
Bivariate Polynomials Modulo Composites

and their Applications

Dan Boneh and Henry Corrigan-Gibbs

Stanford University, Stanford CA 94305, U.S.A.

Abstract. We investigate the hardness of finding solutions to bivariate
polynomial congruences modulo RSA composites. We establish necessary
conditions for a bivariate polynomial to be one-way, second preimage re-
sistant, and collision resistant based on arithmetic properties of the poly-
nomial. From these conditions we deduce a new computational assump-
tion that implies an efficient algebraic collision-resistant hash function.
We explore the assumption and relate it to known computational prob-
lems. The assumption leads to (i) a new statistically hiding commitment
scheme that composes well with Pedersen commitments, (ii) a conceptu-
ally simple cryptographic accumulator, and (iii) an efficient chameleon
hash function.

Keywords: algebraic curves, bivariate polynomials, cryptographic com-
mitments, Merkle trees

1 Introduction

In this paper, we investigate the cryptographic properties of bivariate polyno-
mials modulo random RSA composites N = pq. We ask: for which integer poly-
nomials f ∈ Z[x, y] does the function f : ZN × ZN → ZN defined by f appear
to be a one-way function, a second-preimage-resistant function, or a collision-
resistant function? We say that a polynomial f ∈ Z[x, y] is one-way if the func-
tion f : ZN×ZN → ZN defined by f is one-way (Section 3.1). We similarly define
second-preimage-resistance (Section 3.2) and collision-resistance (Section 3.3) of
polynomials f ∈ Z[x, y].

Using tools from algebraic geometry we develop a heuristic for deducing the
cryptographic properties of a bivariate polynomial over ZN from its arithmetic
properties, namely from its properties as a polynomial over the rationals Q.
We give a number of necessary conditions for a bivariate polynomial to be one-
way, second-preimage-resistant, or collision-resistant. We also provide examples
of polynomials f that appear to satisfy each of these properties and we offer
separations between these three classes.

Taking collision resistance as an example, we conjecture that a bivariate
polynomial f ∈ Z[x, y] that defines an injective function f : Q2 → Q gives a
collision resistant function f : Z2

N → ZN where N is a random RSA modu-
lus of secret factorization (see Section 3.3). Constructing an explicit polynomial

f ∈ Z[x, y] that is provably injective over the rationals is an open number the-
oretic problem [30]. However, even relatively simple polynomials appear to be
injective over Q2. For example, Don Zagier [13, 34] conjectures that the poly-
nomial fzag(x, y) := x7 + 3y7, which we refer to as the Zagier polynomial, is
injective over the rationals. Since the only apparent efficient strategy for finding
collisions in fzag over ZN is to find rational collisions and reduce them modulo N ,
we conjecture that fzag is collision resistant over ZN . To build confidence in the
assumption that fzag is collision resistant over ZN we discuss potential collision-
finding strategies and relate them to existing number theoretic problems.

Applications. We demonstrate that the existence of low-degree collision-resistant
bivariate polynomials gives rise to very efficient instantiations of a number of
cryptographic primitives.

First, we derive a statistically hiding commitment scheme which is computa-
tionally inexpensive to evaluate and composes naturally with Pedersen commit-
ments. By “nesting” these new commitments inside of Pedersen commitments,
we obtain an efficient zero-knowledge protocol for proving knowledge of an open-
ing of a commitment which is nested inside of another commitment. Use of
nested commitments reduces the length of transactions in an anonymous e-cash
scheme [24] by roughly 70%.

Second, we demonstrate that the new commitment scheme, in conjunction
with Merkle trees, can serve as a simple replacement for one-way accumula-
tors. Though the communication complexity of our accumulator construction
is asymptotically worse than that of strong-RSA accumulators [8]—O(log |S|)
versus O(1) for a set S being accumulated—our construction has the benefit of
being conceptually simple and easy to implement.

Third, from the same collision-resistant polynomial, we derive a new chameleon
hash function, signature scheme, claw-free permutation family, and a variable-
length algebraic hash function.

2 Related Work

Multivariate polynomials in ZN have a long history in cryptography. For ex-
ample, the security of the Ong-Schnorr-Shamir signature scheme [26] followed
from the hardness of finding solutions to a particular type of bivariate polyno-
mial equation over ZN . Pollard and Schnorr later demonstrated a general attack
against the hardness of finding solutions to such equations [28].

Shamir related the hardness of factoring certain multivariate polynomials
modulo N to the problem of factoring the modulus N itself [33]. Schwenk and
Eisfeld proposed encryption and signature schemes reliant on the hardness of
finding roots of random univariate polynomials f ∈ Z[x] modulo a composite N ,
and they prove that this problem is as hard as factoring N [31].

This work introduces a new statistically hiding commitment scheme based on
low-degree polynomials. Commitment schemes are used widely in cryptography.
Prior work has derived statistically hiding commitment schemes from the dis-
crete log problem [27], the Paillier cryptosystem [12], and the RSA problem [3].

Verifying the correctness of opening a commitment in these existing schemes
requires expensive modular exponentiations or elliptic curve scalar multiplica-
tions. Verifying an opening with our new commitment scheme requires just a
few modular multiplications. By combining our new commitment scheme with
traditional Pedersen commitments, we improve the communication efficiency of
the Zerocoin decentralized e-cash construction [24].

Given a Pedersen commitment and a finite set of elements S, our commit-
ment scheme leads to a simple zero-knowledge protocol for proving knowledge
of an opening x of the commitment such that x ∈ S. The length of the proof is
log |S|. This technique, which uses Merkle trees [21], has applications to anony-
mous authentication and credential systems and it has the potential to replace
traditional RSA one-way accumulators, introduced by Benaloh and De Mare [5]
and revisited by Barić and Pfitzmann [4].

Camenisch and Lysyanskaya presented an efficient zero-knowledge protocol
which proves that a value contained in a Pedersen commitment is also con-
tained in a particular strong-RSA accumulator [8]. The Camenisch-Lysyanskaya
accumulator produces a shorter proof of knowledge than ours does, but the con-
ceptual simplicity and ease of implementation may make our Merkle-style proof
more attractive for some applications.

The “zero-knowledge sets” of Micali, Rabin, and Kilian solve an orthogonal
problem: a prover publishes a commitment to a set S and later can prove that x ∈
S without leaking other information about S [23]. In contrast, we are interested
in hiding the value x but allow the set of items S to be public.

3 Cryptographic Properties of Polynomials

We begin by surveying the cryptographic properties of integer polynomials mod-
ulo random RSA composites. Our goal is to relate the algebraic properties of
polynomials to their cryptographic complexity. In particular, we identify fami-
lies of integer polynomials that give rise to progressively stronger cryptographic
primitives: one-way functions, second-preimage-resistant functions, and collision-
resistant functions.

Notation. We write x
R← S to indicate that the variable x takes on a value

sampled independently and uniformly at random from a finite set S. A function
f : Z → R+ is negligible if it is smaller than 1/p(λ) for every polynomial p()
and all sufficiently large λ. We denote an arbitrary negligible function in λ as
negl(λ). We use the notation f(x) := x2 to indicate the definition of a new term.

In what follows, we let RSAgen(λ) denote a randomized algorithm that runs
in time polynomial in λ. The algorithm generates two random len(λ)-bit primes
p and q and outputs (p, q, N := p ·q). Here len : Z+ → Z+ is some fixed function
that determines the size of the primes p and q as a function of λ.

Let f ∈ Z[x, y] be a bivariate polynomial. For c ∈ Z consider the curve
f(x, y) = c. The genus of this curve is a standard measure of its “complexity:”

conics have genus zero, elliptic curves have genus one, and so on (see, e.g. [2,
18]). We define the genus of a polynomial f as follows:

Definition 1. The genus of a polynomial f ∈ Z[x, y] is defined as

max
c∈Q

(

genus(f(x, y)=c)
)

.

As we will see, the genus of a polynomial f has some relation to its crypto-
graphic properties. While we focus on bivariate polynomials, most of the follow-
ing discussion generalizes to multivariates.

We use the following terms throughout this section to describe relationships
between curves. (For more precise definitions, see Hindry and Silverman [18, Sec.
A.1.2].) A rational map from a curve C to another curve C ′ is a pair of rational
functions g and h mapping points (x, y) on C to points (g(x, y), h(x, y)) on C ′.
A birational map from C to C ′ is a rational map which is a bijection between
points on C and C ′ such that the map’s inverse is also rational. Two curves C
and C ′ and are birationally equivalent if there is a birational map from C to C ′.
An automorphism is a birational map from a curve to itself.

3.1 One-way Polynomials

One-way functions are the basis of much of cryptography. A function g : X → Y
is one-way if, given the image c = f(x) of a random point x ∈ X, it is hard
to find an x′ such that f(x′) = c. We first ask: what polynomials give rise to
one-way functions?

Definition 2. A polynomial f in Z[x1, ..., xℓ] is one-way if for every p.p.t. al-

gorithm A the following advantage is a negligible function of λ:

AdvA,f (λ) := Pr[N ← RSAgen(λ), x̄
R← (ZN)ℓ, c← f(x̄) :

f
(

A(N, c)
)

= c in ZN] .

Clearly linear polynomials are not one-way. A result of Pollard and Schnorr [28]
shows that quadratic polynomials, indeed all genus zero polynomials, are not
one-way.

Theorem 3. A genus zero polynomial f ∈ Z[x, y] is not one-way.

Proof sketch. For all c ∈ Q the curve f(x, y) = c is of genus zero, or is a product
of genus zero curves. A genus zero curve is birationally equivalent to a linear or
quadratic curve f̃(x, y) = 0 [18, Theorem A.4.3.1]. If f̃(x, y) is linear in one of
the variables x or y then finding points on this curve is easy thereby breaking the
one-wayness of f . This leaves the case where f̃(x, y) is quadratic in both x and
y. Let N be an output of RSAgen(λ). Let f̃ ∈ Z[x, y] be a quadratic polynomial
in x and y and let c ∈ ZN . There is an efficient algorithm that for most c ∈ ZN

finds an (x0, y0) ∈ Z2
N such that f̃(x0, y0) = c in ZN , breaking the one-wayness

of f . See for example [6, Sec. 5.2] for a description of the algorithm. ⊓⊔

Theorem 3 played an important role in analyzing the security of the Ong-
Schnorr-Shamir signature scheme [26]. The scheme depended on the difficulty of
finding solutions (x, y) to the equation:

x2 + ay2 = b in ZN

for known constants a, b ∈ ZN . Since this equation defines a genus-zero curve,
Theorem 3 shows that it is possible to efficiently find solutions without knowledge
of the factors of N . Pollard and Schnorr demonstrated an attack against the
scheme soon after its publication [28, 32].

One-way Polynomials. It is not known how to break the one-wayness of poly-
nomials f ∈ Z[x, y] that are not genus zero. Thus, for example, even a simple
polynomial such as f(x, y) = y2 − x3 may be one-way, although that would
require further study.

3.2 Second Preimage Resistant Polynomials

A function f : U → V is second preimage resistant if, given u ∈ U , it is difficult
to find a u′ 6= u ∈ U such that f(u) = f(u′). We define a similar notion for
polynomials:

Definition 4. A polynomial f in Z[x1, ..., xℓ] is second preimage resistant if, for
every p.p.t. algorithm A, the following advantage is a negligible function of λ:

AdvA,f (λ) := Pr[N ← RSAgen(λ), x̄
R← (ZN)ℓ, x̄′ ← A(N, x̄) :

f(x̄) = f(x̄′) in ZN ∧ x̄ 6= x̄′] .

Since genus 0 polynomials are not one-way they are also not second preimage
resistant. It is similarly straight-forward to show that no genus-one polynomial
is second preimage resistant.

Proposition 5. A genus one polynomial f ∈ Z[x, y] is not second preimage

resistant.

To see why, let f ∈ Z[x, y] be a polynomial such that f(x, y) = c is a curve of
genus one for all but finitely many c ∈ Q. Then f is not second preimage resistant
because of the group structure on elliptic curves. That is, let N be an output of
RSAgen(λ). Choose a random pair (x0, y0) ∈ Z2

N and set c := f(x0, y0) ∈ ZN .
Then P = (x0, y0) is a point on the curve f(x, y) = c and so is the point
2P = P + P where addition refers to the elliptic curve group operation. With
overwhelming probability 2P is not the point at infinity and therefore, given P
as input, the adversary can output 2P as a second preimage for P . It follows
that f is not second preimage resistant.

Even polynomials that give higher genus curves need not be second preimage
resistant. For example, a hyperelliptic polynomial of genus g ≥ 2 has the form

f(x, y) = y2 − h(x) ∈ Z[x, y] where h ∈ Z[x] is a polynomial of degree 2g + 1
or 2g + 2. The simple fact that f(x0, y0) = f(x0,−y0) immediately gives a
second preimage attack on these polynomials: given (x0, y0) the attacker outputs
(x0,−y0) as a second preimage.

The fact that all curves of genus two are hyperelliptic [18, Theorem A.4.5.1]
leads to the following proposition:

Proposition 6. A genus two polynomial f ∈ Z[x, y] is not second preimage

resistant.

This proposition, in combination with Theorem 3 and Proposition 5 means that
all second preimage resistant polynomials must have genus at least three.

As outlined above, elliptic (genus one) and hyperelliptic (genus two) poly-
nomials are not second preimage resistant because there are non-trivial auto-
morphisms on the associated curves. We say that a polynomial f ∈ Z[x, y] is
automorphism free if, for all but finitely many c ∈ Q, the curve f(x, y) = c has
no automorphisms over Q, apart from the trivial map (x, y) 7→ (x, y). It is natu-
ral to conjecture that every automorphism-free polynomial f ∈ Z[x, y] is second
preimage resistant.

Poonen constructs a large family of automorphism-free polynomials, in ar-
bitrarily many variables and of arbitrarily large degree [29]. For example, he
proves that the polynomial f(x, y) = x3 + xy3 + y4 is automorphism-free over
the rationals [29].

A Historical Aside: q-Way Preimage Resistance. A stronger notion of
preimage resistance for a function f : U → V , called q-way preimage resistance,
states that given a random v ∈ V and random points u1, . . . , uq in U such that
v = f(u1) = · · · = f(uq), it is difficult to find a new point u ∈ U \ {u1, . . . , uq}
such that f(u) = v.

As before, one can define a similar property for polynomials. That is, a poly-
nomial f in Z[x, y] is q-way preimage resistant if, for a random RSA moduli N
and a random c ∈ ZN , given q points on the curve f(x, y) = c in ZN , it is hard
to find another point on this curve.

Kilian and Petrank [19] proposed an authentication scheme whose security is
based on the q-way preimage resistance of the polynomial fKP(x, y) = xe−ye, for
some small odd e, say e = 17. In their scheme, q is the total number of users in
the system. Naor [25] refers to the computational assumption that fKP is q-way
preimage resistant as the Difference RSA Assumption. We note that the poly-
nomial fKP is not even second preimage resistant because there is a non-trivial
automorphism (x, y) 7→ (−y,−x) on the curve. In other words, for any point
(x0, y0) we have that fKP(x0, y0) = fKP(−y0,−x0). This bad symmetry appears
to violate the security properties needed for the Kilian-Petrank identification
scheme, but the scheme can be modified to resist such attacks.

Camenisch and Stadler [10, Sec. 6] used a similar assumption to construct
group signatures. They need the polynomial fCS(x, y) = xe1 + aye2 to be q-way
preimage resistant for some small e1 and e2. They propose using e1 = 5 and

e2 = 3. We observe in that next section that the polynomial f(x, y) = x5 + y3 is
not collision resistant. Nevertheless, it may be second preimage resistant.

3.3 Collision-Resistant Polynomials

A function f : U → V is collision resistant if it is difficult to find a pair u 6= u′ ∈
U such that f(u) = f(u′). We define a similar notion for polynomials:

Definition 7. For a polynomial f in Z[x1, ..., xℓ] and an integer N , we say that

x̄, ȳ ∈ (ZN)ℓ are an N -collision for f if f(x̄) = f(ȳ) in ZN and x̄ 6= ȳ.

Definition 8. A polynomial f in Z[x1, ..., xℓ] is collision resistant if for every

p.p.t. algorithm A the following advantage is a negligible function of λ:

AdvA,f (λ) := Pr
[

N ← RSAgen(λ) : A(N) is an N -collision for f
]

.

In the previous two subsections, we observed that polynomials f ∈ Z[x, y]
which are of genus g ≤ 2 or which are hyperelliptic, are not second preimage
resistant and thus are not collision resistant.

Even polynomials that are second preimage resistant are not necessarily col-
lision resistant. For example, in Section 3.2 we suggested that the polynomial
f(x, y) = x3 + xy3 + y4 may be second preimage resistant. However, it is cer-
tainly not collision resistant, since for any r ∈ Q, the points (r4, 0) and (0, r3)
constitute a collision.

Attacking Collision Resistance Over the Rationals. Suppose that a poly-
nomial f ∈ Z[x1, . . . , xℓ] has a rational collision. That is, there are rational points
x̄0 6= x̄1 in Qℓ such that f(x̄0) = f(x̄1). Then, for most1 RSA moduli N , the
points x̄0 and x̄1 give a collision for f in ZN . This breaks the collision resistance
of f when the security parameter λ is sufficiently large. Indeed, for sufficiently
large λ the attack algorithm can construct the fixed rational points x̄0 and x̄1

by exhaustive search and obtain collisions for f for most RSA moduli output by
RSAgen(λ).

The discussion above shows that if a polynomial f ∈ Z[x1, . . . , xℓ] has a
rational collision then f is not collision resistant. We summarize this in the
following proposition.

Proposition 9. If a polynomial f ∈ Z[x1, . . . , xℓ] is collision resistant then the

function f : Qℓ → Q must be injective.

If f ∈ Z[x1, . . . , xℓ] defines an injective function from Qℓ to Q then f is said
to be an injective polynomial. Proposition 9 shows that the search for collision-
resistant polynomials must begin with the search for an injective polynomial
over the rationals.

1 The points x̄0 and x̄1 give a collision in ZN whenever N is relatively prime to their
denominators and x̄0 6= x̄1 mod N . This holds with overwhelming probability for
sufficiently large λ.

Injective Polynomials. Even the existence of bivariate injective polynomials
is currently an open problem. Poonen [30] shows that they exist under certain
number theoretic conjectures. Moreover, Poonen [30, Lemma 2.3] shows that
if f ∈ Z[x, y] has only a finite number of rational collisions then one can use
f to construct an injective polynomial g ∈ Z[x, y] by pre-composing f with a
suitable polynomial map. In other words, an “almost” injective polynomial can
be converted to an injective one.

Although proving that a particular polynomial is injective over Q is currently
out of reach, there are simple polynomials that appear to have this property.
In particular, Don Zagier2 conjectures that the polynomial fzag(x, y) := x7 +
3y7 (the “Zagier polynomial”) defines an injective function from Q2 to Q. As
indirect evidence, Cornelissen [13, Remarque 10] and Poonen [30, Remark 1.7]
remark that the four-variate generalization of the abc-conjecture [7] implies that
f(x, y) = xe + 3ye is injective over the rationals for “sufficiently large” odd
integers e. Experimentally, we have confirmed that there are no rational collisions
in fzag for rationals with height less than 100.

ℓ-Variate Injective Polynomials over Q from Merkle-Damg̊ard. Given a
bivariate injective polynomial overQ, it is possible to construct ℓ-variate injective
polynomials over Q for every ℓ > 2 using the Merkle-Damg̊ard construction
for collision-resistant hash functions [15, 22]. For example, applying one step of
Merkle-Damg̊ard to fzag shows that if fzag is injective then so is the following
three-variate polynomial:

g(x, y, z) = (x7 + 3y7)7 + 3z7 .

Injective Polynomials and Collision Resistance. Proposition 9 states that,
for a polynomial f to be collision resistant over ZN , f must be injective over
the rationals. The following conjecture asserts the converse: injectivity over the
rationals is sufficient for collision resistance.

Conjecture 10. If f ∈ Z[x1, . . . , xℓ] is injective over Q then f is collision re-

sistant.

This conjecture is based on the intuition that the only efficient way to find
collisions in f over ZN is to find collisions in f over Q. Since collisions over Q

do not exist it may be difficult to find collisions over ZN .
We only state Conjecture 10 to stimulate further research on this topic. The

conjecture is not needed for this paper. For the applications described in this
paper, we only need the collision resistance of an explicit low-degree polynomial
in Z[x, y]. Nevertheless, if Conjecture 10 is true it would give a clean character-
ization of collision resistant polynomials in terms of their arithmetic properties.

For the applications in paper, the following assumption suffices.

2 Gunther Corneliseen attributes to Don Zagier the suggestion that f(x, y) = x7+3y7

is collision-free over the rationals [13, Remarque 10].

Assumption 11. The Zagier polynomial fzag(x, y) = x7 +3y7 ∈ Z[x, y] is colli-
sion resistant.

We see that breaking Assumption 11 would either: (a) resolve a 15-year open
number theoretic problem by showing that fzag is non-injective, or (b) find ZN

collisions that are not rational collisions. We next review two potential avenues
for attacks of type (b) and discuss why they do not apply.

Attack Strategy I: Related Non-Injective Polynomials over Q. One
potential avenue for attacking the collision resistance of fzag in ZN is to look for
a polynomial h ∈ Z[x, y] such that

g(x, y) := f(x, y) +N · h(x, y)

is not injective over Q. If (x0, y0) and (x1, y1) in Q2 are a rational collision
for g then by reducing this pair modulo N we may3 obtain a ZN collision for
f(x, y). We say that h is “useful” if there exists a rational collision for g(x, y)
that gives a ZN collision for f(x, y). It is easy to show that there are many
useful polynomials h: every ZN collision for f(x, y) gives a useful polynomial
h. However, we do not know how to construct a useful h just given f and N .
Furthermore, even if efficiently constructing a useful h is possible, the attack
algorithm will need to find a rational collision on the resulting g and this may
not be feasible in polynomial time.

Attack Strategy II: Algebraic Extensions. Another avenue for attacking
the collision resistance of fzag in ZN is via algebraic extensions. Let g be an
irreducible polynomial in Z[x] and consider the number field K = Q[x]/(g).
Suppose the adversary constructs g so that it knows an efficiently computable
map ρ : K → ZN (this can be done by choosing the polynomial g so that the
adversary knows a zero of g in ZN). Now, even if fzag is injective as a function
Q2 → Q, it may not be injective as a function K2 → K. For example, fzag is
not injective over the extension K = Q[7

√
3]: the points (7

√
3, 0) and (0, 1) are a

collision. If the adversary could find a collision of fzag in K2 this collision may lead
to a ZN collision for fzag. However, for a random RSA modulus N , it is not known
how to efficiently construct an extension K such that (i) fzag : K2 → K is not
injective, and (ii) the adversary has an efficiently computable map ρ : K→ ZN .

Assumption 11 merits further analysis and we hope that this work will stim-
ulate further research on this question.

Non-Collision Resistant Polynomials. Simple variations of Zagier’s polyno-
mial are trivially not injective and therefore not collision resistant. For example,
the polynomials

f1(x, y) = x7 + y7 and f2(x, y) = x7 + 2y7

3 If (x0, y0) and (x1, y1) happens to reduce to the same point modulo N or if one of
the denominators is not relatively prime to N then this rational collision for g does
not give a ZN collision for f .

in Z[x, y] are not collision resistant. The polynomial f1 is not injective because
for all x0 6= y0 in Z the points (x0, y0) and (y0, x0) are a collision for f1. The
polynomial f2 is not collision resistant because for all t 6= 0 in Z the points
(−t, 0) and (t,−t) are a collision for f2.

Similarly, polynomials of the form f(x, y) = xe1 + bye2 ∈ Z[x, y] for some
b ∈ Z where gcd(e1, e2) = 1 are not injective and therefore not collision resistant.
To see why observe that if the equation αe1 − βe2 = 1 has integer solutions
(α0, β0) and (α1, β1) then (tα0 , tβ1) and (tα1 , tβ0) are a collision for f .

Random Self-Reduction. Finally, we mention that the collision finding prob-
lem for the family of polynomials {xe + aye}a∈ZN

has a random self reduction.
Given a collision-finding algorithmA(N, a) that outputs a ZN collision in xe+aye

for a non-negligible fraction of choices of a ∈ ZN , it is possible to construct a
collision-finding algorithm B(N, a) that finds collisions for every choice of a with
high probability. On input (N, a) Algorithm B chooses a random r ← ZN , and
calls A(N, rea). When A outputs the collision (x0, y0), (x1, y1), algorithm B ob-
tains the following collision on the original curve: (x0, ry0), (x1, ry1). If A fails
then B can try again with a fresh random choice of a ∈ ZN . After an expected
polynomial number of iterations algorithm B will find a collision for the given
polynomial xe + aye.

4 A Nestable Commitment Scheme From Polynomials

Over ZN

Having argued that it is infeasible to find collisions in the function fzag(x, y) =
x7+3y7 mod N (Assumption 11), we now turn to the cryptographic applications
of this new computational assumption. In this section, we demonstrate that the
collision-resistance of fzag leads to a commitment scheme where the procedure for
verifying that a commitment was opened correctly uses only low-degree polyno-
mials. The new commitment scheme is statistically hiding and its computational
binding property is based on Assumption 11.

The commitment scheme composes naturally with zero-knowledge proofs
of knowledge involving Pedersen commitments. In particular, given a Peder-
sen commitment C to one of our low-degree commitments, there is a succinct
zero-knowledge protocol which proves knowledge of an opening of an opening

of C. We call the inner commitment scheme nestable, since it can be efficiently
nested inside of a Pedersen commitment. We discuss applications of nestable
commitments in Sections 4.4 and 5.

4.1 Commitments

A commitment scheme is a tuple of efficient algorithms (Setup, Commit, Open),
with the following functionalities:
Setup(λ) → pp. The Setup routine is a randomized algorithm that runs in time

polynomial λ and returns public parameters pp. These parameters define

a message space M, a space of random blinding values R, and a space of
commitments C. The following algorithms take the public parameters pp as
an implicit argument.

Commit(m)→ (c, r). Given a message m ∈ M, return a commitment c ∈ C and
a random blinding value r ∈ R used to open the commitment.

Open(c,m, r) → {0, 1}. Given a commitment c, a message m, and a blinding
value r, return “1” if (m, r) is a valid opening of c and “0” otherwise.

For correctness, we require that, for all m ∈M:

Pr[pp← Setup(λ); (c, r)← Commit(m) : Open(c,m, r) = 1] ≥ 1− negl(λ).

A statistically hiding commitment scheme must satisfy two security properties:

– Statistically Hiding. For any two messages m0 and m1 inM, a commit-
ment to m0 is statistically indistinguishable from a commitment to m1.

– Computationally Binding. For any p.p.t. adversary A, the adversary has
negligible advantage in producing two different valid openings of the same
commitment. More precisely,

Pr[pp← Setup(λ); (c,m, r,m′, r′)← A(pp) :
Open(c,m, r) = 1 ∧ Open(c,m′, r′) = 1 ∧ (m, r) 6= (m′, r′)] ≤ negl(λ).

4.2 Construction

The public parameters for our new commitment scheme consist only of an RSA
modulus N , for which no one knows the factorization. To commit to a value m ∈
Z∗
N , the committer samples a random blinding value r from Z∗

N and computes
the value of fzag at the point (m, r).

The construction of the new commitment scheme follows.
Setup(λ) → N . The value N is an RSA modulus—the product of two random

len(λ)-bit primes p and q such that gcd(p−1, q−1, 7) = 1. The commitment
space C is ZN . The message space M and the space of blinding values R
are Z∗

N .
Commit(m) → (c, r). Choose a random blinding value r ← Z∗

N and set c ←
m7 + 3r7 in ZN . Return r as the commitment secret.

Open(c,m, r) → {0, 1}. Output “1” if m, r ∈ Z∗
N and if c = m7 + 3r7 in ZN .

Output “0” otherwise.

Security Properties. The following theorem summarizes the security properties
of the scheme.

Theorem 12. The commitment scheme is statistically hiding and computation-

ally binding under Assumption 11.

Proof. Statistical hiding follows from a standard argument given in Appendix A.
Computational binding follows directly from the collision resistance of fzag over
ZN . One issue is Setup algorithm generates a randomN such that gcd(φ(N), 7) =

1 whereas Assumption 11 imposes no such restriction on N . Nevertheless, As-
sumption 11 implies the collision resistance of fzag for this modified distribution
of N : By way of contradiction, assume there were an algorithm A which finds
collisions in fzag with non-negligible probability ǫ when gcd(φ(N), 7) = 1. Since
algorithm RSAgen in Assumption 11 generates such N with probability about
(5/6)2 = 25/36 it follows that A will find collisions in with probability at least
(25/36)ǫ when N is sampled as in algorithm RSAgen, violating Assumption 11.

Efficiency. Generating and verifying standard Pedersen commitments requires
two modular exponentiations (or elliptic curve scalar multiplications). In con-
trast, our scheme requires only a few modular multiplications. On a workstation
with a 3.20 GHz processor, for example, computing 10,000 Pedersen commit-
ments in a subgroup of order ≈ 2256 modulo a 2048-bit prime takes 16.54 sec-
onds. Computing the same number of commitments using this new scheme takes
0.925 seconds—a factor of 17.9× speed-up.

4.3 Nestable Commitments

We say that a commitment scheme (Setup,Commit,Open) is nestable if, given
Pedersen commitments to a message m, randomness r, and a commitment c,
there is an succinct zero-knowledge proof of knowledge of values m, r, and c,
such that c = Commit(m, r). In other words, there is a succinct protocol for
proving knowledge of an opening of an opening of a Pedersen commitment. For
our purposes, a succinct zero-knowledge protocol is one in which proof length
is k|c| bits long, where k is a constant which does not depend on the security
parameter.

We adopt the notation of Camenisch and Stadler [9] for specifying zero-
knowledge proof-of-knowledge protocols. For example, PoK{x, y : X = gx ∨ Y =
gx} indicates a protocol in which the prover and verifier share public values g,
X, and Y , and the prover demonstrates knowledge of either a value x such that
X = gx or a value y such that Y = gy.

Given Pedersen commitments

Cm = gmhsm Cr = grhsr Cc = gchsc

a nestable commitment scheme has a succinct zero-knowledge protocol which
proves knowledge of the statement:

PoK{m, r, c, sm, sr, sc : Cm = gmhsm ∧ Cr = grhsr ∧ Cc = gCommit(m,r)hsc}.

For the commitment scheme outlined above, Commit(m, r) = m7 + 3r7 mod
N , so the proof of knowledge protocol is:

PoK{m, r, c, sm, sr, sc : Cm = gmhsm ∧ Cr = grhsr ∧ Cc = gm
7+3r7hsc}.

The group G = 〈g〉 = 〈h〉 used for the proof must be a group of composite order
N , where N is the RSA modulus used in the commitment scheme. As usual for

Pedersen commitments, no one should know the discrete logarithm logg h in G.
For example, G might be the order-N subgroup of the group Z∗

p for a prime
p = 2kN + 1, where k is a small prime. Alternatively, G could be an elliptic
curve group of order N .

The fact that the verification equation for our commitment scheme is a fixed
low-degree polynomial means that this proof can be executed succinctly using
standard techniques [10]. This proof requires only one challenge and 20 elements
of G. If N is a 2048-bit modulus, then the proof is roughly 5 KB in length.

In contrast, nesting Pedersen commitments inside of other Pedersen com-
mitments does not lead to succinct proofs of knowledge. The shortest proofs
of knowledge for nested Pedersen commitments require a number of group ele-
ments that is linear in the security parameter [11, Sec. 5.3.3], whereas our proof
requires only a constant number of group elements.

Being able to prove knowledge of an opening of a commitment which is itself
nested inside of a commitment proves useful in constructing distributed e-cash
schemes (Section 4.4) and set membership proofs (Section 5).

4.4 Application Sketch: Anonymous Bitcoins

The Zerocoin scheme for anonymizing Bitcoin transactions requires a proof of
knowledge of an opening of an opening of a commitment [24]. For this purpose,
Zerocoin uses Pedersen commitments nested inside of Pedersen commitments,
which requires a proof-of-knowledge of the form: PoK{m, r, s : ĉ = ĝ(g

mhr)ĥs}.
The number of group elements exchanged in this proof is linear in the security
parameter, since the proof uses single-bit challenges.

By using our nestable commitment scheme for the “inner” commitment, we
reduce the number of group elements from linear to constant in the security
parameter. This reduces the length of anonymous coin transactions in the Ze-
rocoin scheme by roughly 70% (down to 12.0 KiB from 39.4 KiB when using
a 2048-bit RSA modulus). When instantiated with our nestable commitments,
Zerocoin maintains its unconditional privacy property and maintains double-
spending prevention under Assumption 11.

5 Succinct Set Membership Proofs

A cryptographic accumulator, first defined by Benaloh and De Mare [5], is a prim-
itive which allows a prover to accumulate large set of values S = {x1, . . . , xn}
into a single short value A. For every value xi in the accumulator, there is an
accompanying short witness wi. By exhibiting a valid (xi, wi) pair, a prover can
convince a verifier that the value xi was actually accumulated into A. Informally,
the security property of the accumulator requires that it be difficult to find a
valid value-witness pair (x∗, w∗) such that x∗ /∈ S.

Benaloh and De Mare give one example application of this primitive: the
administrator of a club can accumulate the names of the members of the club
into an accumulator A, distribute a witness to each member, and publish the

accumulator value A. The value A is a concise representation of the club’s mem-
bership list. A person can prove membership in the club by revealing her name
xi and the witness wi to a verifier.

Camenisch-Lysyanskaya extend the basic accumulator primitive to allow for
zero-knowledge proofs of accumulator membership [8]. That is, a prover can
convince a verifier that the prover “knows” a valid value-witness pair (x,w) for
a particular accumulator A, without revealing x or w. This augmented primitive
allows for privacy-preserving authentication: a club member can prove that she
is some member of the club defined by a membership list A without revealing
which member she is.

We provide a construction that offers the same functionality as the Camenisch-
Lysyanskaya scheme with the cost of requiring slightly larger proofs—of length
O(log |S|) instead of length O(1). The benefit of our construction is its simplic-
ity: compared with the Camenisch-Lysyanskaya proof, which requires a nuanced
security analysis, ours is relatively straightforward.

5.1 Definitions

A cryptographic accumulator is a tuple of algorithms (Setup, Accumulate,Witness,
Verify) with the following functionalities:
Setup(λ) → pp. Given a security parameter λ as input, output the public pa-

rameters pp. The other functions take pp as an implicit input. Setup runs
in time polynomial in λ.

Accumulate(S = {x1, . . . , xn}) → A. Accumulate the n items in the set S into
an accumulator value A.

Witness(S, x)→ w or ⊥. If x /∈ S, return ⊥. Otherwise, return a witness w that
x was accumulated in Accumulate(S). To be useful, the length of w should
be short (constant or logarithmic) in the size of S.

Verify(A, x,w) → {0, 1}. Return “1” if the value-witness pair (x,w) is valid for
the accumulator A. Return “0” otherwise.

Camenisch and Lysyanskaya, following Barić and Pfitzmann [4], define an
accumulator as secure, if for all polynomial-time adversaries A:

Pr[pp← Setup(λ); (S, x∗, w∗)← A(pp); x∗ /∈ S;

A← Accumulate(S) : Verify(A, x∗, w∗) = 1] ≤ negl(λ).

If an accumulator satisfies this definition, then it is infeasible for an adversary
to prove that a value x was accumulated in a value A if it was not.

Zero-Knowledge Proof of Knowledge of an Accumulated Value. In many appli-
cations, it is useful for a prover to be able to convince a verifier that the prover
knows some value inside of an accumulator without revealing which value the
prover knows. Such a proof protocol should satisfy the standard properties of
soundness, completeness, and zero-knowledgeness [11, Sec. 2.9]. Camenisch and
Lysyanskaya construct one such proof-of-knowledge protocol for the strong-RSA
accumulator [8] and we exhibit a protocol for a Merkle-tree-style accumulator in
Section 5.3.

5.2 Construction

Given a collision-resistant hash function H : D × D → D, which operates on
a domain D such that S ⊆ D, it is possible to construct a simple accumulator
using Merkle trees. For example, given a set S = {x1, x2, x3, x4}, the accumulator
value A is the value A← H(H(x1, x2), H(x3, x4)). A witness wi that an element
xi is in the accumulator is the set of O(log |S|) nodes along the Merkle tree
needed to verify a path from xi to the root (labeled A).

The limitation of this accumulator construction is that it no longer ad-
mits simple zero-knowledge proofs of knowledge of (x,w) pairs, unless H has
a very special form. For instance, if H is a standard cryptographic hash function
(e.g., SHA-256), there is no straightforward zero-knowledge protocol for proving
knowledge in zero knowledge of a preimage under H. By instantiating H with
the function H(x, y) = x7 + 3r7 mod N , as we demonstrate in the following
section, it is possible to execute this zero-knowledge proof succinctly.

A

a0

a00

a000

(m0)
a001

(m1)

a01

a010

(m2)
a011

(m3)

a1

a10

a100

(m4)
a101

(m5)

a11

a110

(m6)
a111

(m7)

Fig. 1. A perfect Merkle tree with eight leaves rooted at A. The shaded nodes are a
witness to the fact that m2 is accumulated in A. The tree invariant is ai = H(ai0, ai1).

We first recall the standard construction of Merkle trees [21] and then de-
scribe the zero-knowledge proof construction. The construction from a general
collision-resistant hash function family {Hλ}∞λ=1 follows.

Setup(λ) → H. Given a security parameter λ as input, sample a λ-secure
collision-resistant hash function H from Hλ. Setup runs in time polynomial
in λ.

Accumulate(S = {x1, . . . , xn})→ A. If |S| is not a power of two, insert “dummy”
elements into S (e.g., by duplicating the first element of S) until |S| is a
power of two. Construct a perfect Merkle tree of depth d = log2 |S| using
the hash function H with the members of S as its leaves and return the
root A. Figure 1 depicts an example tree of depth three.

Witness(S, x) → w or ⊥. If x /∈ S, return ⊥. Otherwise, let the path from A to
the message x be: P = (A, ab1 , ab1b2 , ab1b2b3 , . . . , ab1...bd), where ai0 is the
left child of node ai, ai1 is the right child of node ai, and d is the number of
edges between the root and leaf labeled x in the tree. The first component
of the witness is the list of siblings of the nodes in the path P : wα =
(ab̄1 , ab1b̄2 , ab1b2b̄3 , . . . , ab1...b̄d). The second component of the witness is a bit

vector indicating where x is located in the tree: wβ = (b1, b2, . . . , bd−1, bd).
The witness is w = (wα, wβ).

Verify(A, x,w) → {0, 1}. Interpret the witness as (wα, wβ) such that wα =
(w1, . . . , wd) and wβ = (b1, . . . , bd). To verify the witness, let td = x and
recompute the intermediate nodes of the tree from the leaf back to the root.
Specifically, compute test nodes ti for i = d− 1, . . . , 0:

ti =

{

H(ti+1, wi+1) : if bi = 0
H(wi+1, ti+1) : if bi = 1

Return “1” if A = t0 and “0” otherwise.

5.3 Proof of Knowledge of an Accumulated Value

When instantiated with a general hash function H, the Merkle-tree accumu-
lator of the prior section does not admit a succinct proof of knowledge of an
accumulated value. When instantiated with our new hash function H(x, y) =
x7+3y7 mod N , however, there is a succinct proof of knowledge that the prover
knows an opening of a Pedersen commitment Cm such that some leaf of the
accumulator Merkle tree has label m. The proof requires a group G = 〈g〉 = 〈h〉
of order N , as in Section 4.3. The proof length is log |S|, for a set S of elements
accumulated.

The Setup algorithm outputs an RSA modulus N ← RSAgen(λ) such that
gcd(φ(N), 7) = 1 and such that no one knows the factorization of N . The hash
function H is H(x, y) = x7 +3y7 mod N and the accumulator domain D is Z∗

N .
The high-level idea is that, if the prover wants to convince the verifier that a

particular value m is accumulated in A, the prover commits to the values of all of
the nodes in the Merkle tree along the path from the root to the leaf labeled m.
The prover also commits to all of the witness values needed to recreate the path
from the leaf labeled m down to the tree root. The prover can then convince the
verifier in zero knowledge that these commitments together contain a path to
some leaf in the tree, without revealing which one.

Assume that the prover has a value-witness pair (x,w) which convinces a
verifier that x is accumulated in A. Denote the node values along the path from
the root node, with value A, to the leaf node, with value x, in the Merkle tree
as: p = (p0, p1, . . . , pd). Note that p0 = A and pd = x.

The prover now commits to every value pi in this path and to the values of
the left and right children of pi in the Merkle tree. If the value of the left child
is ℓi and the right child is ri, the commitments are, for i = 0, . . . , d− 1:

Pi = gpihsi Li = gℓihs′
i Ri = grihs′′

i

The prover opens P0 by publishing (p0, s0) and the verifier ensures that
p0 = A and that P0 = gp0hs0 .

The prover now can prove, for i = 0, . . . , d− 1, that each (Pi, Li, Ri) tuple is
well-formed using a standard discrete logarithm proof:

PoKα{ℓ, r, s, s′, s′′ : Pi = gℓ
7+3r7hs ∧ Li = gℓhs′ ∧Ri = grhs′′}.

The prover then must prove that it knows an opening of the commitment Pi+1

such that the opening is equal to an opening of either Li or Ri. For i = 0, . . . , d−
1, the prover proves:

PoKβ{p, s, sℓ, sr : Pi+1 = gphs ∧ (Li = gphsℓ ∨Ri = gphsr)}.

The complete proof is the set of commitment pairs {(Pi, Li, Ri)}di=0, the 2d
proofs of knowledge, and the opening (p0, r0) of the root commitment P0. The
total length is O(d) = O(log |S|), since the tree has depth d = log |S| and each
of the elements of the proof has length which is constant in |S|.

Security. The completeness and zero-knowledgeness properties follows from the
properties of the underlying zero-knowledge proofs used and from the fact that
Pedersen commitments are perfectly hiding.

To show soundness, we must demonstrate that if the verifier accepts, it
can extract a value-witness pair (x∗, w∗) for the original Merkle tree with non-
negligible probability by rewinding the prover. Starting at the root and working
towards the leaves of the tree, we will be able to extract the prover’s witness for
each of the proofs of knowledge with non-negligible probability.

By induction on i, we can show that after d steps, the verifier will be able
to extract the value-witness pair (x,w). The base case of the induction is i = 0
and the verifier can extract a preimage of A under H. From each of the i PoKαs,
the verifier extracts an element of the witness wα (the preimage of pi under H).
From each of the i PoKβs, the verifier extracts an element of the witness wβ

(whether the next node in the path is the left or right child of pi).

6 Claw-Free Functions, Signatures, and Chameleon

Hashes

In this section, we describe a few other applications arising from the assumed
collision-freeness of the Zagier polynomial.

Claw-Free Functions and Signatures. Assumption 11 immediately gives rise to
a family of trapdoor claw-free functions [14]. For each RSA modulus N selected
as in Section 4.2, we can define a function family:

FN := {fa | a ∈ Z∗
N} where fa(x) = x7 + 3a7 mod N.

Following Damg̊ard [14], a function family FN is claw free if, given FN , it
is difficult to find a “claw” (x, y, a, b) such that fa(x) = fb(y). For all p.p.t.
adversaries A, we require that:

Pr [N ← RSAgen(λ), (x, y, a, b)← A(N) : fa(x) = fb(y)] ≤ negl(λ).

The claw-freeness of FN follows from Assumption 11, since a claw in FN implies
a collision in f(x, y) = x7 + 3y7 mod N . Additionally, the function family FN

is trapdoor claw-free, since anyone with knowledge of the factors of N can find
claws easily by choosing (x, y, a) arbitrarily and solving for b.

This family FN is not quite a family of trapdoor claw-free permutations,
since the range of two functions fa and fb in FN are not necessarily equal (i.e.,
f−1
b (fa(x)) is sometimes undefined). However, the fraction of choices of (a, b, x)
for which this event occurs is negligible, so it is possible to treat FN as if it
were a family of trapdoor claw-free permutations. In particular, this function
family leads to a signature scheme secure against adaptive chosen message at-
tacks in the standard model by way of the Goldwasser-Micali-Rivest signature
construction [17].

Chameleon Hash. This commitment scheme immediately gives rise to a new
chameleon hash function. A chameleon hash, as defined by Krawczyk and Rabin,
is a public hash function H(m, r) with a secret “trapdoor” [20]. A chameleon
hash function has three properties:

1. Without the trapdoor, it is difficult to find collisions in H. That is, it is hard
to find colliding pairs (m, r) and (m′, r′) such that H(m, r) = H(m′, r′).

2. Given the trapdoor, there is an efficient algorithm which takes (m, r,m′) as
input and outputs a value r′ such that H(m, r) = H(m′, r′).

3. For any pair of messagesm andm′ in the message spaceM, the distributions
H(m, r) and H(m′, r′) are statistically close if r and r′ are chosen at random.

Chameleon hashes are useful in building secure signature schemes in the standard
model [16] and for a number of other applications [20].

To derive a chameleon hash scheme from our commitment scheme, set the
public key to the RSA modulus N , and the secret key to the factorization of N .
The hash function H is then H(m, r) = m7 + 3r7 mod N . Without the factors
of N , it is difficult to find collisions but anyone with knowledge of the factors of
N (the “trapdoor”) can find collisions.

Chameleon hashes based on Pedersen commitments require two modular ex-
ponentiations to evaluate, while ours requires just a few modular multiplications.

7 Conclusion and Future Work

We have used arithmetic properties of bivariate polynomials over Q to reason
about their cryptographic properties in the ring ZN . Using one particular low-
degree polynomial, fzag, we build a new statistically hiding commitment scheme,
a conceptually simple cryptographic accumulator, and a computationally effi-
cient chameleon hash function. To gain confidence in Conjecture 10 it would be
interesting to prove it in the generic ring model [1]. We leave that for future
work.

Acknowledgments. We are grateful to Bjorn Poonen for information about in-
jective polynomials, to Steven Galbraith and Antoine Joux for comments on our
cryptographic assumptions, and to Don Zagier for recounting his rationale for

conjecturing the injectivity of f(x, y) = x7 + 3y7 over Q. We thank Joe Zim-
merman for helpful conversations about this work. This work was supported by
DARPA, an NSF research grant, and an NSF Graduate Research Fellowship
under Grant No. DGE-114747.

References

1. Aggarwal, D., Maurer, U.: Breaking RSA generically is equivalent to factoring. In:
EUROCRYPT. pp. 36–53 (2009)

2. Ash, A., Gross, R.: Elliptic Tales: Curves, Counting, and Number Theory. Prince-
ton University Press (2012)

3. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
Financial Cryptography. pp. 164–180 (2004)

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: EUROCRYPT. pp. 480–494 (1997)

5. Benaloh, J., De Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: EUROCRYPT. pp. 274–285 (1993)

6. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS. pp. 647–657 (2007)

7. Browkin, J., Brzeziński, J.: Some remarks on the abc-conjecture. Mathematics of
Computation 62(206), 931–939 (1994)

8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: CRYPTO. pp. 61–76 (2002)

9. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
CRYPTO. pp. 410–424 (1997)

10. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Tech. Rep. 260, Dept. of Computer Science, ETH Zurich (Mar 1997)

11. Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. Ph.D. thesis, Swiss Federal Institute of Technology
Zürich (ETH Zürich) (1998)

12. Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.Q.: Paillier’s cryp-
tosystem revisited. In: ACM conference on Computer and Communications Secu-
rity. pp. 206–214 (2001)

13. Cornelissen, G.: Stockage diophantien et hypothese abc généralisée. Comptes Ren-
dus de l’Académie des Sciences-Series I-Mathematics 328(1), 3–8 (1999)

14. Damg̊ard, I.B.: The Application of Claw Free Functions in Cryptography. Ph.D.
thesis, Aarhus University (May 1988)

15. Damg̊ard, I.B.: A design principle for hash functions. In: CRYPTO. pp. 416–427
(1989)

16. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: EUROCRYPT. pp. 123–139 (1999)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

18. Hindry, M., Silverman, J.H.: Diophantine geometry: an introduction, vol. 201.
Springer (2000)

19. Kilian, J., Petrank, E.: Identity escrow. In: CRYPTO. pp. 169–185 (1998)
20. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. In: NDSS. pp. 143–

154 (2000)

21. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
CRYPTO. pp. 369–378 (1987)

22. Merkle, R.C.: One way hash functions and DES. In: CRYPTO. pp. 428–446 (1989)
23. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: FOCS. pp. 80–91 (2003)
24. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed

e-cash from Bitcoin. In: IEEE Security and Privacy. pp. 397–411 (2013)
25. Naor, M.: On cryptographic assumptions and challenges. In: CRYPTO. pp. 96–109

(2003)
26. Ong, H., Schnorr, C.P., Shamir, A.: An efficient signature scheme based on

quadratic equations. In: STOC. pp. 208–216 (1984)
27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: CRYPTO. pp. 129–140 (1991)
28. Pollard, J., Schnorr, C.: An efficient solution of the congruence. Information The-

ory, IEEE Transactions on 33(5), 702–709 (1987)
29. Poonen, B.: Varieties without extra automorphisms III: hypersurfaces. Finite fields

and their applications 11(2), 230–268 (2005)
30. Poonen, B.: Multivariable polynomial injections on rational numbers. arXiv

preprint arXiv:0902.3961v2 (Jun 2010)
31. Schwenk, J., Eisfeld, J.: Public key encryption and signature schemes based on

polynomials over Zn. In: EUROCRYPT. pp. 60–71 (1996)
32. Shallit, J.: An exposition of Pollard’s algorithm for quadratic congruences (Oct

1984)
33. Shamir, A.: On the generation of multivariate polynomials which are hard to factor.

In: STOC. pp. 796–804. ACM (1993)
34. Zagier, D.: Personal communication (Jun 2014)

A Proof of Statistical Hiding

This appendix presents a proof that the commitment scheme of Section 4.2 is
statistically hiding. To demonstrate that the statistical hiding property holds, we
show that for anymessagem ∈ Z∗

N , the distribution of the value of a commitment
c to m is statistically close to uniform.

The commitment c is generated by sampling a random value r ←R Z∗
N

and letting c ← m7 + 3r7. Since r ∈ Z∗
N , and since gcd(7, φ(N)) = 1, the RSA

function f(x) = x7 mod N defines a permutation on Z∗
N . Thus, there are exactly

|Z∗
N | = φ(N) possible commitments to m, and each of these values occurs with

equal probability.
Let the random variable C take on the value of the commitment to m and

let U be a random variable uniformly distributed over ZN . Then:

Pr[C = c0] =
1

φ(N)
; Pr[U = c0] =

1

N

The statistical distance between these distributions is:

∆(C,U) =
1

2

∑

c0∈ZN

|Pr[C = c0]− Pr[U = c0]|

=
1

2

∑

c0∈ZN

∣

∣

∣

∣

N − φ(N)

Nφ(N)

∣

∣

∣

∣

=
(p+ q − 1)

2φ(N)
≤ negl(λ).

