
FlashPatch: Spreading Software Updates over Flash
Drives in Under-connected Regions

Henry Corrigan-Gibbs
Stanford University

henrycg@stanford.edu

Jay Chen
NYU Abu Dhabi

jchen@cs.nyu.edu

ABSTRACT

Computers in developing regions often lack the Internet
connectivity and network bandwidth necessary to consistently
download and apply software updates and security patches.
However, even unconnected computers contract viruses and
malware through the sharing of USB flash drives and other
removable media. This paper introduces FlashPatch, a system
for distributing software updates to computers in such areas by
having software updates “piggy-back” on the existing flow of flash
drives in rural regions. FlashPatch requires no changes in user
behavior once the software has been installed. We implemented a
proof-of-concept FlashPatch prototype and evaluated it in a field
trial in Ghana. We present data on the prevalence and spread
of viruses at our study site and offer experimental evidence of
FlashPatch’s effectiveness from a nine-month field trial. We found
that FlashPatch provided additional antivirus protection to 30% of
the machines in our study without imposing any tangible burdens
on the system owners.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection; H.1.2
[Models and Principles]: User/Machine Systems

General Terms

Human Factors, Security

Keywords

delay-tolerant networking; developing region; flash drive; malware;
software update; virus

1. INTRODUCTION
Keeping software up to date with the latest security patches

is a challenge even in well-resourced corporate environments. In
emerging regions, where Internet connectivity is often unreliable,
slow, and prohibitively expensive, downloading software updates is
even more of a struggle. Although these areas may not have reliable

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM DEV-5 (2014), December 5–6, 2014, San Jose, CA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2936-1/14/12 ...$15.00.

http://dx.doi.org/10.1145/2674377.2674384.

Internet access, computer viruses and malware still spread quickly
via the physical circulation of USB flash storage drives used for file
sharing [3]. Computers in developing regions are thus in a “worst
of both worlds” situation with respect to computer security: they
are not networked enough to download routine security patches but
they are networked enough to be infected with viruses, worms, and
other malware (which we refer to collectively as “viruses”).

The proliferation of malware in developing regions is not just
a problem of academic interest: computer virus infections have
tangible human costs. Viruses cause Internet café owners to lose
business, render users’ data unrecoverable, and inconvenience
computer owners by consuming scarce system and network
resources [5].

The difficulty of getting software updates to computers in
emerging regions is one example of how computer security “best
practices” break down in places lacking broadband Internet access
and reliable power. In this work, we attempt to reconcile the
assumptions of developers in infrastructure-rich countries with the
realities of computer users in infrastructure-poor countries. We
do so by introducing a novel technique for distributing software
updates in under-connected regions.

This paper presents the design and implementation of
FlashPatch, a system that exploits the ubiquity of USB drives—
normally a vector for virus transmission—to facilitate the
distribution of software updates to computers with unreliable,
expensive, or non-existent Internet access. FlashPatch spreads
software updates to offline machines by having the updates “piggy-
back” on the existing circulation of USB flash drives. When a
user plugs a flash drive into a computer running our software, the
computer will, with the user’s consent, copy a number of software
updates onto the drive. When the user later connects that same drive
to a different machine, which lacks those particular updates, the
machine will automatically copy the updates from the USB drive
and install them locally.

The driving design principle behind FlashPatch is that the system
should require minimal user intervention in the update process. To
use FlashPatch, a user or system administrator need only install the
FlashPatch daemon on the computer—FlashPatch requires no other
change in user behavior. Streamlining the user experience in this
way is especially important in developing regions, where users may
be less comfortable with computer technology and more resistant to
change [6]. We envision a system like FlashPatch being distributed
as a part of an operating system or antivirus software.

To test the potential benefits of a system like FlashPatch, we
implemented a prototype virus scanner that uses a peer-to-peer
software update mechanism to keep the scanner’s virus definition
database current when network connectivity is unavailable. The
prototype scanner we developed automatically searches for

infected files on flash drives inserted into every machine running
our software.

We deployed our prototype antivirus in Internet cafés, schools,
and graphic design centers in a small town in Ghana during an
evaluation period of nine months. The 63 computers involved in
our study all had some form of Internet access, though connectivity
across our study site was unreliable.

We gathered quantitative data on the prevalence and nature of
computer virus infections at our study site, which support our
hypothesis that even offline computers need periodic software
updates to be protected against flash-drive-borne viruses. In
particular, we found that the virus population at our field site was
surprisingly “young”—out of 674 infected files observed, 63 files
contained a virus that had been discovered by anti-virus vendors
fewer than six months before our scanner detected it.

Over the course of our pilot deployment, FlashPatch provided
additional antivirus protection to more than 30% of the 63 machines
running the software. Out of a total of 10,907 computer-hours
tracked in our study, FlashPatch-provided updates accounted for
a total of 1,721 computer-hours of virus protection (15.8% of the
total). Moreover, FlashPatch provided protection to 15 computers
for the majority of the time that they were offline and could not
download software updates over the network.

The key contributions of this work are:
• a novel technical architecture for peer-to-peer software

updates in developing regions (Section 4),
• quantitative data on flash-drive-borne computer virus infec-

tions in computing centers in rural Ghana (Section 6.3), and
• a field evaluation of a flash-drive-based update mechanism

as implemented in an antivirus scanner (Section 6.4).
This work provides preliminary evidence for the utility and

practicality of a flash-drive-based update system. To put the ideas
behind FlashPatch into a larger computer security context, we
discuss in Section 7 how the ideas behind FlashPatch could be
incorporated into a commercial antivirus product or operating
system.

2. RELATED WORK
Prior work has demonstrated that computer viruses are

an economic and social problem in developing regions [3].
Bhattacharya and Thies investigate the problem of computer
viruses in Indian telecenters and find that 80% of telecenters suffer
from “regular” or “highly detrimental” virus infections [5]. Johnson
et al. observe that over half of active IP addresses in a rural
network in Zambia were engaged in port scanning, indicative of
a malware infection [13]. The experiences of Brewer et al. with
computer security problems in developing regions corroborate the
environmental findings we outline in the following section.

Paik describes a system for gathering detailed information about
computer virus prevalence in developing regions [16]. Our work
focuses on the distribution of software updates rather than on
measurement of virus infection rates, though we do provide some
local data on virus “epidemiology.” Others have considered the idea
of spreading updates or patches via high-latency links [19]. Our
application of these techniques to the context of software updates
in developing regions is novel, to the best of our knowledge.

The delay-tolerant networking literature focuses on the problem
of running unicast traffic over a large network of unreliable links [9,
12]. We address a much simpler version of the delay-tolerant
networking problem, since in our network of USB drives, a single
sender (the software vendor) broadcasts the same message (the
software updates) to all users. In the future, we may apply more

sophisticated delay-tolerant routing techniques to our system for
collecting log files over the network of flash drives.

Related systems address the problem of replicating a data store
over unreliable network links [11, 18, 8]. The complexity of these
systems arises because different users can make concurrent writes
to the data store. Since only one user in our system (the software
vendor) publishes updates, we do not need the full power of these
replication techniques.

Other work has used physical transportation of digital storage
media in place of always-on network links. DakNet used public
buses to transport a digital storage device to provide asynchronous
network access to remote areas [17]. In deploying the Ca:sh
electronic medical records system on handheld computers, the
designers relied on physical transport of flash drives to avoid the
unreliable telecommunications network [1].

This work takes inspiration from a proposal of Nowlan
and Ford to create a “viral” operating system, in which data,
applications, and updates are transparently shared between physical
machines [15]. While Nowlan and Ford offer a general vision for
operating system design, we focus on the very specific problem
of providing software updates to computers in developing regions.
We also contribute a field-tested implementation and experimental
results.

3. BACKGROUND
This work proposes a system for distributing software updates

(antivirus updates, in particular) to computers in developing
regions. The design of such a system must take into account the
particular environmental, cultural, and technological constraints
that arise in computing centers in regions with poor Internet and
power infrastructure.

3.1 Computing Environment
In this section, we enumerate a number of the most important

constraints that shaped the design of FlashPatch. We also briefly
outline the effect that each of these constraints has on the traditional
model for distributing software updates, in which computers
periodically download software updates over the network.

Since we conducted our field work in a particular region of
rural Ghana, some of the design constraints may be unique to that
particular cultural and geographical setting. Even so, prior work on
computing centers in India [5], Zambia [13, 14], and elsewhere [6]
demonstrates that many of the design constraints we observed in
Ghana likely also hold in other developing regions.

Unreliable Internet Access. One of the most salient features of
many rural computing environments is the lack of reliable and
affordable Internet access. Although 3G Internet coverage now
reaches into some rural areas, large swaths of many developing
regions—including portions of our field site—have no reliable
options for Internet access. A secondary school near our field site
in Ghana, for example, had a 40-computer technology lab and
a budget for Internet connectivity. Even this exceptionally well-
resourced school was unable to procure Internet access because the
mobile data signal at their site was too weak to be usable.

The lack of fast and reliable Internet access is a primary barrier
to the traditional model of downloading software updates over
the network. Savvy computer users often prevent their antivirus
software, Flash player, or operating system from downloading
updates to save precious network bandwidth for applications that
are more apparently useful. Computer users whose machines have
no network access at all have no means to download updates, so

their machines will remain out of date until the owner upgrades the
software using physical media.

Pay Per MB. Another feature of many rural computing
environments is that Internet service providers typically bill
customers according to the number of bytes transferred. For
example, a major telecommunication company in Ghana offers a
package that costs roughly 6 USD that entitles the user to transfer
1 GB of data within a 30-day period.

Since the total file size of Windows updates for a month
could be tens or hundreds of megabytes, simply keeping the
operating system up to date could consume almost all of the
user’s monthly data transfer allocation. In addition, the cost per
megabyte is often high relative to income in developing regions,
which may make downloading software updates prohibitively
expensive. For example, downloading the full 420 MB Symantec
virus definition database over a popular mobile network would cost
2.26 USD in Ghana today. Ghana’s daily GDP per capita (2013) is
5.07 USD [20].

Ubiquity of Flash Drives. Another prominent feature of the
computing environment in many developing regions is the use
of portable USB flash drives (or “pen drives”). The high cost of
network bandwidth means that users rely heavily on flash drives to
share software and personal files. In addition, some lower-income
users do not own their own computer and so they use a low-cost
flash drive as their primary medium for long-term file storage, in
place of a personal computer hard drive. These users access their
personal files at Internet cafés or, less commonly, at a computer in
their workplace.

The pervasiveness of flash drives means that even computers
without Internet access may frequently be exposed to viruses
and malware carried by infected flash drives. Offline computers
are particularly vulnerable to compromise, since they will never
receive OS or antivirus updates over conventional network update
channels.

Windows XP. The vast majority of computers in Internet cafés
at our field site ran the Windows XP operating system. Café
owners and operators reported that their customers had become
accustomed to the Windows XP user interface and were resistant to
learning a new operating system. Although offering Windows XP
provides usability benefits to café customers, the now-antiquated
operating system lacks many of the security features common in
current OSes. For example, early versions of XP do not use data
execution prevention (DEC/NX) and no versions of Windows XP
use address space layout randomization.

Windows XP does separate user account types into “limited”
and “administrator” account types, but only one Internet café we
visited, out of six, took advantage of user accounts to prevent users
(or malware) from installing new software on the machines. In all
other cases, café clients used “administrator”-type accounts and
thus viruses or trojan horses inadvertently run by clients could
completely overrun the machine. Indeed, we saw a number of
severely compromised machines. In the worst case, a piece of
malware had disabled the Windows “control panel,” making it
impossible for the café manager to change system settings or
uninstall software.

Frequent Reformatting. The commonality of catastrophic
computer virus infections in Internet cafés and other rural
computing centers means that computers frequently become
unusable as the result of virus infection. Since removing viruses
from an infected machine—particularly one with a compromised
administrator account—is time-consuming and often practically

Figure 1: Updates flow over network links (solid lines) to online
nodes, and over flash drives (dashed orange lines) to offline nodes.

impossible, computer owners and Internet café managers reformat
their machines with relative frequency. The Internet café managers
we interviewed formatted their hard drives and reinstalled the
operating system every seven weeks, on average.

The process of reinstalling the operating system increases the
burden of downloading updates: a newly reformatted machine will
need to download all of the updates made available since the
production of the operating system’s installation CD. In many
cases, fully updating a newly formatted computer would require
downloading many years worth of software updates and virus
definitions. In areas with poor Internet connectivity, computer users
may decide it not worth the time or expense to download the large
update files after every reformat.

3.2 Problem Statement
The goal of this work is to design a system for distributing

software updates to as many machines as possible as quickly
as possible in regions with poor Internet infrastructure. We are
particularly interested in update distribution systems that are
practical given the existing computing environment and user

behavior in developing regions.
For purposes of this paper, we simplify the problem somewhat by

focusing on the distribution of software updates for one particular

software package, rather than trying to distribute updates for
every software package on the machine. We also assume that the
software package has a single vendor (e.g., a corporate entity)
which publishes versioned and digitally signed versions of a data
file to a public Web site. The digital signature scheme should
satisfy the now-conventional definition of security [10]. Standard
digital signature schemes (e.g., DSA) satisfy this property under
appropriate cryptographic assumptions.

For our purposes, an update consists of a three-tuple

version_num, data_blob, signature

where the version number is an integer incremented with each
published update, the data blob is binary data representing the
software, and the signature is a digital signature on the first two
elements of the tuple using the vendor’s secret signing key. For an
antivirus program, for example, the data blob would consist of a
list of virus signatures. For a chat application, the data blob would
consist of the application binary itself.

All client nodes (machines with the software installed) have a
copy of the software vendor’s public signature verification key, and
thus can verify the provenance of a particular update.

4. SYSTEM ARCHITECTURE
In this section, we present the technical architecture of

FlashPatch. When using FlashPatch to upgrade many different
pieces of software, there can be many different vendors operating at
once (one per application), but for simplicity we consider the case
of a single vendor updating a single software application.

4.1 Update Distribution
As depicted in Figure 1, a deployment of FlashPatch involves

three classes of nodes:
• a single vendor node, which publishes updates for the piece

of software in question,
• online nodes, which are able to download software updates

from the vendor, and
• offline nodes, which have no network connectivity and can

communicate with the online nodes only via flash drives.
A node can oscillate between being online and offline if, for
example, the node’s network connection is function for only a few
days each week.

Whenever the vendor publishes (e.g., to a public website or
FTP server) an updated version of its software, the vendor assigns
a version number to the new version and digitally signs the
entire update package with its private signing key. Online nodes
periodically check the vendor’s servers for updates, download new
versions of the software when available, verify the digital signature
on the newly downloaded package, and then install it locally.

Once an online node has downloaded the updated version of the
software, it will make this new version of the software available to
offline nodes via our flash drive file transfer mechanism. Whenever
a user later inserts a flash drive into a node (either online or offline),
the node will check to see if the flash drive has a newer signed
version of the software than the node does by comparing the version
numbers. If the flash drive’s version is newer, the machine will
install the updated software locally. If the machine’s version of the
software is newer, the machine will copy the software to the flash
drive.

Whenever a user plugs a flash drive into an up-to-date online
machine and then into an out-of-date offline machine, the out-
of-date machine will be able to retrieve the latest version of the
software from the flash drive. Figure 2 depicts this update process.
In this way, users who move flash drives amongst collections of
online and offline machines (e.g., between online Internet cafés
and an offline school computer lab) inadvertently spread software
updates.

FlashPatch provides the following safety and liveness properties:

Security. Correct (i.e., not faulty) nodes will only ever apply
updates produced by the vendor. That is, at any time period, a
correct node will be running a version of the software signed by
the vendor, even if the software is somewhat out of date.

Even if an adversary can intercept a flash drive an overwrite its
contents with a maliciously formed update, the adversary would
be unable to forge the vendor’s signature on the malicious update.
Since correct nodes will only apply signed updates, the adversary
will be unable to coerce an honest node into applying a forged
update without breaking the security of the signature scheme.

Eventual Consistency. FlashPatch provides eventual consistency [2]:
if the vendor issues no new updates and the network of flash drives
is not partitioned (every node can communicate with every other
node via the network of flash drives), then every node in the system
will eventually have the latest update from the vendor.

Ideally, we could provide a stronger consistency guarantee—
e.g., that every node in the network would receive every update
within one week of the update’s publication. Providing such a
guarantee, however, would require much stronger assumptions
about rate of movement of the flash drives around the network of
nodes.

4.2 Log Collection
To facilitate the evaluation of FlashPatch, each node running

the FlashPatch client software generates a log file that contains a
record of all of the important FlashPatch-related events at that node.
Although online machines can upload their log files periodically
our server, offline machines have no network connectivity, so we
uploading the log files is not an option. To collect log files from
offline nodes, we built a system that is the complement of the
FlashPatch update distribution system: offline nodes transfer their
log files back to online nodes via flash drives, and the online nodes
upload these log files to our research group’s server.

Unfortunately, deployment constraints meant that we were not

able to evaluate this log collection mechanism in our field trial.
To work around this limitation, our evaluation focuses on the
computers for which we do have log files: machines that had
Internet access at some point in time during the study. For the
benefit of future researchers, we sketch our log collection system
design here without making claims about its robustness.

The technical challenge of the log collection scheme is to make
sure that the log files eventually reach an online node without
distributing so many copies of the log files that the flash drives run
out of space. When a user inserts a flash drive into a computer
running FlashPatch, the log collection algorithm running on the
FlashPatch node has to make two decisions. First, if there are
log files on the inserted flash drive, the algorithm must decide
whether to copy these log files onto the local machine. Second, the
algorithm must decide whether to copy the machine’s log files onto
the flash drive.

In our log collection algorithm, the computer running FlashPatch
tries to decide whether it is “closer to” or “farther from” our
research group’s server than the recently inserted flash drive. If the
computer is closer to our server, then the computer copies the logs
from the flash drive onto its local disk. If the computer is farther
from our server, then the computer copies to log files to the flash
drive. As this process continues, the log files should eventually
move closer and closer to our server until they are at a networked
node and can be updated.

The next challenge is to define the distance between a particular
node (or flash drive) and our server. We compute the distances
using a distributed algorithm. All nodes in the network start out at
distance ∞ from our server. When a node connects to the Internet,
we set its distance to 1. When user inserts a flash drive at distance
dflash into a computer at distance dcomp, the FlashPatch software first
checks which distance is smaller. If, for example, dflash < dcomp (the
flash drive is closer), then the software sets the computer’s distance
to dcomp = dflash + 1. If the computer is closer, then the software
sets the flash drive’s distance to dflash = dcomp + 1. The FlashPatch
software stores the flash drive’s distance in a data file on the drive
itself.

To account for the fact that nodes that are online (at distance
1) may go offline permanently (e.g., due to an equipment failure),
we “expire” the distances after one week. That is, if a computer or
flash drive has not connected to any other node in the system in one
week, the FlashPatch software resets its distance to ∞. To account
for the fact that a given flash drive may never reach an online
machine, each computer running FlashPatch copies each chunk of
its logfiles to three distinct flash drives, when possible.

5. IMPLEMENTATION
This section describes our prototype implementation of a virus

scanner which uses FlashPatch to keep its virus definition database

(a) All nodes in the system
run version 2 of the soft-
ware.

(b) The vendor publishes
version 3 of the software.

(c) Networked nodes down-
load the update to version 3.

(d) A user plugs a flash drive
into a computer running
version 3.

(e) A user plugs the same
flash drive into a com-
puter running version 2—
updating it.

Figure 2: A toy example showing how updates propagate from the vendor (the cloud) to computers running FlashPatch (the circles).

up to date. The core component of our FlashPatch implementation
is a daemon that:

• scans inserted flash drives for viruses,
• scans inserted flash drives for virus database updates,
• copies updates to inserted flash drives, and
• periodically tries to download virus database updates over

the network.
We implemented the FlashPatch client daemon as a C# application
that wraps the open-source ClamAV antivirus software package.
Our source code for the client runs to 3,374 lines of code (excluding
machine-generated files). Our FlashPatch implementation targeted
the Windows XP operating system, since that was the most
common OS at our field site.

ClamAV stores the frequently updated portion of its virus
definition database in a file called daily.cvd. The cvd file is
an archive containing a version number, the list of virus definitions,
other metadata, and a digital signature on the entire archive.

Since the cvd file format already incorporates versioning and a
signature, the FlashPatch daemon passes around the daily.cvd
file directly. That is, when a user inserts a flash drive into a
machine running FlashPatch, the FlashPatch daemon first checks
whether a file called daily.cvd exists on the flash drive (in a
particular subdirectory allocated for FlashPatch). If the cvd file
exists, the daemon checks that the file contains a valid signature by
the ClamAV maintainers, compares the versions of the local and
remote cvd files, and transfers the daily.cvd file to or from the
flash drive, depending on which of the two versions is newer.

Whenever a user inserts a flash drive into a computer running the
FlashPatch daemon, the FlashPatch software invokes the ClamAV
scanner to search the flash drive’s entire filesystem for viruses.
When the software encounters a virus, it alerts the user with a
dialog box but, to avoid mistakenly erasing valuable user data, the
daemon never deletes the infected file.

The FlashPatch daemon attempts to upload its log files to our
server every three hours and it tests its Internet connectivity by
making a short HTTP request every hour. The daemon attempts
to download a ClamAV virus definition database update from the
network every seven days, to avoid consuming an excessive amount
of network bandwidth. After a failed network update attempt, the
daemon tries to download the update every hour. The ClamAV
database files were roughly 35 MB in size.

6. EVALUATION
This section describes our experimental evaluation of the

FlashPatch prototype. We field-tested our software in Hohoe, a
town of roughly 50,000 people in Ghana’s Volta region, beginning
in July 2013. At the time of our study, there were six large Internet
cafés in Hohoe’s town center. All six of the café owners agreed
to have the FlashPatch prototype installed on one or more of the
computers in their café, and we also obtained permission to install

the software on computers at a graphic design shop and in a
secondary-school computer lab.

The goal of our evaluation was to gain some insight into the
following questions:

• Environment. What is the general state of the computing
infrastructure in rural Internet cafés and computing centers?
Can we quantify the prevalence of flash drives and the level
of computer-to-computer sharing?

• Viruses. Which types of computer viruses are present in
rural computing environments? Which viruses are the most
common? How quickly do viruses spread?

• FlashPatch. To what extent can FlashPatch’s update
mechanism aid in keeping antivirus software up to date in
rural computing environments? What are the limitations of
FlashPatch in such environments?

6.1 Ethical Considerations
We considered a number of ethical issues prior to the deployment

of FlashPatch. We highlight a few of these considerations here to
highlight the types of challenges involved in performing this kind
of field evaluation.

Informed Consent. Since human subjects were involved in
our field evaluation of FlashPatch, we sought and obtained IRB
approval for our study methodology and we obtained written
consent from the owner of each computer running the software.
Internet café owners rely on their computers for income, so we took
precautions to prevent the prototype from adversely affecting the
host computer’s usability.

Before installing the FlashPatch software on a user’s computer,
we explained the purpose of the software and its limitations (e.g.,
that it could not detect all viruses). We explained that the software
would copy files to any flash drives inserted into the machine.

We also offered the computer owners the option to have a dialog
box appear whenever the machine running FlashPatch detected a
new flash drive. This dialog box would let the flash drive owner
choose whether or not to have the FlashPatch updates copied to the
drive on a per-insertion basis. Only one of the café owners (out of
six) requested that this feature be enabled.

Resource Use. We limited the amount of space that our software
could consume to 20% of the capacity of the USB drive, and the
software did not copy anything onto the drive if doing so would
have filled up the drive. In practice, the prototype used around
35 MB of space on a flash drive. Before copying data files to the
flash drive, the software copied a README file to the drive, which
explained how to remove the update files from the drive and also
how to uninstall the prototype completely from the machine.

Although we experimented with having the FlashPatch daemon
scan the user’s entire hard disk periodically, the computational
load of continuous scanning consumed nearly all of the processing
power of the machines and rendered the computer largely unusable

during the time of the scan. Scanning hard disks overnight was not
an option because all of the café managers in our field site shut
down their computers at night to save power.

Distribution. The frequency with which café managers reformat
their computers meant that FlashPatch would have to be reinstalled
on machines to allow them to continue participating in our study. In
only a few cases, we were able to reinstall the FlashPatch daemon
after these reformattings. After we left the field site, however, we
were unable to continue reinstallation.

It would have been possible to distribute the FlashPatch
prototype to café owners to allow them to reinstall the software
in our absence. We did not take that step, however, to avoid the
possibility that owners would share copies of our software and that
our prototype software could spread to cafés and computing centers
outside of our study site. Since we would not be able to obtain
informed consent from “second-hand” participants in other regions
and we wanted to limit our study to a known set of computers,
we decided against distributing the binary to café owners and
managers.

Opting Out. After installation, we explained to the computer
owner how to uninstall the software and we left the computer owner
with our contact information.

It would have been possible to track each flash drive using its
unique serial number. This approach, however, would not have
given flash drive owners a way to “opt out” of having their drives
tracked in our study. Instead, when a user inserts a flash drive into
a machine running our FlashPatch daemon, the daemon writes a
random unique identifier into a data file on the flash drive. We
use this identifier to track each drive as it moves from computer to
computer. Since formatting the drive or deleting the data file erases
the drive’s identifier, we do not perfectly capture the movement of
drives.

Privacy. To protect the privacy of participants in our study, our
prototype software did not record file names, IP address, MAC
addresses, or other information that would have made it easy to
identify a computer owner. Even though our prototype’s log files
contained no particularly sensitive information, we took the extra
precaution of having our prototype software encrypt its log files
using our research group’s public key before the software sent the
logs over the Internet or over our network of USB drives.

6.2 Computing Environment
Our experimental deployment of FlashPatch targeted computers

running Windows XP, since the majority of machines in Internet
cafés in Hohoe were running some version of Windows XP.

Over the course of the deployment, we added a feature to the
FlashPatch prototype scanner which allowed us to gather basic
statistics about the host machine’s operating system performance
and hardware capabilities. We have this hardware data from 31
computers at our field site. The remaining computers ran a prior
version of the FlashPatch client that did not collect hardware and
operating system data.

Of the 31 machines for which we have OS data, 26 were running
Windows XP Service Pack 2 (released in 2004), four were running
XP Service Pack 3 (released in 2008), and one was running XP
Service Pack 1 (released in 2002). Five of the inspected machines
had a dual-core CPU and the remaining machines were running
single-core processors.

Every machine we encountered had at least one commercial
antivirus product installed. These included AVG Internet Security,
Avast, Avira, Rising Antivirus, and zbshareware USB Disk
Security.

 0

 10

 20

 30

 40

 50

 60

09/2013 11/2013 01/2014 03/2014

N
o

d
e

 n
u

m
b

e
r

Time

Figure 3: Nodes in our field deployment with their first and last
times online (excluding three nodes with faulty clocks).

N
u

m
b

e
r

o
f

m
a

c
h

in
e

s

Median number of hours running per day

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4: A histogram showing the number of hours per day for
which each machine at our site was online.

Figure 3 shows the first and last time that a given computer
running our FlashPatch client reported back to our research group’s
server. The figure excludes three computers with internal clocks
that were not set to update over the network and which reported
times outside of our study period (e.g., January 1, 2000). The
lifetime of a FlashPatch node ranged from less than a single day
to over four months, with a median time-to-silence of 21.2 days.

The first reason for a FlashPatch-enabled node to “go silent” was
that the computer owner uninstalled the software intentionally. On
one occasion, we obtained consent from a café owner to install the
software on the café’s computers. When we returned to the café
the next day to check that the software was functioning correctly,
we discovered that the software had been uninstalled from all of
the computers in the café. This could be because the café owner
had, we suppose, preferred to not participate in our study but was
hesitant to directly refuse consent. This behavior may account for
the number of nodes with very short recorded lifetimes. These
participants’ unwillingness to confront or disappoint a foreign
researcher echoes findings of prior work [7] and underscores
the limitations of the “informed consent” process in developing
regions [4].

The second reason for a node to “go silent” was that the computer
owner reformatted the machine’s hard drive. Since we did not
distribute the FlashPatch installation software to computer owners,
reformatting effectively removed the computer from our study. If
we exclude nodes with a lifetime of less than one day, the median
lifetime of a FlashPatch node was 24.0 days. Since, on average,
we would have installed the FlashPatch software at the midpoint of
period between reformattings, we can extrapolate to conclude that
the median time between reformattings is roughly 48 days. This
figure corresponds with Bhattacharya and Thies’ finding that the
bulk of café owners (in India) reformat their computers every 2–3
months [5].

F
la

s
h

 d
ri
v
e

s
 s

e
e

n
 i
n

3
0

 d
a

y
s
 (

a
v
g

,
lo

g
 s

c
a

le
)

Machine

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50

Figure 5: The average number of flash drives inserted into each
machine in our study in a 30-day period (14 machines saw no drives
at all).

Figure 4 demonstrates, for each computer in our study, the
median number of hours it was online per day. The peak in the
chart at nine hours accounts for the fact that many computers at our
field site were online during business hours only. There is a smaller
peak at two hours, which may account for extra computers at a
café which are only switched on during “peak” hours—when other
customers are using all of the café’s primary computers. Computers
at graphic design shops, we noticed, are often only booted up when
a customer comes to the shop. They remain offline otherwise.

6.2.1 Flash Drives

Of the 63 participating nodes in our study, 49 saw at least
one flash drive over the course of the study period. Of these, 47
machines saw at least one flash drive per month on average and 33
machines saw at least 10 flash drives per month on average. There
were 16 extraordinarily active nodes, which had over 50 flash drives
insertions monthly, on average. Figure 5 presents these figures in
the form of a bar chart.

Finally, Figure 6 is a representation of the connectivity graph of
the FlashPatch network created by the movement of flash drives.
The data from this chart is drawn from the 34 machines running a
version of the FlashPatch daemon which could track the movement
of individual flash drives. (Earlier versions of the software did
not have this feature.) In the figure, each vertex represents a
computer running FlashPatch. The graph contains an edge (i, j)
if the computers represented by vertices i and j saw a common
flash drive during the course of the study. The area of each vertex
is proportional to the total number of flash drives inserted into the
corresponding machine during the course of the study. The width of
each edge is proportional to the number of flash drives the machines
saw in common.

We tracked flash drives across machines by copying a file with a
unique identifier to the drive. When a user deleted this identifying
file or reformatted the flash drive, we lost the ability to track the
drive. Because of this, Figure 6 represents a lower bound on the
connectivity of the machine-to-machine network.

The node adjacency graph (Figure 6) gives a few pieces of
information about the network of machines on which FlashPatch
runs. First, the machines which are connected to each other in
the graph form a single connected component: there is a path
from every connected machine to every other connected machine.
Second, there are many machines (17 out of 34) that never
saw a common flash drive during the duration of our study.
Unsurprisingly, the FlashPatch nodes which saw few flash drives
are less likely to form a part of the large connected component.

Of the 301 flash drives inserted into the 34 machines running
the latest version of the FlashPatch daemon, 17% were inserted
into two or more machines and the remaining 83% were only

Figure 6: Node adjacency—edges indicate that two nodes saw a
common flash drive.

Number of machines seen 1 2 3 4 5 6

Frequency (flash drives) 249 38 9 3 1 1

Table 1: Frequency table showing that 95% of flash drives were
inserted into fewer than three machines running the FlashPatch
daemon.

ever inserted into a single machine running the FlashPatch daemon
(Table 1). The figures in Table 1 provide a lower bound on the
total number of machines each drive saw during the evaluation
period, since they do not include computers which did not have
the FlashPatch daemon installed.

6.3 Viruses
Our FlashPatch-enabled virus scanner searched for infected files

on every flash drive inserted into machines running our prototype
software. By design, the virus scanner did not scan the computer’s
hard drive for viruses, so the figures in this section refer only to
viruses found on removable flash drives at our study site.

During the evaluation period, the prototype software scanned a
total of 1,242 flash drives for viruses and found 233 drives with
at least one infected file. The largest number of infected files on
a single drive was 52 and 10% of drives scanned had six or more
infected files. As would be expected, the number of viruses detected
on a single machine was roughly proportional to the total number
of flash drives inserted into that machine (Figure 7).

Our FlashPatch-enabled virus scanner uncovered a surprisingly
diverse population of computer viruses at our field site. Many
viruses appeared just once, though a few viruses were extremely
prevalent. Figure 8 illustrates the virus population encountered
in the course of our evaluation. The scanner detected 48 distinct
viruses, with the most common (Win.Worm.Autorun-3638)
appearing 130 times and the least common (W32.Sality-83
among others) appearing only once. The median number of

 1

 10

 100

 1000

 1 10 100 1000

N
u

m
b

e
r

o
f

v
ir
u

s
 f

o
u

n
d

(l
o

g
 s

c
a

le
)

Drive insertions (log scale)

Figure 7: The number of viruses each computer in the study
detected is roughly proportional to the number of flash drives
inserted into the computer.

w32.sality-83

trojan.rootkit-3070

trojan.agent-167138

html.exploit.cve_2013_3207

w32.sality-56

win.trojan.3598901

trojan.agent-290764

win.trojan.pwdump-21

nsis.adware.uptodown

trojan.agent-267660

trojan.vb-420

worm.autorun-7379

inf.autorun-29

win.worm.402390

win.trojan.agent-514047

hacktool.crack.coreldraw

trojan.delf-11287

inf.autorun-40

win.trojan.agent-309573

w32.sality-65

win.trojan.agent-598099

win.worm.agent-31

worm.autorun-9880

suspect.doubleextension-zippwd-15

worm.autorun-3966

win.trojan.autoit-109

nsis.adware.somoto-1

win.trojan.hacktool-1035

win.virus.sality-19

trojan.agent-142577

heuristic.trojan.suspacked.ffxpu

win.trojan.agent-400042

trojan.peed-474

trojan.small-9276

inf.autorun-72

win.worm.agent-339

win.ransom.lockscreen

w32.exploit.cve-2010_2568-1

win.worm.agent-985

w32.exploit.cve-2010_2568

trojan.agent-184502

inf.autorun-35

win.trojan.vobfus-8743

w32.autoit.obfus-2

vbs.agent-35

trojan.agent-168681

w32.trojan.starter-2

win.worm.autorun-3638

09/2013 11/2013 01/2014

Time

 0

 5

 10

 15

 20

 25

 30

Figure 8: Time at which our FlashPatch-enabled virus scanner
detected each virus. The coloring of each point indicates the
number of files infected with that virus found during a particular
scan.

 1

 10

 100

 0 1 2 3 4 5 6 7N
u

m
b

e
r

o
f

v
ir
u

s
 s

ig
h

ti
n

g
s

(l
o

g
 s

c
a

le
)

Approximate virus age (years)

Figure 9: Number of sightings of each virus over the virus age.

sightings for a particular virus was four. In a number of instances,
depicted using colors in Figure 8, the same flash drive carried many
files infected with the same virus.

Figure 9 depicts the number of times the scanner detected
each virus over the “age” of the virus. We define the age of
the virus as the number of days between (a) the date ClamAV
maintainers incorporated a signature for the virus into ClamAV’s
virus definition database and (b) the date at which our scanner
detected the virus on a flash drive. Surprising to us was that

our scanner detected a number of “young” viruses during our
evaluation run. The scanner detected 63 files infected with viruses
that were less than six months old.

Our scanner’s detection of so many youthful viruses indicates
that flash drives in less connected computing centers can carry
viruses that even somewhat out-of-date antivirus software would
not catch. If a computer had antivirus software that was last updated
in June 2013 (2 months prior to the start of our deployment), the
software would have never detected 23% of the infected files found
by our FlashPatch-equipped virus scanner. Since all of these viruses
traveled via flash drives, they affect computers with or without
Internet access.

The prevalence of these young flash-drive-borne viruses
indicates that the premise behind FlashPatch is sound: being able to
distributed antivirus updates (or other security patches and software
updates) to offline machines would provide a tangible computer
security benefit.

6.4 FlashPatch Effectiveness
Computers running our FlashPatch-enabled antivirus software

periodically tried to download software updates over the network.
When a machine successfully downloaded an update, we consider
that machine to be “online” until it tried and failed to download
an update. Whenever a machine failed to download an update—
either because the network connection was down or the download
was interrupted—we consider that machine to be “offline” until
it successfully downloaded an update over the network. When
an offline machine received a software update via a flash drive
through FlashPatch, we considered that machine to be “protected
by FlashPatch.” The intuition behind this definition is that, when
an offline machine receives an update via a flash drive, it is getting
protection against new viruses that it would not have otherwise
have received.

Figure 10 shows, for each machine in our study, how many hours
that machine was booted up (in gray) and how many hours that
machine was receiving virus protection from FlashPatch (shaded
in blue). Even though all of the machines listed had Internet
connectivity, many of the machines still gained some antivirus
protection benefit from FlashPatch. As far as we can tell, these
machines received updates over FlashPatch at times when their
Internet connection was down or when some other issue prevented
them from reaching the ClamAV update servers (e.g., failure to
reach a DNS resolver).

There was one exceptional node that received 1,127 hours
of protection from FlashPatch (out of 1,229 hours turned on).
Although this machine had a relatively reliable Internet connection,
a file permission problem, perhaps caused by a commercial
antivirus product, prevented it from installing virus database
updates downloaded from the Internet. This machine received
almost all of its database updates from other FlashPatch nodes.

This one exceptional machine gives some insight into
FlashPatch’s effectiveness in protecting offline nodes. Even though
this machine was not able to download any software updates
over the network, it received ClamAV updates only 11.3 days

(on average) after ClamAV published the updates online. Using
FlashPatch meant that this computer’s antivirus software was only
two weeks out of date, instead of many months out of date.

In judging the efficacy of FlashPatch, a particularly relevant
statistic is the fraction of offline hours for which FlashPatch
provided antivirus protection to a given machine. For each machine
in our study, Figure 11 shows this statistic. The figure indicates that
a number of machines received updates from FlashPatch during
their offline hours, and that FlashPatch afforded additional virus

H
o

u
rs

 t
u

rn
e

d
 o

n
 /

H
o

u
rs

 p
ro

te
c
te

d
b

y
 F

la
s
h

P
a

tc
h

Machine

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 10 20 30 40 50 60

Figure 10: Number of hours each node was turned on / protected
by FlashPatch (shaded blue).

H
o

u
rs

 o
ff

lin
e

 /
H

o
u

rs
 p

ro
te

c
te

d
 b

y
F

la
s
h

P
a

tc
h

 (
lo

g
 s

c
a

le
)

Machine

 1

 10

 100

 1000

 0 10 20 30 40 50 60

Figure 11: Number of hours each node was offline / protected by
FlashPatch (shaded blue).

protection to each of these machines for almost all of their hours
offline. Out of the 63 nodes in the study, 15 nodes were protected
by FlashPatch for a majority of their time offline.

The number of hours that a node received protection from
FlashPatch varied roughly in proportion to the number of flash
drives that the node saw during our study period (Figure 12).

Combining Figures 7 and 12 into Figure 13, we find that
machines which see more flash drive insertions see more viruses
but also see a greater benefit from FlashPatch, in terms of virus
protection. We can say then that, roughly, FlashPatch protects most
the machines that need the most protection—those which see the
greatest number of flash-drive-borne viruses.

As Figure 14 depicts, when a machine running our FlashPatch
daemon saw a flash drive with a copy of the virus database, roughly
25% of the time the drive had a newer version of the database than
did the machine. The remainder of the time, the machine had a
newer version of the database.

Finally, Figure 15 demonstrates that the version of the ClamAV
database on flash drives at our study site closely tracked the latest
version of the ClamAV virus definition database. If a FlashPatch-
enabled offline computer at our field site came into contact with a
random flash drive containing a version of the ClamAV database,
the offline computer would, with high likelihood, receive a recent

 1

 10

 100

 1000

 10000

 1 10 100 1000

H
o

u
rs

 o
f

F
la

s
h

P
a

tc
h

P

ro
te

c
ti
o

n
 (

lo
g

 s
c
a

le
)

Drive insertions (log scale)

Figure 12: Hours of FlashPatch protection over number of flash
drive inserts.

 1

 10

 100

 1000

 1 10 100 1000V
ir
u

s
e

s
 f

o
u

n
d

 (
lo

g
 s

c
a

le
)

Hours of FlashPatch protection (log scale)

Figure 13: Viruses detected over hours of FlashPatch protection.

(L
o

c
a

l
v
e

rs
io

n
 -

 f
la

s
h

 v
e

rs
io

n
)

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

Flash version is newer

Machine version is newer

Figure 14: The difference between the virus database version
carried on each inserted flash drive and the virus database version
of the computer to which the drive was inserted.

copy of the ClamAV database. Since 53% of the flash drives seen
at our field site contained some version of the ClamAV database,
FlashPatch-enabled offline machines in the proximity of our field
site would have a good chance of being updated in this way.

7. DISCUSSION
Our core design principle was that the system should require

minimal user interaction to function: rather than trying to
modify the technological ecosystem to accommodate our software,
designed the software to fit the existing ecosystem. This conviction
led us to build our update distribution system on top of the
existing network of flash drives—using a common vector for virus
transmission as a vector for virus control. Our experimental results
validate the core design idea of FlashPatch: that having software
updates travel over flash drives is an effective means to improve
computer security without imposing any tangible burdens on the
systems’ owners.

To prevent the spread of the FlashPatch software beyond our
study site, we did not distribute the FlashPatch installation files to
computer owners. As computer owners reformatted their machines,
the number of active FlashPatch nodes in the area decreased, and
this interfered with the system’s ability to spread updates and

 17400
 17600
 17800
 18000
 18200
 18400
 18600

07/2013 10/2013 01/2014

D
B

 v
e

rs
io

n

Time

Figure 15: The latest version of the ClamAV database (line) and
the version of the ClamAV database seen on inserted flash drives.
Excludes drives with no database at all.

collect log files. Had we allowed reinstallation, we might have
been able to magnify the impact of FlashPatch in the area. The
fact that all computer owners in our study installed commercial
antivirus software after reformatting their machines suggests that
integrating FlashPatch into existing antivirus products would be
a viable route to deployment, even in environments in which
reformatting is common.

There are a number of potential areas of improvement for our
FlashPatch prototype:

First, our client daemon used the open-source ClamAV virus
scanner, which was slower and less effective than the common
commercial antivirus products (e.g., AVG Internet Security, Rising
Antivirus) in our deployment setting. Commercial products are
often designed with the peculiarities of Microsoft Windows in
mind, so they are able to combat Windows-specific tricks that
viruses use to evade detection.

Second, our software lacked the ability to perform incremental

updates, for reasons relating to the implementation of ClamAV’s
update system. It is feasible, in principle, to add incremental
updates to FlashPatch, and doing so would lead to considerable
savings in bandwidth consumption for users of the software.

There are a few other technical challenges that could arise in
a widespread deployment of FlashPatch. For example, if there
are many different software packages which all require software
updates, the combined update files may not all fit on a standard
2 GB USB flash drive. Even storing Windows update files, which
can run to hundreds of megabytes, may require too much space
for users to tolerate. A FlashPatch-aware operating system could
mediate between applications, wanting to share updates over flash
drives, and users, wanting to keep as much free space on their flash
drives as possible. We leave these challenges open for future work.

8. CONCLUSION
This paper introduced FlashPatch, a system for spreading

software updates in developing regions where network connectivity
is unreliable or bandwidth is expensive. FlashPatch uses the
existing flow of USB flash drives in developing regions as a
distribution channel for software updates or security patches. We
demonstrated the practical benefits of FlashPatch through a nine-
month field evaluation in Ghana. In our field trial, we gathered data
on the prevalence and spread of viruses at our study site and found
that FlashPatch provided additional antivirus protection to 30% of
the machines running our prototype without requiring any change
in user behavior. The idea of spreading updates automatically
via flash drives may be widely applicable in developing regions,
especially when incorporated into existing antivirus tools and
operating systems.

Acknowledgements

We would like to thank Anthony Julius Yaw and Kelly McCabe
for their help in deploying FlashPatch and we would like to thank
Aaron Lynch, Aditya Vashistha, and the anonymous reviewers for
their suggestions on how to improve the presentation of this work.
This work was partially supported by an NSF Graduate Research
Fellowship under Grant No. DGE-114747.

9. REFERENCES

[1] Vishwanath Anantraman, Tarjei Mikkelsen, Reshma
Khilnani, Vikram S Kumar, Rao Machiraju, Alex Pentland,
and Lucila Ohno-Machado. Handheld computers for rural
healthcare, experiences in a large scale implementation. In
Development by Design, 2002.

[2] Peter Bailis and Ali Ghodsi. Eventual consistency today:
limitations, extensions, and beyond. Communications of the

ACM, 56(5):55–63, 2013.

[3] Yahel Ben-David, Shaddi Hasan, Joyojeet Pal, Matthias
Vallentin, Saurabh Panjwani, Philipp Gutheim, Jay Chen,
and Eric A. Brewer. Computing security in the developing
world: A case for multidisciplinary research. In 5th NSDR,
pages 39–44, 2011.

[4] Solomon R Benatar. Reflections and recommendations on
research ethics in developing countries. Social science &

medicine, 54(7):1131–1141, 2002.

[5] Prasanta Bhattacharya and William Thies. Computer viruses
in urban Indian telecenters: Characterizing an unsolved
problem. In 5th NSDR, pages 45–50, 2011.

[6] Eric Brewer, Michael Demmer, Melissa Ho, RJ Honicky,
Joyojeet Pal, Madelaine Plauche, and Sonesh Surana. The
challenges of technology research for developing regions.
Pervasive Computing, IEEE, 5(2):15–23, 2006.

[7] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward
Cutrell, and William Thies. Yours is better!: participant
response bias in HCI. In CHI, pages 1321–1330. ACM, 2012.

[8] Michael J Demmer, Bowei Du, and Eric A Brewer.
TierStore: A distributed filesystem for challenged networks
in developing regions. In FAST, volume 8, pages 1–14, 2008.

[9] Kevin Fall. A delay-tolerant network architecture for
challenged internets. In SIGCOMM, pages 27–34, 2003.

[10] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A
digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[11] Richard Guy, Peter Reiher, Michial Gunter, Wilkie Ma, and
Gerald Popek. Rumor: Mobile data access through optimistic
peer-to-peer replication. In Workshop on Mobile Data

Access, 1998.

[12] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a delay
tolerant network. SIGCOMM, 34(4), August 2004.

[13] David L. Johnson, Veljko Pejovic, Elizabeth M. Belding, and
Gertjan van Stam. Traffic characterization and internet usage
in rural Africa. In 20th WWW Companion, pages 493–502,
2011.

[14] K. W. Matthee, Gregory Mweemba, A. V. Pais, Gertjan
Van Stam, and Marijn Rijken. Bringing internet connectivity
to rural Zambia using a collaborative approach. In ICTD,
pages 1–12, 2007.

[15] Michael F. Nowlan and Bryan Ford. Embrace your inner
virus. In “Vision Session” at 9th USENIX OSDI, 2010.

[16] Michael Paik. Gotta catch’em all! Innoculous: enabling
epidemiology of computer viruses in the developing world.
In 5th NSDR, pages 51–56, 2011.

[17] Alex Pentland, Richard Fletcher, and Amir Hasson. DakNet:
Rethinking connectivity in developing nations. Computer,
37(1):78–83, 2004.

[18] Karin Petersen, Mike J Spreitzer, Douglas B Terry, Marvin M
Theimer, and Alan J Demers. Flexible update propagation
for weakly consistent replication. In SOSP, 1997.

[19] Ian H. Witten, Rarold W. Thimbleby, George Coulouris, and
Saul Greenberg. Liveware: A new approach to sharing data
in social networks. International journal of man-machine

studies, 34(3):337–348, 1991.

[20] World Bank. GDP per capita (current US$). Retrieved 30
July 2014.

