot designed to perform basic housekeeping tasks in an office build-
ing. We would like the robot to make informed decisions which account explicitly
for the uncertainty in the world. In interacting with the environment, the robot
may take actions with uncertain effects. In attempting to vacuum a section
of carpet, for example, the robot may encounter an undetected obstacle, or its
vacuum actuators may fail. Moreover, the observations made by the robot may
also be uncertain. Range-finders for indicating the presence of walls may give
inaccurate readings, and worse yet, the robot may have difficulty distinguishing
a certain corner of an office from a similar corner in another office down the hall.
The owner of the robot might impose severe penalties for the robot letting its
battery run down, or for falling down a flight of stairs, whereas the robot might
be rewarded such behaviour as completing housekeeping without annoying the
office workers.
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In general, we have the problem of an agent acting under uncertainty to
maximize reward. Problems of this sort are central to artificial intelligence,
control theory, and operations research. In the most basic formulation, only the
uncertainty in actions is modelled. However, if uncertainty is also allowed in
the observations, the problem becomes much more difficult, since the true state
of the environment is hidden.

But problems with hidden state are everywhere. Indeed, most sequential
decision problems can be made to fit this rather general form. We would like to
develop good approaches for these problems that are grounded with solid theo-
retical foundations. After introducing a formalism for describing these kinds of
problems, and a brief review of other solution techniques, we focus our atten-
tion on the case where the environment model is unknown to the agent. Under
these circumstances, the agent must apply some kind of reinforcement learning
technique, interacting directly with the environment to learn how best to act
under multiple forms of uncertainty.

2 POMDP Review

The partially observable Markov decision process (POMDP) is a powerful for-
malism for representing sequential decision problems for agents that must act
under uncertainty. At each discrete time step, the agent receives some stochastic
observation related to the state of the environment, as well as a special reward
signal. Based on this information, the agent can execute actions to stochas-
tically change the state of the environment. The goal of the agent is then to
maximize the overall (and typically time-discounted) reward.

Following the treatment of (Kaelbling, Littman and Cassandra, 1998), a
POMDP can be formally described as a tuple 〈S,A, T,R,O,Ω〉, where

• S is a finite set of states of the environment;

• A is a finite set of actions;

• T : S × A → ∆(S) is the state-transition function, giving a distribu-
tion over states of the environment, given a starting state and an action
performed by the agent;

• R : S × A → R is the reward function, giving a real-valued expected
immediate reward, given a starting state and an action performed by the
agent;

• Ω is a finite set of observations the agent can experience; and

• O : S × A → ∆(Ω) is the observation function, giving a distribution over
possible observations, given a starting state and an action performed by
the agent.
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Note that the sub-tuple 〈S,A, T,R〉 represents the underlying MDP. If the
observation function were to give the true (hidden) state of the environment with
perfect certainty, the problem reduces to a fully observable MDP. In general,
this is not the case. The same observation may occur in more that one state of
the environment, and these states may require different actions.

We can also consider the internal state maintained by the agent. Let Y refer
to the finite set of all possible internal agent states. To illustrate, the situation
where Yt = Ot describes a memoryless agent, whose next action depends only
on the current observation. Figure 1 shows the structure of a POMDP in terms
of the interaction between the agent and the environment, using a temporal
Bayesian network.

For a more complete introduction to POMDPs, particularly exact solution
techniques, see the well-written review paper by Kaelbling, Littman and Cas-
sandra (1998).

Figure 1: POMDP represented as a temporal Bayesian network. The agent maintains
some kind of (finite) internal state, and interacts with the environment based on
previous observations and rewards. All of the transitions shown in the diagram can
be stochastic.

3 Environment model

The problem faced by the agent of acting well under uncertainty can be con-
siderably more or less difficult based on what sort of model of the environment
is available. One slightly unrealistic possibility is that the model of the envi-
ronment is completely known. At the other extreme, nothing whatsoever might
be known about the environment. In this case, the only information available
to the agent is information obtained from direct experience. Somewhere in be-
tween, a generative model of the environment might be available, allowing the
agent to perform sampling or simulate experience with the environment off-line.

Of course, any knowledge about the model of the environment can be ig-
nored. For example, for computational reasons, the agent might consider using
sampling techniques even if the full model of the environment were at its dis-
posal.
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3.1 Known environment model

In the most straightforward case, the POMDP is fully specified, meaning that all
of the dynamics are known in advance. In other words, the transition function,
the reward function, and the observation function are all available to the agent.

When the environment model is known, the standard approach is for the
agent to compute the belief state b (the probability distribution over state space
S) and maintain this as its internal state. Since the current belief state com-
pletely summarizes the initial belief state and all previous experience with the
environment, the belief state is said to comprise a sufficient statistic.

Every discrete POMDP can be reformulated as a continuous-space MDP
whose states are belief states. In fact, it can be shown that the value function
of this new MDP is piecewise linear convex, so that even though state space
is continuous, finding an exact solution (or an arbitrarily optimal solution for
the infinite-horizon case) is always possible. However, while possible, finding an
exact solution to a POMDP is highly intractable, and in the worst case is doubly
exponential in the horizon time. The best exact algorithms cannot handle more
than a few dozen states, so some form of approximation is typically used.

One approach to approximately solving POMDPs is to compute a (state-
action) value function for the underlying MDP and combine this with the belief
state using various heuristics. Cassandra (1998) describes several examples of
this technique. The simplest such heuristic is the MLS (most likely state) ap-
proximation, in which the underlying MDP is used to select actions based on
the current state with highest probability (this is akin to particle filtering in a
discrete setting). Another such heuristic is the Q-MDP approximation, in which
the value function for the belief-state MDP is estimated from the value function
for the underlying MDP weighted according to the belief state.

Another approach to approximately solving POMDPs is to maintain an exact
belief state, but approximate the (piecewise linear convex) value function of
the belief-state MDP. Parr and Russell (1995) suggest a smooth, differentiable
approximation to the value function with their SPOVA algorithm. A different
strategy along this vein is to discretize the value function and interpolate.

It is also possible to do the opposite, maintaining an exact value function
for the belief-state MDP, but approximating the belief state. The Boyen-Koller
algorithm (Boyen and Koller, 1998) does this for an environment model specified
compactly as a dynamic Bayesian network (DBN), using sampling to perform
approximate belief state updating.

3.2 Generative model of the environment

Sometimes, the full dynamics of the POMDP are unknown, but a generative
model or accurate simulation of the environment is available. This situation
permits learning off-line, without directly interacting with the environment.

Particle filtering and other sampling approaches for estimating the belief
state are reviewed in (Doucet, Godsill, and Andrieu, 2000). These techniques
are particularly appropriate for continuous-valued POMDPs.
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Receding horizon control (Kearns, Mansour, and Ng, 1999a) is a sampling
technique in which a lookahead tree of fixed depth H is built. It can be shown
that the number of states that must be sampled is independent of the complexity
of the underlying MDP. However, this method never actually learns the policy
(and so does not become more effective over time), and relies heavily on a high
discount rate to keep the lookahead depth tractable.

Finally, it is possible to combine sampling from the generative model with a
direct search in the space of policies. One can estimate the value of a policy by
sampling a number of trajectories (Kearns, Mansour and Ng, 1999b) and then
choose a good policy by enumeration or something similar to the simplex algo-
rithm. If the value function is differentiable with respect to the (parameterized)
policy then the gradient can be estimated by sampling. In this case, a variety
of numerical optimization methods, such as conjugate gradient methods, can be
used to carry out policy improvement.

3.3 No environment model

Without a model of the environment, the only method of gaining truly new
experience is to directly interact with environment. This sort of situation is
perhaps the main motivation for reinforcement learning (RL). Thus, for the
remainder of this paper, we will assume that no model of the environment is
available to the agent.

There is some debate about whether it is worthwhile for the agent to con-
struct its own internal model of the environment, for example, by gather-
ing statistics about transitions and observations. Building a good model for
POMDPs is more difficult than in the fully observable case, since the transition
probabilities might depend on the policy being executed. So, while creating a
model can give plausible results, there are few theoretical guarantees about the
effectiveness of this strategy. Some of the reinforcement learning methods we
will describe do build models.

4 Reinforcement Learning Methods

For the purposes of this paper, we take the notion of reinforcement learning
broadly, to mean any trial-and-error interaction with the environment with the
goal of improving some (possibly time-discounted) reward signal. We assume
that no model of the environment is given, and that learning is unsupervised,
meaning that no training examples are given.

Reinforcement learning methods can be roughly separated into two groups:
those that learn the policy indirectly, by constructing a value function over states
and actions, and those that search the space of policies directly. For a good
introduction to the former see (Sutton and Barto, 1998; Kaelbling, Littman,
and Moore, 1996). The latter group is much more diverse.
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4.1 Learning the value function

In the fully observable MDP setting, the most popular reinforcement learn-
ing techniques involve gradually learning Q(s, a), the value function over state-
action space, through statistical techniques and dynamic programming. As the
Q-values become closer to exact, performing the greedy policy becomes closer
to optimal.

Using this approach for POMDPs presents a number of complications. In
the presence of hidden state, the greedy policy can be arbitrarily worse than
optimal, even given perfect knowledge of the value function. In fact, many of
the methods that learn the value function can fail to converge in the presence
of function approximation. Furthermore, even the act of choosing the greedy
policy can be difficult in the presence of continuous actions.

4.1.1 Memoryless policies

The simplest approach along these lines is to ignore the complications and apply
Q-learning (Watkins, 1989) or some related technique to the POMDP directly.
Since the agent maintains no internal state regarding the history of its obser-
vations, the policies (mapping from observations to actions) generated by this
method are known as memoryless, or reactive. In the best case, if the POMDP
is close to Markov and has a good memoryless policy, we might hope to find it
using this technique.

Some of the theoretical limitations of using memoryless policies are explored
by Littman (1994). The problem of finding the optimal memoryless policy for
a POMDP is shown to be NP-Hard, but is basically amenable to branch-and-
bound techniques. In addition, simple examples can be constructed which cause
Q-learning to oscillate.

Loch and Singh (1998) remark that reinforcement learning techniques with
eligibility traces seem to perform empirically much better than Q-learning on
POMDPs with good memoryless policies. Using Sarsa(λ), they obtain optimal
solutions for some of the (small) problems found in the POMDP literature, and
note that the theoretical analysis in (Littman, 1994) ignores eligibility traces
altogether.

Interestingly, deterministic memoryless policies can be shown to be arbitrar-
ily worse than stochastic ones (Singh, Jaakkola and Jordan, 1994). However,
most methods avoid searching the continuous space of stochastic memoryless
policies for computational reasons. Figure 2 shows a simple example of this
phenomenon.

It is important to realize that even the best memoryless policies can have
poor performance, particularly if explicit information gathering is required of
the agent. However, there exists nonetheless an important class of POMDPs for
which, although there may be poor observability, the best memoryless policy
gives near-optimal return.
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Figure 2: Two state POMDP for which the optimal memoryless policy is stochastic.
The large dashed ellipse indicates that both states are aliased to the same observation.
Transitions are labeled with actions, with immediate reward given in parentheses. The
best a deterministic memoryless policy can achieve is a reward of 1, followed by an
infinite sequence of -1’s. By contrast, a stochastic policy choosing actions A and B
with equal probability will have an expected reward of 0 at each time step.

4.1.2 Using memory to maintain an internal state

Many researchers have noted that a fundamental problem in working with
POMDPs is perceptual aliasing, the situation in which several states of the
system are aliased to the same observation. This problem is variously referred
to as the hidden state problem, or incomplete perception. Figure 3 gives a
concrete example.

Figure 3: Example of perceptual aliasing in a simple maze environment. The agent is
not aware of its true state in the environment, but instead receives observations that
describe whether there are walls immediately in each of the four cardinal directions.
Note that not all of the 16 possible observations actually occur in this maze. The goal
state, which is assigned a positive reward, is labelled G.

Under these conditions, memoryless policies are clearly insufficient in gen-
eral, since they can associate at most one action with each observation. White-
head and Ballard (1991) offer a trivial solution with their Lion algorithm, which
is simply to avoid passing through aliased states. A better idea is to introduce
some form of memory, so that the agent can attempt to use its past experiences
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to disambiguate aliased states and act appropriately.

Simple memory-based approaches In the literature, various simple-minded
ad hoc approaches to using memory for handling perceptual aliasing have been
suggested. Loch and Singh (1998) expand the state space (exponentially) to
include the previous k observations. Along the same lines, Littman (1994) aug-
ments state space with a single bit, and provides new actions to set and reset
the bit. While these ideas clearly will not scale beyond the small problems at
which they are targeted, they do provide inspiration for more effective methods.

Nearest sequence memory McCallum (1995a) proposes a very straightfor-
ward method called nearest sequence memory (NSM). This method operates by
recording the history of experiences, or in other words, the actions taken and
the resulting observations and rewards. For computational reasons, the history
can be limited to containing some reasonably large number of the most recent
experiences.

Given a history of experiences, a distance metric is applied to determine the
k previous states that are closest to the current state. The metric used by NSM
is the number of matching preceding experiences, with the rationale that states
with histories similar to the current state will more likely represent the true
(hidden) state of the agent. Note that this distance metric could possibly be
extended beyond exact history matching, in order to handle stochastic rewards
or continuous observation space.

Next, the k nearest neighbours are used to obtain Q-values, by averaging
the expected future reward values for each action. The action with the highest
calculated value is executed, and the new resulting experience is added to the
history of the agent. Finally, the standard Q-learning update rule is invoked for
those states that led the agent to choose the action that it did.

While NSM embodies perhaps the most basic (but sensible) memory-based
approach to reinforcement learning, it exhibits surprisingly good performance.
Good policies were discovered quickly for simple maze environments with a high
degree of perceptual aliasing, as well as for other examples from the POMDP
research literature. Here the memory serves the agent as both a non-stationary
representation of the policy and a simple model of the environment. In a weak
sense there is also a connection between NSM and other sampling techniques.

NSM is at heart a heuristic method, and as such does not guarantee any
particular theoretically justified level of solution quality. As might be expected,
NSM does not handle noise well, since there is no explicit mechanism for sepa-
rating noise from the structure of the problem. Furthermore, the NSM approach
is really most appropriate for modeling short-term memory. The method should
be expected to have difficulty if it is required to correlate an important observa-
tion from the distant past with the current state. In general, NSM will probably
not scale very well to large problems, although perhaps some leverage could be
gained in combination with a hierarchical approach.
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Utile distinction memory Chrisman (1992) and McCallum (1993) describe
similar approaches for learning POMDPs that involve building a kind of prob-
abilistic finite state machine. The states of the machine are split based on
batched analysis of statistics gathered over many steps, and the current state of
the finite state machine acts as memory to help distinguish perceptually aliased
states.

The utile distinction memory (UDM) algorithm of (McCallum, 1993) has the
interesting feature that the finite state machine is only expanded when doing
so will increase the ability of the agent to predict reward. In this sense, the
perceptual distinctions made by the state machine are utile. To achieve this
end, a robust statistical test helps distinguish between genuine variation in the
predicted reward and noise.

While UDM contains some clever ideas, it is not a practical approach for two
reasons. First, the algorithm operates within a certainty-equivalence framework,
in which the agent alternates between periods of gathering statistics for the cur-
rent model and modifying the model based on these statistics. This approach is
notoriously slow, since many steps must be taken to ensure statistically signifi-
cance, and very few changes to the model can typically be made at the end of
each iteration. The second problem with UDM is the difficulty it has in discov-
ering the utility of memories longer than one time step. This is to be expected,
since the statistical test only examines the predictive benefit of making a single
additional split.

Utile suffix memory In an effort to combine the best features of nearest
sequence memory and utile distinction memory, McCallum (1995b) introduces
utile suffix memory (USM). This approach records the history of experiences
in the same straightforward manner as nearest sequence memory, but also or-
ganizes these experiences in the leaves of a tree. The tree is known as a suffix
tree, because the root node splits on the current observation, and deeper nodes
correspond to experiences further in the past. Leaves can occur at different
depths, as in a variable-length Markov model, so that deeper branches use more
memory to distinguish states finely, and shallower branches use less memory
and make broader distinctions.

The suffix tree is also augmented with fringe nodes, extending to some depth
below the leaves, in order to allow the testing of additional distinctions. The
Kolmogorov-Smirnov test, which is similar in spirit to a chi-squared test, is
used to check if two distributions are significantly different. Fringe nodes are
compared to their ancestor leaves for differences. If a fringe node is judged
significantly different from its ancestor leaf, it has additional power to predict
reward, and is thus promoted to a full-fledged leaf. Like in UDM, the only dis-
tinctions made are those with proven utile value. Additional fringe is extended
below the new leaf, and previous experience from the old ancestor leaf can be
properly partitioned by looking further back in time. For efficiency reasons, this
analysis might only be performed after a certain number of new experiences.

To choose the best action to perform, the suffix tree is used to determine the
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leaf node that corresponds to the most recent observations and actions. Among
the experiences stored at the leaf, the one with the highest Q-value is chosen,
and its related action is executed. The resulting experience is added to the
history of the agent and also associated with the leaf.

McCallum notes that the regular Q-learning rule can applied like in NSM,
but instead proposes a different model-based approach for updating the Q-
values. The transition and reward functions can be estimated directly from
recorded experience, giving an approximate model of the environment. This
model can then be used to perform one complete sweep of value iteration. If
computational limitations prevent this, an approach like prioritized sweeping
(Moore and Atkenson, 1993) is appropriate, in which only a certain number of
states, those predicted to be the most influential in modifying the value function,
are backed up.

USM is empirically shown to perform better than any of the previously de-
scribed memory-based approaches. It takes consistently less steps to converge,
finds good quality solutions, and is just as fast in terms of computational time.
Although noise in the actions and reward function is handled explicitly, percep-
tual noise is not, in contrast to other POMDP solution methods. Not surpris-
ingly then, USM gives solutions with no theoretical guarantees on optimality.
Another problem with the method involves choosing the size of the fringe. If
the fringe is too large, then statistical testing will unnecessarily dominate the
computation time. On the other hand, if the fringe is too small, the method
will have a similar problem to UDM, in that the algorithm could have difficulty
discovering the utility of memories longer than the depth of the fringe.

Recurrent-Q Lin and Mitchell (1992) describe a neural network approach to
learning Q-values that they call Recurrent-Q. Neural networks can be charac-
terized as recurrent if there are backward looping connections from the hidden
units to the input layer. In this way, previous inputs become relevant to the
neural network, and features from the history can be learned and stored in the
structure of the network. Recurrent-Q has had success with simple problems,
but more work needs to be done to explore how one might scale this approach
to larger problems and avoid settling on local optima.

4.1.3 Hierarchical reinforcement learning

Hierarchical reinforcement learning methods hold tremendous potential for gain-
ing computational leverage in order to solve large-scale decision problems. Dif-
ferent levels of representation are appropriate in different places, so it is natural
to decompose the state space for the purpose of abstracting away unnecessary
detail. For example, whether the agent has the goal of going to the coffee shop
across the street or downtown Beijing, the policy for leaving the current room
should be exactly the same.

Early work on hierarchical methods (Kaelbling, 1993) involved the program-
mer manually partitioning state space, and setting appropriate milestones in
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each region in advance. High level information was then used to navigate from
milestone to milestone along the shortest path to the region containing the goal.

Wiering and Schmidhuber (1998) propose HQ-learning, a hierarchical ex-
tension of Q-learning in which POMDPs are decomposed into a (fixed) number
of memoryless policies. This work is related to, but more general than, other
forms of multiple agent Q-learning such as Feudal Q–learning and W -learning.
HQ-learning involves learning both the single-layer decomposition and the op-
timal memoryless policies simultaneously. Another interesting feature of the
method is that learned memoryless policies can be reused in different parts of
state space. Good results are shown on partially observable maze environments
with a relatively large number of states. One of the main problems with the
method is managing the transfer of control between sub-policies in the presence
of noise.

Different frameworks have recently been suggested for hierarchical reinforce-
ment learning in which the hierarchies are given in advance by the programmer,
based on domain knowledge. The MAXQ framework (Dietterich, 1998) involves
constructing a hierarchy of subtasks, and also decomposing the value function.
This method is formally analysed as a semi-MDP, in which actions (subtasks)
can take variable amounts of time, and convergence properties are proven. Parr
and Russell (1998) take a different approach with their hierarchical abstraction
of machines (HAM) framework. HAM involves constructing hierarchies of finite
state controllers that can call each other like procedure calls. In a fully observ-
able MDP setting, the learned policy can be shown to be optimal with respect
to constraints imposed by the controllers in the hierarchy.

Hernandez-Gardiol and Mahadevan (2000) combine the HAM framework
with the nearest sequence memory and utile suffix memory suggested by Mc-
Callum for a complex simulated robot task. They illustrate the great advantage
of hierarchical approaches over learning in flat primitive space, and also sug-
gest that it is worthwhile to introduce memory-based approaches at all different
levels of the hierarchy. Unifying memory-based and hierarchical approaches to
reinforcement learning for problems with hidden state seems like a very promis-
ing area for future research.

4.2 Direct policy search

The second major group of reinforcement learning methods are those that search
the space of policies directly. These methods do not face the same host of prob-
lems as methods that operate by learning the value function. However, direct
policy search is not without its own problems. Unless suitable constraints can
be imposed, even the space of small finite policies is enormous, and these meth-
ods can be exceedingly slow. Furthermore, although many of these methods
come with strong theoretical guarantees on convergence, none give any guaran-
tees on solution quality. Direct policy search is beleaguered with the problem
of becoming trapped on low-quality local optima.
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4.2.1 Evolutionary algorithms

The evolutionary approach, as reviewed in (Moriarty, Schultz, and Grefenstette,
1999), is often overlooked by the rest of the reinforcement learning community.
It is true that evolutionary algorithms comprise not nearly as cohesive a body
of research as the more standard reinforcement learning methods. What evolu-
tionary algorithms do have in common though is roots in function optimization,
inspiration from biological systems, and the practice of assessing (typically pa-
rameterized) policies directly. Broadly speaking, evolutionary algorithms are
slower, take less memory, and do not handle rarely visited states very well.

Classifier systems Classifier systems, which evolve symbolic rules mapping
from input values to actions, were the first evolutionary algorithms ever devel-
oped. Dorigo and Bersini (1994) review the strong connection between tech-
niques for credit assignment in classifier systems and in Q-learning. There have
been few successful applications of classifier systems, but the framework is still
interesting because of the way it unifies ideas from different branches of rein-
forcement learning

Genetic algorithms Long employed as a heuristic method for function opti-
mization, genetic algorithms (Goldberg, 1989) deserve some attention as a policy
search method for solving POMDPs. Genetic algorithms operate by maintain-
ing a population of policies, where the fitness of each policy is judged directly
from the reward obtained by interacting with the environment. At each gener-
ation, policies are randomly perturbed (mutated), and spliced together to form
new combinations (crossed over). Only the policies with the highest fitness are
allowed to move on to the subsequent generation.

Genetic algorithms are quite slow, since in some sense, at every iteration, a
new tournament needs to be run between all policies in the population. This
method is really better suited to learning episodic, goal-based tasks, where the
model of the environment is available so that learning can be performed off-line.
Genetic algorithms do tend to give good results in the long run, and they work
well with parameterized representations of policies and in highly non-smooth
policy spaces.

Genetic programming The idea behind genetic programming is to evolve
actual computer programs to represent the policy. Indexed memory (Teller,
1994) is a method of augmenting basic genetic programming with a finite amount
of memory as well as load and store instructions. In order to go beyond simple
memoryless policies, some method like this is required. In fact, the class of
programs that can be evolved with indexed memory can be shown to be Tur-
ing complete. This flexibility is paid for dearly in terms of an extremely slow
learning rate, and this method is currently only practical for small problems.

Schmidhuber (1997) presents a novel algorithm called success-story algo-
rithm (SSA) which extends a form of genetic programming known as Levin
search. It is possible to show that Levin search is asymptotically optimal for a
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wide class of problems, but this method is only recently finding practical appli-
cations. SSA develops a restricted framework for learning how to learn, in which
previously learned pieces of program can be adapted to new circumstances, and
the utility of attempting to do this is periodically estimated. Schmidhuber has
shown good results using SSA on very large problems (over 1018 states), and it
seems that this type of approach bears much closer inspection.

4.2.2 Gradient ascent methods

The second group of policy search methods require the value of the policy to be
a differentiable function. If this condition holds, it is reasonable to estimate the
gradient and use this to perform some variant of gradient ascent. Note that in
the absence of an environment model, this means estimating the gradient online
through direct interaction with environment, and following a single trajectory in
policy space. These methods in particular have problems with getting trapped
on poor quality local optima, since they consist of a form of stochastic local
search.

The REINFORCE algorithm (Williams, 1992) was one of the first applica-
tions of this idea, but it was slow, operated only on memoryless policies, and
its method for gradient estimation had high variance. Several authors (Sutton,
McAllester, Singh, and Mansour, 1999; Baird and Moore, 1998) have since de-
veloped a better method for estimating the gradient. Even more importantly,
their new method is shown to converge even in the presence of (reasonable)
function approximation.

Memoryless stochastic policies Another early application of gradient search
was the algorithm proposed in (Singh, Jaakkola and Jordan, 1994) for finding
optimal memoryless stochastic policies. The algorithm uses a Monte Carlo ap-
proach for policy evaluation, and does gradient ascent for policy improvement.
Although the space of stochastic policies is continuous, the algorithm is compu-
tationally tractable, and is shown guaranteed to converge to a local optimum.

Finite state controllers The solution to a particular POMDP can be ap-
proximated by finding the best policy representable as a finite state controller
of a given size. This technique is intuitively effective because many real-world
problems have sufficient structure that near-optimal solutions can be described
in a highly compact form such as a finite state controller.

Gradient ascent techniques can be applied to finding locally optimal stochas-
tic policies represented as finite state controllers (Meuleau, Kim, Kaelbling,
and Cassandra, 1999). Good results were shown on a difficult pole-balancing
task, but it was noted the method is much slower than standard reinforcement
learning techniques for situations in which a good memoryless policy existed.
Moreover, as the finite state controller was allowed to grow in size, the solution
quality was shown to improve, but the running time of algorithm increased sig-
nificantly. Unfortunately, it was difficult to predict when learning would level off
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as the size of the finite state controller was increased, since the solution quality
appeared to improve in jumps.

A related technique uses gradient ascent to learn policies with a finite amount
of external memory (Peshkin, Meuleau, and Kaelbling, 1999). The space of
actions is augmented with new actions to toggle each of the bits, so that changing
the overall state of the memory may take multiple steps. This approach is
reminiscent of näıve memory-based methods in Littman (1994).

In fact, the framework of policies as finite state controllers is general enough
to include a variety of methods that we have already seen. Policies with ex-
ternal memory, HQ-learning, and the finite-horizon memory techniques due to
McCallum can all be thought of as imposing special structural constraints on
the larger set of all possible finite state controllers.

5 Discussion

Reinforcement learning is a rich body of research that gives us many useful
techniques to attack the problem of acting under uncertainty. However, there
are still fundamental problems with the approach.

The trade-off between exploiting the best known policy and performing fur-
ther exploration of the environment is an important issue in reinforcement learn-
ing, but one that is very poorly understood for POMDPs. Furthermore, some
formulations assume the learning problem is goal-based and episodic (in other
words, a planning problem). Instead, we would prefer general solutions for on-
going, infinite-horizon problems with a more flexible reward structure. An ad-
ditional problem with reinforcement learning methods is that they are typically
very slow to converge on a good solution. One related issue is that most rein-
forcement learning researchers make the restrictive assumption that the agent
always starts from a state of zero knowledge. In reality there is often impor-
tant domain knowledge and expert advice that could be incorporated from the
outset. Without an environment model or additional guidance from the pro-
grammer, the agent may literally have to keep falling off the edge of a cliff in
order to learn that this is bad behaviour.

In the past ten years, great strides have been made by the POMDP com-
munity, but effectively solving large, real-world problems remains elusive. The
approaches that look the most promising for the future are hierarchical and
memory-based approaches. There is a clear advantage to using factored mod-
els of state space and reward, and arranging decision-making hierarchically.
However, new frameworks need to be developed to do this even more flexibly.
Memory-based methods are important for disambiguating hidden state, and re-
cent research suggests that an agent can benefit from memory at many different
levels. We have seen the usefulness of both general and structurally constrained
finite state controllers for representing policies, but in even more generality we
would like to learn (compact) programs for carrying out polices.

While the POMDP formalism is highly general, there are still a variety of
desirable extensions to consider. We would like to be able to work in mixed
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spaces (with both continuous and discrete components) of actions and obser-
vations. Moreover, we might consider extending POMDPs to better cope with
non-stationary environments. This problem has proven disappointingly difficult
for reinforcement learning, and so far only slowly drifting environments can be
handled. Multi-agent systems are another interesting extension of POMDPs.
Examples of such systems are games like poker and Stratego, which involve
both imperfect information and game-theoretic reasoning. Finally, one might
consider extending work on inverse reinforcement learning to the POMDP set-
ting. In other words, given the dynamics of a POMDP and observing the actions
of the agent, we would like to be able to infer the reward function, perhaps for
the purpose of user modeling.

POMDPs seem like very difficult computational problems indeed, and yet
(perhaps paradoxically) people are continually making good decisions under
uncertainty in the real world. Philosophically, if we assume that human intelli-
gence is computational in nature, we must ask ourselves: what accounts for the
enormous mismatch between human and computer abilities? It would seem that
people are not finding exact solutions to POMDPs in their heads, but are in-
stead exploiting a host of approximation techniques, a rich hierarchical model of
the world, flexible multi-resolution memory, and good ability to generalize from
experience. The field of artificial intelligence is a long way from creating useful
autonomous cognitive agents, but nevertheless, we should draw inspiration from
the best autonomous cognitive agents currently known-ourselves.
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