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A Implementation details

A.1 Camera models

Standard camera. We adopt a classic defocus model for the standard camera
[10] that also accounts for diffraction. For a given DOF sub-interval [d1, d2] we
focus at 2d1d2

d1+d2

, to equalize defocus blur at the endpoints.

Coded aperture camera [13, 22]. We simulated a 7×7 mask blocking half
the light, optimized using the objective in [22]. We focus the coded aperture
camera in the same way as the standard camera, to equalize defocus blur at
DOF interval endpoints.

Focus sweep [9, 19]. We computed the OTF numerically, by integrating the
PSF we use for the standard camera [10] over focus setting.

Wavefront coding camera [3]. As discussed in [14], wavefront coding
corresponds to a 2D parabolic integration surface. We computed this exactly
for a square aperture, accounting for boundary effects [16].

Lattice-focal camera [15]. We used an idealized analytic formula for the
lattice-focal camera [15], ignoring discretization effects; in practice the DOF
may not be evenly spanned by an integer square number of lens subsquares.
The formula also assumes that the spectrum of a given lens instance matches
well its expectation over a random selection of subsquare focal lengths.

A.2 Target DOF Expansion

For all the cameras above, with the exception of the lattice-focal camera, we
expanded the target DOF slightly to reduce variations at DOF endpoints. This
expansion, while lowering average performance, is important for improving the
worst-case SNR. In particular, the OTF magnitude at the endpoints of the DOF
can be reduced by up to 50% [16]. Handling this effect is especially important for
cameras that are approximately depth-invariant, such as focus sweep, because
almost all of their OTF variation occurs at the DOF endpoints.

For the standard and coded aperture cameras we used a simple heuristic
to expand the target DOF range: we choose expanded limits for the target
DOF such that by focusing at each of those new endpoints, the resulting DOF



predicted by geometric optics [8], assuming a circle of confusion of 1 pixel, falls
just outside and adjacent to the original target DOF.

For the focus sweep camera, we optimized the amount of DOF expansion
by exhaustive search, and found that 10-20% expansion was generally optimal.
Similarly, for the wavefront coding camera, we optimized the curvature of the
2D parabolic integration surface by exhaustive search, per target DOF.

B Image Restoration Method

We present a more detailed description our Bayesian image restoration and
depth-from-defocus method and related error analysis, and also explain the
steps we used to derive it.

B.1 Image formation model

For completeness, we first review the image formation model in more detail.

Blurred image formation with noise. We collect a set of N images
{y1, . . . ,yN}. Our image formation model involves convolving the ideal im-
age with an appropriate PSF φφφDk

d
representing the defocus, scaling it by the

relative exposure level τ , and corrupting it with random sensor noise n:

yk = τ φφφDk

d
⊗ x + n . (B.1)

whered is the depth of the scene, and Dk is the DOF for which the k-th image is
adjusted. We assume sensor noise to be Gaussian and constant over the image,

n(p) ∼ N
(
0 , η2

)
, (B.2)

where p is a pixel index, and the per-pixel noise variance, η2, is a function of
the relative exposure level τ (see Sec. 2).

Scene model—depth. Our model describes a scene that can be treated lo-
cally as a textured fronto-parallel patch, with random depth d. In the absence
of prior information, we assume that scene depth is randomly sampled form
within the target DOF, D = [d1, d2].

In particular, we assume that depth is drawn uniformly from the DOF on
the image-side, according to the thin lens model [8]. In other words, for a lens
with focal length f , we assume that the sensor-lens distance corresponding to
the scene depth, v = (1/f − 1/d)−1, is drawn uniformly from the range [v2, v1],
whose endpoints map analogously to the endpoints of the DOF.

Scene model—Natural image prior. We assume that the underlying in-
focus image has texture following a gradient-penalizing Gaussian prior [13]:

vec(x) ∼ N
(
0 , s

)
, (B.3)
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where vec(·) flattens the image to a 1D column vector. We can express the
prior’s inverse covariance explicitly as

s−1 = α(CT
gx

Cgx
+ CT

gy
Cgy

) , (B.4)

where Ch denotes the banded matrix corresponding to convolution with filter
h; the filters gx,gy take gradients in the x, y spatial dimensions respectively;
and α is a parameter fit to natural images [13].

Frequency domain representation. In the frequency domain, the optical
transfer functions (OTFs), Φ

Dk

d , correspond to the Fourier transforms of the
PSFs. This representation lets us express compactly Eqs. (B.1)–(B.3) over all
N input photos, for each spatial frequency ω independently:

Pr(Yω |Xω, d ) = N
(
τΦdωXω , η2IN

)
(B.5)

Pr(Xω ) = N
(
0 , Sω

)
, (B.6)

where upper-case denotes the frequency domain; I is the identity matrix; the
vector Yω = [Y 1(ω) . . . Y N (ω) ]T collects observations at frequency ω across
the N photos; the vector Φdω = [ΦD1

d (ω) . . . ΦDN

d (ω) ]T collects coefficients of
the OTFs corresponding to the input photos with depths of field D1, . . . ,DN ;

and Sω =
[
α(|Gx(ω)|2 + |Gy(ω)|2)

]−1
is the per-frequency variance from the

texture prior, where Gx,Gy are the Fourier transforms of the gradient filters
gx,gy.

B.2 Image Restoration and Depth-from-Defocus

Restoration with known depth. When depth of the scene is known, the
OTF vector Φdω is fully specified by the camera design; restoration is equivalent
to N -photo Wiener deconvolution.

In our Bayesian treatment, we compute the restored all-in-focus image as
the maximum a posteriori (MAP) estimate, X̂dω. Given our image formation
model, the posterior is Gaussian as well, and can be computed in closed form
[2]. The MAP estimate then corresponds to the peak of this posterior:

Pr(Xω |Yω, d ) = N
(

1
η2 (τΦdω

∗ Yω)Vdω
︸ ︷︷ ︸

MAP estimate, X̂
dω

, Vdω

)
, (B.7)

where ∗ denotes the complex conjugate transpose and the variance of the MAP
estimate is

Vdω =
(

1
η2 ‖τΦdω‖2 + 1

Sω

)−1

. (B.8)

Depth estimation. Often we must estimate the unknown depth d from the
observations to specify the effective OTFs Φdω. To this end, we can evaluate
the “evidence” for the observations Yω over different depth hypotheses. Again,
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since our model involves Gaussians only, the probability distribution for this
evidence can be computed in closed form [2]:

Pr(Yω |d ) = N
(
0 , η2IN + SωΦdωΦdω

∗ )
. (B.9)

This expression marginalizes over all scenes Xω, and avoids degenerate models
by accounting for the “volume” of scenes that explain the observations.

To determine the marginal probability of our observations given a particular
depth hypothesis, we evaluate the Gaussian defined by Eq. (B.9) using Yω.
Fortunately, by the matrix inversion lemma and the matrix determinant lemma,
we can express this in closed form:

log Pr(Yω |d ) = const − 1
2

[
log

(
η2 + Sω‖τΦdω‖2

)
+

1
η2 ‖Yω‖2 − 1

η4 |Φdω
∗Yω|2 Vdω

]

. (B.10)

This formula accounts for all joint information encoded in the N photos [21, 17].
It is also particularly useful to reformulate Eq. (B.10) in the spatial domain,

because this helps us describe spatially-varying scene depth. By straightforward
algebraic manipulation of Eq. (B.10), involving the definitions in Eqs. (B.1)–
(B.8), we obtain a 2D “image” representing the per-pixel evidence for a given
depth hypothesis:

log Pr({yk} |d ) = const − 1
2

[
restoration error

︷ ︸︸ ︷
∑N

k=1(y
k − τ φφφDk

d
⊗ x̂d)

2 +

unvec
(
vec(x̂d)

Ts−1vec(x̂d)
)

︸ ︷︷ ︸

prior term

+ 1
P

∑

ω log
(
η2SωV −1

dω

)

︸ ︷︷ ︸

model complexity

]

, (B.11)

where the square in the term is pixel-wise; P is the number of pixels in the
image; unvec(·) returns the 1D flattened image to 2D form; and x̂d is the MAP
estimate in the spatial domain, assuming depth d for the whole image. Using
Parseval’s rule we can verify that

∑

x, y log Pr({yk} |d ) =
∑

ω log Pr(Yω |d ).
The terms labeled in Eq. (B.11) show how our Bayesian approach to depth

estimation goes beyond evaluating which depth hypothesis minimizes recon-
struction error (i.e., computing the maximum-likelihood estimate). What dis-
tinguishes our approach from classic methods are the terms for the prior model
of the scene and an Occam factor penalizing OTFs with more complex struc-
ture. This last term enables exact model selection, which is often handled with
such approximations as the Bayesian Information Criterion (BIC) [2].

To estimate the per-pixel probability that the scene is a particular depth we
can use Eq. (B.11) and apply Bayes’ rule to compute:

Pr(d | {yk} ) =

∏

ω Pr( {yk} |d )
∑

d′

[
∏

ω Pr( {yk} |d′ )
] , (B.12)
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where all products and sums are pixel-wise, and Pr( d ) has been factored out
because its distribution is uniform.

This last formula provides us with all the tools we need to specify our
Bayesian reconstruction algorithm. On a greedy per-pixel basis, we can apply
Eq. (B.12) directly to obtain d∗ = arg maxd Pr(d | {yk} ), and create a compos-
ite restored image by copying pixels from the corresponding MAP restorations
over depth.

In practice, we use a Markov random field (MRF) [1] instead, to regularize
this estimate and favor piecewise-smoothness (Fig. 5). For our experiments we
used graph cuts with the expansion move [12]; we specified the “data term” as

−log Pr(d | {yk} ); we specified the “smoothness term” as 8.0 ·min{|ℓ1 − ℓ2|, 5},
for labels pairs (ℓ1, ℓ2) defined by 4-neighborhoods on the pixel grid; and we
defined the labels according to a discretization of the DOF into 200 depths
(distributed evenly on the image-side).

B.3 Error Analysis

Expected error with known depth. The expected squared error of the
MAP reconstruction takes on a well-known form when depth is known [2]:

E
[

|Xω − X̂dω|2
]

= Vdω , (B.13)

in expectation over noise and the image prior. To relate this result to squared
error in the spatial domain, we sum over frequency and apply Parseval’s rule to
obtain E

[
‖vec(x − x̂d)‖2

]
=

∑

ω Vdω.

Unknown depth. More interestingly, we can also derive the expected squared
error for a MAP reconstruction given incorrectly estimated OTFs. If the true
scene depth is d but its estimated value is d̂, we can show that the expected
squared error is

E
[

|Xdω − X̂d̂ω|2
]

=
(

τ2 Sω

η2 ‖∆‖2 − (∆ + ∆∗)
)

τ2

η2 Vd̂ω
2

︸ ︷︷ ︸

depth estimation error

+ Vd̂ω
︸ ︷︷ ︸

known-depth error

, (B.14)

in expectation over noise and the prior, where the scalar ∆ = Φd̂ω
∗(Φdω −Φd̂ω)

measures discrepancy between the true and estimated OTFs, and the notation
Xdω emphasizes that the true depth of the scene Xω is d. This follows from
straightforward, if tedious, algebra.

Error analysis for an imaging system overall. To estimate the overall

performance of an imaging system we must consider performance not only over
the distribution of underlying images (Eq. (B.6)), but also over the distribution
of our depth estimates.
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Suppose that the true depth of the scene is d. Under the assumption that
our depth uncertainty, Pr( d̂ |d ), is independent of scene texture, we obtain

E
[
‖xd) − vec(x̂d̂‖2

]
=

∑

ω

∫

d̂

Pr( d̂ |d ) E
[
|Xdω − X̂d̂ω|2

]
dd̂ . (B.15)

In practice, we compute this expectation using Monte Carlo sampling, evalu-
ating the probability of obtaining different depth estimates d̂ using Eq. (B.12),

for a collection of samples for the scene x and sensor noise at depth d.
The reason why we can assume that depth uncertainty is independent of

scene texture follows from information theory. Since most scenes x constitute
“typical sequences” in a formal sense [5], for a sufficiently large image patch,
the law of large numbers ensures that drawing even a single sample leads to
a tight (δ, ǫ)-bound on its estimate of expected error; therefore Pr( d̂ |d ) and
E

[
|Xdω − X̂d̂ω|2

]
can be thought of as decoupled. Empirically, we found that

very few samples for the scene texture (i.e., less than 20) were indeed needed
for the approximation in Eq. (B.15) to be accurate.

C Derivation of Upper Bound in Eq. (12)

We closely follow the treatment in [15], extending the derivation to handle
circular apertures and incorporating our novel upper bound, namely the final
term of Eq. (12). We first review basic terminologies from 4D light fields in the
Fourier domain along the lines of [18, 20]. We then prove an upper bound on
the magnitude of the defocus kernel for a given spatial frequency (Lemma 1).
Then we show that the worst-case upper bound involves evenly spreading the
energy available over a lower-dimensional 3D manifold (Lemma 2). Finally, we
show another bound on all coefficients of the defocus kernel (Lemma 3), and
combine these results to obtain Eq. (12).

C.1 Frequency analysis of depth of field in 4D

Our analysis is based on geometric optics and the light field. We first review
how the light field can be used to analyze cameras [18, 20]. It is a 4D function
ℓ(x, y, u, v) describing radiance for all rays in a scene, where a ray is parameter-
ized by its intersections with two parallel planes, the uv-plane and the xy-plane
[18]. We assume the camera aperture is positioned on the uv-plane, and xy is a
plane in the scene. x, y are spatial coordinates and the u, v coordinates denote
the viewpoint direction.

An important property is that the light rays emerging from a given physical
point correspond to a 2D plane in 4D of the form

x = su + (1 − s)px, y = sv + (1 − s)py , (C.16)

whose slope s encodes the object’s depth:

s = (d − do)/d , (C.17)
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where d is the object depth; do the distance between the uv, xy planes [4, 11, 7].
The offsets px and py characterize the location of the scene point within the plane
at depth d.

Each sensor element gathers light over its 2D area and the 2D aperture. This
is a 4D integral over a set of rays, and under first order optics (paraxial optics),
it can be modeled as a convolution [20, 18]. A shift-invariant kernel k(x, y, u, v)
determines which rays are summed for each element, as governed by the lens.
Before applying imaging noise, the value recorded at a sensor element is then:

ỹ(x0, y0) =

∫∫∫∫

k(x0 − x, y0 − y,−u,−v) ℓ(x, y, u, v) dxdydudv . (C.18)

If the local scene depth, or slope, is known, the noise-free defocused image
ỹ can be expressed as a convolution of an ideal sharp image x with a PSF φφφs:
ỹ = φφφs ⊗ x. For a given slope s, this PSF is fully determined by projecting the
4D lens kernel k along the direction s:

φφφs(x, y) =

∫∫

k(x, y, u + sx, v + sy)dudv . (C.19)

That is, we simply integrate over all rays (x, y, u + sx, v + sy) corresponding to
a given point in the xy-plane (see Eq. C.16).

Now that we have expressed defocus as a convolution, we can analyze it in
the frequency domain. Let K(ωx, ωy, ωu, ωv) denote the 4D lens spectrum, the
Fourier transform of the 4D lens kernel k(x, y, u, v). As the PSF φφφs is obtained
from k by projection (Eq. (C.19)), by the Fourier slice theorem, the OTF Φs is
a slice of the 4D lens spectrum K in the orthogonal direction [20, 16]:

Φs(ωx, ωy) = K(ωx, ωy,−sωx,−sωy) . (C.20)

Below we refer to slices of this form as OTF-slices, because they directly provide
the OTF-the frequency response due to defocus at a given depth. These are
slanted slices whose slope is orthogonal to the object slope in the primal light
field domain. Low spectrum values in K leads to low magnitudes in the OTF
for the corresponding depth.

The dimensionality gap. As described above, scene depth corresponds to
slope s in the light field. It has, however, been observed that the 4D light field
has a dimensionality gap, in that most slopes do not correspond to a physical
depth [7, 20]. Indeed, the set of all 2D planes x = suu + px, y = svv +
py described by their slope su, sv and offset px, py is 4D. In contrast, the set
corresponding to real depth, i.e. where s = su = sv, is only 3D, as described by
Eq. (C.16).

The dimensionality gap is particularly clear in the Fourier domain [20]. Con-
sider the 4D lens spectrum K, and examine the 2D slices Kωx0,y0

(ωu, ωv), in
which the spatial frequencies ωx0

, ωy0
are held constant. We call these ωx0,y0

-

slices. In flatland, ωx0,y0
-slices are vertical slices. Following Eq. (C.20), we note
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that the set of entries in each Kωx0,y0
participating in the OTF for any depth

is restricted to a 1D line:

Kωx0,y0
(−sωx0

,−sωy0
) , (C.21)

for which ωu = −sωx0
, ωv = −sωy0

. For a fixed slope range (DOF) the set of
entries participating in any OTF Φs is a 1D segment.

Relation between slope and defocus. We seek to capture a fixed depth
range [d1, d2]. To simplify the light field parameterization, we select the location
of the xy plane according to the harmonic mean do = 2d1d2

d1+d2

, corresponding to
the point at which one would focus a standard lens to equalize defocus diam-
eter at both ends of the depth range [8]. This maps the depth range to the

symmetric slope range [−S/2, S/2], where S = 2(d2−d1)
d2+d1

(Eq. (C.17)). Under
this parameterization the defocus diameter corresponding to a given slope s, as
measured on the xy plane in the scene, can be expressed simply as A|s|.

C.2 Energy bound on 4D spectrum

The first step in our derivation is to show that the energy in a 4D lens spectrum
is bounded. We derive the available energy budget using a direct extension of
the 1D case [6, 16].

Lemma 1 For a circular aperture with diameter A, the total energy in each

ωx0,y0
-slice is bounded by π

4 A2:
∫∫

|Kωx0,y0
(ωu, ωv)|2dωudωv ≤ π

4
A2 . (C.22)

Proof: This is similar to the budget proof in [16]. Basically Kωx0,y0
(ωu, ωv) is

the 2D Fourier transform of
∫∫

k(x, y, u, v)e−2iπ(ωx0
x+ωy0

y)dxdy . (C.23)

Since the amount of energy that can pass via an aperture area in a given inte-
gration time is bounded, the norm of each element is bounded by

∣
∣
∣
∣

∫∫

k(x, y, u, v)e−2iπ(ωx0
x+ωy0

y)dxdy

∣
∣
∣
∣

2

≤ 1 . (C.24)

Since the aperture size is π
4 A2 (that is, the above integral is non-zero for an area

of π
4 A2 only) we get that the total norm is bounded by π

4 A2:

∫∫ ∣
∣
∣
∣

∫∫

k(x, y, u, v)e−2iπ(ωx0
x+ωy0

y)dxdy

∣
∣
∣
∣

2

dudv ≤ π

4
A2 . (C.25)

By Parseval’s theorem, the square integral is the same in the dual and the primal
domains, thus: ∫∫

|Kωx0,y0
(ωu, ωv)|2dωudωv ≤ π

4
A2 . (C.26)
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C.3 Worst-case MTF over the 3D focal manifold

In this section we derive a bound on the magnitude of the OTF for defocus, also
known as the modulation transfer function (MTF). In particular we seek to
maximize the MTF |Φs(ωx,y)| in the worst case, over all slopes s ∈ [−S/2, S/2]
and over all spatial frequencies ωx,y. Since the OTFs are slices from the 4D
lens spectrum K (Eq. (C.20)), this is equivalent to maximizing the spectrum on
the focal segments of K. As in the 1D space-time case [16], optimal worst-case
performance can be realized by spreading the energy budget uniformly over the
range of slopes.

Given a power budget for each ωx0,y0
-slice, the upper bound for the defo-

cus MTF concentrates this budget on the 1D focal segment only. Distributing
energy over the focal manifold requires caution, however, because the segment
effectively has non-zero thickness due to its finite support in the primal domain.
If a 1D focal segment had zero thickness, its spectrum values could be made
infinite while still obeying the norm constraints of Lemma 1. As we show below,
since the primal support of k is finite (k admits no light outside the aperture),
the spectrum must be finite as well, so the 1D focal segment must have non-zero
thickness.

Lemma 2 For a circular aperture with diameter A, the worst-case defocus

MTF for the range [−S/2, S/2] is bounded. For every spatial frequency ωx,y:

min
s∈[−S/2,S/2]

|Φs(ωx, ωy)|2 ≤
2
3β(ωx,y)A3

S‖ωx,y‖
, (C.27)

where the factor

β(ωx,y) =
‖ωx,y‖

max(|ωx|, |ωy|)

(

1 − min(|ωx|, |ωy|)
3 · max(|ωx|, |ωy|)

)

(C.28)

is in the range [5
√

5
12 , 1] ≈ [0.93, 1].

Proof: For each ωx0,y0
-slice Kωx0,y0

the 1D focal segment is of length S‖ωx0,y0
‖.

We first show that the focal segment norm is bounded by 2
3A3, and then the

worst-case optimal strategy is to spread the budget evenly over the segment.
To simplify notations, we consider the case ωy0

= 0 since the general proof is
similar after a basis change. For this case, the 1D focal segment is a horizontal
line of the form Kωx0,y0

(ωu, 0). For a fixed value of ωx0
, this line is the Fourier

transform of: ∫∫∫

k(x, y, u, v)e−2iπ(ωx0
x+0y+0v)dxdydv . (C.29)

By showing that the total power of Eq. (C.29) is bounded by A3, Parseval’s
theorem gives us the same bound for the focal segment.

Since the exposure time is assumed to be 1, we collect unit energy through
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every u, v point lying within the clear aperture1:

∫∫

k(x, y, u, v)dxdy =

{
1 u2 + v2 ≤ 1

4A2

0 otherwise
. (C.30)

A phase change to the integral in Eq. (C.30) does not increase its magnitude,
therefore, for every spatial frequency ωx0,y0

,

∣
∣
∣
∣

∫∫

k(x, y, u, v)e−2iπ(ωx0
x+ωy0

y)dxdy

∣
∣
∣
∣
≤ 1 . (C.31)

Using Eq. (C.31) and the fact that the circular aperture is width
√

A2 − 4u2

along on the v-axis, we obtain:

∣
∣
∣
∣

∫∫∫

k(x, y, u, v)e−2iπωx0
x+0y+0vdxdydv

∣
∣
∣
∣

2

≤ A2 − 4u2 . (C.32)

On the u-axis, the aperture has width A, corresponding to its diameter. By
integrating Eq. (C.32) over u we see the power is bounded by 2

3A3:

∫ ∣
∣
∣
∣

∫∫∫

k(x, y, u, v)e−2iπ(ωx0
x+ωy0

y)dxdydv

∣
∣
∣
∣

2

du ≤ 2

3
A3 . (C.33)

Since the left-hand side of Eq. (C.32) is the power spectrum of Kωx0,y0
(ωu, 0), by

applying Parseval’s theorem we see that the total power over the focal segment
is bounded by 2

3A3 as well:

∫

|Kωx0,y0
(ωu, 0)|2dωu ≤ 2

3
A3 (C.34)

Since the focal segment norm is bounded by 2
3A3, and since we aim to maximize

the worst-case magnitude, the best we can do is to split the budget uniformly
over the length S‖ωx0,y0

‖ focal segment, which bounds the worst MTF power
by 2

3A3/S‖ωx0,y0
‖. In the general case, Eq. (C.33) is bounded by 2

3β(ωx,y)A3

rather than 2
3A3, and Eq. (C.27) follows.

C.4 Bound on coefficients of the MTF

We identify one more bound on the MTF, which comes from applying another
conservation argument over the full domain to all the coefficients in the MTF.

Lemma 3 For a circular aperture with diameter A, every coefficient of the

MTF is bounded by π
4 A2:

|Φs(ωx, ωy)| ≤ π

4
A2 . (C.35)

1If an amplitude mask is placed at the aperture (e.g. coded aperture) the energy will be
reduced and the upper bound still holds.
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Proof: It is clear that the DC component, in particular, is bounded by the
support in the primal domain, π

4 A2. However, other frequencies share this
bound as well. Following from the definition of the 4D Fourier transform we
can show:

|Φs(ωx, ωy)| = |K(ωx, ωy,−sωx,−sωy)| (C.36)

=

∣
∣
∣
∣

∫∫∫∫

k(x, y, u, v)e−2iπ(ωxx+ωyy−sωxu−sωyv)dxdydudv

∣
∣
∣
∣

(C.37)

≤
∫∫∫∫ ∣

∣
∣k(x, y, u, v)e−2iπ(ωxx+ωyy−sωxu−sωyv)

∣
∣
∣ dxdydudv (C.38)

=

∫∫∫∫

|k(x, y, u, v)|dxdydudv (C.39)

≤ π

4
A2 . (C.40)

The derivation is elementary, relying only on the triangle inequality applied
to the modulus function, combined with the fact that the kernel is real in the
spatial domain.

C.5 Upper bound: Proof of Eq. (12)

Proof: By combining Lemmas 2-3, we obtain:

min
s∈[−S/2,S/2]

|Φs(ωx, ωy)|2 ≤ A4 · min

{ 2
3 β(ωx,y)

AS‖ωx,y‖
,

π2

16

}

(C.41)

= A4 · min

{
β(ωx,y)

3‖ωx,y‖bmax
,

π2

16

}

(C.42)

where bmax = AS
2 is the blur diameter at the endpoints of the DOF, [d1, d2].

This reproduces the upper bound in Eq. (12), for the case of N = 1.
Note by further analyzing Eq. (C.42) we can show there is no benefit to

dividing the time budget for the worst-case upper bound, i.e., that N∗ = 1.
As in Sec. B.1, define the vector Φs ωx,y

= 1
N [ΦD1

s (ωx,y) . . . ΦDN
s (ωx,y) ]T cor-

responding to the OTF coefficients for the N photos, for a scene whose depth
corresponds to a slope of s. Dividing the time budget in this way reduces the
power for each observation by 1/N2. However, since each of the N photos is
responsible for 1/N of the DOF, the maximum blur diameter is reduced to b/N .
Putting this together, we obtain

min
s∈[−S/2,S/2]

‖Φs ωx,y
‖2 ≤ N ·

[
A4

N2
· min

{
1

3‖ωx,y‖(bmax/N)
,

π2

16

}]

(C.43)

≤ A4 · min

{
1

3‖ωx,y‖bmax
,

π2

16N

}

(C.44)

which shows that the upper bound is indeed highest for N = 1.
The same conclusion that N∗ = 1 also holds if the input photos are not used

to divide the DOF, but instead to capture N identical photos, each correspond-
ing to the regular one-shot upper bound with 1/N of the time budget.
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