
Balloon Hashing: A Memory-Hard Function
Providing Provable Protection Against

Sequential Attacks

Dan Boneh1, Henry Corrigan-Gibbs1, and Stuart Schechter2

1 Stanford University, Stanford CA 94305, U.S.A.
2 Microsoft Research, Redmond WA 98052, U.S.A.

Revised May 12, 2017.

Abstract. We present the Balloon password-hashing algorithm. This
is the first practical cryptographic hash function that: (i) has proven
memory-hardness properties in the random-oracle model, (ii) uses a pass-
word-independent access pattern, and (iii) meets or exceeds the per-
formance of the best heuristically secure password-hashing algorithms.
Memory-hard functions require a large amount of working space to eval-
uate efficiently and, when used for password hashing, they dramatically
increase the cost of offline dictionary attacks. In this work, we leverage
a previously unstudied property of a certain class of graphs (“random
sandwich graphs”) to analyze the memory-hardness of the Balloon algo-
rithm. The techniques we develop are general: we also use them to give
a proof of security of the scrypt and Argon2i password-hashing func-
tions in the random-oracle model. Our security analysis uses a sequential
model of computation, which essentially captures attacks that run on
single-core machines. Recent work shows how to use massively parallel
special-purpose machines (e.g., with hundreds of cores) to attack Balloon
and other memory-hard functions. We discuss these important attacks,
which are outside of our adversary model, and propose practical de-
fenses against them. To motivate the need for security proofs in the area
of password hashing, we demonstrate and implement a practical attack
against Argon2i that successfully evaluates the function with less space
than was previously claimed possible. Finally, we use experimental re-
sults to compare the performance of the Balloon hashing algorithm to
other memory-hard functions.

Keywords: memory-hard functions, password hashing, pebbling argu-
ments, time-space trade-offs, sandwich graph, Argon2, scrypt.

1 Introduction

The staggering number of password-file breaches in recent months demonstrates
the importance of cryptographic protection for stored passwords. In 2015 alone,
attackers stole files containing users’ login names, password hashes, and contact

information from many large and well-resourced organizations, including Last-
Pass [89], Harvard [53], E*Trade [70], ICANN [51], Costco [47], T-Mobile [86],
the University of Virginia [84], and a large number of others [74]. In this environ-
ment, systems administrators must operate under the assumption that attackers
will eventually gain access to sensitive authentication information, such as pass-
word hashes and salts, stored on their computer systems. After a compromise,
the secrecy of user passwords rests on the cost to an attacker of mounting an
offline dictionary attack against the stolen file of hashed passwords.

An ideal password-hashing function has the property that it costs as much
for an attacker to compute the function as it does for the legitimate authenti-
cation server to compute it. Standard cryptographic hashes completely fail in
this regard: it takes 100 000× more energy to compute a SHA-256 hash on a
general-purpose x86 CPU (as an authentication server would use) than it does
to compute SHA-256 on special-purpose hardware (such as the ASICs that an
attacker would use) [23]. Iterating a standard cryptographic hash function, as is
done in bcrypt [75] and PBKDF2 [49], increases the absolute cost to the attacker
and defender, but the attacker’s 100 000× relative cost advantage remains.

Memory-hard functions help close the efficiency gap between the attacker
and defender in the setting of password hashing [8, 19, 42, 64, 68]. Memory-hard
functions exploit the observation that on-chip memory is just as costly to power
on special-purpose hardware as it is on a general-purpose CPU. If evaluating the
password-hashing function requires large amounts of memory, then an attacker
using special-purpose hardware has little cost advantage over the legitimate au-
thentication server (using a standard x86 machine, for example) at running the
password-hashing computation. Memory consumes a large amount of on-chip
area, so the high memory requirement ensures that a special-purpose chip can
only contain a small number of hashing engines.

An optimal memory-hard function, with security parameter n, has a space-
time product that satisfies S · T ∈ Ω(n2), irrespective of the strategy used to
compute the function [68]. The challenge is to construct a function that provably
satisfies this bound with the largest possible constant multiple on the n2 term.

In this paper, we introduce the Balloon memory-hard function for password
hashing. This is the first practical password-hashing function to simultaneously
satisfy three important design goals [64]:

– Proven memory-hard. We prove, in the random-oracle model [14], that com-
puting the Balloon function with space S and time T requires S ·T ≥ n2/32
(approximately). As the adversary’s space usage decreases, we prove even
sharper time-space lower bounds.
To motivate our interest in memory-hardness proofs, we demonstrate in Sec-
tion 4 an attack against the Argon2i password hashing function [19], winner
of a recent password-hashing design competition [64]. The attack evaluates
the function with far less space than claimed without changing the time
required to compute the function. We also give a proof of security for Ar-
gon2i in the random-oracle model, which demonstrates that significantly

2

more powerful attacks against Argon2i are impossible under our adversary
model.

– Password-independent memory-access pattern. The memory-access pattern
of the Balloon algorithm is independent of the password being hashed. Pass-
word-hashing functions that lack this property are vulnerable to a crippling
attack in the face of an adversary who learns the memory-access patterns
of the hashing computation, e.g., via cache side-channels [25, 62, 87]. The
attack, which we describe in Appendix G.2, makes it possible to run a dic-
tionary attack with very little memory. A hashing function with a password-
independent memory-access pattern eliminates this threat.

– Performant. The Balloon algorithm is easy to implement and it matches
or exceeds the performance of the fastest comparable password-hashing al-
gorithms, Argon2i [19] and Catena [42], when instantiated with standard
cryptographic primitives (Section 6).

We analyze the memory-hardness properties of the Balloon function using
pebble games, which are arguments about the structure of the data-dependency
graph of the underlying computation [54, 65, 67, 81, 85]. Our analysis uses
the framework of Dwork, Naor, and Wee [37]—later applied in a number of
cryptographic works [6, 8, 38, 39, 42]—to relate the hardness of pebble games
to the hardness of certain computations in the random-oracle model [14].

The crux of our analysis is a new observation about the properties of “random
sandwich graphs,” a class of graphs studied in prior work on pebbling [6, 8]. To
show that our techniques are broadly applicable, we apply them in Appendices F
and G to give simple proofs of memory-hardness, in the random-oracle model, for
the Argon2i and scrypt functions. We prove stronger memory-hardness results
about the Balloon algorithm, but these auxiliary results about Argon2i and
scrypt may be of independent interest to the community.

The performance of the Balloon hashing algorithm is surprisingly good, given
that our algorithm offers stronger proven security properties than other practical
memory-hard functions with a password-independent memory access patterns.
For example, if we configure Balloon to use Blake2b as the underlying hash
function [10], run the construction for five “rounds” of hashing, and set the space
parameter to require the attacker to use 1 MiB of working space to compute
the function, then we can compute Balloon Hashes at the rate of 13 hashes per
second on a modern server, compared with 12.8 for Argon2i, and 2.1 for Catena
DBG (when Argon2i and Catena DBG are instantiated with Blake2b as the
underlying cryptographic hash function).3

Caveat: Parallel Attacks. The definition of memory-hardness we use puts a lower-
bound on the time-space product of computing a single instance of the Balloon
function on a sequential (single-core) computer. In reality, an adversary mount-
ing a dictionary attack would want to compute billions of instances of the Bal-
loon function, perhaps using many processors running in parallel. Alwen and
3 The relatively poor performance of Argon2i here is due to the attack we present in
Section 4. It allows an attacker to save space in computing Argon2i with no increase
in computation time.

3

Serbinenko [8], formalizing earlier work by Percival [68], introduce a new com-
putational model—the parallel random-oracle model (pROM)—and a memory-
hardness criterion that addresses the shortcomings of the traditional model. In
recent work, Alwen and Blocki prove the surprising result that no function that
uses a password-independent memory access pattern can be optimally memory-
hard in the pROM [3]. In addition, they give a special-purpose pROM algorithm
for computing Argon2i, Balloon, and other practical (sequential) memory-hard
functions with some space savings. We discuss this important class of attacks
and the relevant related work in Section 5.1.

Contributions. In this paper, we

– introduce and analyze the Balloon hashing function, which has stronger prov-
able security guarantees than prior practical memory-hard functions (Sec-
tion 3),

– present a practical memory-saving attack against the Argon2i password-
hashing algorithm (Section 4), and

– explain how to ameliorate the danger of massively parallel attacks against
memory-hard functions with a password-independent access pattern (Sec-
tion 5.1)

– prove the first known time-space lower bounds for Argon2i and an idealized
variant of scrypt, in the random-oracle model. (See Appendices F and G.)

With the Balloon algorithm, we demonstrate that it is possible to provide prov-
able protection against a wide class of attacks without sacrificing performance.

Notation. Throughout this paper, Greek symbols (α, β, γ, λ, etc.) typically
denote constants greater than one. We use log2(·) to denote a base-two logarithm
and log(·) to denote a logarithm when the base is not important. For a finite
set S, the notation x ←R S indicates sampling an element of S uniformly at
random and assigning it to the variable x.

2 Security Definitions

This section summarizes the high-level security and functionality goals of a pass-
word hashing function in general and the Balloon hashing algorithm in particu-
lar. We draw these aims from prior work on password hashing [68, 75] and also
from the requirements of the recent Password Hashing Competition [64].

2.1 Syntax

The Balloon password hashing algorithm takes four inputs: a password, salt,
time parameter, and space parameter. The output is a bitstring of fixed length
(e.g., 256 or 512 bits). The password and salt are standard [59], but we elaborate
on the role of the latter parameters below.

4

Space Parameter (Buffer Size). The space parameter, which we denote as “n”
throughout, indicates how many fixed-size blocks of working space the hash
function will require during the course of its computation, as in scrypt [68]. At
a high level, a memory-hard function should be “easy” to compute with n blocks
of working space and should be “hard” to compute with much less space than
that. We make this notion precise later on.

Time Parameter (Number of Rounds). The Balloon function takes as input a
parameter r that determines the number of “rounds” of computation it performs.
As in bcrypt [75], the larger the time parameter, the longer the hash computation
will take. On memory-limited platforms, a system administrator can increase
the number of rounds of hashing to increase the cost of computing the function
without increasing the algorithm’s memory requirement. The choice of r has
an effect on the memory-hardness properties of the scheme: the larger r is, the
longer it takes to compute the function in small space.

2.2 Memory-Hardness

We say that a function fn on space parameter n is memory-hard in the (sequen-
tial) random-oracle model [14] if, for all adversaries computing fn with high prob-
ability using space S and T random oracle queries, we have that S · T ∈ Ω(n2).
This definition deserves a bit of elaboration. Following Dziembowski et al. [39]
we say that an algorithm “uses space S” if the entire configuration of the Turing
Machine (or RAM machine) computing the algorithm requires at least S bits to
describe. When, we say that an algorithm computes a function “with high prob-
ability,” we mean that the probability that the algorithm computes the function
is non-negligible as the output size of the random oracle and the space parameter
n tend to infinity. In practice, we care about the adversary’s concrete success
probability, so we avoid asymptotic notions of security wherever possible. In ad-
dition, as we discuss in the evaluation section (Section 6), the exact value of
the constant hidden inside the Ω(·) is important for practical purposes, so our
analysis makes explicit and optimizes these constants.

A function that is memory-hard under this definition requires the adversary
to use either a lot of working space or a lot of execution time to compute the
function. Functions that are memory-hard in this way are not amenable to im-
plementation in special-purpose hardware (ASIC), since the cost to power a unit
of memory for a unit of time on an ASIC is the same as the cost on a commodity
server. An important limitation of this definition is that it does not take into
account parallel or multiple-instance attacks, which we discuss in Section 5.1.

2.3 Password-Independent Access Pattern

A first-class design goal of the Balloon algorithm is to have a memory access
pattern that is independent of the password being hashed. (We allow the data-
access pattern to depend on the salt, since the salts can be public.) As mentioned
above, employing a password-independent access pattern reduces the risk that

5

information about the password will leak to other users on the same machine
via cache or other side-channels [25, 62, 87]. This may be especially important in
cloud-computing environments, in which many mutually distrustful users share
a single physical host [78].

Creating a memory-hard function with a password-independent access pat-
tern presents a technical challenge: since the data-access pattern depends only
upon the salt—which an adversary who steals the password file knows—the ad-
versary can compute the entire access pattern in advance of a password-guessing
attack. With the access pattern in hand, the adversary can expend a huge amount
of effort to find an efficient strategy for computing the hash function in small
space. Although this pre-computation might be expensive, the adversary can
amortize its cost over billions of subsequent hash evaluations. A function that is
memory-hard and that uses a password-independent data access pattern must
be impervious to all small-space strategies for computing the function so that it
maintains its strength in the face of these pre-computation attacks. (Indeed, as
we discuss in Section 5.1, Alwen and Blocki show that in some models of com-
putation, memory-hard functions with password-independent access patterns do
not exist [3].)

2.4 Collision Resistance, etc.

If necessary, we can modify the Balloon function so that it provides the stan-
dard properties of second-preimage resistance and collision resistance [57]. It is
possible to achieve these properties in a straightforward way by composing the
Balloon function B with a standard cryptographic hash function H as

HB(passwd, salt) := H(passwd, salt, B(passwd, salt)).

Now, for example, if H is collision-resistant, then HB must also be.4 That is
because any inputs (xp, xs) 6= (yp, ys) to HB that cause HB(xp, xs) = HB(yp, ys)
immediately yield a collision for H as:

(xp, xs, B(xp, xs)) and (yp, ys, B(yp, ys)),

no matter how the Balloon function B behaves.

3 Balloon Hashing Algorithm

In this section, we present the Balloon hashing algorithm.

3.1 Algorithm

4 We are eliding important definitional questions about what it even means, in a formal
sense, for a function to be collision resistant [17, 79].

6

func Balloon(block_t passwd, block_t salt,
int s_cost, // Space cost (main buffer size)
int t_cost): // Time cost (number of rounds)

int delta = 3 // Number of dependencies per block
int cnt = 0 // A counter (used in security proof)
block_t buf[s_cost]): // The main buffer

// Step 1. Expand input into buffer.
buf[0] = hash(cnt++, passwd, salt)
for m from 1 to s_cost-1:

buf[m] = hash(cnt++, buf[m-1])

// Step 2. Mix buffer contents.
for t from 0 to t_cost-1:

for m from 0 to s_cost-1:
// Step 2a. Hash last and current blocks.
block_t prev = buf[(m-1) mod s_cost]
buf[m] = hash(cnt++, prev, buf[m])

// Step 2b. Hash in pseudorandomly chosen blocks.
for i from 0 to delta-1:

block_t idx_block = ints_to_block(t, m, i)
int other = to_int(hash(cnt++, salt, idx_block)) mod s_cost
buf[m] = hash(cnt++, buf[m], buf[other])

// Step 3. Extract output from buffer.
return buf[s_cost-1]

Fig. 1: Pseudo-code of the Balloon hashing algorithm.

The algorithm uses a standard (non-memory-hard) cryptographic hash func-
tion H : ZN ×{0, 1}2k → {0, 1}k as a subroutine, where N is a large integer. For
the purposes of our analysis, we model the function H as a random oracle [14].

The Balloon algorithm uses a large memory buffer as working space and we
divide this buffer into contiguous blocks. The size of each block is equal to the
output size of the hash function H. Our analysis is agnostic to the choice of hash
function, except that, to prevent pitfalls described in Appendix B.3, the internal
state size of H must be at least as large as its output size. Since H maps blocks
of 2k bits down to blocks of k bits, we sometimes refer to H as a cryptographic
compression function.

The Balloon function operates in three steps (Figure 1):

1. Expand. In the first step, the Balloon algorithm fills up a large buffer with
pseudo-random bytes derived from the password and salt by repeatedly in-
voking the compression function H on a function of the password and salt.

2. Mix. In the second step, the Balloon algorithm performs a “mixing” oper-
ation r times on the pseudo-random bytes in the memory buffer. The user-
specified round parameter r determines how many rounds of mixing take

7

place. At each mixing step, for each block i in the buffer, the routine up-
dates the contents of block i to be equal to the hash of block (i− 1) mod n,
block i, and δ other blocks chosen “at random” from the buffer. (See The-
orem 1 for an illustration of how the choice of δ affects the security of the
scheme.)
Since the Balloon functions are deterministic functions of their arguments,
the dependencies are not chosen truly at random but are sampled using a
pseudorandom stream of bits generated from the user-specific salt.

3. Extract. In the last step, the Balloon algorithm outputs the last block of
the buffer.

Multi-Core Machines. A limitation of the Balloon algorithm as described is
that it does not allow even limited parallelism, since the value of the ith block
computed always depends on the value of the (i−1)th block. To increase the rate
at which the Balloon algorithm can fill memory on a multi-core machine with
M cores, we can define a function that invokes the Balloon function M times in
parallel and XORs all the outputs. If Balloon(p, s) denotes the Balloon function
on password p and salt s, then we can define an M -core variant BalloonM (p, s)
as:

BalloonM (p, s) := Balloon(p, s‖“1”)⊕ · · · ⊕ Balloon(p, s‖“M ”).

A straightforward argument shows that computing this function requires com-
puting M instances of the single-core Balloon function. Existing password hash-
ing functions deploy similar techniques on multi-core platforms [19, 42, 68, 69].

3.2 Main Security Theorem

The following theorem demonstrates that attackers who attempt to compute the
Balloon function in small space must pay a large penalty in computation time.
The complete theorem statement is given in Theorem 33 (Appendix E).

Theorem 1 (informal) Let A be an algorithm that computes the n-block r-
round Balloon function with security parameter δ = 3, where H is modeled as a
random oracle. If A uses at most S blocks of buffer space then, with overwhelming
probability, A must run for time (approximately) T , such that

S · T ≥ r · n2

32
.

When δ = 7 and S < n/64, one obtains the stronger bound:

S · T ≥ (2r − 1)n2

32
.

Thus, attackers who attempt to compute the Balloon function in very small
space must pay a large penalty in computation time. The proof of the theorem
is given in the appendices: Appendix B introduces graph pebbling arguments,

8

which are the basis for our memory-hardness proofs. Appendix C proves a key
combinatorial lemma required for analysis of the Balloon functions. Appendix D
recalls sandwich graphs and proves that stacks of random sandwich graphs are
hard to pebble. Appendix E puts all of the pieces together to complete the proof
of Theorem 1.

Here we sketch the main ideas in the proof of Theorem 1.

v_1 = hash(input, "0")
v_2 = hash(input, "1")
v_3 = hash(v_1, v_2)
v_4 = hash(v_2, v_3)
v_5 = hash(v_3, v_4)
return v_5

in

v1

v2

v3

v4

v5

Fig. 2: An example computation (left) and its corresponding data-dependency
graph (right).

Proof idea. The proof makes use of pebbling arguments, a classic technique
for analyzing computational time-space trade-offs [48, 54, 67, 71, 81, 88] and
memory-hard functions [8, 37, 38, 42]. We apply pebbling arguments to the data-
dependency graph corresponding to the computation of the Balloon function (See
Figure 2 for an example graph). The graph contains a vertex for every random
oracle query made during the computation of Balloon: vertex vi in the graph
represents the response to the ith random-oracle query. An edge (vi, vj) indicates
that the input to the jth random-oracle query depends on the response of the
ith random-oracle query.

The data-dependency graph for a Balloon computation naturally separates
into r + 1 layers—one for each round of mixing (Figure 3). That is, a vertex on
level ` ∈ {1, . . . , r} of the graph represents the output of a random-oracle query
made during the `th mixing round.

The first step in the proof shows that the data-dependency graph of a Balloon
computation satisfies certain connectivity properties, defined below, with high
probability. The probability is taken over the choice of random oracle H, which
determines the data-dependency graph. Consider placing a pebble on each of a
subset of the vertices of the data-dependency graph of a Balloon computation.
Then, as long as there are “not too many” pebbles on the graph, we show that
the following two properties hold with high probability:

– Well-Spreadedness. For every set of k consecutive vertices on some level of
the graph, at least a quarter of the vertices on the prior level of the graph
are on unpebbled paths to these k vertices (Lemma 28).

– Expansion. All sets of k vertices on any level of the graph have unpebbled
paths back to at least 2k vertices on the prior level(Lemma 29). The value
of k depends on the choice of the parameter δ.

9

L0

L1

L2

input

output

Fig. 3: The Balloon data-dependency graph on n = 8 blocks and r = 2 rounds,
drawn with δ = 1 for simplicity. (The real construction uses δ ≥ 3.) The dashed
edges are fixed and the solid edges are chosen pseudorandomly by applying the
random oracle to the salt.

The next step is to show that every graph-respecting algorithm computing
the Balloon function requires large space or time. We say that an adversary A
is graph respecting if for every i, adversary A makes query number i to the
random-oracle only after it has in storage all of the values that this query takes
as input.5

We show, using the well-spreadedness and expansion properties of the Balloon
data-dependency graph, that every graph-respecting adversary A must use space
S and time T satisfying S · T ≥ n2/32, with high probability over the choice
of H (Lemma 31). We use the graph structure in the proof as follows: fix a set
of k values that the adversary has not yet computed. Then the graph properties
imply that these k values have many dependencies that a space-S adversary
cannot have in storage. Thus, making progress towards computing the Balloon
function in small space requires the adversary to undertake a huge amount of
recomputation.

The final step uses a technique of Dwork, Naor, and Wee [37]. They use the
notion of a graph labeling to convert a directed acyclic graph G into a function
fG (Definition 3). They prove that if G is a graph that is infeasible for time-T
space-S graph-respecting pebbling adversaries to compute, then it is infeasible
for time-T ′ space-S′ arbitrary adversaries to compute the labeling function fG,
with high probability in the random-oracle model (Theorem 4), where T ′ ≈ T
and S′ ≈ S.

We observe that Balloon computes the function fG where G is the Balloon
data-dependency graph (Claim 32). We then directly apply the technique of
Dwork, Naor, and Wee to obtain a upper bound on the probability that an
5 This description is intentionally informal—see Appendix B for the precise statement.

10

arbitrary adversary can compute the Balloon function in small time and space
(Theorem 33).

4 Attacking and Defending Argon2

In this section, we analyze the Argon2i password hashing function [19], which
won the recent Password Hashing Competition [64].

An Attack. We first present an attack showing that it possible for an attacker
to compute multi-pass Argon2i (the recommended version) saving a factor of
e ≈ 2.72 in space with no increase in computation time.6 Additionally, we show
that an attacker can compute the single-pass variant of Argon2i, which is also
described in the specification, saving more than a factor of four in space, again
with no increase in computation time. These attacks demonstrate an unexpected
weakness in the Argon2i design, and show the value of a formal security analysis.

A Defense. In Appendix F, we give the first proof of security showing that,
with high probability, single-pass n-block Argon2i requires space S and time T
to compute, such that S · T ≥ n2/1536, in the sequential random-oracle model.
Our proof is relatively simple and uses the same techniques we have developed to
reason about the Balloon algorithm. The time-space lower bound we can prove
about Argon2i is weaker than the one we can prove about Balloon, since the
Argon2i result leaves open the possibility of an attack that saves a factor of
1536 factor in space with no increase in computation time. If Argon2i becomes
a standard algorithm for password hashing, it would be a worthwhile exercise
to try to improve the constants on both the attacks and lower bounds to get a
clearer picture of its exact memory-hardness properties.

4.1 Attack Overview

Our Argon2i attacks require a linear-time pre-computation operation that is
independent of the password and salt. The attacker need only run the pre-
computation phase once for a given choice of the Argon2i public parameters
(buffer size, round count, etc.). After running the pre-computation step once,
it is possible to compute many Argon2i password hashes, on different salts and
different passwords using our small-space computation strategy. Thus, the cost
of the pre-computation is amortized over many subsequent hash computations.

The attacks we demonstrate undermine the security claims of the Argon2i
(version 1.2.1) design documents [19]. The design documents claim that com-
puting n-block single-pass Argon2i with n/4 space incurs a 7.3× computational
penalty [19, Table 2]. Our attacks show that there is no computational penalty.
The design documents claim that computing n-block three-pass Argon2i with
6 We have notified the Argon2i designers of this attack and the latest version of the
specification incorporates a design change that attempts to prevent the attack [21].
We describe the attack on the original Argon2i design, the winner of the password
hashing competition [64].

11

n/3 space incurs a 16, 384× computational penalty [19, Section 5.4]. We com-
pute the function in n/2.7 ≈ n/3 space with no computational penalty.

We analyze a idealized version the Argon2i algorithm, which is slightly sim-
pler than that proposed in the Argon2i v1.2.1 specification [19]. Our idealized
analysis underestimates the efficacy of our small-space computation strategy, so
the strategy we propose is actually more effective at computing Argon2i than the
analysis suggests. The idealized analysis yields an expected n/4 storage cost, but
as Figure 4 demonstrates, empirically our strategy allows computing single-pass
Argon2i with only n/5 blocks of storage. This analysis focuses on the single-
threaded instantiation of Argon2i—we have not tried to extend it to the many-
threaded variant.

4.2 Background on Argon.

At a high level, the Argon2i hashing scheme operates by filling up an n-block
buffer with pseudo-random bytes, one 1024-byte block at a time. The first two
blocks are derived from the password and salt. For i ∈ {3, . . . , n}, the block
at index i is derived from two blocks: the block at index (i − 1) and a block
selected pseudo-randomly from the set of blocks generated so far. If we denote
the contents of block i as xi, then Argon2i operates as follows:

x1 = H(passwd, salt ‖ 1)
x2 = H(passwd, salt ‖ 2)
xi = H(xi−1, xri) where ri ∈ {1, . . . , i− 1}

Here, H is a non-memory-hard cryptographic hash function mapping two blocks
into one block. The random index ri is sampled from a non-uniform distribu-
tion over Si = {1, . . . , i − 1} that has a heavy bias towards blocks with larger
indices. We model the index value ri as if it were sampled from the uniform dis-
tribution over Si. Our small-space computation strategy performs better under a
distribution biased towards larger indices, so our analysis is actually somewhat
conservative.

The single-pass variant of Argon2i computes (x1, . . . , xn) in sequence and
outputs bytes derived from the last block xn. Computing the function in the
straightforward way requires storing every generated block for the duration of
the computation—n blocks total

The multiple-pass variant of Argon2i works as above except that it computes
pn blocks instead of just n blocks, where p is a user-specified integer indicating
the number of “passes” over the memory the algorithm takes. (The number of
passes in Argon2i is analogous to number of rounds r in Balloon hashing.) The
default number of passes is three. In multiple-pass Argon2i, the contents of block
i are derived from the prior block and one of the most recent n blocks. The output
of the function is derived from the value xpn. When computing the multiple-pass
variant of Argon2i, one need only store the latest n blocks computed (since earlier
blocks will never be referenced again), so the storage cost of the straightforward
algorithm is still roughly n blocks.

12

Time
0

N/5

N/4

M
em

or
y
in

us
e Predicted

Actual

Fig. 4: Space used by our algorithm for computing single-pass Argon2i during a
single hash computation.

Our analysis splits the Argon2i computation into discrete time steps, where
time step t begins at the moment at which the algorithm invokes the compression
function H for the tth time.

4.3 Attack Algorithm

Our strategy for computing p-pass Argon2i with fewer than n blocks of memory
is as follows:

– Pre-computation Phase. We run the entire hash computation once—on
an arbitrary password and salt—and write the memory access pattern to
disk. For each memory block i, we pre-compute the time ti after which block
i is never again accessed and we store {t1, . . . , tpn} in a read-only array. The
total size of this table on a 64-bit machine is at most 8pn bytes.7
Since the Argon2i memory-access pattern does not depend on the password
or salt, it is possible to use this same pre-computed table for many subsequent
Argon2i hash computations (on different salts and passwords).

– Computation Phase. We compute the hash function as usual, except that
we delete blocks that will never be accessed again. After reading block i
during the hash computation at time step t, we check whether the current
time t ≥ ti. If so, we delete block i from memory and reuse the space for a
new block.

The expected space required to compute n-block single-pass Argon2i is n/4.
The expected space required to compute n-block many-pass Argon2i tends to
n/e ≈ 2.7 as the number of passes tends to infinity. We analyze the space usage
of the attack algorithm in detail in Appendix A.
7 On an FPGA or ASIC, this table can be stored in relatively cheap shared read-only
memory and the storage cost can be amortized over a number of compute cores.
Even on a general-purpose CPU, the table and memory buffer for the single-pass
construction together will only require 8n + 1024(n/4) = 8n + 256n bytes when
using our small-space computation strategy. Argon2i normally requires 1024n bytes
of buffer space, so our strategy still yields a significant space savings.

13

5 Discussion

In this section, we discuss parallel attacks against memory-hard functions and
compare Balloon to other candidate password-hashing functions.

5.1 Memory Hardness Under Parallel Attacks

The Balloon Hashing algorithm achieves the notion of memory-hardness intro-
duced in Section 2.2: an algorithm for computing Balloon must, with high proba-
bility in the random-oracle model, use (roughly) time T and space S that satisfy
S · T ∈ Ω(n2). Using the time-space product in this way as a proxy metric
for computation cost is natural, since it approximates the area-time product
required to compute the function in hardware [68].

As Alwen and Serbinenko [8] point out, there are two key limitations to the
standard definition of memory-hardness in which we prove security. First, the
definition yields a single-instance notion of security. That is, our definition of
memory-hardness puts a lower-bound on the ST cost of computing the Balloon
function once, whereas in a password-guessing attack, the adversary potentially
wants to compute the Balloon function billions of times.8 Second, the definition
treats a sequential model of computation—in which the adversary can make a
single random-oracle query at each time step. In contrast, a password-guessing
adversary may have access to thousands of computational cores operating in
parallel.

To address the limitations of the conventional single-instance sequential ad-
versary model, which we use for our analysis of the Balloon function, Alwen and
Serbinenko introduce a new adversary model and security definition. Essentially,
they allow the adversary to make many parallel random-oracle queries at each
time step. In this “parallel random-oracle model” (pROM), they attempt to put a
lower bound on the sum of the adversary’s space usage over time:

∑
t St ∈ Ω(n2),

where St is the number of blocks of space used in the t-th computation step. We
call a function that satisfies this notion of memory-hardness in the pROM an
amortized memory-hard function.9

To phrase the definition in different terms: Alwen and Serbinenko look for
functions f such that computing f requires a large amount of working space at
many points during the computation of f . In contrast, the traditional definition
(which we use) proves the weaker statement that the adversary computing f
must use a lot of space at some point during the computation of f .

8 Bellare, Ristenpart, and Tessaro consider a different type of multi-instance secu-
rity [13]: they are interested in key-derivation functions f with the property that
finding (x1, . . . , xm) given (f(x1), . . . , f(xm)) is roughly m times as costly as invert-
ing f once. Stebila et al. [83] and Groza and Warinschi [46] investigate a similar
multiple-instance notion of security for client puzzles [36] and Garay et al. [43] in-
vestigate related notions in the context of multi-party computation.

9 In the original scrypt paper, Percival [68] also discusses parallel attacks and makes
an argument for the security of scrypt in the pROM.

14

An impressive recent line of work has uncovered many new results in this
model:

– Alwen and Blocki [3, 4] show that, in the pROM, there does not exist a per-
fectly memory-hard function (in the amortized sense) that uses a password-
independent memory-access pattern. In the sequential setting, Balloon and
other memory-hard functions require space S and time T to compute such
that S · T ∈ Ω(n2). In the parallel setting, Alwen and Blocki show that the
best one can hope for, in terms of amortized space usage is Ω(n2/ log n). Ad-
ditionally, they give special-case attack algorithms for computing many can-
didate password-hashing algorithms in the pROM. Their algorithm computes
Balloon, for example, using an amortized time-space product of roughly
O(n7/4).10

– Alwen et al. [6] show that the amortized space-time complexity of the single-
round Balloon function is at least Ω̃(n5/3), where the Ω̃(·) ignores logarith-
mic factors of n. This result puts a limit on the effectiveness of parallel
attacks against Balloon.

– Alwen et al. [5] construct a memory-hard function with a password-independ-
ent access pattern and that has an asymptotically optimal amortized time-
space product of S · T ∈ Ω(n2/ log n). Whether this construction is useful
for practical purposes will depend heavily on value of the constant hidden
in the Ω(·). In practice, a large constant may overwhelm the asymptotic
improvement.

– Alwen et al. [6] prove, under combinatorial conjectures11 that scrypt is near-
optimally memory-hard in the pROM. Unlike Balloon, scrypt uses a data-
dependent access pattern—which we would like to avoid—and the data-
dependence of scrypt’s access pattern seems fundamental to their security
analysis.

As far as practical constructions go, these results leave the practitioner with
two options, each of which has a downside:

Option 1. Use scrypt, which seems to protect against parallel attacks, but which
uses a password-dependent access pattern and is weak in the face of an
adversary that can learn memory access information. (We describe the attack
in Appendix G.2.)

Option 2. Use Balloon Hashing, which uses a password-independent access pat-
tern and is secure against sequential attacks, but which is asymptotically
weak in the face of a massively parallel attack.

A good practical solution is to hash passwords using a careful composition of
Balloon and scrypt: one function defends against memory access pattern leakage
10 There is no consensus on whether it would be feasible to implement this parallel

attack in hardware for realistic parameter sizes. That said, the fact that such pROM
attacks exist at all are absolutely a practical concern.

11 A recent addendum to the paper suggests that the combinatorial conjectures that
underlie their proof of security may be false [7, Section 0].

15

and the other defends against massively parallel attacks. For the moment, let
us stipulate that the pROM attacks on vanilla Balloon (and all other practi-
cal password hashing algorithms using data-independent access patterns) make
these algorithms less-than-ideal to use on their own. Can we somehow combine
the two constructions to get a “best-of-both-worlds” practical password-hashing
algorithm? The answer is yes: compose a data-independent password-hashing
algorithm, such as Balloon, with a data-dependent scheme, such as scrypt.
To use the composed scheme, one would first run the password through the
data-independent algorithm and next run the resulting hash through the data-
dependent algorithm.12

It is not difficult to show that the composed scheme is memory-hard against
either: (a) an attacker who is able to learn the function’s data-access pattern on
the target password, or (b) an attacker who mounts an attack in the pROM using
the parallel algorithm of Alwen and Blocki [3]. The composed scheme defends
against the two attacks separately but does not defend against both of them
simultaneously: the composed function does not maintain memory-hardness in
the face of an attacker who is powerful enough to get access-pattern information
andmount a massively parallel attack. It would be even better to have a practical
construction that could protect against both attacks simultaneously, but the best
known algorithms that do this [5, 8] are likely too inefficient to use in practice.

The composed function is almost as fast as Balloon on its own—adding the
data-dependent hashing function call is effectively as costly as increasing the
round count of the Balloon algorithm by one.

5.2 How to Compare Memory-Hard Functions

If we restrict ourselves to considering memory-hard functions in the sequential
setting, there are a number of candidate constructions that all can be proven se-
cure in the random-oracle model: Argon2i [21],13 Catena BRG, Catena DBG [42],
and Balloon. There is no widely accepted metric with which one measures the
quality of a memory-hard function, so it is difficult to compare these functions
quantitatively.

In this section, we propose one such metric and compare the four candidate
functions under it. The metric we propose captures the notion that a good
memory-hard function is one that makes the attacker’s job as difficult as possible
given that the defender (e.g., the legitimate authentication server) still needs to
hash passwords in a reasonable amount of time. Let Tf (A) denote the expected
running time of an algorithm A computing a function f and let STf (A) denote
its expected space-time product. Then we define the quality Q of a memory-hard

12 Our argument here gives some theoretical justification for the the Argon2id mode
of operation proposed in some versions of the Argon2 specification [21, Appendix
B]. That variant follows a hashing with a password-independent access pattern by
hashing with a password-dependent access pattern.

13 We provide a proof of security for single-pass Argon2i in Appendix F.

16

function against a sequential attacker AS using space S to be the ratio:

Q[AS , f] =
STf (AS)

Tf (Honest)
.

We can define a similar notion of quality in the amortized/parallel setting: just
replace the quantity in the numerator (the adversary’s space-time product) with
the sum of a pROM adversary’s space usage over time:

∑
t St of AS .

We can now use the existing memory-hardness proofs to put lower bounds on
the quality (in the sequential model) of the candidate memory-hard functions.
We show in Appendix F that Argon2i has a sequential time-space lower bound
of the form S · T ≥ n2/1536. The n-block r-round Balloon function has a time-
space lower-bound of the form S · T ≥ (2r − 1)n2/32 for S < n/64 when the
parameter δ = 3. The n-block Catena BRG function has a time-space lower
bound of the form S · T ≥ n2/16 (Catena BRG has no round parameter). The
r-round n-block Catena DBG function has a claimed time-space lower bound of
the form S ·T ≥ n(rn64S)

r. These lower-bounds yield the following quality figures
against an adversary using roughly n/64 space:

Q[AS ,Balloon(r=1)] ≥
n

64
; Q[AS ,Balloon(r>1)] ≥

(2r − 1)n

32(r + 1)

Q[AS ,Catena-BRG] ≥ n

32
; Q[AS ,Catena-DBG] ≥ rr

2r log2 n

Q[AS ,Argon2i] ≥
n

1536

From these quality ratios, we can draw a few conclusions about the protection
these functions provide against one class of small-space attackers (using S ≈
n/64):

– In terms of provable memory-hardness properties in the sequential model,
one-round Balloon always outperforms Argon2i.

– In terms of provable memory-hardness properties in the sequential model,
Catena-BRG outperforms one-round Balloon.

– When the buffer size n grows and the number of rounds r is held fixed,
Balloon outperforms Catena-DBG.

– When the buffer size n is fixed and the number of rounds r grows large,
Catena-DBG provides the strongest provable memory-hardness properties
in the sequential model.

6 Experimental Evaluation

In this section, we demonstrate experimentally that the Balloon hashing algo-
rithm is competitive performance-wise with two existing practical algorithms
(Argon2i and Catena), when all are instiated with standard cryptographic prim-
itives.

17

6.1 Experimental Set-up

Our experiments use the OpenSSL implementation (version 1.0.1f) of SHA-512
and the reference implementations of three other cryptographic hash functions
(Blake2b, ECHO, and SHA-3/Keccak). We use optimized versions of the un-
derlying cryptographic primitives where available, but the core Balloon code is
written entirely in C. Our source code is available at https://crypto.stanford.
edu/balloon/ under the ISC open-source license. We used a workstation run-
ning an Intel Core i7-6700 CPU (Skylake) at 3.40 GHz with 8 GiB of RAM
for our performance benchmarks. We compiled the code for our timing results
with gcc version 4.8.5 using the -O3 option. We average all of our measurements
over 32 trials. We compare the Balloon functions against Argon2i (v.1.2.1) [19]
and Catena [42]. For comparison purposes, we implemented the Argon2i, Catena
BRG, and Catena DBG memory-hard algorithms in C.

On the Choice of Cryptographic Primitives. The four memory-hard functions
we evaluate (Argon2i, Balloon, Catena-BRG, Catena-DBG) are all essentially
modes of operation for an underlying cryptographic hash function. The choice
of the underlying hash function has implications for the performance and the
security of the overall construction. To be conservative, we instantiate all of the
algorithms we evaluate with the Blake2b as the underlying hash function [10].

Memory-hard functions going back at least as far as scrypt [68] have used
reduced-round hash functions as their underlying cryptographic building block.
Following this tradition, the Argon2i specification proposes using a new and very
fast reduced-round hash function as its core cryptographic primitive. Since the
Argon2i hash function does not satisfy basic properties of a traditional crypto-
graphic hash function (e.g., it is not collision resistant), modeling it as a random
oracle feels particularly problematic. Since our goal in this work is to analyze
memory-hard functions with provable security guarantees, we instantiate the
memory-hard functions we evaluate with traditional cryptographic hashes for
the purposes of this evaluation.

That said, we stress that the Balloon construction is agnostic to the choice
of underlying hash function—it is a mode of operation for a cryptographic hash
function—and users of the Balloon construction may instantiate it with a faster
reduced-round hash function (e.g., scrypt’s BlockMix or Argon2i’s compression
function) if they so desire.

6.2 Authentication Throughput

The goal of a memory-hard password hash function is to use as much working
space as possible as quickly as possible over the course of its computation. To
evaluate the effectiveness of the Balloon algorithm on this metric, we measured
the rate at which a server can check passwords (in hashes per second) for various
buffer sizes on a single core.

Figure 5 shows the minimum buffer size required to compute each memory-
hard function with high probability with no computational slowdown, for a va-
riety of password hashing functions. We set the block size of the construction

18

https://crypto.stanford.edu/balloon/
https://crypto.stanford.edu/balloon/

to be equal to the block size of the underlying compression function, to avoid
the issues discussed in Appendix B.3. The charted results for Argon2i incor-
porate the fact that an adversary can compute many-pass Argon2i (v.1.2.1) in
a factor of e ≈ 2.72 less working space than the defender must allocate for
the computation and can compute single-pass Argon2i with a factor of four
less space (see Section 4). For comparison, we also plot the space usage of two
non-memory-hard password hashing functions, bcrypt [75] (with cost = 12) and
PBKDF2-SHA512 [49] (with 105 iterations).

16 KiB 1 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104

105

H
as
he
s/
se
c
(o
ne

co
re
)

PBKDF2
bcrypt

Bett
er

Balloon (r = 8)
Argon2i (r = 8)
Catena DBG (r = 7)

16 KiB 1 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104

105

H
as
he
s/
se
c
(o
ne

co
re
)

PBKDF2
bcrypt

Bett
er

Catena BRG
Balloon (r = 1)
Argon2i (r = 1)

“Strong” Security “Normal” Security

Fig. 5: The Balloon algorithm outperforms Argon2i and Catena DBG for many
settings of the security parameters, and Balloon is competitive with Catena
BRG. We instantiate Argon2i, Balloon, and Catena with Blake2b as the under-
lying cryptographic hash function.

If we assume that an authentication server must perform 100 hashes per
second per four-core machine, Figure 5 shows that it would be possible to use one-
round Balloon hashing with a 2 MiB buffer or eight-round Balloon hashing with
a 256 KiB buffer. At the same authentication rate, Argon2i (instantiated with
Blake2b as the underlying cryptographic hash function) requires the attacker
to use a smaller buffer—roughly 1.5 MiB for the one-pass variant. Thus, with
Balloon hashing we simultaneously get better performance than Argon2i and
stronger memory-hardness guarantees.

19

16 KiB 256 KiB 4 MiB

Buffer size (bytes)

225

226
B
yt
es

w
ri
tt
en
/s
ec

Blake2b
ECHO
SHA-3
SHA-512

Fig. 6: Throughput for the Balloon algorithm when instantiated with different
compression functions. The dotted lines indicate the sizes of the L1, L2, and L3
caches on our test machine.

6.3 Compression Function

Finally, Figure 6 shows the result of instantiating the Balloon algorithm con-
struction with four different standard cryptographic hash functions: SHA-3 [18],
Blake2b [10], SHA-512, and ECHO (a SHA-3 candidate that exploits the AES-NI
instructions) [15]. The SHA-3 function (with rate = 1344) operates on 1344-bit
blocks, and we configure the other hash functions to use 512-bit blocks.

On the x-axis, we plot the buffer size used in the Balloon function and on the
y-axis, we plot the rate at which the Balloon function fills memory, in bytes of
written per second. As Figure 6 demonstrates, Blake2b and ECHO outperform
the SHA functions by a bit less than a factor of two.

7 Related Work

Password Hashing. The problem of how to securely store passwords on shared
computer systems is nearly as old as the systems themselves. In a 1974 article,
Evans et al. described the principle of storing passwords under a hard-to-invert
function [40]. A few years later, Robert Morris and Ken Thompson presented
the now-standard notion of password salts and explained how to store passwords
under a moderately hard-to-compute one-way function to increase the cost of
dictionary attacks [59]. Their DES-based “crypt” design became the standard
for password storage for over a decade [55] and even has a formal analysis by
Wagner and Goldberg [90].

In 1989, Feldmeier and Karn found that hardware improvements had driven
the cost of brute-force password guessing attacks against DES crypt down by
five orders of magnitude since 1979 [41, 52]. Poul-Henning Kamp introduced the

20

costlier md5crypt to replace crypt, but hardware improvements also rendered
that design outmoded [31].

Provos and Mazières saw that, in the face of ever-increasing processor speeds,
any fixed password hashing algorithm would eventually become easy to compute
and thus ineffective protection against dictionary attacks. Their solution, bcrypt,
is a password hashing scheme with a variable “hardness” parameter [75]. By pe-
riodically ratcheting up the hardness, a system administrator can keep the time
needed to compute a single hash roughly constant, even as hardware improves.
A remaining weakness of bcrypt is that it exercises only a small fraction of
the CPU’s resources—it barely touches the L2 and L3 caches during its execu-
tion [56]. To increase the cost of custom password-cracking hardware, Reinhold’s
HEKS hash [76] and Percival’s popular scrypt routine consume an adjustable
amount of storage space [68], in addition to time, as they compute a hash. Bal-
loon, like scrypt, aims to be hard to compute in little space. Unlike scrypt,
however, we require that our functions’ data access pattern be independent of
the password to avoid leaking information via cache-timing attacks [25, 62, 87]
(see also the attack in Appendix G.2). The Dogecoin and Litecoin [24] crypto-
currencies have incorporated scrypt as an ASIC-resistant proof-of-work function.

The recent Password Hashing Competition motivated the search for memory-
hard password-hashing functions that use data-independent memory access pat-
terns [64]. The Argon2 family of functions, which have excellent performance and
an appealingly simple design, won the competition [19]. The Argon2 functions
lack a theoretical analysis of the feasible time-space trade-offs against them; us-
ing the same ideas we have used to analyze the Balloon function, we provide the
first such result in Appendix F.

The Catena hash functions [42], which became finalists in the Password
Hashing Competition, are memory-hard functions whose analysis applies peb-
bling arguments to classic graph-theoretic results of Lengauer and Tarjan [54].
The Balloon analysis we provide gives a tighter time-space lower bounds than
Catena’s analysis can provide in many cases, and the Balloon algorithm outper-
forms the more robust of the two Catena algorithms (see Section 6). Biryokov
and Khovratovich demonstrated a serious flaw in the security analysis of one
of the Catena variants, and they provide a corresponding attack against that
Catena variant [22].

The other competition finalists included a number of interesting designs that
differ from ours in important ways. Makwa [73] supports offloading the work of
password hashing to an untrusted server but is not memory-hard. Lyra [2] is a
memory-hard function but lacks proven space-time lower bounds. Yescrypt [69]
is an extension of scrypt and uses a password-dependent data access pattern.

Ren and Devadas [77] give an analysis of the Balloon algorithm using bi-
partite expanders, following the pebbling techniques of Paul and Tarjan [66].
Their results imply that an adversary that computes the n-block r-round Bal-
loon function in n/8 space, must use at least 2rn/c time to compute the func-
tion (for some constant c), with high probability in the random-oracle model.
We prove the stronger statement that an adversary’s space-time product must

21

satisfy: S · T ∈ Ω(n2) for almost all values of S. Ren and Devadas also prove
statements showing that algorithms computing the Balloon functions efficiently
must use a certain amount of space at many points during their computation.
Our time-space lower bounds only show that the adversary must use a certain
amount of space a some point during the Balloon computation.

Other Studies of Password Protection. Concurrently with the design of hashing
schemes, there has been theoretical work from Bellare et al. on new security
definitions for password-based cryptography [13] and from Di Crescenzo et al.
on an analysis of passwords storage systems secure against adversaries that can
steal only a bounded number of bits of the password file [33]. Other ideas for
modifying password hashes include the key stretching schemes of Kelsey et al. [50]
(variants on iterated hashes), a proposal by Boyen to keep the hash iteration
count (e.g., time parameter in bcrypt) secret [26], a technique of Canetti et al.
for using CAPTCHAs in concert with hashes [28], and a proposal by Dürmuth
to use password hashing to do meaningful computation [34].

Parallel Memory-Hardness. In a recent line of work [3, 4, 5, 6, 8] has analyzed
memory-hard functions from a number of angles in the parallel random-oracle
model, introduced by Alwen and Serbinenko [8]. We discuss these very relevant
results at length in Section 5.1.

Memory-Bound Functions. Abadi et al. [1] introduced memory-bound functions
as more effective alternatives to traditional proofs-of-work in heterogeneous com-
puting environments [11, 36]. These functions require many cache misses to com-
pute and, under the assumption that memory latencies are consistent across
computing platforms, they are roughly as hard to compute on a computation-
ally powerful device as on a computationally weak one. The theoretical analysis
of memory-bound functions represented one of the first applications of pebbling
arguments to cryptography [35, 37].

Proofs of Space. Dziembowski et al. [38] and Ateniese et al. [9] study proofs-of-
space. In these protocols, the prover and verifier agree on a large bitstring that
the prover is supposed to store. Later on, the prover can convince the verifier that
the prover has stored some large string on disk, even if the verifier does not store
the string herself. Spacemint proposes building a cryptocurrency based upon a
proof-of-space rather than a proof-of-work [63]. Ren and Devadas propose using
the problem of pebbling a Balloon graph as the basis for a proof of space [77].

Time-Space Trade-Offs. The techniques we use to analyze Balloon draws on
extensive prior work on computational time-space trade-offs. We use pebbling
arguments, which have seen application to register allocation problems [81], to
the analysis of the relationships between complexity classes [16, 29, 48, 85], and
to prior cryptographic constructions [37, 38, 39, 42]. Pebbling has also been a
topic of study in its own right [54, 67]. Savage’s text gives a clear introduction
to graph pebbling [80] and Nordström surveys the vast body of pebbling results
in depth [61].

22

8 Conclusion

We have introduced the Balloon password hashing algorithm. The Balloon algo-
rithm is provably memory-hard (in the random-oracle model against sequential
adversaries), exhibits a password-independent memory access pattern, and meets
or exceeds the performance of the fastest heuristically secure schemes. Using a
novel combinatorial pebbling argument, we have demonstrated that password-
hashing algorithms can have memory-hardness proofs without sacrificing prac-
ticality.

This work raises a number of open questions:

– Are there efficient methods to defend against cache attacks on scrypt (Ap-
pendix G.2)? Could a special-purpose ORAM scheme help [44]?

– Are there practical memory-hard functions with password-independent ac-
cess patterns that retain their memory-hardness properties under parallel
attacks [8]? The recent work of Alwen et al. [4] is promising, though it is still
unclear whether the pROM-secure constructions will be competitive with
Balloon for concrete settings of the parameters.

– Is it possible to build hardware that effectively implements the pROM at-
tacks [3, 4, 5] against Argon2i and Balloon at realistic parameter sizes? What
efficiency gain would this pROM hardware have over a sequential ASIC at
attacking these constructions? Are these parallel attacks still practical in
hardware when the function’s memory-access pattern depends on the salt
(as Balloon’s access pattern does)?

Acknowledgements. Ling Ren pointed out a critical error in the proceedings
version of Lemma 7 and spent an extraordinary amount of time helping us find
a way to fix it. We would like to our anonymous reviewers for their helpful
comments. We also thank Josh Benaloh, Joe Bonneau, Greg Hill, Ali Mash-
tizadeh, David Mazières, Yan Michalevsky, Bryan Parno, Greg Valiant, Riad
Wahby, Keith Winstein, David Wu, Sergey Yekhanin, and Greg Zaverucha for
comments on early versions of this work. This work was funded in part by an
NDSEG Fellowship, NSF, DARPA, a grant from ONR, and the Simons Founda-
tion. Opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
DARPA.

23

Bibliography

[1] Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard,
memory-bound functions. ACM Transactions on Internet Technology 5(2),
299–327 (2005)

[2] Almeida, L.C., Andrade, E.R., Barreto, P.S.L.M., Simplicio Jr., M.A.: Lyra:
Password-based key derivation with tunable memory and processing costs.
Journal of Cryptographic Engineering 4(2), 75–89 (2014)

[3] Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard
functions. In: CRYPTO (2016)

[4] Alwen, J., Blocki, J.: Towards practical attacks on Argon2i and Bal-
loon Hashing. Cryptology ePrint Archive, Report 2016/759 (2016), http:
//eprint.iacr.org/2016/759

[5] Alwen, J., Blocki, J., Pietrzak, K.: The pebbling complexity of depth-robust
graphs. Manuscript (Personal Communication) (2016)

[6] Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro,
S.: On the complexity of scrypt and proofs of space in the parallel random
oracle model. In: EUROCRYPT 2016, pp. 358–387. Springer (2016)

[7] Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro,
S.: On the complexity of scrypt and proofs of space in the parallel random
oracle model. Cryptology ePrint Archive, Report 2016/100 (2016), http:
//eprint.iacr.org/

[8] Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-
hard functions. In: STOC. pp. 595–603 (2015)

[9] Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: When
space is of the essence. In: Security and Cryptography for Networks, pp.
538–557. Springer (2014)

[10] Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2:
simpler, smaller, fast as MD5. In: Applied Cryptography and Network Se-
curity. pp. 119–135. Springer (2013)

[11] Back, A.: Hashcash–a denial of service counter-measure. http://www.
cypherspace.org/hashcash/ (May 1997), accessed 9 November 2015

[12] Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-
model scheme for a hybrid-encryption problem. In: EUROCRYPT 2004. pp.
171–188. Springer (2004)

[13] Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its
application to password-based cryptography. In: CRYPTO, pp. 312–329.
Springer (2012)

[14] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: CCS. pp. 62–73. ACM (1993)

[15] Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw,
M., Seurin, Y.: SHA-3 proposal: ECHO. Submission to NIST (updated)
(2009)

http://eprint.iacr.org/2016/759
http://eprint.iacr.org/2016/759
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.cypherspace.org/hashcash/
http://www.cypherspace.org/hashcash/

[16] Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM
Journal on Computing 18(4), 766–776 (1989)

[17] Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power
of free precomputation. In: ASIACRYPT, pp. 321–340. Springer (2013)

[18] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge func-
tion family. Submission to NIST (Round 2) (2009)

[19] Biryukov, A., Dinu, D., Khovratovich, D.: Argon2 design document (version
1.2.1) (Oct 2015)

[20] Biryukov, A., Dinu, D., Khovratovich, D.: Fast and tradeoff-resilient
memory-hard functions for cryptocurrencies and password hashing. Cryp-
tology ePrint Archive, Report 2015/430 (2015), http://eprint.iacr.org/

[21] Biryukov, A., Dinu, D., Khovratovich, D.: Argon2 design document (version
1.3) (Feb 2016)

[22] Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard
functions. In: ASIACRYPT. pp. 633–657. Springer (2015)

[23] Bitcoin wiki - mining comparison. https://en.bitcoin.it/wiki/Mining_
hardware_comparison

[24] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.:
SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies.
In: Symposium on Security and Privacy. IEEE (May 2015)

[25] Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In:
CHES 2006, pp. 201–215. Springer (2006)

[26] Boyen, X.: Halting password puzzles. In: USENIX Security (2007)
[27] Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology,

revisited. Journal of the ACM 51(4), 557–594 (2004)
[28] Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on

password-protected local storage. In: CRYPTO 2006, pp. 160–179. Springer
(2006)

[29] Chan, S.M.: Just a pebble game. In: IEEE Conference on Computational
Complexity. pp. 133–143. IEEE (2013)

[30] Coron, J., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited:
How to construct a hash function. In: CRYPTO. pp. 430–448 (2005)

[31] CVE-2012-3287: md5crypt has insufficient algorithmic complexity.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3287 (2012),
accessed 9 November 2015

[32] Damgård, I.B.: A design principle for hash functions. In: CRYPTO. pp.
416–427 (1989)

[33] Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password pro-
tocols in the bounded retrieval model. In: Theory of Cryptography, pp.
225–244. Springer (2006)

[34] Dürmuth, M.: Useful password hashing: how to waste computing cycles with
style. In: New Security Paradigms Workshop. pp. 31–40. ACM (2013)

[35] Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting
spam. In: CRYPTO, pp. 426–444. Springer (2003)

[36] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
CRYPTO 1992. pp. 139–147. Springer (1993)

25

http://eprint.iacr.org/
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison

[37] Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: CRYPTO.
pp. 37–54 (2005)

[38] Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space.
In: CRYPTO (2015)

[39] Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing
functions. In: Theory of Cryptography, pp. 125–143. Springer (2011)

[40] Evans Jr, A., Kantrowitz, W., Weiss, E.: A user authentication scheme not
requiring secrecy in the computer. Communications of the ACM 17(8), 437–
442 (1974)

[41] Feldmeier, D.C., Karn, P.R.: UNIX password security–ten years later. In:
CRYPTO 1989. pp. 44–63. Springer (1990)

[42] Forler, C., Lucks, S., Wenzel, J.: Memory-demanding password scrambling.
In: ASIACRYPT, pp. 289–305. Springer (2014)

[43] Garay, J., Johnson, D., Kiayias, A., Yung, M.: Resource-based corruptions
and the combinatorics of hidden diversity. In: ITCS. pp. 415–428. ACM
(2013)

[44] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. Journal of the ACM 43(3), 431–473 (1996)

[45] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir
paradigm. In: FOCS. pp. 102–113. IEEE (2003)

[46] Groza, B., Warinschi, B.: Revisiting difficulty notions for client puzzles and
DoS resilience. In: Information Security, pp. 39–54. Springer (2012)

[47] Ho, S.: Costco, Sam’s Club, others halt photo sites over possi-
ble breach. http://www.reuters.com/article/2015/07/21/us-cyberattack-
retail-idUSKCN0PV00520150721 (Jul 2015), accessed 9 November 2015

[48] Hopcroft, J., Paul, W., Valiant, L.: On time versus space. Journal of the
ACM (JACM) 24(2), 332–337 (1977)

[49] Kaliski, B.: PKCS #5: Password-based cryptography specification, version
2.0. IETF Network Working Group, RFC 2898 (Sep 2000)

[50] Kelsey, J., Schneier, B., Hall, C., Wagner, D.: Secure applications of low-
entropy keys. In: Information Security, pp. 121–134. Springer (1998)

[51] Kirk, J.: Internet address overseer ICANN resets passwords after
website breach. http://www.pcworld.com/article/2960592/security/icann-
resets-passwords-after-website-breach.html (Aug 2015), accessed 9 Novem-
ber 2015

[52] Klein, D.V.: Foiling the cracker: A survey of, and improvements to, password
security. In: Proceedings of the 2nd USENIX Security Workshop. pp. 5–14
(1990)

[53] Krantz, L.: Harvard says data breach occurred in June. http:
//www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-
breach/pqzk9IPWLMiCKBl3IijMUJ/story.html (Jul 2015), accessed 9
November 2015

[54] Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space
trade-offs in a pebble game. Journal of the ACM 29(4), 1087–1130 (1982)

[55] Leong, P., Tham, C.: UNIX password encryption considered insecure. In:
USENIX Winter. pp. 269–280 (1991)

26

http://www.reuters.com/article/2015/07/21/us-cyberattack-retail-idUSKCN0PV00520150721
http://www.reuters.com/article/2015/07/21/us-cyberattack-retail-idUSKCN0PV00520150721
http://www.pcworld.com/article/2960592/security/icann-resets-passwords-after-website-breach.html
http://www.pcworld.com/article/2960592/security/icann-resets-passwords-after-website-breach.html
http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach/pqzk9IPWLMiCKBl3IijMUJ/story.html
http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach/pqzk9IPWLMiCKBl3IijMUJ/story.html
http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach/pqzk9IPWLMiCKBl3IijMUJ/story.html

[56] Malvoni, K., Designer, S., Knezovic, J.: Are your passwords safe: Energy-
efficient bcrypt cracking with low-cost parallel hardware. In: USENIXWork-
shop on Offensive Technologies (2014)

[57] Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied
Cryptography. CRC press (1996)

[58] Merkle, R.C.: One way hash functions and DES. In: CRYPTO. pp. 428–446
(1989)

[59] Morris, R., Thompson, K.: Password security: A case history. Communica-
tions of the ACM 22(11), 594–597 (1979)

[60] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In: CRYPTO 2002, pp. 111–
126. Springer (2002)

[61] Nordström, J.: New wine into old wineskins: A survey of some pebbling clas-
sics with supplemental results. http://www.csc.kth.se/~jakobn/research/
PebblingSurveyTMP.pdf (Mar 2015), accessed 9 November 2015

[62] Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures:
the case of AES. In: CT-RSA 2006, pp. 1–20. Springer (2006)

[63] Park, S., Pietrzak, K., Alwen, J., Fuchsbauer, G., Gazi, P.: Spacemint:
a cryptocurrency based on proofs of space. Tech. rep., Cryptology ePrint
Archive, Report 2015/528 (2015)

[64] Password hashing competition. https://password-hashing.net/
[65] Paterson, M.S., Hewitt, C.E.: Comparative schematology. In: Record of the

Project MAC conference on concurrent systems and parallel computation.
pp. 119–127. ACM (1970)

[66] Paul, W.J., Tarjan, R.E.: Time-space trade-offs in a pebble game. Acta
Informatica 10(2), 111–115 (1978)

[67] Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs.
Mathematical Systems Theory 10(1), 239–251 (1976)

[68] Percival, C.: Stronger key derivation via sequential memory-hard functions.
In: BSDCan (May 2009)

[69] Peslyak, A.: yescrypt. https://password-hashing.net/submissions/specs/
yescrypt-v2.pdf (Oct 2015), accessed 13 November 2015

[70] Peterson, A.: E-Trade notifies 31,000 customers that their contact info may
have been breached in 2013 hack. https://www.washingtonpost.com/news/
the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-
contact-info-may-have-been-breached-in-2013-hack/ (Oct 2015), accessed
9 November 2015

[71] Pippenger, N.: A time-space trade-off. Journal of the ACM (JACM) 25(3),
509–515 (1978)

[72] Pippenger, N., Fischer, M.J.: Relations among complexity measures. Jour-
nal of the ACM 26(2), 361–381 (1979)

[73] Pornin, T.: The Makwa password hashing function. http://www.bolet.org/
makwa/ (Apr 2015), accessed 13 November 2015

[74] Privacy Rights Clearinghouse: Chronology of data breaches. http://www.
privacyrights.org/data-breach, accessed 9 November 2015

27

http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
https://password-hashing.net/
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
http://www.bolet.org/makwa/
http://www.bolet.org/makwa/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach

[75] Provos, N., Mazières, D.: A future-adaptable password scheme. In: USENIX
Annual Technical Conference. pp. 81–91 (1999)

[76] Reinhold, A.: HEKS: A family of key stretching algorithms (Draft G).
http://world.std.com/~reinhold/HEKSproposal.html (Jul 2001), accessed
13 November 2015

[77] Ren, L., Devadas, S.: Proof of space from stacked expanders. Cryptology
ePrint Archive, Report 2016/333 (2016), http://eprint.iacr.org/

[78] Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds. In:
CCS. pp. 199–212. ACM (2009)

[79] Rogaway, P.: Formalizing human ignorance. In: VIETCRYPT, pp. 211–228.
Springer (2006)

[80] Savage, J.E.: Models of computation: Exploring the Power of Computing.
Addison-Wesley (1998)

[81] Sethi, R.: Complete register allocation problems. SIAM journal on Com-
puting 4(3), 226–248 (1975)

[82] Smith, A., Zhang, Y.: Near-linear time, leakage-resilient key evolution
schemes from expander graphs. IACR Cryptology ePrint Archive, Report
2013/864 (2013)

[83] Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Nieto, J.G.: Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols.
In: CT-RSA, pp. 284–301. Springer (2011)

[84] Takala, R.: UVA site back online after chinese hack. http:
//www.washingtonexaminer.com/uva-site-back-online-after-chinese-
hack/article/2570383 (Aug 2015), accessed 9 November 2015

[85] Tompa, M.: Time-space tradeoffs for computing functions, using connectiv-
ity properties of their circuits. In: STOC. pp. 196–204. ACM (1978)

[86] Tracy, A.: In wake of T-Mobile and Experian data breach, John Legere
did what all CEOs should do after a hack. http://www.forbes.com/sites/
abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-
john-legere-did-what-all-ceos-should-do-after-a-hack/ (Oct 2015), accessed
9 November 2015

[87] Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and
countermeasures. Journal of Cryptology 23(1), 37–71 (2010)

[88] Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In:
Gruska, J. (ed.) Mathematical Foundations of Computer Science, Lecture
Notes in Computer Science, vol. 53, pp. 162–176. Springer Berlin Heidelberg
(1977)

[89] Vaughan-Nichols, S.J.: Password site LastPass warns of data breach.
http://www.zdnet.com/article/lastpass-password-security-site-hacked/
(Jun 2015), accessed 9 November 2015

[90] Wagner, D., Goldberg, I.: Proofs of security for the Unix password hashing
algorithm. In: ASIACRYPT 2000, pp. 560–572. Springer (2000)

28

http://world.std.com/~reinhold/HEKSproposal.html
http://eprint.iacr.org/
http://www.washingtonexaminer.com/uva-site-back-online-after-chinese-hack/article/2570383
http://www.washingtonexaminer.com/uva-site-back-online-after-chinese-hack/article/2570383
http://www.washingtonexaminer.com/uva-site-back-online-after-chinese-hack/article/2570383
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.zdnet.com/article/lastpass-password-security-site-hacked/

A Details of the Attack on Argon2

In this section, we provide a detailed analysis of the attack on Argon2i that we
introduced in Section 4.

The goal of the attack algorithm is to compute Argon2i in the same number
of time steps as the naïve algorithm uses to compute the function, while using a
constant factor less space than the naïve algorithm does. In this way, an attacker
mounting a dictionary attack against a list of passwords hashed with Argon2i
can do so at less cost (in terms of the space-time product) than the Argon2i
specification claimed possible.

Argon2i has one-pass and many-pass variants and our attack applies to both;
the many-pass variant is recommended in the specification. We first analyze the
attack on the one-pass variant and then analyze the attack on the many-pass
variant.

We are interested in the attack algorithm’s expected space usage at time step
t—call this function S(t).14

Analysis of One-Pass Argon2i. At each step of the one-pass Argon2i algo-
rithm, the expected space usage S(t) is equal to the number of memory blocks
generated so far minus the expected number of blocks in memory that will never
be used after time t. Let Ai,t be the event that block i is never needed after
time step t in the computation. Then S(t) = t−

∑t
i=1 Pr[Ai,t].

To find S(t) explicitly, we need to compute the probability that block i is
never used after time t. We know that the probability that block i is never used
after time t is equal to the probability that block i is not used at time t+1 and
is not used at time t+2 and [. . .] and is not used at time n. Let Ui,t denote the
event that block i is unused at time t. Then:

Pr [Ai,t] = Pr

[
n⋂

t′=t+1

Ui,t′

]
=

n∏
t′=t+1

Pr[Ui,t′] (1)

The equality on the right-hand side comes from the fact that Ui,t′ and Ui,t′′ are
independent events for t′ 6= t′′.

To compute the probability that block i is not used at time t′, consider
that there are t′ − 1 blocks to choose from and t′ − 2 of them are not block i:
Pr[Ui,t′] =

t′−2
t′−1 . Plugging this back into Equation 1, we get:

Pr [Ai,t] =

n∏
t′=t+1

(
t′ − 2

t′ − 1

)
=
t− 1

n− 1

14 As described in Section 4.2, the contents of block i in Argon2i are derived from the
contents of block i−1 and a block chosen at random from the set ri ←R {1, . . . , i−1}.
Throughout our analysis, all probabilities are taken over the random choices of the
ri values.

29

Now we substitute this back into our original expression for S(t):

S(t) = t−
t∑
i=1

(
t− 1

n− 1

)
= t− t(t− 1)

n− 1

Taking the derivative S′(t) and setting it to zero allows us to compute the value
t for which the expected storage is maximized. The maximum is at t = n/2 and
the expected number of blocks required is S(n/2) ≈ n/4.

Larger in-degree. A straightforward extension of this analysis handles the
case in which δ random blocks—instead of one—are hashed together with the
prior block at each step of the algorithm. Our analysis demonstrates that, even
with this strategy, single-pass Argon2i is vulnerable to pre-computation attacks.
The maximum space usage comes at t∗ = n/(δ + 1)1/δ, and the expected space
usage over time S(t) is:

S(t) ≈ t− tδ+1

nδ
so S(t∗) ≈ δ

(δ + 1)1+1/δ
n .

Analysis of Many-Pass Argon2i. One idea for increasing the minimum
memory consumption of Argon2i is to increase the number of passes that the
algorithm takes over the memory. For example, the Argon2 specification pro-
poses taking three passes over the memory to protect against certain time-space
tradeoffs. Unfortunately, even after many passes over the memory, the Argon2i
algorithm sketched above still uses many fewer than n blocks of memory, in
expectation, at each time step.

To investigate the space usage of the many-pass Argon2i algorithm, first
consider that the space usage will be maximized at some point in the middle
of its computation—not in the first or last passes. At some time step t in the
middle of its computation the algorithm will have at most n memory blocks in
storage, but the algorithm can delete any of these n blocks that it will never
need after time t.

At each time step, the algorithm adds a new block to the end of the buffer
and deletes the first block. At any one point in the algorithm’s execution, there
will be at most n blocks of memory in storage. If we freeze the execution of the
Argon2i algorithm in the middle of its execution, we can inspect the n blocks it
has stored in memory. Call the first block “stored block 1” and the last block
“stored block n.”

Let Bi,t denote the event that stored block i is never needed after time t.
Then we claim Pr[Bi,t] = (n−1n)i. To see the logic behind this calculation: notice
that, at time t, the first stored block in the buffer can be accessed at time t+ 1
but by time t+ 2, the first stored block will have been deleted from the buffer.
Similarly, the second stored block in the buffer at time t can be accessed at time
t+ 1 or t+ 2, but not t+ 3 (since by then stored block 2 will have been deleted
from the buffer). Similarly, stored block i can be accessed at time steps (t+ 1),
(t+ 2), . . . , (t+ i) but not at time step (t+ i+ 1).

30

The total storage required is then:

S(t) = n−
n∑
i=1

E[Bi,t] = n−
n∑
i=1

(
n− 1

n

)i
≈ n− n

(
1− 1

e

)
.

Thus, even after many passes over the memory, Argon2i can still be computed
in roughly n/e space with no time penalty.

B Pebble Games

In this section, we introduce pebble games and explain how to use them to
analyze the Balloon algorithm.

B.1 Rules of the Game

The pebble game is a one-player game that takes place on a directed acyclic graph
G = (V,E). If there is an edge (u, v) ∈ E, we say that v is a successor of u in
the directed graph and that u is a predecessor of v. As usual, we refer to nodes
of the graph with in-degree zero as source nodes and nodes with out-degree zero
as sink nodes—edges point from sources to sinks.

A pebbling game, defined next, represents a computation. The pebbles rep-
resent intermediate values stored in memory.

Definition 2 (Pebbling game). A pebbling game on a directed acyclic graph
G = (V,E) consists of a sequence of player moves, where each move is one of
the following:

– place a pebble on a source vertex,
– remove a pebble from any pebbled vertex, or
– place a pebble on a non-source vertex if and only if all of its predecessor

vertices are pebbled.

The game ends when a pebble is placed on a designated sink vertex. A sequence
of pebbling moves is legal if each move in the sequence obeys the rules of the
game.

The pebble game typically begins with no pebbles on the graph, but in our
analysis we will occasionally define partial pebblings that begin in a particular
configuration C, in which some some vertices are already pebbled.

The pebble game is a useful model of oblivious computation, in which the
data-access pattern is independent of the value being computed [72]. Edges in
the graph correspond to data dependencies, while vertices correspond to inter-
mediate values needed in the computation. Source nodes represent input values
(which have no dependencies) and sink nodes represent output values. The peb-
bles on the graph correspond to values stored in the computer’s memory at a
point in the computation. The three possible moves in the pebble game then
correspond to: (1) loading an input value into memory, (2) deleting a value
stored in memory, and (3) computing an intermediate value from the values of
its dependencies.

31

B.2 Pebbling in the Random-Oracle Model

Dwork, Naor, and Wee [37] demonstrated that there is a close relationship be-
tween the pebbling problem on a graph G and the problem of computing a
certain function fG in the random-oracle model [14]. This observation became
the basis for the design of the Catena memory-hard hash function family [42]
and is useful for our analysis as well.

Since the relationship between G and fG will be important for our construc-
tion and security proofs, we will summarize here the transformation of Dwork
et al. [37], as modified by Alwen and Serbinenko [8]. The transformation from
directed acyclic graph G = (V,E) to function fG works by assigning a label to
each vertex v ∈ V , with the aid of a cryptographic hash function H. We write
the vertex set of G topologically {v1, . . . v|V |} such that v1 is a source and v|V |
is a sink and, to simplify the discussion, we assume that G has a unique sink
node.

Definition 3 (Labeling). Let G = (V,E) be a directed graph with maximum
in-degree δ and a unique sink vertex, let x ∈ {0, 1}k be a string, and let H :

Z|V | ×
(
{0, 1}k ∪ {⊥}

)δ → {0, 1}k be a function, modeled as a random oracle.
We define the labeling of G relative to H and x as:

labelx(vi) =

{
H(i, x,⊥, . . . ,⊥) if vi is a source
H(i, labelx(z1), . . . , labelx(zδ)) o.w.

where z1, . . . , zδ are the predecessors of vi in the graph G. If vi has fewer than
δ predecessors, a special “empty” label (⊥) is used as placeholder input to H.

The labeling of the graph G proceeds from the sources to the unique sink
node: first, the sources of G receive labels, then their successors receive labels,
and so on until finally the unique sink node receives a label. To convert a graph
G into a function fG : {0, 1}k → {0, 1}k, we define fG(x) as the function that
outputs the label of the unique sink vertex under the labeling of G relative to a
hash function H and an input x.

Dwork et al. demonstrate that any valid pebbling of the graph G with S
pebbles and T placements immediately yields a method for computing fG with
Sk bits of space and T queries to the random oracle. Thus, upper bounds on
the pebbling cost of a graph G yield upper bounds on the computation cost of
the function fG. In the other direction, they show that with high probability, an
algorithm for computing fG with space Sk and T random oracle queries yields a
pebbling strategy for G using roughly S pebbles and T placements [37, Lemma
1].15 Thus, lower bounds on the pebbling cost of the graph G yield lower bounds
on the space and time complexity of the function fG.
15 This piece of the argument is subtle, since an adversarial algorithm for comput-

ing fG could store parts of labels, might try to guess labels, or might use some
other arbitrary strategy to compute the labeling. Showing that every algorithm that
computing fG with high probability yields a pebbling requires handling all of these
possible cases.

32

We use a version of their result due to Dziembowski et al. [39]. The proba-
bilities in the following theorems are over the choice of the random oracle and
the randomness of the adversary.

Theorem 4 (Adapted from Theorem 4.2 of Dziembowski et al. [39]) Let
G, H, and k be as in Definition 3. Let A be an adversary making at most T
random-oracle queries during its computation of fG(x). Then, given the sequence
of A’s random oracle queries, it is possible to construct a pebbling strategy for
G with the following properties:

1. The pebbling is legal with probability 1− T/2k.
2. If A uses at most Sk bits of storage then, for any λ > 0, the number of

pebbles used is at most Sk+λ
k−log2 T

with probability 1− 2−λ.
3. The number of pebble placements (i.e., moves in the pebbling) is at most T .

Proof. The first two parts are a special case of Theorem 4.2 of Dziembowski et
al. [39]. To apply their theorem, consider the running time and space usage of
the algorithm Asmall they define, setting c = 0. The third part of the theorem
follows immediately from the pebbling they construct in the proof: there is at
most one pebble placement per oracle call. There are at most T oracle calls, so
the total number of placements is bounded by T .

Informally, the lemma states that an algorithm using Sk bits of space will
rarely be able to generate a sequence of random oracle queries whose corre-
sponding pebbling places more than S pebbles on the graph or makes an invalid
pebbling move.

The essential point, as captured in the following theorem, is that if we can
construct a graph G that takes a lot of time to pebble when using few pebbles,
then we can construct a function fG that requires a lot of time to compute with
high probability when using small space, in the random oracle model.

Theorem 5 Let G and k be as in Definition 3 with the additional restriction
that there is no pebbling strategy for G using S∗ pebbles and T ∗ pebble placements,
where T ∗ is less than 2k−1. Let A be an algorithm that makes T random oracle
queries and uses σ bits of storage space. If

T < T ∗ and σ < S∗(k − log2 T
∗)− k,

then A correctly computes fG(·) with probability at most T+1
2k

.

Proof. Fix an algorithm A as in the statement of the theorem. By Theorem 4,
from a trace of A’s execution we can extract a pebbling of G that:

– is legal with probability at least 1− T/2k,
– uses at most σ+k

k−log2 T
∗ < S∗ pebbles with probability at least 1− 2−k, and

– makes at most T pebble placements.

33

By construction of G, there does not exist a pebbling of G using S∗ pebbles
and T ∗ pebble placements. Thus, whenever A succeeds at computing fG(·)
it must be that either (1) the pebbling we extract from A is invalid, (2) the
pebbling we extract from A uses more than S∗ pebbles, or (3) the pebbling we
extract from A uses more than T ∗ moves. From Theorem 4, the probability of
the first event is at most T/2k, the probability of the second event is at most
1/2k, and the probability of the third event is zero.

By the Union Bound, we find that:

Pr[A succeeds] ≤ Pr[pebbling is illegal]
+ Pr[pebbling uses > S∗ pebbles]

+ Pr[pebbling uses > T ∗ time steps].

Substituting in the probabilities of each of these events derived from Theo-
rem 4, we find

Pr[A succeeds] ≤ T

2k
+

1

2k
=
T + 1

2k
.

B.3 Dangers of the Pebbling Paradigm

The beauty of the pebbling paradigm is that it allows us to reason about the
memory-hardness of certain functions by simply reasoning about the properties
of graphs. That said, applying the pebbling model requires some care. For

. . .
. . .

. . .

Fig. 7: A graph requiring n + 1 pebbles to pebble in the random-oracle model
(left) requires O(1) storage to compute when using a Merkle-Damgård hash
function (right).

example, it is common practice to model an infinite-domain hash function H :
{0, 1}∗ → {0, 1}k as a random oracle and then to instantiate H with a concrete
hash function (e.g., SHA-256) in the actual construction.

When using a random oracle with an infinitely large domain in this way, the
pebbling analysis can give misleading results. The reason is that Theorem 4 relies
on the fact that when H is a random oracle, computing the value H(x1, . . . , xn)

34

requires that the entire string (x1, . . . , xn) be written onto the oracle tape (i.e.,
be in memory) at the moment when the machine queries the oracle.

In practice, the hash function H used to construct the labeling of the pebble
graph is not a random oracle, but is often a Merkle-Damgård-style hash func-
tion [32, 58] built from a two-to-one compression function C : {0, 1}2k → {0, 1}k
as

H(x1, . . . , xn) = C(xn, C(xn−1, . . . , C(x1,⊥) . . .)).
If H is one such hash function, then the computation of H(x1, . . . , xn) requires
at most a constant number of blocks of storage on the work and oracle tapes at
any moment, since the Merkle-Damgård hash can be computed incrementally.

The bottom line is that pebbling lower bounds suggest that the labeling of
certain graphs, like the one depicted in Figure 7, require Θ(n) blocks of storage
to compute with high probability in the random oracle model. However, when
H is a real Merkle-Damgård hash function, these functions actually take Õ(1)
space to compute. The use of incrementally computable compression functions
has led to actual security weaknesses in candidate memory-hard functions in the
past [20, Section 4.2], so these theoretical weaknesses have bearing on practice.

This failure of the random oracle model is one of the very few instances
in which a practical scheme that is proven secure in the random-oracle model
becomes insecure after replacing the random oracle with a concrete hash function
(other examples include [12, 27, 45, 60]). While prior works study variants of the
Merkle-Damgård construction that are indifferentiable from a random oracle [30],
they do not factor these space usage issues into their designs.

To sidestep this issue entirely, we use the random oracle only to model com-
pression functions with a fixed finite domain (i.e., two-to-one compression func-
tions) whose internal state size is as large as their output size. For example,
we model the compression function of SHA-512 as a random oracle, but do not
model the entire [infinite-domain] SHA-512 function as a random oracle. When
we use a sponge function, like SHA-3 [18], we use it as a two-to-one compression
function, in which we extract only as many bits of output as the capacity of the
sponge.

C A Combinatorial Lemma on “Well-Spreadedness”

In this section, we prove a combinatorial lemma that we will need for the anal-
ysis of the Balloon functions. Throughout, we refer to an ordered multiset of
elements—which may contain duplicates—as a “list,” and an unordered set of
elements—which does not contain duplicates, as a “set.”

Let X = {X1, X2, . . . , Xm} be a list of integers written in non-decreasing
order, such that 1 ≤ Xi ≤ n for all Xi ∈ X. The elements of X partition the
integers from 0 to n into a collection of segments

(0, X1], (X1, X2], (X2, X3], . . . , (Xm−1, Xm].

If we remove some subset of the segments, we can ask: what is the total
length of the remaining segments? More formally, fix some set S ⊆ X. Then,

35

define the spread of the list X after removing S as the sum of the lengths of the
segments defined by X whose rightmost endpoints are not in S. Symbolically,
we can let X0 = 0 and define the spread as:

spreadS(X) =
∑

Xi∈X\S

(Xi −Xi−1).

For example, if X = (2, 2, 4, 7), we have that:

spread{}(X) = (2− 0) + (2− 2) + (4− 2) + (7− 4) = 7

spread{7}(X) = (2− 0) + (2− 2) + (4− 2) = 4

spread{2,7}(X) = (4− 2) = 2

spread{2,4,7}(X) = 0

In computing spreadS(·), we remove all segments whose right endpoint falls
into the set S. If there are many such segments (i.e., as when we compute
spread{2}((2, 2, 4, 7)) = 5), we remove all of them.

We say that a list of integers is well-spread if the spread of the list is larger
than a certain threshold, even after removing any subset of segments of a par-
ticular size.

Definition 6 (Well-Spread List). Let X be a list of integers X ⊆ {1, . . . , n}
and let σ be an integer such that σ ≤ |X|. Then X is (σ, ρ)-well-spread if for all
subsets S ⊆ X of size σ, spreadS(X) ≥ ρ.

So, for example, a listX of integers is (n/8, n/4)-well-spread if, for all sets S ⊆ X
of size n/8, we have that spreadS(X) ≥ n/4.

The following lemma demonstrates that a list of random integers is well-
spread with all but negligible probability.

Lemma 7 (Big Spread Lemma) For all positive integers δ ≥ 3, ω ≥ 2, and
n, and for all positive integers m such that 2ω < m < 2(2−ω+

2ω
δ) n

δe , a list of δm
elements sampled independently and uniformly at random from {1, . . . , n} is an
(m,n/2ω)-well-spread set with probability at least 1− 2ω+2 · 2[(1−ω) δ2+ω]m

Lemma 7 states (very roughly) that if you divide the integers (1, . . . , n) into
δm segments at random, and then remove the the m longest segments, the
remaining segments have length at least n/2ω, with very high probability.

To prove Lemma 7, we need one related lemma. In the hypothesis of the
following lemma, we choose d distinct integers from {1, . . . , n} at random without
replacement, and we use these integers to break the range (1, . . . , n) into d + 1
segments. The lemma states that if f is an arbitrary function of the lengths of
the segments, then the probability that f takes on value 1 is invariant under a
reordering of the segments.

Lemma 8 Let (R1, . . . , Rd) be random variables representing integers sampled
uniformly, but without replacement, from {1, . . . , n}. Write the Rs in ascend-
ing order as (Y1, . . . , Yd), and let Y0 = 0 and Yd+1 = n. Next, define L =

36

(L1, . . . , Ld+1), where Li = Yi−Yi−1. Then, for all functions f : Zd+1 → {0, 1},
and for all permutations π on d+ 1 elements,

Pr
[
f(L1, . . . , Ld+1) = 1

]
= Pr

[
f(Lπ(1), . . . , Lπ(d+1)) = 1

]
.

Proof. For convenience, write L = (L1, . . . , Ld+1). For a permutation π on d+1
elements, let π(L) = (Lπ(1), . . . , Lπ(d+1)). The random variable L can take on
any value ` ∈ Zd+1 for any ` such that

∑
i `i = n and Li > 0 for i ∈ {1, . . . , d}.

We can rewrite the probability Pr[f(L) = 1] by summing over the possible values
of `:

Pr[f(L) = 1] =
∑
`

Pr[f(L) = 1 |L = `] · Pr[L = `],

=
∑
`

Pr[f(π(L)) = 1 |π(L) = `] · Pr[L = `]. (2)

In the second step, we just renamed the variables on the right-hand side.
Now, we claim that Pr[L = `] = Pr[π(L) = `]. To see this, we first compute

the probability Pr[L = `]. This is just the probability of choosing a particular
set of Rs that corresponds to the lengths in ` (up to reordering), so

Pr[L = `] = d! · Pr
(R1,...,Rd)

 (R1 = `1) ∧
(R2 = `1 + `2) ∧
(R3 = `1 + `2 + `3) ∧ . . .

 .
Since `i > 0 for all i ∈ {1, . . . , d}, we are asking for the probability that
(R1, . . . , Rd) take on a particular set of d distinct values. This probability is

1

n
· 1

n− 1
· · · 1

n− d+ 1
=

(n− d)!
n!

,

so

Pr[L = `] =
d!(n− d)!

n!
=

(
n

d

)−1
.

Note that this probability is independent of `, so we also have that Pr[π(L) =

`] =
(
n
d

)−1. Finally, we substitute this last equation into (2) to get:

Pr[f(L) = 1] =
∑
`

Pr[f(π(L)) = 1 |π(L) = `] · Pr[π(L) = `]

= Pr[f(π(L)) = 1].

Having proved Lemma 8, we can return to prove Lemma 7.

37

Proof of Lemma 7. Let R = (R1, . . . , Rδm) be integers sampled independently
and uniformly at random from {1, . . . , n}. We want to show that for all subsets
S ⊆ R of size at most m, spreadS(R) ≥ n/2ω. To do so, we first define a bad
event B, then show that bounding Pr[B] is enough to prove the lemma, and
finally we bound Pr[B].

The Bad Event B. Write the integers in R in non-decreasing order as (X1, . . . ,
Xδm), then define X0 = 0, Xδm+1 = n. Let the bad event B be the event that
there exists a set S′ ⊆ {X1, . . . , Xδm+1} of size at most (m + 1), such that∑
Xi∈S′(Xi −Xi−1) ≥ (1− 2−ω)n.
We claim that whenever there exists a set S ⊆ R of size at most m that

causes spreadS(R) < n/2ω, then bad event B must occur. To see this, assume
that such a “bad” set S exists. Then construct a set S′ = S ∪ {Xδm+1} of size
at most m+ 1. Then we compute∑
Xi∈S′

(Xi −Xi−1) = n−Xδm +
∑
Xi∈S

(Xi −Xi−1) = n−
∑

Xi∈R\S

(Xi −Xi−1).

The last equality holds because
∑
Xi∈R(Xi−Xi−1) =

∑δm
i=1(Xi−Xi−1) = Xδm.

But, by definition of S, spreadS(R) =
∑
Xi∈R\S(Xi −Xi−1), and we know that

spreadS(R) < n/2ω, so we have that∑
Xi∈S′

(Xi −Xi−1) ≥ (1− 2−ω)n.

This establishes that bounding the probability of the bad event B is enough to
prove the lemma.

Strategy to Bound Pr[B]. We now bound the probability of the bad event
B. To execute this analysis, let D be a random variable denoting the num-
ber of distinct integers in the list of random integers R. For any fixed integer
d∗ ∈ {1, . . . , δm}, we can write:

Pr[B] = Pr[B|D < d∗] · Pr[D < d∗] + Pr[B|D ≥ d∗] · Pr[D ≥ d∗]
≤ Pr[D < d∗] + Pr[B|D ≥ d∗]. (3)

To bound Pr[B], we take d∗ = δm/2 and then bound the two probabilities on
the right-hand side.

Bounding Pr[D < d∗]. We now compute Pr[D < d∗]. The probability of this
event is at most the probability that we throw δm balls into n bins, and all δm
balls fall into a set of d∗ = δm/2 bins.

Pr[D < d∗] ≤
(
n

d∗

)(
d∗

n

)δm
≤
(n · e
d∗

)d∗ (d∗
n

)δm
=

(
d∗

n

)δm−d∗
ed
∗
. (4)

38

Recall that d∗ = δm/2. By the hypothesis of the lemma, m < 2(1−ω+
2ω
δ) 2n

δe .
Therefore, δme/(2n) < 2(1−ω+

2ω
δ). Then from (4), we have:

Pr[D < d∗] ≤
(
δme

2n

)δm/2
≤
(
2(1−ω+

2ω
δ)
)δm/2

≤ 2[(1−ω)
δ
2+ω]m. (5)

Bounding Pr[B|D = d]. We now bound the probability of the bad event B,
conditioned on there being exactly d distinct integers in the list R, for some
d ≥ d∗.

Step 1: Consider sets of distinct elements. Recall that the bad event B occurs
if there is a subset S′ ⊆ X = (X1, . . . , Xδm+1) of size at most (m+1), such that∑
Xi∈S′(Xi −Xi−1) ≥ (1− 2−ω)n.
Whenever bad event B occurs, there is also a subset S′dist of distinct integers

in X such that S′dist (a) also has this “bad” property and (b) has size at most
(m+1). Furthermore, if there exists one such set S′dist with size less than (m+1),
there also exists a “bad” set of distinct elements with size exactly (m+1), as long
aslong as m + 1 ≤ d. (Since d ≥ d∗ = δm/2, it always holds that m + 1 ≤ d.)
So, we need only to bound the probability that there exists a bad subset S′dist
of distinct integers of size exactly (m+ 1).

Step 2: Apply Lemma 8 to simplify the calculation. Write the d distinct integers
in R in ascending order as Y = (Y1, . . . , Yd). We must bound the probability
that a size-(m+1) subset S′dist ⊆ Y is bad. Fix a set of indices I ⊆ {1, . . . , d+1}
of size (m+ 1). We bound the probability that the subset S′dist = {Yi | i ∈ I} is
bad.

Let f : Zd+1 → {0, 1} be a function that returns 1 if its first (m + 1) argu-
ments sum to at least (1− 2−ω)n, and that outputs 0 otherwise. Use the Y s to
define lengths (L0, . . . , Ld+1) as in Lemma 8. Let π be a permutation on d + 1
elements such that if i ∈ I, then Li appears as one of the first m + 1 elements
of (Lπ(1), . . . , Lπ(d+1)).

Then, for all d ∈ {d∗, . . . , δm+1}, we can calculate the probability that there
exists a bad subset S′ ⊆ Y of size (m+ 1) as:

Pr

[∑
i∈I

Li ≥ (1− 2−ω)n |D = d

]
= Pr[f(Lπ(1), . . . , Lπ(d+1)) = 1

∣∣D = d]

= Pr[f(L1, . . . , Ld+1) = 1
∣∣D = d]

= Pr[(L1 + · · ·+ Lm+1) ≥ (1− 2−ω)n
∣∣D = d].

We applied Lemma 8 to derive the second equality above.

Step 3: Complete the calculation using a balls-into-bins argument. The last
probability on the right-hand side is relatively easy to compute. To compute
Pr[B|D = d], we must compute

Pr[(L1 + · · ·+ Lm+1) ≥ (1− 2−ω)n
∣∣D = d],

39

which is the probability that a single set is bad. We then apply the Union Bound
over all possible sets to bound Pr[B|D = d].

The event L1+L2+...+Lm+1 ≥ (1−2−ω)n can only happen when d−(m+1)
of the integers are greater than 2−ωn. (Otherwise the first m+1 segments would
have length less than (1− 2−ω)n.)

The probability of this event is no greater than the probability that d−(m+1)
balls thrown independently at random into n bins all end up in the rightmost
2−ωn bins. This probability is at most (2−ω)(d−m−1), so

Pr[(L1 + L2 + ...+ Lm+1) ≥ (1− 2−ω)n |D = d] ≤
(
1

2

)ω(d−m−1)
.

Then we apply the Union Bound over all
(
d+1
m+1

)
possible size-(m+1) subsets

S′ of segments that could be large to get:

Pr[B |D = d] ≤
(
d+ 1

m+ 1

)(
1

2

)ω(d−m−1)
≤ 2d+12−ω(d−m−1) = 2(1−ω)d+ωm+ω+1. (6)

Bounding Pr[B|D ≥ d∗]. We can write

Pr[B|D ≥ d∗] =
δm+1∑
d=d∗

Pr[B|D = d] · Pr[D = d]. (7)

The upper bound on Pr[B|D = d] given by (6) is non-increasing in d when
ω ≥ 1. Since ω is a positive integer, we can apply the bound of (6) to bound (7)
as:

Pr[B|D ≥ d∗] ≤ 2(1−ω)d
∗+ωm+ω+1 ·

δm+1∑
d=d∗

Pr[D = d]

≤ 2(1−ω)d
∗+ωm+ω+1

≤ 2(1−ω)(δm/2)+ωm+ω+1

≤ 2ω+12[(1−ω)
δ
2+ω]m. (8)

Completing the Proof. By (3), we have

Pr[B] = Pr[D < d∗] + Pr[B|D ≥ d∗].

Applying (5) and (8), yields the bound:

Pr[B] ≤ 2[(1−ω)
δ
2+ω]m + 2ω+12[(1−ω)

δ
2+ω]m

= (2ω+1 + 1)2[(1−ω)
δ
2+ω]m

≤ 2ω+2 · 2[(1−ω) δ2+ω]m.

40

D Sandwich Graphs

In this section we recall the definition of sandwich graphs [8], and introduce a
few transformations on sandwich graphs that are useful for our analysis of the
Balloon functions.

D.1 Definitions

Definition 9 (Sandwich Graph [8]). A sandwich graph is a directed acyclic
graph G = (U ∪ V,E) on 2n vertices, which we label as U = {u1, . . . , un} and
V = {v1, . . . , vn}. The edges of G are such that

– there is a (ui, ui+1) edge for i = 1, . . . , n− 1,
– there is a (un, v1) edge,
– there is a (vi, vi+1) edge for i = 1, . . . , n− 1, and
– all other edges cross from U to V .

Figure 9 (left) depicts a sandwich graph. If G = (U ∪ V,E) is a sandwich
graph, we refer to the vertices in U as the “top” vertices and vertices in V as the
“bottom” vertices.

Definition 10 (Well-Spread Predecessors). Let G = (U ∪ V,E) be a sand-
wich graph and fix a subset of vertices V ′ ⊂ V . Write the immediate predecessors
of V ′ in U as P = {ui1 , ui2 , . . . , ui|P |}. Then we say that the predecessors of
V ′ are (σ, ρ)-well spread if the corresponding set of integers {i1, i2, . . . , i|P |} is
(σ, ρ)-well spread, in the sense of Definition 6.

Definition 11 (Avoiding Set). Let G = (U∪V,E) be a directed acyclic graph.
We say that the subset V ′ ⊂ V is a (σ, ρ)-avoiding set if, after placing σ pebbles
anywhere on the graph, except on V ′, there are at least ρ distinct vertices in U
on unpebbled paths to V ′.16

Figure 8 gives an example of an avoiding set.

Lemma 12 Let G = (U ∪ V,E) be a sandwich graph and let V ⊂ V ′. If the
predecessors of V ′ are (σ, ρ)-well spread, then V ′ is a (σ, ρ)-avoiding set.

Proof. We can think of the p predecessors of vertices in V ′ as dividing the chain of
vertices in U (the “top half of the sandwich”) into p smaller sub-chains of vertices.
If the predecessors of V ′ are (σ, ρ)-well spread then, after removing any σ of these
sub-chains, the remaining chains collectively contain ρ vertices. We know that
there can be at most σ pebbles on vertices in U , so at most σ sub-chains contain
a pebbled vertex. The remaining sub-chains, collectively containing ρ vertices,
contain no pebbled vertices. The ρ vertices in these unpebbled sub-chains all
are on unpebbled paths to V ′, which proves the lemma.
16 More formally: for all possible placements of σ vertices on the graph G except on
V ′, there exists a size-ρ set of vertices U ′ ⊆ U such that for all vertices u ∈ U ′, there
exists a vertex v ∈ V ′ and a u-to-v path p in G such that no vertex in the path p
contains a pebble.

41

U

V

V ′

Fig. 8: The set V ′ is a (1, 4)-avoiding set: after placing any single pebble on the
graph (except on vertices in V ′), there will still be at least four vertices in U on
unpebbled paths to V ′.

Definition 13 (Everywhere-Avoiding Graph). Let G = (U ∪ V,E) be a
directed acyclic graph. The graph G is a (σ, ρ)-everywhere avoiding graph if for
every subset V ′ ⊂ V such that |V ′| = σ, the subset V ′ is a (σ, ρ)-avoiding set.

Definition 14 (Consecutively-Avoiding Graph). Let G = (U ∪ V,E) be
a directed acyclic graph, with vertices in V labeled v1 to vn. The graph G is
a (κ, σ, ρ)-consecutively avoiding graph if every subset V ′ ⊂ V of consecutive
vertices of size κ is (σ, ρ)-avoiding.

D.2 Transformations on Sandwich Graphs

Sandwich graphs are useful in part because they maintain certain connectivity
properties under a “localizing” transformation. Let G be a sandwich graph. Let
(a1, . . . , an) be the top vertices of the graph G and let (an+1, . . . , a2n) be the bot-
tom vertices. The localized graph L(G) on vertices (a1, . . . , a2n) has the property
that every predecessor of a vertex ai falls into the set {amax{1,i−n}, . . . , ai−1}. (In
the unlocalized graph, ai’s predecessors fell into the larger set {amax{1,i−2n}, ai−1}.)
If we think of the set {amax{1,i−n}, . . . , ai−1} as the vertices “nearby” to vertex
ai, then the localizing transformation ensures that the predecessors of every
vertex ai all fall into this set of nearby vertices. Figure 9 demonstrates this
transformation.

We use this localizing transformation to make more efficient use of buffer
space in the Balloon algorithm. It is possible to pebble a localized sandwich
graph in linear time with n + O(1) pebbles, whereas a non-localized sandwich
graph can require as many as 2n pebbles in the worst case. This transformation
makes computing the Balloon function easier for anyone using n space, while
maintaining the property that the function is hard to compute in much less
space. (Smith and Zhang find a similar locality property useful in the context
of leakage-resilient cryptography [82].)

Definition 15. Let G = (U ∪V,E) be a sandwich graph with U = (u1, . . . , un),
V = (v1, . . . , vn). The localized graph L(G) = (L(V) ∪ L(U),L(E)) has top and
bottom vertex sets L(U) = {ũ1, . . . , ũn} and L(V) = {ṽ1, . . . , ṽn}, and an edge

42

set

L(E) =

{(ũi, ṽi) | i ∈ {1, . . . , n}} ∪
{(ũi, ũi+1) | i ∈ {1, . . . , n− 1}} ∪
{(ṽi, ṽi+1) | i ∈ {1, . . . , n− 1}} ∪
{(ũn, ṽ1)} ∪
{(ṽi, ṽj) | (ui, vj) ∈ E and i ≤ j} ∪
{(ũi, ṽj) | (ui, vj) ∈ E and i > j}.

V

U u1

v1

u2

v2

u3

v3

u4

v4 Ṽ

Ũ ũ1

ṽ1

ũ2

ṽ2

ũ3

ṽ3

ũ4

ṽ4

Fig. 9: A sandwich graph G (left) and the corresponding localized graph L(G)
(right).

Claim 16 Let G = (U ∪ V,E) be a sandwich graph and let V ′ ⊂ V be a subset
whose predecessors are (σ, ρ)-well spread. Let L(V ′) be the vertices corresponding
to V ′ in the localized graph L(G). Then L(V ′) is a (σ, ρ)-avoiding set.

Proof. Fix a pebbling of L(G) using σ pebbles with no pebbles on V ′. For every
edge (ui, vj) ∈ U × V in G, there is either (a) a corresponding edge in L(G), or
(b) a pair of edges (ui, vi) and (vi, vj) in L(G). If the vertex vi does not contain
a pebble, then for analyzing the avoiding-set property, we can consider there
to exist a (ui, vj) edge. There are now at most σ pebbled U -to-V ′ edges. By
Lemma 12, the (σ, ρ)-avoiding set property follows.

Corollary 17 If G is a sandwich graph such that every subset of σ vertices
V ′ ⊂ V is (σ, ρ)-well-spread, then L(G) is a (σ, ρ)-everywhere avoiding graph.

Corollary 18 If G is a sandwich graph such that every subset of κ vertices
V ′ ⊂ V is (σ, ρ)-well-spread, then then L(G) is a (κ, σ, ρ)-consecutively avoiding
graph.

The next set of graph transformations we use allows us to reduce the in-degree
of the graph from δ down to 2 without affecting the key structural properties
of the graph. Reducing the degree of the graph allows us to instantiate our
construction with a standard two-to-one compression function and avoids the
issues raised in Appendix B.3. The strategy we use follows the technique of Paul
and Tarjan [66].

43

Definition 19. Let G = (U ∪ V,E) be a (possibly localized) sandwich graph.
We say that the degree-reduced graph D(G) is the graph in which each vertex
vi ∈ V in G of in-degree δ+1 is replaced with a path “gadget” whose vertices have
in-degree at most 2. The original predecessor vertex vi−1 is at the beginning of
the path, there are δ − 1 internal vertices on the path, and the original vertex
vi is at the end of the path. The δ other predecessors of vi are connected to the
vertices of the path (see Figure 10).

By construction, vertices in D(G) have in-degree at most two. If G is a sand-
wich graph on 2n vertices, then D(G) still has n “top” vertices and n “bottom”
vertices. If the graph G had out-degree at most δ, then the vertex and edge sets
of D(G) are at most a factor of (δ − 1) larger than in G, since each gadget has
at most (δ − 1) vertices. The degree-reduced graph D(G) has extra “middle”
vertices (non-top non-bottom vertices) consisting of the internal vertices of the
degree-reduction gadgets (Figure 10).

D(V)

D(U)

V

U

. D(V)

D(U)

.

Fig. 10: A portion of a sandwich graph G (left) and the same portion of the
corresponding degree-reduced graph D(G) (right). The shaded vertices are part
of the degree-reduction gadget.

Claim 20 Let G = (U ∪ V,E) be a (possibly localized) sandwich graph and let
D(G) be the corresponding degree-reduced graph. Let V ′ ⊂ V be a (σ, ρ)-avoiding
set in G, let D(V ′) be the vertices corresponding to V ′ and the degree-reduction
gadgets attached to vertices in V ′. Then D(V ′) is a (σ, ρ)-avoiding set.

Proof. For every pebbling of vertices in D(G) that violates the avoiding property
of D(V ′), there is a corresponding pebbling in G that violates the avoiding
property of V ′. To convert a pebbling of D(G) into a pebbling of G, just place
a pebble on every vertex in G whose corresponding degree-reduction gadget in
D(G) has a pebble. The claim follows.

Corollary 21 If G is a (σ, ρ)-everywhere avoiding sandwich graph, then D(G)
is “almost” a (σ, ρ)-everywhere avoiding graph, in the sense that every subset of
σ degree-reduction gadgets is a (σ, ρ)-avoiding set.

Corollary 22 If G is a (κ, σ, ρ)-consecutively avoiding sandwich graph, then
D(G) is “almost” (κ, σ, ρ)-consecutively avoiding graph, in the sense that every
subset of σ degree-reduction gadgets is a (σ, ρ)-avoiding set.

44

D.3 Pebbling Sandwich Graphs

Lemma 23 Let G = (U ∪ V,E) be a (κ, σ, ρ)-consecutively-avoiding sandwich
graph on 2n vertices. LetM be a legal sequence of pebbling moves that begins with
no pebbles on the bottom half of the graph and that pebbles the topologically last
vertex in G at some point. Then we can divideM into L = n/(2κ) subsequences
of legal pebbling moves M1, . . . ,ML such that each subsequence Mi pebbles at
least ρ unpebbled vertices in U .

The proof follows the idea of Lengauer and Tarjan’s analysis of pebbling
strategies for the “bit-reversal” graph [54].

Proof. Label the vertices in V in topological order as (v1, . . . , vn). Divide these
vertices into bn/κc intervals of size κ. The last vertex in each of the intervals is
then: vκ, v2κ, v3κ, . . . , vbn/κcκ.

Consider any legal sequence of pebbling moves M of the last vertex in G.
Let t0 = 0 and let ti be the time step at which vertex viκ (the last vertex in the
ith interval) first receives a pebble. We know that at ti−1, there are no pebbles
on the ith interval—this is because, by the structure of a sandwich graph, all of
the pebbles in V must be pebbled in order. Thus, between ti−1 and ti, every
dependency of the vertices in interval i must receive a pebble.

These are κ consecutive vertices. Since G is (κ, σ, ρ)-consecutively avoiding,
the vertices in interval i are a (σ, ρ)-avoiding set. By the definition of an avoiding
set, at time ti−1 there must be at least ρ unpebbled dependencies in U of the
vertices in the ith interval. All of these vertices must receive pebbles by time ti.
Thus, in each time interval, the M must pebble a set of ρ unpebbled vertices
in U .

We have that κ ≤ n, so bn/κc ≥ n/(2κ), so there are at least n/(2κ) sets of
ρ unpebbled vertices in U that receive pebbles during the pebbling.

We now let the subsequence Mi defined in the lemma be the sequence of
pebbling moves between ti−1 and ti, and the lemma follows.

Corollary 24 Pebbling a (κ, σ, ρ)-consecutively avoiding (possibly localized) sand-
wich graph with σ pebbles, starting with no pebbles on the bottom half of the graph
requires at least ρn

2κ pebbling moves.

Proof. By Lemma 23, the pebbling pebbles at least ρ unpebbled vertices at least
n/(2κ) times, so the total time required must be at least ρn

2κ .

A key piece of our analysis involves “stacks” of everywhere-avoiding sandwich
graphs. Given a sandwich graph with n top vertices and n bottom vertices, we
can stack the graphs by making the bottom nodes of the zero-th copy of the
graph, the top nodes of the first copy of the graph (see Figure 11).

Lemma 25 Let G be a depth-d stack of (σ, 2σ)-everywhere avoiding sandwich
graphs. Let V ′ be a set of σ level-d vertices in the graph. Fix a configuration C
of at most σ pebbles anywhere on the graph, except that there are no pebbles on
vertices in V ′. Then ifM is a sequence of legal pebbling moves such that

45

L3

L2

L1

L0

Fig. 11: A stack of d = 3 sandwich graphs. The top vertices of the stack are at
level L0 and the bottom vertices are at level L3.

– M beings in configuration C,
– M at some point places a pebble on every vertex in V ′, and
– M never uses more than σ pebbles,

thenM must consist of at least 2dσ pebbling moves.

Proof. By induction on the depth d.

Base case (d = 1). By the fact that the graph G is (σ, 2σ)-everywhere avoiding,
the σ vertices in the set V ′ must have at least 2σ unpebbled dependencies on
the top level of the graph. These unpebbled predecessors of vertices in V ′ all
must receive pebbles duringM, soM must contain at least 2σ moves.

Induction Step. As in the base case, we know that there are at least 2σ
unpebbled level-(d−1) dependencies of V ′ that must receive pebbles duringM.
Now we can divide M into two sub-sequences of consecutive pebbling moves:
M = M1‖M2. We divide the pebbling moves such that M1 consists of the
moves during which the first σ of the 2σ unpebbled dependencies receive pebbles,
andM2 consists of the rest of the moves.

Note now that the induction hypothesis applies to bothM1 andM2:

– Each set of moves begins in a configuration of at most σ pebbles on the
graph.

– Each set of moves pebbles a set of σ initially unpebbled level-(d−1) vertices.
– Each set of moves never uses more than σ pebbles.

Thus the total number of pebbling moves required inM is at least 2 · (2d−1σ),
which proves the lemma.

Remark 26 The arguments of Lemmata 23 and 25 apply also to localized and
degree-reduced sandwich graphs, by Corollaries 17, 18, 21, and 22.

46

D.4 Random Sandwich Graphs

Now we introduce two special types of sandwich graphs that we use in the
analysis of the Balloon function. Alwen and Blocki [3] use the same type of
sandwich graphs in their analysis (indeed, their work has inspired our use of
sandwich graphs), though the results we prove here are new.

Definition 27 (δ-Random Sandwich Graph). A δ-random sandwich graph
is a sandwich graph G = (U∪V,E) such that each vertex in V has δ predecessors
sampled independently and uniformly at random from the set U .

Lemma 28 Let G = (U ∪ V,E) be a 3-random sandwich graph on 2n vertices.
Then for all positive integers 16 < n0, G is an (m,m, n/16)-consecutively avoid-
ing graph for all m such that n0 ≤ m < n/6, except with probability at most
28 · n · 2−n0/2.

Proof. The predecessors of a set of m = |V ′| vertices are δm vertices i.u.r.
sampled from the set of n “top” vertices. By Lemma 7, with δ = 3 and ω = 4,
the probability that a single consecutive set ofm vertices induces a poorly spread
set of predecessors is at most

2ω+22[(1−ω)
δ
2+ω)]|V

′| = 262−|V
′|/2.

We then apply the Union Bound over all sets of m consecutive vertices to find
the probability that there exists a bad set. For each choice of m, there are at
most n sets V ′ of consecutive vertices, so

Pr[∃ bad set] ≤ 26
n∑
i=1

n∑
m=1

2−m/2 ≤ n · 26
∞∑

m=n0

2−m/2

This is just a geometric series with ratio r = 2−1/2.

Pr[∃ bad set] ≤ n · 26 · r
n0

1− r
≤ n · 26 · 2−n0/2

1− 2−1/2
.

The denominator is at least 1− 2−1/2 ≈ 0.292 . . . ≥ 1/4, so

Pr[∃ bad set] ≤ 28n · 2−n0/2,

which completes the proof.

Lemma 29 A 7-random sandwich graph on 2n vertices with 211 < n, is an
(n/64, n/32)-everywhere avoiding graph, with probability at least 1−128 ·2−n/50.

Proof. Let δ = 7 and ω = 5. First, consider the probability that a single set
V ′ ⊂ V in G induces a set that is not (n/64, n/32)-well spread.

47

Let m = n/2ω+1. Since we have 22ω+1 < n, by the hypothesis of the lemma,
2ω < n/2ω+1 = m. By the hypothesis of the lemma, δe < 23+

2ω
δ , so

δe < 23+
2ω
δ

nδe < 23+
2ω
δ n

n < 23+
2ω
δ
n

δe

m =
n

2ω+1
< 2(2−ω+

2ω
δ) n

δe
.

Since 2ω < m < 2(2−ω+
2ω
δ) n

δe , m satisfies the conditions of Lemma 7.
The probability that a single set V ′ ⊂ V in G induces a set that is not

(n/2ω+1, n/2ω)-well spread is then is at most 2ω+2 · 2[(1−ω) δ2+ω]m. by Lemma 7.
Let k = (1 − ω) δ2 + ω. We then apply the Union Bound over sets V ′ of size
n/2ω+1 to find the probability that there exists a bad set V ′:

Pr[∃ bad set] ≤
(

n

n/2ω+1

)
· 2ω+2 · (2k)

n

2ω+1

≤
(

n · e
n/2ω+1

) n

2ω+1

· 2ω+2 · (2k)
n

2ω+1

≤
(
e · 2ω+1

) n

2ω+1 · 2ω+2 · (2k)
n

2ω+1

≤ 2ω+2
(
e · 2ω+1 · 2k

) n

2ω+1

≤ 2ω+2
(
2log2 e+ω+1+k

) n

2ω+1 .

Here, we used the standard inequality
(
n
a

)
≤ (nea)a. Then we have that the

probability that there exists a bad set is at most

27 ·
(
2

(1−ω) δ
2
+2ω+log2 e+1

2ω+1

)n
≈ 128 · 2−0.02433n < 128 · 2−n/50.

This proves the lemma.

Lemma 30 Let Gn,d be a depth-d stack of 3-random sandwich graphs with n ver-
tices on each level. Then, every sandwich graph in the stack is an (m,m, n/16)-
consecutively avoiding graph, for 16 < n0 and all n0 ≤ m < n/6, except with
probability

pconsec(n, d, n0) ≤ 28 · d · n · 2−n0/2.

Moreover, Gn,d is a depth-d stack of 7-random sandwich graphs, then every
sandwich graph in the stack is (n/64, n/32)-everywhere avoiding when 211 < n,
except with probability:

pevery(n, d) ≤ 128 · d · 2−n/50.

Proof. The probability that Gn,d does not satisfy the first property is at most
pconsec ≤ 28 · d · n · 2−n0/2 by Lemma 28 and a Union Bound over the d levels

48

of the graph. The probability that Gn,d does not satisfy the second property is
at most pevery ≤ 128 · d · 2−n/50 by Lemma 29 and an application of the Union
Bound over the d levels of the graph.

Lemma 31 Let Gn,d be a depth-d stack of δ-random sandwich graphs with n
vertices on each level. Fix n0 > 16. Then, pebbling the topologically last vertex
of Gn,d with at most S pebbles requires time T such that:

(a) when δ ≥ 3: S · T ≥ dn2/32 for space usage n0 ≤ S, except with probability
pconsec(n, d, n0) defined in Lemma 30, and

(b) when δ ≥ 7: S · T ≥ (2d − 1)n2/32 for space usage n0 ≤ S < n/64, when
211 < n, except with probability pevery(n, d), defined in Lemma 30.

Proof. Lemma 30 demonstrates that, except with probability pconsec defined in
the lemma, the last sandwich graph in the stack is an (S, S, n/16)-consecutively
avoiding graph when δ ≥ 3 for all S satisfying the first part of the lemma, except
with small probability. (Lemma 30 only discusses graphs with δ = 3, but since a
(δ+1)-random sandwich graph contains a δ-random sandwich graph, the lemma
still applies.) Additionally, when δ ≥ 7, for all S satisfying the second part of
the lemma, every sandwich graph in the stack is additionally a (n/64, n/32)-
everywhere avoiding, except with small probability.

Conditioned on these failure events not happening, we can prove the theorem
by induction on d, the depth of the stack of sandwich graphs.

Base Case (d = 1). When d = 1, part (a) of the theorem implies part (b).
Part (a) follows immediately by by Corollary 24: pebbling an (S, S, n/16)-
consecutively avoiding graph with S pebbles requires at least n2

32S pebbling
moves. Thus S · T ≥ n2/32 when S satisfies the condition of the lemma.

Induction Step. Assume the theorem holds for stacks of depth at most d− 1.
At the start of a pebbling of Gn,d, there are no pebbles on the graph.

To prove Part (a): To place a pebble the first pebble on level d of the graph,
we must first place a pebble on the last vertex of level d−1 of the graph. By the
induction hypothesis, this requires at least (d−1)n2/(32S) pebbling moves. Now
there are no pebbles on the last level of the graph, by Corollary 24, pebbling an
(S, S, n/16)-consecutively avoiding graph with S pebbles—for some S satisfying
the hypothesis of the lemma—requires at least n2

32S pebbling moves. Thus

T ≥ n2

32S
+

(d− 1)n2

32S
=
dn2

32S
,

and Part (a) is proved.

To prove Part (b): To place a pebble the first pebble on the last level of the
graph, we must first place a pebble on the last vertex of level d− 1 of the graph.
By the induction hypothesis, this requires at least Td−1 ≥ (2d−1 − 1)n2/(32S)
pebbling moves, if S satisfies the bound of part (b) of the lemma and δ ≥ 7.

49

•

•

•

•

•

•

•

•

v
(t−1)
1

v
(t)
1

v
(t−1)
2

v
(t)
2

v
(t−1)
3

v
(t)
3

v
(t−1)
4

v
(t)
4

(a) Pseudo-random edges.

•

•

•

•

•

•

•

•

v
(t−1)
1

v
(t)
1

v
(t−1)
2

v
(t)
2

v
(t−1)
3

v
(t)
3

v
(t−1)
4

v
(t)
4

(b) Backwards edges.

•

•

•

•

•

•

•

•

v
(t−1)
1

v
(t)
1

v
(t−1)
2

v
(t)
2

v
(t−1)
3

v
(t)
3

v
(t−1)
4

v
(t)
4

(c) In-place edges.

Fig. 12: Components of the data-dependency graph for one Balloon mixing
round. Here, v(t)i represents the value stored in the ith block in the main memory
buffer at the tth mixing round.

By Corollary 24, pebbling an (S, S, n/16)-consecutively avoiding graph that
has no pebbles on the bottom half of the graph with S pebbles requires pebbling
at least n/(32S) subsets of n/16 vertices on the “top half” of the sandwich graph.

These n/16 vertices are the bottom vertices of a depth-(d − 1) stack of
(n/64, n/32)-everywhere avoiding graphs. By Lemma 25, pebbling any n/64 un-
pebbled vertices of a depth-(d−1) stack of such graphs with at most n/64 pebbles
requires at least 2d−1n/64 moves. Since there are (n/16)/(n/64) = 4 segments of
such vertices, the total time required to pebble them is (2d−1n/16) = 2dn/32.17

The total time to pebble each of the n/(2S) segments of such vertices is then:

Td ≥
n

2S
· 2

dn

32
=

2d−1n2

32S
.

So the total time to place a pebble on the last vertex of the d-th level of the
graph is:

T ≥ Td + Td−1 ≥
2d−1n2

32S
+

(2d−1 − 1)n2

32S
=

(2d − 1)n2

32S
,

and Part (b) is proved.

E From Pebbling to Memory-Hardness

In this section, we complete the security analysis of the Balloon function. We
present the formal proof of the claim that the space S and time T required to
compute the r-round Balloon function satisfies (roughly) S · T ≥ rn2/32. The
other pieces of Informal Theorem 1 follow from repeated application of the same
technique.

17 More formally, we can divide any sequence of pebbling moves M that pebbles all
of these 4 segments into 4 distinct sub-sequences of consecutive pebbling moves. By
Lemma 25, each of these sub-sequences must contain at least 2d−1n/64 moves.

50

Claim 32 The output of the n-block r-round Balloon construction is the label-
ing, in the sense of Definition 3, of a depth-r stack of localized and degree-reduced
δ-random sandwich graphs.

Proof. Follows by inspection of the Balloon algorithm (Figure 1).

Theorem 33 (Formal statement of first part of Informal Theorem 1)
Let k denote the block size (in bits) of the underlying cryptographic hash function
used in the Balloon constructions. Any algorithm A that computes the output of
the n-block r-round Balloon construction (with security parameter δ = 3), makes
T random-oracle queries, and uses fewer than σ bits of storage space, such that

T <
rn2

32S∗
and σ < S∗

(
k − log2

(
rn2

32S∗

))
− k,

for some n0 and S∗ satisfying 16 < n0 ≤ S∗ < n/6, then the probability that A
succeeds is at most

T + 1

2k
+ pconsec(n, r, n0),

where pconsec(·, ·, ·) is defined in Lemma 30.

Proof of Theorem 33. Fix an algorithm A. By Claim 32, A outputs the labeling
of a depth-r stack of 3-random sandwich graphs. By Lemma 31, shows that
pebbling these graphs with n0 ≤ S < n/6 pebbles takes time at least n2/(32S),
except with some small probability. Let B denote this event that the pebbling
bound does not hold.

Then we have:

Pr[A succeeds] = Pr[A succeeds|B] · Pr[B]+

Pr[A succeeds|¬B] · Pr[¬B]

≤ Pr[A succeeds|¬B] + Pr[B].

From Lemma 31, Pr[B] ≤ pconsec(3, 4, n0, n, r).
Conditioned on ¬B, we may use Lemma 31 in conjunction with Theorem 5 to

show that Pr[A succeeds|¬B] is small. In particular, for any S∗ ≥ n0, there does
not exist a pebbling of the graph that uses than T ∗ = rn2

32S∗ pebbling moves.18
We then apply Theorem 5 to conclude that Pr[A succeeds|¬B] ≤ (T + 1)/2k.
This completes the proof.

The other parts of Informal Theorem 1 follow from a similar analysis.

18 The graph used in the Balloon construction is degree-reduced and localized, so it is
not precisely a δ-random sandwich graph, but by Remark 26, the pebbling time-space
lower bounds still apply to the degree-reduced and localized graph.

51

F Argon2i Proof of Security

In this section, we show that the proof techniques we introduce for the analysis of
the Balloon algorithm can also apply to prove the first known memory-hardness
results on the Argon2i algorithm.

We focus here on the single-pass variant of Argon2i, described in Section 4,
and do not attempt to generalize our results to the multi-pass variant. As in
Section 4, we analyze an idealized version of Argon2i, in which the randomly
chosen predecessor of a vertex is chosen using the uniform distribution over the
topologically prior vertices.

Theorem 34 Let An denote the single-pass Argon2i data-dependency graph on
n blocks. Fix a positive integer n0 > 16. Then pebbling An with S ≥ n0 pebbles
requires time T such that:

S · T ≥ n2

1536
,

except with probability n225−n0/2.

Note that the memory-hardness theorem that we are able to prove here about
single-pass Argon2i is much weaker than the corresponding theorem we can prove
about the Balloon algorithm (Informal Theorem 1). Essentially, this theorem
says that an attacker computing single-pass Argon2i cannot save more than a
factor of 1536× in space without having to pay with some increase in computa-
tion cost.

For the purposes of the security analysis, it will be more convenient to look at
the graph A2n. Take the graph A2n with and write its vertex set in topological
order as: (u1, . . . , un, v1, . . . , vn). We can now think of the u vertices as the “top”
vertices of the graph, and the v vertices as the “bottom” vertices in the graph.
Then we have the following claim:

Claim 35 Consider any set of 12m bottom vertices of the graph A2n, for m >
16. These vertices are an (m,n/16)-avoiding set, in the sense of Definition 11,
except with probability 27−m/2.

Proof. Let vi be some bottom vertex in A2n. The vertex vi has one predecessor
(call it pred(vi)) chosen i.u.r. from the set {u1, . . . , un, v1, . . . , vi−1}. Conditioned
on the event that that pred(vi) ∈ {u1, . . . , un}, this predecessor is chosen i.u.r.
from the set of top vertices {u1, . . . , un}. Let Ti be an indicator random variable
taking on value “1” when vertex vi’s randomly chosen predecessor is a top vertex.
Then Pr[Ti = 1] ≥ 1/2.

Fix a set V ′ of κm vertices on the bottom half of the graph. We want to show
that, with high probability, V ′ has at least 3m predecessors in the top-half of
the graph. The expected number of top-half predecessors of the set V ′ is at least
κm/2, and we want to bound the probability that there are at most 3m top-
half predecessors. A standard Chernoff bound gives that, for κm independent

52

Poisson trials with success probability at least 1/2, the probability that fewer
than 3m of them succeed is bounded by

Pr

[∑
vi∈V ′

Ti < 3m

]
< exp

(
−
(κm2)(1− 6

κ)
2

2

)
,

for κ > 6. Now taking κ = 12 gives:

Pr

[∑
vi∈V ′

Ti < 3m

]
< exp

(
−3m

4

)
< 2−m.

Now, by Lemma 7 (with δ = 3 and ω = 4), the probability that the prede-
cessors of set V ′ are not (m,n/16)-well-spread over the top vertices is at most
262−m/2. By the Union Bound, the probability that either V ′ has fewer than 3m
i.u.r. top-half predecessors or that these predecessors are poorly spread is at most
26−m/2+2−m ≤ 27−m/2. By Lemma 12, the set V ′ is then an (m,n/16)-avoiding
set, except with probability 27−m/2.

Proof of Theorem 34. Fix an integer n0. We show that A2n is a (12m,m, n/16)-
consecutively avoiding graph when n0 ≤ m ≤ n/12, except with probability
n227−n0/2. The probability that any consecutive set of 12m vertices on the bot-
tom level of the graph is not an (m,n/16)-avoiding set is at most

∑n
i=1

∑n
m=n0

27−m/2 ≤
n227−n0/2, using Claim 35 and the Union Bound.

Now, we apply Corollary 24 (with κ = 12m, σ = m, ρ = n/16) to conclude
that pebbling A2n with at most S pebbles requires at least T ≥ n2

384S pebbling
moves, when n0 < S < n/12, except with probability n227−n0/2. Alternatively,
we can write: S · T ≥ n2/384. Since pebbling A2n takes at least 2n pebbling
moves, this bound holds for n/12 ≤ S ≤ 2n as well.

Now, since we are interested in the complexity of pebbling An (not A2n),
we can divide the ns by two to find that pebbling An with at most S pebbles
requires S · T ≥ n2/1536 pebbling moves, when n0 < S, except with probability
at most n225−n0/2.

We can convert the pebbling lower bound into a time-space lower bound in
the random-oracle model using the techniques of Appendix E.

G Analysis of Scrypt

In this section, we show that the proof techniques we have used to analyze the
memory-hardness of the Balloon algorithm are useful for analyzing scrypt.

G.1 Scrypt is Memory-Hard

In particular, we give a very simple proof that a simplified version of the core
routine in the scrypt password hashing algorithm (“ROMix”) is memory-hard

53

in the random-oracle model [68]. Although scrypt uses a password-dependent
access pattern, we show that even if scrypt used a password-independent access
pattern, it would be still be a memory-hard function in the sense of Section 2.2.

Alwen et al. [6] give a proof memory-hardness of scrypt in the stronger par-
allel random-oracle model (Section 5.1) under combinatorial conjectures (see
Footnote 11). Here we prove memory-hardness in the traditional sequential
random-oracle model. Our goal is not to prove a more powerful statement about
scrypt—just to show that our techniques are easy to apply and are broadly rel-
evant to the analysis of memory-hard functions.

Simplified scrypt. The simplified variant of scrypt we consider here—which op-
erates on a buffer (x1, . . . , xn) of n memory blocks using random oracles H1, H2,
and H3—operates as follows:

1. Set x1 ← H1(1, passwd, salt).
2. For i = 2, . . . , n: Set xi ← H1(i, xi−1).
3. Set y ← xn.
4. For i = 2, . . . , n:

– Set r ← H2(i, salt) ∈ {1, . . . , n}.
– Set y ← H3(i, y, xr).

5. Output y.

This variant of scrypt uses a password-independent access pattern, so our time-
space lower bound applies not only to conventional scrypt but also to this cache-
attack-safe scrypt variant. In Step 4 above, if we selected r by also hashing in
the value of y, then we would have a hash function with a password-dependent
scheme that behaves more like traditional scrypt.

Theorem 36 Fix a positive integer n0 > 16. Let Gn denote the data-dependency
graph for the core scrypt function (ROMix) on n memory blocks. Then any strat-
egy for pebbling Gn using at most S pebbles requires at least T pebbling moves,
such that:

S · T ≥ n2

96
,

for S > n0, with probability n226−n0/2.

Proof. By inspection of the ROMix algorithm, one sees that Gn is a 1-random
sandwich graph with n top and n bottom vertices.

We now use an argument similar to that of Lemma 28 to show that Gn is
hard to pebble with few pebbles. Fix an integer m such that n0 ≤ m ≤ n/6.
Then any set of 3m vertices on the bottom half of Gn have 3m predecessors on
the top half of Gn, chosen independently and uniformly at random (using the
random oracle). By Lemma 7 (applied with δ = 3 and ω = 4), these predecessors
are (m,n/16)-well spread over the top vertices, except with probability 26−m/2.

Fix an integer n0 > 16. Using a Union Bound, the probability that any set
of 3m consecutive vertices for m ≥ n0 induces a poorly spread set of predeces-
sors is at most:

∑n
i=1

∑n/6
m=n0

26−m/2 ≤ n226−n0/2. So, except with probability

54

n226−n0/2, the graph Gn is (3m,m, n/16)-consecutively avoiding for m ≥ n0.
Now we can apply Corollary 24 (with κ = 3S, σ = S, and ρ = n/16) to conclude
that pebbling Gn with at most S pebbles, for n0 ≤ S ≤ n/6, requires at least
T ≥ n2

96S pebbling moves with high probability. Thus, we have S · T ≥ n2/96
when n0 ≤ S.

As in Appendix E, we can now turn the pebbling lower-bound into a time-
space lower bound in the random-oracle model. We omit the details, since the
conversion is mechanical.

G.2 Attacking Scrypt Under Access Pattern Leakage

We show that if an attacker can obtain just a few bits of information about the
data-access pattern that scrypt makes when hashing a target user’s password, the
attacker can mount a very efficient dictionary attack against that user’s scrypt-
hashed password in constant space. To demonstrate this, we recall a folklore
attack on scrypt (described by Forler et al. [42]).19

Say that the attacker observes the memory access pattern of scrypt as it
operates on a target user’s password and that the attacker gets ahold of the
target user’s password hash and salt (e.g., by stealing the /etc/shadow file on a
Linux system). Say that scrypt, when hashing on the target’s password, accesses
the memory blocks at addresses (A1, A2, A3, . . .). The attacker can now mount
a dictionary attack against a stolen password file as follows:

– Guess a candidate password p to try.
– Run scrypt on the password p and the salt (which is in the password file), but

discard all blocks of data generated except the most recent one. Recompute
the values of any blocks needed later on in the computation.

– Say that scrypt on the candidate password accesses block A′1 first. If A1 6=
A′1, terminate the execution and try another candidate password.

– Say that scrypt on the candidate password accesses block A′2 next. If A2 6=
A′2, terminate the execution and try another candidate password.

– Continue in this way until recovering the target’s password. . .

The probability that a candidate password and the real password agree on the
first k memory addresses is n−k, and the expected time required to run each
step of the algorithm is n/2 for n-block scrypt, since recomputing each discarded
memory block takes this much time on average. The expected time to compute
one candidate password guess is then:

E[T] = n+

n∑
k=1

k(n/2)

nk
≤ n

(
1 +

1

2

n∑
k=1

k

nk

)
≤ n

(
1 +

1

2
n(1/n)

)
∈ O(n).

Since the space usage of this attack algorithm is constant, the time-space product
is only O(n) instead of Ω(n2), so scrypt essentially loses its memory-hardness
19 See Appendix G for a sketch of the core scrypt algorithm.

55

completely in the face of an attacker who learns the first few bits of the memory
access pattern.20

Of course, a valid question is whether a real-world attacker could ever learn
any bits of the access pattern of scrypt on a user’s password. It is certainly plau-
sible that an attacker could use cache-timing channels—such as exist for certain
block ciphers [25]—to extract memory-access pattern information, especially if
a malicious user and an honest user are colocated on the same physical machine
(e.g., as in a shared compute cluster). Whether or not these attacks are practical
today, it seems prudent to design our password-hashing algorithms to withstand
attacks by the strongest possible adversaries.

20 Here we have assumed that the attacker knows the entire access pattern, but a
similarly devastating attack applies even if the attacker only knows the first few
memory address locations.

56

	Balloon Hashing: A Memory-Hard Function Providing Provable Protection Against Sequential Attacks

